• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrTessellator.h"
9 
10 #include "GrDefaultGeoProcFactory.h"
11 #include "GrPathUtils.h"
12 #include "GrVertexWriter.h"
13 
14 #include "SkArenaAlloc.h"
15 #include "SkGeometry.h"
16 #include "SkPath.h"
17 #include "SkPointPriv.h"
18 #include "SkTDPQueue.h"
19 
20 #include <algorithm>
21 #include <cstdio>
22 #include <utility>
23 
24 /*
25  * There are six stages to the basic algorithm:
26  *
27  * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
28  * 2) Build a mesh of edges connecting the vertices (build_edges()).
29  * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
30  * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
31  * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
32  * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
33  *
34  * For screenspace antialiasing, the algorithm is modified as follows:
35  *
36  * Run steps 1-5 above to produce polygons.
37  * 5b) Apply fill rules to extract boundary contours from the polygons (extract_boundaries()).
38  * 5c) Simplify boundaries to remove "pointy" vertices that cause inversions (simplify_boundary()).
39  * 5d) Displace edges by half a pixel inward and outward along their normals. Intersect to find
40  *     new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a new
41  *     antialiased mesh from those vertices (stroke_boundary()).
42  * Run steps 3-6 above on the new mesh, and produce antialiased triangles.
43  *
44  * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
45  * of vertices (and the necessity of inserting new vertices on intersection).
46  *
47  * Stages (4) and (5) use an active edge list -- a list of all edges for which the
48  * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
49  * left-to-right based on the point where both edges are active (when both top vertices
50  * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
51  * (shared), it's sorted based on the last point where both edges are active, so the
52  * "upper" bottom vertex.
53  *
54  * The most complex step is the simplification (4). It's based on the Bentley-Ottman
55  * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
56  * not exact and may violate the mesh topology or active edge list ordering. We
57  * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
58  * points. This occurs in two ways:
59  *
60  * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
61  *    neighbouring edges at the top or bottom vertex. This is handled by merging the
62  *    edges (merge_collinear_edges()).
63  * B) Intersections may cause an edge to violate the left-to-right ordering of the
64  *    active edge list. This is handled by detecting potential violations and rewinding
65  *    the active edge list to the vertex before they occur (rewind() during merging,
66  *    rewind_if_necessary() during splitting).
67  *
68  * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
69  * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
70  * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
71  * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
72  * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
73  * insertions and removals was greater than the cost of infrequent O(N) lookups with the
74  * linked list implementation. With the latter, all removals are O(1), and most insertions
75  * are O(1), since we know the adjacent edge in the active edge list based on the topology.
76  * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
77  * frequent. There may be other data structures worth investigating, however.
78  *
79  * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
80  * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
81  * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
82  * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
83  * that the "left" and "right" orientation in the code remains correct (edges to the left are
84  * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
85  * degrees counterclockwise, rather that transposing.
86  */
87 
88 #define LOGGING_ENABLED 0
89 
90 #if LOGGING_ENABLED
91 #define LOG printf
92 #else
93 #define LOG(...)
94 #endif
95 
96 namespace {
97 
98 const int kArenaChunkSize = 16 * 1024;
99 const float kCosMiterAngle = 0.97f; // Corresponds to an angle of ~14 degrees.
100 
101 struct Vertex;
102 struct Edge;
103 struct Event;
104 struct Poly;
105 
106 template <class T, T* T::*Prev, T* T::*Next>
list_insert(T * t,T * prev,T * next,T ** head,T ** tail)107 void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
108     t->*Prev = prev;
109     t->*Next = next;
110     if (prev) {
111         prev->*Next = t;
112     } else if (head) {
113         *head = t;
114     }
115     if (next) {
116         next->*Prev = t;
117     } else if (tail) {
118         *tail = t;
119     }
120 }
121 
122 template <class T, T* T::*Prev, T* T::*Next>
list_remove(T * t,T ** head,T ** tail)123 void list_remove(T* t, T** head, T** tail) {
124     if (t->*Prev) {
125         t->*Prev->*Next = t->*Next;
126     } else if (head) {
127         *head = t->*Next;
128     }
129     if (t->*Next) {
130         t->*Next->*Prev = t->*Prev;
131     } else if (tail) {
132         *tail = t->*Prev;
133     }
134     t->*Prev = t->*Next = nullptr;
135 }
136 
137 /**
138  * Vertices are used in three ways: first, the path contours are converted into a
139  * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
140  * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
141  * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
142  * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
143  * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
144  * an individual Vertex from the path mesh may belong to multiple
145  * MonotonePolys, so the original Vertices cannot be re-used.
