• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "PathOpsTestCommon.h"
8 #include "SkIntersections.h"
9 #include "SkPathOpsCubic.h"
10 #include "SkPathOpsLine.h"
11 #include "SkPathOpsQuad.h"
12 #include "SkRandom.h"
13 #include "SkReduceOrder.h"
14 #include "Test.h"
15 
16 static bool gPathOpsCubicLineIntersectionIdeasVerbose = false;
17 
18 static struct CubicLineFailures {
19     CubicPts c;
20     double t;
21     SkDPoint p;
22 } cubicLineFailures[] = {
23     {{{{-164.3726806640625, 36.826904296875}, {-189.045166015625, -953.2220458984375},
24         {926.505859375, -897.36175537109375}, {-139.33489990234375, 204.40771484375}}},
25         0.37329583, {107.54935269006289, -632.13736293162208}},
26     {{{{784.056884765625, -554.8350830078125}, {67.5489501953125, 509.0224609375},
27         {-447.713134765625, 751.375}, {415.7784423828125, 172.22265625}}},
28         0.660005242, {-32.973148967736151, 478.01341797403569}},
29     {{{{-580.6834716796875, -127.044921875}, {-872.8983154296875, -945.54302978515625},
30         {260.8092041015625, -909.34991455078125}, {-976.2125244140625, -18.46551513671875}}},
31         0.578826774, {-390.17910153915489, -687.21144412296007}},
32 };
33 
34 int cubicLineFailuresCount = (int) SK_ARRAY_COUNT(cubicLineFailures);
35 
36 double measuredSteps[] = {
37     9.15910731e-007, 8.6600277e-007, 7.4122059e-007, 6.92087618e-007, 8.35290245e-007,
38     3.29763199e-007, 5.07547773e-007, 4.41294224e-007, 0, 0,
39     3.76879167e-006, 1.06126249e-006, 2.36873967e-006, 1.62421134e-005, 3.09103599e-005,
40     4.38917976e-005, 0.000112348938, 0.000243149242, 0.000433174114, 0.00170880232,
41     0.00272619724, 0.00518844604, 0.000352621078, 0.00175960064, 0.027875185,
42     0.0351329803, 0.103964925,
43 };
44 
45 /* last output : errors=3121
46     9.1796875e-007 8.59375e-007 7.5e-007 6.875e-007 8.4375e-007
47     3.125e-007 5e-007 4.375e-007 0 0
48     3.75e-006 1.09375e-006 2.1875e-006 1.640625e-005 3.0859375e-005
49     4.38964844e-005 0.000112304687 0.000243164063 0.000433181763 0.00170898437
50     0.00272619247 0.00518844604 0.000352621078 0.00175960064 0.027875185
51     0.0351329803 0.103964925
52 */
53 
binary_search(const SkDCubic & cubic,double step,const SkDPoint & pt,double t,int * iters)54 static double binary_search(const SkDCubic& cubic, double step, const SkDPoint& pt, double t,
55         int* iters) {
56     double firstStep = step;
57     do {
58         *iters += 1;
59         SkDPoint cubicAtT = cubic.ptAtT(t);
60         if (cubicAtT.approximatelyEqual(pt)) {
61             break;
62         }
63         double calcX = cubicAtT.fX - pt.fX;
64         double calcY = cubicAtT.fY - pt.fY;
65         double calcDist = calcX * calcX + calcY * calcY;
66         if (step == 0) {
67             SkDebugf("binary search failed: step=%1.9g cubic=", firstStep);
68             cubic.dump();
69             SkDebugf(" t=%1.9g ", t);
70             pt.dump();
71             SkDebugf("\n");
72             return -1;
73         }
74         double lastStep = step;
75         step /= 2;
76         SkDPoint lessPt = cubic.ptAtT(t - lastStep);
77         double lessX = lessPt.fX - pt.fX;
78         double lessY = lessPt.fY - pt.fY;
79         double lessDist = lessX * lessX + lessY * lessY;
80         // use larger x/y difference to choose step
81         if (calcDist > lessDist) {
82             t -= step;
83             t = SkTMax(0., t);
84         } else {
85             SkDPoint morePt = cubic.ptAtT(t + lastStep);
86             double moreX = morePt.fX - pt.fX;
87             double moreY = morePt.fY - pt.fY;
88             double moreDist = moreX * moreX + moreY * moreY;
89             if (calcDist <= moreDist) {
90                 continue;
91             }
