1 /* 2 * Copyright 2014 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkRecord_DEFINED 9 #define SkRecord_DEFINED 10 11 #include "SkArenaAlloc.h" 12 #include "SkRecords.h" 13 #include "SkTLogic.h" 14 #include "SkTemplates.h" 15 16 // SkRecord represents a sequence of SkCanvas calls, saved for future use. 17 // These future uses may include: replay, optimization, serialization, or combinations of those. 18 // 19 // Though an enterprising user may find calling alloc(), append(), visit(), and mutate() enough to 20 // work with SkRecord, you probably want to look at SkRecorder which presents an SkCanvas interface 21 // for creating an SkRecord, and SkRecordDraw which plays an SkRecord back into another SkCanvas. 22 // 23 // SkRecord often looks like it's compatible with any type T, but really it's compatible with any 24 // type T which has a static const SkRecords::Type kType. That is to say, SkRecord is compatible 25 // only with SkRecords::* structs defined in SkRecords.h. Your compiler will helpfully yell if you 26 // get this wrong. 27 28 class SkRecord : public SkRefCnt { 29 public: 30 SkRecord() = default; 31 ~SkRecord(); 32 33 // Returns the number of canvas commands in this SkRecord. count()34 int count() const { return fCount; } 35 36 // Visit the i-th canvas command with a functor matching this interface: 37 // template <typename T> 38 // R operator()(const T& record) { ... } 39 // This operator() must be defined for at least all SkRecords::*. 40 template <typename F> 41 auto visit(int i, F&& f) const -> decltype(f(SkRecords::NoOp())) { 42 return fRecords[i].visit(f); 43 } 44 45 // Mutate the i-th canvas command with a functor matching this interface: 46 // template <typename T> 47 // R operator()(T* record) { ... } 48 // This operator() must be defined for at least all SkRecords::*. 49 template <typename F> 50 auto mutate(int i, F&& f) -> decltype(f((SkRecords::NoOp*)nullptr)) { 51 return fRecords[i].mutate(f); 52 } 53 54 // Allocate contiguous space for count Ts, to be freed when the SkRecord is destroyed. 55 // Here T can be any class, not just those from SkRecords. Throws on failure. 56 template <typename T> 57 T* alloc(size_t count = 1) { 58 struct RawBytes { 59 alignas(T) char data[sizeof(T)]; 60 }; 61 fApproxBytesAllocated += count * sizeof(T) + alignof(T); 62 return (T*)fAlloc.makeArrayDefault<RawBytes>(count); 63 } 64 65 // Add a new command of type T to the end of this SkRecord. 66 // You are expected to placement new an object of type T onto this pointer. 67 template <typename T> append()68 T* append() { 69 if (fCount == fReserved) { 70 this->grow(); 71 } 72 return fRecords[fCount++].set(this->allocCommand<T>()); 73 } 74 75 // Replace the i-th command with a new command of type T. 76 // You are expected to placement new an object of type T onto this pointer. 77 // References to the original command are invalidated. 78 template <typename T> replace(int i)79 T* replace(int i) { 80 SkASSERT(i < this->count()); 81 82 Destroyer destroyer; 83 this->mutate(i, destroyer); 84 85 return fRecords[i].set(this->allocCommand<T>()); 86 } 87 88 // Replace the i-th command with a new command of type T. 89 // You are expected to placement new an object of type T onto this pointer. 90 // You must show proof that you've already adopted the existing command. 91 template <typename T, typename Existing> replace(int i,const SkRecords::Adopted<Existing> & proofOfAdoption)92 T* replace(int i, const SkRecords::Adopted<Existing>& proofOfAdoption) { 93 SkASSERT(i < this->count()); 94 95 SkASSERT(Existing::kType == fRecords[i].type()); 96 SkASSERT(proofOfAdoption == fRecords[i].ptr()); 97 98 return fRecords[i].set(this->allocCommand<T>()); 99 } 100 101 // Does not return the bytes in any pointers embedded in the Records; callers 102 // need to iterate with a visitor to measure those they care for. 103 size_t bytesUsed() const; 104 105 // Rearrange and resize this record to eliminate any NoOps. 