• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkMatrix44_DEFINED
9 #define SkMatrix44_DEFINED
10 
11 #include "SkMatrix.h"
12 #include "SkScalar.h"
13 
14 #include <atomic>
15 #include <cstring>
16 
17 #ifdef SK_MSCALAR_IS_DOUBLE
18 #ifdef SK_MSCALAR_IS_FLOAT
19     #error "can't define MSCALAR both as DOUBLE and FLOAT"
20 #endif
21     typedef double SkMScalar;
22 
SkFloatToMScalar(float x)23     static inline double SkFloatToMScalar(float x) {
24         return static_cast<double>(x);
25     }
SkMScalarToFloat(double x)26     static inline float SkMScalarToFloat(double x) {
27         return static_cast<float>(x);
28     }
SkDoubleToMScalar(double x)29     static inline double SkDoubleToMScalar(double x) {
30         return x;
31     }
SkMScalarToDouble(double x)32     static inline double SkMScalarToDouble(double x) {
33         return x;
34     }
SkMScalarAbs(double x)35     static inline double SkMScalarAbs(double x) {
36         return fabs(x);
37     }
38     static const SkMScalar SK_MScalarPI = 3.141592653589793;
39 
40     #define SkMScalarFloor(x)           sk_double_floor(x)
41     #define SkMScalarCeil(x)            sk_double_ceil(x)
42     #define SkMScalarRound(x)           sk_double_round(x)
43 
44     #define SkMScalarFloorToInt(x)      sk_double_floor2int(x)
45     #define SkMScalarCeilToInt(x)       sk_double_ceil2int(x)
46     #define SkMScalarRoundToInt(x)      sk_double_round2int(x)
47 
48 
49 #elif defined SK_MSCALAR_IS_FLOAT
50 #ifdef SK_MSCALAR_IS_DOUBLE
51     #error "can't define MSCALAR both as DOUBLE and FLOAT"
52 #endif
53     typedef float SkMScalar;
54 
SkFloatToMScalar(float x)55     static inline float SkFloatToMScalar(float x) {
56         return x;
57     }
SkMScalarToFloat(float x)58     static inline float SkMScalarToFloat(float x) {
59         return x;
60     }
SkDoubleToMScalar(double x)61     static inline float SkDoubleToMScalar(double x) {
62         return sk_double_to_float(x);
63     }
SkMScalarToDouble(float x)64     static inline double SkMScalarToDouble(float x) {
65         return static_cast<double>(x);
66     }
SkMScalarAbs(float x)67     static inline float SkMScalarAbs(float x) {
68         return sk_float_abs(x);
69     }
70     static const SkMScalar SK_MScalarPI = 3.14159265f;
71 
72     #define SkMScalarFloor(x)           sk_float_floor(x)
73     #define SkMScalarCeil(x)            sk_float_ceil(x)
74     #define SkMScalarRound(x)           sk_float_round(x)
75 
76     #define SkMScalarFloorToInt(x)      sk_float_floor2int(x)
77     #define SkMScalarCeilToInt(x)       sk_float_ceil2int(x)
78     #define SkMScalarRoundToInt(x)      sk_float_round2int(x)
79 
80 #endif
81 
82 #define SkIntToMScalar(n)       static_cast<SkMScalar>(n)
83 
84 #define SkMScalarToScalar(x)    SkMScalarToFloat(x)
85 #define SkScalarToMScalar(x)    SkFloatToMScalar(x)
86 
87 static const SkMScalar SK_MScalar1 = 1;
88 
89 ///////////////////////////////////////////////////////////////////////////////
90 
91 struct SkVector4 {
92     SkScalar fData[4];
93 
SkVector4SkVector494     SkVector4() {
95         this->set(0, 0, 0, 1);
96     }
SkVector4SkVector497     SkVector4(const SkVector4& src) {
98         memcpy(fData, src.fData, sizeof(fData));
99     }
100     SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
101         fData[0] = x;
102         fData[1] = y;
103         fData[2] = z;
104         fData[3] = w;
105     }
106 
107     SkVector4& operator=(const SkVector4& src) {
108         memcpy(fData, src.fData, sizeof(fData));
109         return *this;
110     }
111 
112     bool operator==(const SkVector4& v) {
113         return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
114                fData[2] == v.fData[2] && fData[3] == v.fData[3];
115     }
116     bool operator!=(const SkVector4& v) {
117         return !(*this == v);
118     }
119     bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
120         return fData[0] == x && fData[1] == y &&
121                fData[2] == z && fData[3] == w;
122     }
123 
124     void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
125         fData[0] = x;
126         fData[1] = y;
127         fData[2] = z;
128         fData[3] = w;
129     }
130 };