92             t += step;
93             t = SkTMin(1., t);
94         }
95     } while (true);
96     return t;
97 }
98 
99 #if 0
100 static bool r2check(double A, double B, double C, double D, double* R2MinusQ3Ptr) {
101     if (approximately_zero(A)
102             && approximately_zero_when_compared_to(A, B)
103             && approximately_zero_when_compared_to(A, C)
104             && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
105         return false;
106     }
107     if (approximately_zero_when_compared_to(D, A)
108             && approximately_zero_when_compared_to(D, B)
109             && approximately_zero_when_compared_to(D, C)) {  // 0 is one root
110         return false;
111     }
112     if (approximately_zero(A + B + C + D)) {  // 1 is one root
113         return false;
114     }
115     double a, b, c;
116     {
117         double invA = 1 / A;
118         a = B * invA;
119         b = C * invA;
120         c = D * invA;
121     }
122     double a2 = a * a;
123     double Q = (a2 - b * 3) / 9;
124     double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
125     double R2 = R * R;
126     double Q3 = Q * Q * Q;
127     double R2MinusQ3 = R2 - Q3;
128     *R2MinusQ3Ptr = R2MinusQ3;
129     return true;
130 }
131 #endif
132 
133 /* What is the relationship between the accuracy of the root in range and the magnitude of all
134    roots? To find out, create a bunch of cubics, and measure */
135 
DEF_TEST(PathOpsCubicLineRoots,reporter)136 DEF_TEST(PathOpsCubicLineRoots, reporter) {
137     if (!gPathOpsCubicLineIntersectionIdeasVerbose) {  // slow; exclude it by default
138         return;
139     }
140     SkRandom ran;
141     double worstStep[256] = {0};
142     int errors = 0;
143     int iters = 0;
144     double smallestR2 = 0;
145     double largestR2 = 0;
146     for (int index = 0; index < 1000000000; ++index) {
147         SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)};
148         CubicPts cuPts = {{origin,
149                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
150                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
151                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}
152         }};
153         // construct a line at a known intersection
154         double t = ran.nextRangeF(0, 1);
155         SkDCubic cubic;
156         cubic.debugSet(cuPts.fPts);
157         SkDPoint pt = cubic.ptAtT(t);
158         // skip answers with no intersections (although note the bug!) or two, or more
159         // see if the line / cubic has a fun range of roots
160         double A, B, C, D;
161         SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
162         D -= pt.fY;
163         double allRoots[3] = {0}, validRoots[3] = {0};
164         int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots);
165         int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots);
166         if (valid != 1) {
167             continue;
168         }
169         if (realRoots == 1) {
170             continue;
171         }
172         t = validRoots[0];
173         SkDPoint calcPt = cubic.ptAtT(t);
174         if (calcPt.approximatelyEqual(pt)) {
175             continue;
176         }
177 #if 0
178         double R2MinusQ3;
179         if (r2check(A, B, C, D, &R2MinusQ3)) {
180             smallestR2 = SkTMin(smallestR2, R2MinusQ3);
181             largestR2 = SkTMax(largestR2, R2MinusQ3);
182         }
183 #endif
184         double largest = SkTMax(fabs(allRoots[0]), fabs(allRoots[1]));
185         if (realRoots == 3) {
186             largest = SkTMax(largest, fabs(allRoots[2]));
187         }
188         int largeBits;
189         if (largest <= 1) {
190 #if 0
191             SkDebugf("realRoots=%d (%1.9g, %1.9g, %1.9g) valid=%d (%1.9g, %1.9g, %1.9g)\n",
