1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkTArray_DEFINED
9 #define SkTArray_DEFINED
10
11 #include "../private/SkSafe32.h"
12 #include "../private/SkTLogic.h"
13 #include "../private/SkTemplates.h"
14 #include "SkTypes.h"
15
16 #include <new>
17 #include <utility>
18
19 /** When MEM_MOVE is true T will be bit copied when moved.
20 When MEM_MOVE is false, T will be copy constructed / destructed.
21 In all cases T will be default-initialized on allocation,
22 and its destructor will be called from this object's destructor.
23 */
24 template <typename T, bool MEM_MOVE = false> class SkTArray {
25 public:
26 /**
27 * Creates an empty array with no initial storage
28 */
SkTArray()29 SkTArray() { this->init(); }
30
31 /**
32 * Creates an empty array that will preallocate space for reserveCount
33 * elements.
34 */
SkTArray(int reserveCount)35 explicit SkTArray(int reserveCount) { this->init(0, reserveCount); }
36
37 /**
38 * Copies one array to another. The new array will be heap allocated.
39 */
SkTArray(const SkTArray & that)40 SkTArray(const SkTArray& that) {
41 this->init(that.fCount);
42 this->copy(that.fItemArray);
43 }
44
SkTArray(SkTArray && that)45 SkTArray(SkTArray&& that) {
46 // TODO: If 'that' owns its memory why don't we just steal the pointer?
47 this->init(that.fCount);
48 that.move(fMemArray);
49 that.fCount = 0;
50 }
51
52 /**
53 * Creates a SkTArray by copying contents of a standard C array. The new
54 * array will be heap allocated. Be careful not to use this constructor
55 * when you really want the (void*, int) version.
56 */
SkTArray(const T * array,int count)57 SkTArray(const T* array, int count) {
58 this->init(count);
59 this->copy(array);
60 }
61
62 SkTArray& operator=(const SkTArray& that) {
63 if (this == &that) {
64 return *this;
65 }
66 for (int i = 0; i < fCount; ++i) {
67 fItemArray[i].~T();
68 }
69 fCount = 0;
70 this->checkRealloc(that.count());
71 fCount = that.count();
72 this->copy(that.fItemArray);
73 return *this;
74 }
75 SkTArray& operator=(SkTArray&& that) {
76 if (this == &that) {
77 return *this;
78 }
79 for (int i = 0; i < fCount; ++i) {
80 fItemArray[i].~T();
81 }
82 fCount = 0;
83 this->checkRealloc(that.count());
84 fCount = that.count();
85 that.move(fMemArray);
86 that.fCount = 0;
87 return *this;
88 }
89
~SkTArray()90 ~SkTArray() {
91 for (int i = 0; i < fCount; ++i) {
92 fItemArray[i].~T();
93 }
94 if (fOwnMemory) {
95 sk_free(fMemArray);
96 }
97 }
98
99 /**
100 * Resets to count() == 0 and resets any reserve count.
101 */
reset()102 void reset() {
103 this->pop_back_n(fCount);
104 fReserved = false;
105 }
106
107 /**
108 * Resets to count() = n newly constructed T objects and resets any reserve count.
109 */
reset(int n)110 void reset(int n) {
111 SkASSERT(n >= 0);
112 for (int i = 0; i < fCount; ++i) {
113 fItemArray[i].~T();
114 }
115 // Set fCount to 0 before calling checkRealloc so that no elements are moved.
116 fCount = 0;
117 this->checkRealloc(n);
118 fCount = n;
119 for (int i = 0; i < fCount; ++i) {
120 new (fItemArray + i) T;
121 }
122 fReserved = false;
123 }
124
125 /**
126 * Resets to a copy of a C array and resets any reserve count.
127 */
reset(const T * array,int count)128 void reset(const T* array, int count) {
129 for (int i = 0; i < fCount; ++i) {
130 fItemArray[i].~T();
131 }
132 fCount = 0;
133 this->checkRealloc(count);
134 fCount = count;
135 this->copy(array);
136 fReserved = false;
137 }
138
139 /**
140 * Ensures there is enough reserved space for n additional elements. The is guaranteed at least
141 * until the array size grows above n and subsequently shrinks below n, any version of reset()
142 * is called, or reserve() is called again.