106 // May change count() and the indices of ops, but preserves their order. 107 void defrag(); 108 109 private: 110 // An SkRecord is structured as an array of pointers into a big chunk of memory where 111 // records representing each canvas draw call are stored: 112 // 113 // fRecords: [*][*][*]... 114 // | | | 115 // | | | 116 // | | +---------------------------------------+ 117 // | +-----------------+ | 118 // | | | 119 // v v v 120 // fAlloc: [SkRecords::DrawRect][SkRecords::DrawPosTextH][SkRecords::DrawRect]... 121 // 122 // We store the types of each of the pointers alongside the pointer. 123 // The cost to append a T to this structure is 8 + sizeof(T) bytes. 124 125 // A mutator that can be used with replace to destroy canvas commands. 126 struct Destroyer { 127 template <typename T> operatorDestroyer128 void operator()(T* record) { record->~T(); } 129 }; 130 131 template <typename T> SK_WHEN(std::is_empty<T>::value,T *)132 SK_WHEN(std::is_empty<T>::value, T*) allocCommand() { 133 static T singleton = {}; 134 return &singleton; 135 } 136 137 template <typename T> allocCommand()138 SK_WHEN(!std::is_empty<T>::value, T*) allocCommand() { return this->alloc<T>(); } 139 140 void grow(); 141 142 // A typed pointer to some bytes in fAlloc. visit() and mutate() allow polymorphic dispatch. 143 struct Record { 144 // On 32-bit machines we store type in 4 bytes, followed by a pointer. Simple. 145 // On 64-bit machines we store a pointer with the type slotted into two top (unused) bytes. 146 // FWIW, SkRecords::Type is tiny. It can easily fit in one byte. 147 uint64_t fTypeAndPtr; 148 static const int kTypeShift = sizeof(void*) == 4 ? 32 : 48; 149 150 // Point this record to its data in fAlloc. Returns ptr for convenience. 151 template <typename T> setRecord152 T* set(T* ptr) { 153 fTypeAndPtr = ((uint64_t)T::kType) << kTypeShift | (uintptr_t)ptr; 154 SkASSERT(this->ptr() == ptr && this->type() == T::kType); 155 return ptr; 156 } 157 typeRecord158 SkRecords::Type type() const { return (SkRecords::Type)(fTypeAndPtr >> kTypeShift); } ptrRecord159 void* ptr() const { return (void*)(fTypeAndPtr & ((1ull<<kTypeShift)-1)); } 160 161 // Visit this record with functor F (see public API above). 162 template <typename F> 163 auto visit(F&& f) const -> decltype(f(SkRecords::NoOp())) { 164 #define CASE(T) case SkRecords::T##_Type: return f(*(const SkRecords::T*)this->ptr()); 165 switch(this->type()) { SK_RECORD_TYPES(CASE) } 166 #undef CASE 167 SkDEBUGFAIL("Unreachable"); 168 static const SkRecords::NoOp noop{}; 169 return f(noop); 170 } 171 172 // Mutate this record with functor F (see public API above). 173 template <typename F> 174 auto mutate(F&& f) -> decltype(f((SkRecords::NoOp*)nullptr)) { 175 #define CASE(T) case SkRecords::T##_Type: return f((SkRecords::T*)this->ptr()); 176 switch(this->type()) { SK_RECORD_TYPES(CASE) } 177 #undef CASE 178 SkDEBUGFAIL("Unreachable"); 179 static const SkRecords::NoOp noop{}; 180 return f(const_cast<SkRecords::NoOp*>(&noop)); 181 } 182 }; 183 184 // fRecords needs to be a data structure that can append fixed length data, and need to 185 // support efficient random access and forward iteration. (It doesn't need to be contiguous.) 186 int fCount{0}, 187 fReserved{0}; 188 SkAutoTMalloc<Record> fRecords; 189 190 // fAlloc needs to be a data structure which can append variable length data in contiguous 191 // chunks, returning a stable handle to that data for later retrieval. 192 SkArenaAlloc fAlloc{256}; 193 size_t fApproxBytesAllocated{0}; 194 }; 195 196 #endif//SkRecord_DEFINED 197