192                 realRoots, allRoots[0], allRoots[1], allRoots[2], valid, validRoots[0],
193                 validRoots[1], validRoots[2]);
194 #endif
195             double smallest = SkTMin(allRoots[0], allRoots[1]);
196             if (realRoots == 3) {
197                 smallest = SkTMin(smallest, allRoots[2]);
198             }
199             SkASSERT_RELEASE(smallest < 0);
200             SkASSERT_RELEASE(smallest >= -1);
201             largeBits = 0;
202         } else {
203             frexp(largest, &largeBits);
204             SkASSERT_RELEASE(largeBits >= 0);
205             SkASSERT_RELEASE(largeBits < 256);
206         }
207         double step = 1e-6;
208         if (largeBits > 21) {
209             step = 1e-1;
210         } else if (largeBits > 18) {
211             step = 1e-2;
212         } else if (largeBits > 15) {
213             step = 1e-3;
214         } else if (largeBits > 12) {
215             step = 1e-4;
216         } else if (largeBits > 9) {
217             step = 1e-5;
218         }
219         double diff;
220         do {
221             double newT = binary_search(cubic, step, pt, t, &iters);
222             if (newT >= 0) {
223                 diff = fabs(t - newT);
224                 break;
225             }
226             step *= 1.5;
227             SkASSERT_RELEASE(step < 1);
228         } while (true);
229         worstStep[largeBits] = SkTMax(worstStep[largeBits], diff);
230 #if 0
231         {
232             cubic.dump();
233             SkDebugf("\n");
234             SkDLine line = {{{pt.fX - 1, pt.fY}, {pt.fX + 1, pt.fY}}};
235             line.dump();
236             SkDebugf("\n");
237         }
238 #endif
239         ++errors;
240     }
241     SkDebugf("errors=%d avgIter=%1.9g", errors, (double) iters / errors);
242     SkDebugf(" steps: ");
243     int worstLimit = SK_ARRAY_COUNT(worstStep);
244     while (worstStep[--worstLimit] == 0) ;
245     for (int idx2 = 0; idx2 <= worstLimit; ++idx2) {
246         SkDebugf("%1.9g ", worstStep[idx2]);
247     }
248     SkDebugf("\n");
249     SkDebugf("smallestR2=%1.9g largestR2=%1.9g\n", smallestR2, largestR2);
250 }
251 
testOneFailure(const CubicLineFailures & failure)252 static double testOneFailure(const CubicLineFailures& failure) {
253     const CubicPts& c = failure.c;
254     SkDCubic cubic;
255     cubic.debugSet(c.fPts);
256     const SkDPoint& pt = failure.p;
257     double A, B, C, D;
258     SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
259     D -= pt.fY;
260     double allRoots[3] = {0}, validRoots[3] = {0};
261     int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots);
262     int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots);
263     SkASSERT_RELEASE(valid == 1);
264     SkASSERT_RELEASE(realRoots != 1);
265     double t = validRoots[0];
266     SkDPoint calcPt = cubic.ptAtT(t);
267     SkASSERT_RELEASE(!calcPt.approximatelyEqual(pt));
268     int iters = 0;
269     double newT = binary_search(cubic, 0.1, pt, t, &iters);
270     return newT;
271 }
272 
DEF_TEST(PathOpsCubicLineFailures,reporter)273 DEF_TEST(PathOpsCubicLineFailures, reporter) {
274     return;  // disable for now
275     for (int index = 0; index < cubicLineFailuresCount; ++index) {
276         const CubicLineFailures& failure = cubicLineFailures[index];
277         double newT = testOneFailure(failure);
278         SkASSERT_RELEASE(newT >= 0);
279     }
280 }
281 
DEF_TEST(PathOpsCubicLineOneFailure,reporter)282 DEF_TEST(PathOpsCubicLineOneFailure, reporter) {
283     return;  // disable for now
284     const CubicLineFailures& failure = cubicLineFailures[1];
285     double newT = testOneFailure(failure);
286     SkASSERT_RELEASE(newT >= 0);
287 }
288