146  */
147 
148 struct Vertex {
Vertex__anonb0770d760111::Vertex149   Vertex(const SkPoint& point, uint8_t alpha)
150     : fPoint(point), fPrev(nullptr), fNext(nullptr)
151     , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
152     , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
153     , fLeftEnclosingEdge(nullptr), fRightEnclosingEdge(nullptr)
154     , fPartner(nullptr)
155     , fAlpha(alpha)
156 #if LOGGING_ENABLED
157     , fID (-1.0f)
158 #endif
159     {}
160     SkPoint fPoint;               // Vertex position
161     Vertex* fPrev;                // Linked list of contours, then Y-sorted vertices.
162     Vertex* fNext;                // "
163     Edge*   fFirstEdgeAbove;      // Linked list of edges above this vertex.
164     Edge*   fLastEdgeAbove;       // "
165     Edge*   fFirstEdgeBelow;      // Linked list of edges below this vertex.
166     Edge*   fLastEdgeBelow;       // "
167     Edge*   fLeftEnclosingEdge;   // Nearest edge in the AEL left of this vertex.
168     Edge*   fRightEnclosingEdge;  // Nearest edge in the AEL right of this vertex.
169     Vertex* fPartner;             // Corresponding inner or outer vertex (for AA).
170     uint8_t fAlpha;
171 #if LOGGING_ENABLED
172     float   fID;                  // Identifier used for logging.
173 #endif
174 };
175 
176 /***************************************************************************************/
177 
178 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
179 
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)180 bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
181     return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
182 }
183 
sweep_lt_vert(const SkPoint & a,const SkPoint & b)184 bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
185     return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
186 }
187 
188 struct Comparator {
189     enum class Direction { kVertical, kHorizontal };
Comparator__anonb0770d760111::Comparator190     Comparator(Direction direction) : fDirection(direction) {}
sweep_lt__anonb0770d760111::Comparator191     bool sweep_lt(const SkPoint& a, const SkPoint& b) const {
192         return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
193     }
194     Direction fDirection;
195 };
196 
emit_vertex(Vertex * v,bool emitCoverage,void * data)197 inline void* emit_vertex(Vertex* v, bool emitCoverage, void* data) {
198     GrVertexWriter verts{data};
199     verts.write(v->fPoint);
200 
201     if (emitCoverage) {
202         verts.write(GrNormalizeByteToFloat(v->fAlpha));
203     }
204 
205     return verts.fPtr;
206 }
207 
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,bool emitCoverage,void * data)208 void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, bool emitCoverage, void* data) {
209     LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
210     LOG("              %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
211     LOG("              %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
212 #if TESSELLATOR_WIREFRAME
213     data = emit_vertex(v0, emitCoverage, data);
214     data = emit_vertex(v1, emitCoverage, data);
215     data = emit_vertex(v1, emitCoverage, data);
216     data = emit_vertex(v2, emitCoverage, data);
217     data = emit_vertex(v2, emitCoverage, data);
218     data = emit_vertex(v0, emitCoverage, data);
219 #else
220     data = emit_vertex(v0, emitCoverage, data);
221     data = emit_vertex(v1, emitCoverage, data);
222     data = emit_vertex(v2, emitCoverage, data);
223 #endif
224     return data;
225 }
226 
227 struct VertexList {
VertexList__anonb0770d760111::VertexList228     VertexList() : fHead(nullptr), fTail(nullptr) {}
VertexList__anonb0770d760111::VertexList229     VertexList(Vertex* head, Vertex* tail) : fHead(head), fTail(tail) {}
230     Vertex* fHead;
231     Vertex* fTail;
insert__anonb0770d760111::VertexList232     void insert(Vertex* v, Vertex* prev, Vertex* next) {
233         list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
234     }
append__anonb0770d760111::VertexList235     void append(Vertex* v) {
236         insert(v, fTail, nullptr);
237     }
append__anonb0770d760111::VertexList238     void append(const VertexList& list) {
239         if (!list.fHead) {
240             return;
241         }
242         if (fTail) {
243             fTail->fNext = list.fHead;
244             list.fHead->fPrev = fTail;
245         } else {
246             fHead = list.fHead;
247         }
248         fTail = list.fTail;
249     }
prepend__anonb0770d760111::VertexList250     void prepend(Vertex* v) {
251         insert(v, nullptr, fHead);
252     }
remove__anonb0770d760111::VertexList253     void remove(Vertex* v) {
254         list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
255     }
close__anonb0770d760111::VertexList256     void close() {
257         if (fHead && fTail) {
258             fTail->fNext = fHead;
259             fHead->fPrev = fTail;
260         }
261     }
262 };
263 
264 // Round to nearest quarter-pixel. This is used for screenspace tessellation.