131 
132 /** \class SkMatrix44
133 
134     The SkMatrix44 class holds a 4x4 matrix.
135 
136     SkMatrix44 is not thread safe unless you've first called SkMatrix44::getType().
137 */
138 class SK_API SkMatrix44 {
139 public:
140 
141     enum Uninitialized_Constructor {
142         kUninitialized_Constructor
143     };
144     enum Identity_Constructor {
145         kIdentity_Constructor
146     };
147 
SkMatrix44(Uninitialized_Constructor)148     SkMatrix44(Uninitialized_Constructor) {}  // ironically, cannot be constexpr
149 
SkMatrix44(Identity_Constructor)150     constexpr SkMatrix44(Identity_Constructor)
151         : fMat{{ 1, 0, 0, 0, },
152                { 0, 1, 0, 0, },
153                { 0, 0, 1, 0, },
154                { 0, 0, 0, 1, }}
155         , fTypeMask(kIdentity_Mask)
156     {}
157 
SkMatrix44()158     constexpr SkMatrix44() : SkMatrix44{kIdentity_Constructor} {}
159 
SkMatrix44(const SkMatrix44 & src)160     SkMatrix44(const SkMatrix44& src) {
161         memcpy(fMat, src.fMat, sizeof(fMat));
162         fTypeMask.store(src.fTypeMask, std::memory_order_relaxed);
163     }
164 
SkMatrix44(const SkMatrix44 & a,const SkMatrix44 & b)165     SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
166         this->setConcat(a, b);
167     }
168 
169     SkMatrix44& operator=(const SkMatrix44& src) {
170         if (&src != this) {
171             memcpy(fMat, src.fMat, sizeof(fMat));
172             fTypeMask.store(src.fTypeMask, std::memory_order_relaxed);
173         }
174         return *this;
175     }
176 
177     bool operator==(const SkMatrix44& other) const;
178     bool operator!=(const SkMatrix44& other) const {
179         return !(other == *this);
180     }
181 
182     /* When converting from SkMatrix44 to SkMatrix, the third row and
183      * column is dropped.  When converting from SkMatrix to SkMatrix44
184      * the third row and column remain as identity:
185      * [ a b c ]      [ a b 0 c ]
186      * [ d e f ]  ->  [ d e 0 f ]
187      * [ g h i ]      [ 0 0 1 0 ]
188      *                [ g h 0 i ]
189      */
190     SkMatrix44(const SkMatrix&);
191     SkMatrix44& operator=(const SkMatrix& src);
192     operator SkMatrix() const;
193 
194     /**
195      *  Return a reference to a const identity matrix
196      */
197     static const SkMatrix44& I();
198 
199     enum TypeMask {
200         kIdentity_Mask      = 0,
201         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
202         kScale_Mask         = 0x02,  //!< set if the matrix has any scale != 1
203         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
204         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
205     };
206 
207     /**
208      *  Returns a bitfield describing the transformations the matrix may
209      *  perform. The bitfield is computed conservatively, so it may include
210      *  false positives. For example, when kPerspective_Mask is true, all
211      *  other bits may be set to true even in the case of a pure perspective
212      *  transform.
213      */
getType()214     inline TypeMask getType() const {
215         if (fTypeMask.load(std::memory_order_relaxed) & kUnknown_Mask) {
216             fTypeMask.store(this->computeTypeMask(), std::memory_order_relaxed);
217         }
218         SkASSERT(!(fTypeMask & kUnknown_Mask));
219         return (TypeMask)fTypeMask.load(std::memory_order_relaxed);
220     }
221 
222     /**
223      *  Return true if the matrix is identity.
224      */
isIdentity()225     inline bool isIdentity() const {
226         return kIdentity_Mask == this->getType();
227     }
228 
229     /**
230      *  Return true if the matrix contains translate or is identity.
231      */
isTranslate()232     inline bool isTranslate() const {
233         return !(this->getType() & ~kTranslate_Mask);
234     }
235 
236     /**
237      *  Return true if the matrix only contains scale or translate or is identity.
238      */
isScaleTranslate()239     inline bool isScaleTranslate() const {
240         return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
241     }
242 
243     /**
244      *  Returns true if the matrix only contains scale or is identity.