143 */
reserve(int n)144 void reserve(int n) {
145 SkASSERT(n >= 0);
146 if (n > 0) {
147 this->checkRealloc(n);
148 fReserved = fOwnMemory;
149 } else {
150 fReserved = false;
151 }
152 }
153
removeShuffle(int n)154 void removeShuffle(int n) {
155 SkASSERT(n < fCount);
156 int newCount = fCount - 1;
157 fCount = newCount;
158 fItemArray[n].~T();
159 if (n != newCount) {
160 this->move(n, newCount);
161 }
162 }
163
164 /**
165 * Number of elements in the array.
166 */
count()167 int count() const { return fCount; }
168
169 /**
170 * Is the array empty.
171 */
empty()172 bool empty() const { return !fCount; }
173
174 /**
175 * Adds 1 new default-initialized T value and returns it by reference. Note
176 * the reference only remains valid until the next call that adds or removes
177 * elements.
178 */
push_back()179 T& push_back() {
180 void* newT = this->push_back_raw(1);
181 return *new (newT) T;
182 }
183
184 /**
185 * Version of above that uses a copy constructor to initialize the new item
186 */
push_back(const T & t)187 T& push_back(const T& t) {
188 void* newT = this->push_back_raw(1);
189 return *new (newT) T(t);
190 }
191
192 /**
193 * Version of above that uses a move constructor to initialize the new item
194 */
push_back(T && t)195 T& push_back(T&& t) {
196 void* newT = this->push_back_raw(1);
197 return *new (newT) T(std::move(t));
198 }
199
200 /**
201 * Construct a new T at the back of this array.
202 */
emplace_back(Args &&...args)203 template<class... Args> T& emplace_back(Args&&... args) {
204 void* newT = this->push_back_raw(1);
205 return *new (newT) T(std::forward<Args>(args)...);
206 }
207
208 /**
209 * Allocates n more default-initialized T values, and returns the address of
210 * the start of that new range. Note: this address is only valid until the
211 * next API call made on the array that might add or remove elements.
212 */
push_back_n(int n)213 T* push_back_n(int n) {
214 SkASSERT(n >= 0);
215 void* newTs = this->push_back_raw(n);
216 for (int i = 0; i < n; ++i) {
217 new (static_cast<char*>(newTs) + i * sizeof(T)) T;
218 }
219 return static_cast<T*>(newTs);
220 }
221
222 /**
223 * Version of above that uses a copy constructor to initialize all n items
224 * to the same T.
225 */
push_back_n(int n,const T & t)226 T* push_back_n(int n, const T& t) {
227 SkASSERT(n >= 0);
228 void* newTs = this->push_back_raw(n);
229 for (int i = 0; i < n; ++i) {
230 new (static_cast<char*>(newTs) + i * sizeof(T)) T(t);
231 }
232 return static_cast<T*>(newTs);
233 }
234
235 /**
236 * Version of above that uses a copy constructor to initialize the n items
237 * to separate T values.
238 */
push_back_n(int n,const T t[])239 T* push_back_n(int n, const T t[]) {
240 SkASSERT(n >= 0);
241 this->checkRealloc(n);
242 for (int i = 0; i < n; ++i) {
243 new (fItemArray + fCount + i) T(t[i]);
244 }
245 fCount += n;
246 return fItemArray + fCount - n;
247 }
248
249 /**
250 * Version of above that uses the move constructor to set n items.
251 */
move_back_n(int n,T * t)252 T* move_back_n(int n, T* t) {
253 SkASSERT(n >= 0);
254 this->checkRealloc(n);
255 for (int i = 0; i < n; ++i) {
256 new (fItemArray + fCount + i) T(std::move(t[i]));
257 }
258 fCount += n;
259 return fItemArray + fCount - n;
260 }
261
262 /**
263 * Removes the last element. Not safe to call when count() == 0.
264 */
pop_back()265 void pop_back() {
266 SkASSERT(fCount > 0);
267 --fCount;
268 fItemArray[fCount].~T();
269 this->checkRealloc(0);
270 }
271
272 /**
273 * Removes the last n elements. Not safe to call when count() < n.
274 */
pop_back_n(int n)275 void pop_back_n(int n) {
276 SkASSERT(n >= 0);
277 SkASSERT(fCount >= n);
278 fCount -= n;
279 for (int i = 0; i < n; ++i) {
280 fItemArray[fCount + i].~T();
281 }
282 this->checkRealloc(0);
283 }
284
285 /**
286 * Pushes or pops from the back to resize. Pushes will be default
287 * initialized.
288 */
resize_back(int newCount)289 void resize_back(int newCount) {
290 SkASSERT(newCount >= 0);
291
292 if (newCount > fCount) {
293 this->push_back_n(newCount - fCount);
294 } else if (newCount < fCount) {
295 this->pop_back_n(fCount - newCount);
296 }
297 }
298
299 /** Swaps the contents of this array with that array. Does a pointer swap if possible,
300 otherwise copies the T values. */
swap(SkTArray & that)301 void swap(SkTArray& that) {
302 using std::swap;
303 if (this == &that) {
304 return;
305 }
306 if (fOwnMemory && that.fOwnMemory) {
307 swap(fItemArray, that.fItemArray);
308 swap(fCount, that.fCount);
309 swap(fAllocCount, that.fAllocCount);
310 } else {
311 // This could be more optimal...
312 SkTArray copy(std::move(that));
313 that = std::move(*this);
314 *this = std::move(copy);
315 }
316 }
317
begin()318 T* begin() {
319 return fItemArray;
320 }
begin()321 const T* begin() const {
322 return fItemArray;
323 }
end()324 T* end() {
325 return fItemArray ? fItemArray + fCount : nullptr;
326 }
end()327 const T* end() const {
328 return fItemArray ? fItemArray + fCount : nullptr;
329 }
data()330 T* data() { return fItemArray; }
data()331 const T* data() const { return fItemArray; }
size()332 size_t size() const { return (size_t)fCount; }
resize(size_t count)333 void resize(size_t count) { this->resize_back((int)count); }
334
335 /**
336 * Get the i^th element.
337 */
338 T& operator[] (int i) {
339 SkASSERT(i < fCount);
340 SkASSERT(i >= 0);
341 return fItemArray[i];
342 }
343
344 const T& operator[] (int i) const {
345 SkASSERT(i < fCount);
346 SkASSERT(i >= 0);
347 return fItemArray[i];
348 }
349
350 /**
351 * equivalent to operator[](0)
352 */
front()353 T& front() { SkASSERT(fCount > 0); return fItemArray[0];}
354
front()355 const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}
356
357 /**
358 * equivalent to operator[](count() - 1)
359 */
back()360 T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}
361
back()362 const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}
363
364 /**
365 * equivalent to operator[](count()-1-i)
366 */
fromBack(int i)367 T& fromBack(int i) {
368 SkASSERT(i >= 0);
369 SkASSERT(i < fCount);
370 return fItemArray[fCount - i - 1];
371 }
372
fromBack(int i)373 const T& fromBack(int i) const {
374 SkASSERT(i >= 0);
375 SkASSERT(i < fCount);
376 return fItemArray[fCount - i - 1];
377 }
378
379 bool operator==(const SkTArray<T, MEM_MOVE>& right) const {
380 int leftCount = this->count();
381 if (leftCount != right.count()) {
382 return false;
383 }
384 for (int index = 0; index < leftCount; ++index) {
385 if (fItemArray[index] != right.fItemArray[index]) {
386 return false;
387 }
388 }
389 return true;
390 }
391
392 bool operator!=(const SkTArray<T, MEM_MOVE>& right) const {
393 return !(*this == right);
394 }
395
396 inline int allocCntForTest() const;
397
398 protected:
399 /**
400 * Creates an empty array that will use the passed storage block until it
401 * is insufficiently large to hold the entire array.
402 */
403 template <int N>
SkTArray(SkAlignedSTStorage<N,T> * storage)404 SkTArray(SkAlignedSTStorage<N,T>* storage) {
405 this->initWithPreallocatedStorage(0, storage->get(), N);
406 }
407
408 /**
409 * Copy another array, using preallocated storage if preAllocCount >=
410 * array.count(). Otherwise storage will only be used when array shrinks
411 * to fit.
412 */
413 template <int N>
SkTArray(const SkTArray & array,SkAlignedSTStorage<N,T> * storage)414 SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) {
415 this->initWithPreallocatedStorage(array.fCount, storage->get(), N);
416 this->copy(array.fItemArray);
417 }
418
419 /**
420 * Move another array, using preallocated storage if preAllocCount >=
421 * array.count(). Otherwise storage will only be used when array shrinks
422 * to fit.