245      */
isScale()246     inline bool isScale() const {
247             return !(this->getType() & ~kScale_Mask);
248     }
249 
hasPerspective()250     inline bool hasPerspective() const {
251         return SkToBool(this->getType() & kPerspective_Mask);
252     }
253 
254     void setIdentity();
reset()255     inline void reset() { this->setIdentity();}
256 
257     /**
258      *  get a value from the matrix. The row,col parameters work as follows:
259      *  (0, 0)  scale-x
260      *  (0, 3)  translate-x
261      *  (3, 0)  perspective-x
262      */
get(int row,int col)263     inline SkMScalar get(int row, int col) const {
264         SkASSERT((unsigned)row <= 3);
265         SkASSERT((unsigned)col <= 3);
266         return fMat[col][row];
267     }
268 
269     /**
270      *  set a value in the matrix. The row,col parameters work as follows:
271      *  (0, 0)  scale-x
272      *  (0, 3)  translate-x
273      *  (3, 0)  perspective-x
274      */
set(int row,int col,SkMScalar value)275     inline void set(int row, int col, SkMScalar value) {
276         SkASSERT((unsigned)row <= 3);
277         SkASSERT((unsigned)col <= 3);
278         fMat[col][row] = value;
279         this->dirtyTypeMask();
280     }
281 
getDouble(int row,int col)282     inline double getDouble(int row, int col) const {
283         return SkMScalarToDouble(this->get(row, col));
284     }
setDouble(int row,int col,double value)285     inline void setDouble(int row, int col, double value) {
286         this->set(row, col, SkDoubleToMScalar(value));
287     }
getFloat(int row,int col)288     inline float getFloat(int row, int col) const {
289         return SkMScalarToFloat(this->get(row, col));
290     }
setFloat(int row,int col,float value)291     inline void setFloat(int row, int col, float value) {
292         this->set(row, col, SkFloatToMScalar(value));
293     }
294 
295     /** These methods allow one to efficiently read matrix entries into an
296      *  array. The given array must have room for exactly 16 entries. Whenever
297      *  possible, they will try to use memcpy rather than an entry-by-entry
298      *  copy.
299      *
300      *  Col major indicates that consecutive elements of columns will be stored
301      *  contiguously in memory.  Row major indicates that consecutive elements
302      *  of rows will be stored contiguously in memory.
303      */
304     void asColMajorf(float[]) const;
305     void asColMajord(double[]) const;
306     void asRowMajorf(float[]) const;
307     void asRowMajord(double[]) const;
308 
309     /** These methods allow one to efficiently set all matrix entries from an
310      *  array. The given array must have room for exactly 16 entries. Whenever
311      *  possible, they will try to use memcpy rather than an entry-by-entry
312      *  copy.
313      *
314      *  Col major indicates that input memory will be treated as if consecutive
315      *  elements of columns are stored contiguously in memory.  Row major
316      *  indicates that input memory will be treated as if consecutive elements
317      *  of rows are stored contiguously in memory.
318      */
319     void setColMajorf(const float[]);
320     void setColMajord(const double[]);
321     void setRowMajorf(const float[]);
322     void setRowMajord(const double[]);
323 
324 #ifdef SK_MSCALAR_IS_FLOAT
setColMajor(const SkMScalar data[])325     void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
setRowMajor(const SkMScalar data[])326     void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
327 #else
setColMajor(const SkMScalar data[])328     void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
setRowMajor(const SkMScalar data[])329     void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
330 #endif
331 
332     /* This sets the top-left of the matrix and clears the translation and
333      * perspective components (with [3][3] set to 1).  m_ij is interpreted
334      * as the matrix entry at row = i, col = j. */
335     void set3x3(SkMScalar m_00, SkMScalar m_10, SkMScalar m_20,
336                 SkMScalar m_01, SkMScalar m_11, SkMScalar m_21,
337                 SkMScalar m_02, SkMScalar m_12, SkMScalar m_22);
338     void set3x3RowMajorf(const float[]);
339 
340     void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
341     void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
342     void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
343 
344     void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
345     void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
346     void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
347 
setScale(SkMScalar scale)348     inline void setScale(SkMScalar scale) {
349         this->setScale(scale, scale, scale);
350     }
preScale(SkMScalar scale)351     inline void preScale(SkMScalar scale) {
352         this->preScale(scale, scale, scale);
353     }
postScale(SkMScalar scale)354     inline void postScale(SkMScalar scale) {
355         this->postScale(scale, scale, scale);
356     }
357 
setRotateDegreesAbout(SkMScalar x,SkMScalar y,SkMScalar z,SkMScalar degrees)358     void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
359                                SkMScalar degrees) {
360         this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
361     }
362 
363     /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
364         it will be automatically resized.
365      */
366     void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
367                         SkMScalar radians);
368     /** Rotate about the vector [x,y,z]. Does not check the length of the
369         vector, assuming it is unit-length.