423 */
424 template <int N>
SkTArray(SkTArray && array,SkAlignedSTStorage<N,T> * storage)425 SkTArray(SkTArray&& array, SkAlignedSTStorage<N,T>* storage) {
426 this->initWithPreallocatedStorage(array.fCount, storage->get(), N);
427 array.move(fMemArray);
428 array.fCount = 0;
429 }
430
431 /**
432 * Copy a C array, using preallocated storage if preAllocCount >=
433 * count. Otherwise storage will only be used when array shrinks
434 * to fit.
435 */
436 template <int N>
SkTArray(const T * array,int count,SkAlignedSTStorage<N,T> * storage)437 SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) {
438 this->initWithPreallocatedStorage(count, storage->get(), N);
439 this->copy(array);
440 }
441
442 private:
443 void init(int count = 0, int reserveCount = 0) {
444 SkASSERT(count >= 0);
445 SkASSERT(reserveCount >= 0);
446 fCount = count;
447 if (!count && !reserveCount) {
448 fAllocCount = 0;
449 fMemArray = nullptr;
450 fOwnMemory = true;
451 fReserved = false;
452 } else {
453 fAllocCount = SkTMax(count, SkTMax(kMinHeapAllocCount, reserveCount));
454 fMemArray = sk_malloc_throw(fAllocCount, sizeof(T));
455 fOwnMemory = true;
456 fReserved = reserveCount > 0;
457 }
458 }
459
initWithPreallocatedStorage(int count,void * preallocStorage,int preallocCount)460 void initWithPreallocatedStorage(int count, void* preallocStorage, int preallocCount) {
461 SkASSERT(count >= 0);
462 SkASSERT(preallocCount > 0);
463 SkASSERT(preallocStorage);
464 fCount = count;
465 fMemArray = nullptr;
466 fReserved = false;
467 if (count > preallocCount) {
468 fAllocCount = SkTMax(count, kMinHeapAllocCount);
469 fMemArray = sk_malloc_throw(fAllocCount, sizeof(T));
470 fOwnMemory = true;
471 } else {
472 fAllocCount = preallocCount;
473 fMemArray = preallocStorage;
474 fOwnMemory = false;
475 }
476 }
477
478 /** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage.
479 * In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage.
480 */
copy(const T * src)481 void copy(const T* src) {
482 // Some types may be trivially copyable, in which case we *could* use memcopy; but
483 // MEM_MOVE == true implies that the type is trivially movable, and not necessarily
484 // trivially copyable (think sk_sp<>). So short of adding another template arg, we
485 // must be conservative and use copy construction.
486 for (int i = 0; i < fCount; ++i) {
487 new (fItemArray + i) T(src[i]);
488 }
489 }
490
SK_WHEN(E,void)491 template <bool E = MEM_MOVE> SK_WHEN(E, void) move(int dst, int src) {
492 memcpy(&fItemArray[dst], &fItemArray[src], sizeof(T));
493 }
SK_WHEN(E,void)494 template <bool E = MEM_MOVE> SK_WHEN(E, void) move(void* dst) {
495 sk_careful_memcpy(dst, fMemArray, fCount * sizeof(T));
496 }
497
move(int dst,int src)498 template <bool E = MEM_MOVE> SK_WHEN(!E, void) move(int dst, int src) {
499 new (&fItemArray[dst]) T(std::move(fItemArray[src]));
500 fItemArray[src].~T();
501 }
move(void * dst)502 template <bool E = MEM_MOVE> SK_WHEN(!E, void) move(void* dst) {
503 for (int i = 0; i < fCount; ++i) {
504 new (static_cast<char*>(dst) + sizeof(T) * i) T(std::move(fItemArray[i]));
505 fItemArray[i].~T();
506 }
507 }
508
509 static constexpr int kMinHeapAllocCount = 8;
510
511 // Helper function that makes space for n objects, adjusts the count, but does not initialize
512 // the new objects.
push_back_raw(int n)513 void* push_back_raw(int n) {
514 this->checkRealloc(n);
515 void* ptr = fItemArray + fCount;
516 fCount += n;
517 return ptr;
518 }
519
checkRealloc(int delta)520 void checkRealloc(int delta) {
521 SkASSERT(fCount >= 0);
522 SkASSERT(fAllocCount >= 0);
523 SkASSERT(-delta <= fCount);
524
525 // Move into 64bit math temporarily, to avoid local overflows
526 int64_t newCount = fCount + delta;
527
528 // We allow fAllocCount to be in the range [newCount, 3*newCount]. We also never shrink
529 // when we're currently using preallocated memory, would allocate less than
530 // kMinHeapAllocCount, or a reserve count was specified that has yet to be exceeded.