370      */
371     void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
372                             SkMScalar radians);
373 
374     void setConcat(const SkMatrix44& a, const SkMatrix44& b);
preConcat(const SkMatrix44 & m)375     inline void preConcat(const SkMatrix44& m) {
376         this->setConcat(*this, m);
377     }
postConcat(const SkMatrix44 & m)378     inline void postConcat(const SkMatrix44& m) {
379         this->setConcat(m, *this);
380     }
381 
382     friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
383         return SkMatrix44(a, b);
384     }
385 
386     /** If this is invertible, return that in inverse and return true. If it is
387         not invertible, return false and leave the inverse parameter in an
388         unspecified state.
389      */
390     bool invert(SkMatrix44* inverse) const;
391 
392     /** Transpose this matrix in place. */
393     void transpose();
394 
395     /** Apply the matrix to the src vector, returning the new vector in dst.
396         It is legal for src and dst to point to the same memory.
397      */
398     void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
mapScalars(SkScalar vec[4])399     inline void mapScalars(SkScalar vec[4]) const {
400         this->mapScalars(vec, vec);
401     }
402 
403 #ifdef SK_MSCALAR_IS_DOUBLE
404     void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
405 #elif defined SK_MSCALAR_IS_FLOAT
mapMScalars(const SkMScalar src[4],SkMScalar dst[4])406     inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
407         this->mapScalars(src, dst);
408     }
409 #endif
mapMScalars(SkMScalar vec[4])410     inline void mapMScalars(SkMScalar vec[4]) const {
411         this->mapMScalars(vec, vec);
412     }
413 
414     friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
415         SkVector4 dst;
416         m.mapScalars(src.fData, dst.fData);
417         return dst;
418     }
419 
420     /**
421      *  map an array of [x, y, 0, 1] through the matrix, returning an array
422      *  of [x', y', z', w'].
423      *
424      *  @param src2     array of [x, y] pairs, with implied z=0 and w=1
425      *  @param count    number of [x, y] pairs in src2
426      *  @param dst4     array of [x', y', z', w'] quads as the output.
427      */
428     void map2(const float src2[], int count, float dst4[]) const;
429     void map2(const double src2[], int count, double dst4[]) const;
430 
431     /** Returns true if transformating an axis-aligned square in 2d by this matrix
432         will produce another 2d axis-aligned square; typically means the matrix
433         is a scale with perhaps a 90-degree rotation. A 3d rotation through 90
434         degrees into a perpendicular plane collapses a square to a line, but
435         is still considered to be axis-aligned.
436 
437         By default, tolerates very slight error due to float imprecisions;
438         a 90-degree rotation can still end up with 10^-17 of
439         "non-axis-aligned" result.
440      */
441     bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const;
442 
443     void dump() const;
444 
445     double determinant() const;
446 
447 private:
448     /* This is indexed by [col][row]. */
449     SkMScalar                       fMat[4][4];
450     mutable std::atomic<unsigned>   fTypeMask;
451 
452     static constexpr int kUnknown_Mask = 0x80;
453 
454     static constexpr int kAllPublic_Masks = 0xF;
455 
456     void as3x4RowMajorf(float[]) const;
457     void set3x4RowMajorf(const float[]);
458 
transX()459     SkMScalar transX() const { return fMat[3][0]; }
transY()460     SkMScalar transY() const { return fMat[3][1]; }
transZ()461     SkMScalar transZ() const { return fMat[3][2]; }
462 
scaleX()463     SkMScalar scaleX() const { return fMat[0][0]; }
scaleY()464     SkMScalar scaleY() const { return fMat[1][1]; }
scaleZ()465     SkMScalar scaleZ() const { return fMat[2][2]; }
466 
perspX()467     SkMScalar perspX() const { return fMat[0][3]; }
perspY()468     SkMScalar perspY() const { return fMat[1][3]; }
perspZ()469     SkMScalar perspZ() const { return fMat[2][3]; }
470 
471     int computeTypeMask() const;
472 
dirtyTypeMask()473     inline void dirtyTypeMask() {
474         fTypeMask.store(kUnknown_Mask, std::memory_order_relaxed);
475     }
476 
setTypeMask(int mask)477     inline void setTypeMask(int mask) {
478         SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
479         fTypeMask.store(mask, std::memory_order_relaxed);
480     }
481 
482     /**
483      *  Does not take the time to 'compute' the typemask. Only returns true if
484      *  we already know that this matrix is identity.
485      */
isTriviallyIdentity()486     inline bool isTriviallyIdentity() const {
487         return 0 == fTypeMask.load(std::memory_order_relaxed);
488     }
489 
values()490     inline const SkMScalar* values() const { return &fMat[0][0]; }
491 
492     friend class SkColorSpace;
493 };
494 
495 #endif
496