531 bool mustGrow = newCount > fAllocCount;
532 bool shouldShrink = fAllocCount > 3 * newCount && fOwnMemory && !fReserved;
533 if (!mustGrow && !shouldShrink) {
534 return;
535 }
536
537
538 // Whether we're growing or shrinking, we leave at least 50% extra space for future growth.
539 int64_t newAllocCount = newCount + ((newCount + 1) >> 1);
540 // Align the new allocation count to kMinHeapAllocCount.
541 static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two.");
542 newAllocCount = (newAllocCount + (kMinHeapAllocCount - 1)) & ~(kMinHeapAllocCount - 1);
543 // At small sizes the old and new alloc count can both be kMinHeapAllocCount.
544 if (newAllocCount == fAllocCount) {
545 return;
546 }
547
548 fAllocCount = Sk64_pin_to_s32(newAllocCount);
549 SkASSERT(fAllocCount >= newCount);
550 void* newMemArray = sk_malloc_throw(fAllocCount, sizeof(T));
551 this->move(newMemArray);
552 if (fOwnMemory) {
553 sk_free(fMemArray);
554
555 }
556 fMemArray = newMemArray;
557 fOwnMemory = true;
558 fReserved = false;
559 }
560
561 union {
562 T* fItemArray;
563 void* fMemArray;
564 };
565 int fCount;
566 int fAllocCount;
567 bool fOwnMemory : 1;
568 bool fReserved : 1;
569 };
570
swap(SkTArray<T,M> & a,SkTArray<T,M> & b)571 template <typename T, bool M> static inline void swap(SkTArray<T, M>& a, SkTArray<T, M>& b) {
572 a.swap(b);
573 }
574
575 template<typename T, bool MEM_MOVE> constexpr int SkTArray<T, MEM_MOVE>::kMinHeapAllocCount;
576
577 /**
578 * Subclass of SkTArray that contains a preallocated memory block for the array.
579 */
580 template <int N, typename T, bool MEM_MOVE= false>
581 class SkSTArray : public SkTArray<T, MEM_MOVE> {
582 private:
583 typedef SkTArray<T, MEM_MOVE> INHERITED;
584
585 public:
SkSTArray()586 SkSTArray() : INHERITED(&fStorage) {
587 }
588
SkSTArray(const SkSTArray & array)589 SkSTArray(const SkSTArray& array)
590 : INHERITED(array, &fStorage) {
591 }
592
SkSTArray(SkSTArray && array)593 SkSTArray(SkSTArray&& array)
594 : INHERITED(std::move(array), &fStorage) {
595 }
596
SkSTArray(const INHERITED & array)597 explicit SkSTArray(const INHERITED& array)
598 : INHERITED(array, &fStorage) {
599 }
600
SkSTArray(INHERITED && array)601 explicit SkSTArray(INHERITED&& array)
602 : INHERITED(std::move(array), &fStorage) {
603 }
604
SkSTArray(int reserveCount)605 explicit SkSTArray(int reserveCount)
606 : INHERITED(reserveCount) {
607 }
608
SkSTArray(const T * array,int count)609 SkSTArray(const T* array, int count)
610 : INHERITED(array, count, &fStorage) {
611 }
612
613 SkSTArray& operator=(const SkSTArray& array) {
614 INHERITED::operator=(array);
615 return *this;
616 }
617
618 SkSTArray& operator=(SkSTArray&& array) {
619 INHERITED::operator=(std::move(array));
620 return *this;
621 }
622
623 SkSTArray& operator=(const INHERITED& array) {
624 INHERITED::operator=(array);
625 return *this;
626 }
627
628 SkSTArray& operator=(INHERITED&& array) {
629 INHERITED::operator=(std::move(array));
630 return *this;
631 }
632
633 private:
634 SkAlignedSTStorage<N,T> fStorage;
635 };
636
637 #endif
638