265 
round(SkPoint * p)266 inline void round(SkPoint* p) {
267     p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
268     p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
269 }
270 
double_to_clamped_scalar(double d)271 inline SkScalar double_to_clamped_scalar(double d) {
272     return SkDoubleToScalar(std::min((double) SK_ScalarMax, std::max(d, (double) -SK_ScalarMax)));
273 }
274 
275 // A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line.
276 struct Line {
Line__anonb0770d760111::Line277     Line(double a, double b, double c) : fA(a), fB(b), fC(c) {}
Line__anonb0770d760111::Line278     Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {}
Line__anonb0770d760111::Line279     Line(const SkPoint& p, const SkPoint& q)
280         : fA(static_cast<double>(q.fY) - p.fY)      // a = dY
281         , fB(static_cast<double>(p.fX) - q.fX)      // b = -dX
282         , fC(static_cast<double>(p.fY) * q.fX -     // c = cross(q, p)
283              static_cast<double>(p.fX) * q.fY) {}
dist__anonb0770d760111::Line284     double dist(const SkPoint& p) const {
285         return fA * p.fX + fB * p.fY + fC;
286     }
operator *__anonb0770d760111::Line287     Line operator*(double v) const {
288         return Line(fA * v, fB * v, fC * v);
289     }
magSq__anonb0770d760111::Line290     double magSq() const {
291         return fA * fA + fB * fB;
292     }
normalize__anonb0770d760111::Line293     void normalize() {
294         double len = sqrt(this->magSq());
295         if (len == 0.0) {
296             return;
297         }
298         double scale = 1.0f / len;
299         fA *= scale;
300         fB *= scale;
301         fC *= scale;
302     }
nearParallel__anonb0770d760111::Line303     bool nearParallel(const Line& o) const {
304         return fabs(o.fA - fA) < 0.00001 && fabs(o.fB - fB) < 0.00001;
305     }
306 
307     // Compute the intersection of two (infinite) Lines.
intersect__anonb0770d760111::Line308     bool intersect(const Line& other, SkPoint* point) const {
309         double denom = fA * other.fB - fB * other.fA;
310         if (denom == 0.0) {
311             return false;
312         }
313         double scale = 1.0 / denom;
314         point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale);
315         point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale);
316         round(point);
317         return true;
318     }
319     double fA, fB, fC;
320 };
321 
322 /**
323  * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
324  * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
325  * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
326  * point). For speed, that case is only tested by the callers that require it (e.g.,
327  * rewind_if_necessary()). Edges also handle checking for intersection with other edges.
328  * Currently, this converts the edges to the parametric form, in order to avoid doing a division
329  * until an intersection has been confirmed. This is slightly slower in the "found" case, but
330  * a lot faster in the "not found" case.
331  *
332  * The coefficients of the line equation stored in double precision to avoid catastrphic
333  * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
334  * correct in float, since it's a polynomial of degree 2. The intersect() function, being
335  * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
336  * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
337  * this file).
338  */
339 
340 struct Edge {
341     enum class Type { kInner, kOuter, kConnector };
Edge__anonb0770d760111::Edge342     Edge(Vertex* top, Vertex* bottom, int winding, Type type)
343         : fWinding(winding)
344         , fTop(top)
345         , fBottom(bottom)
346         , fType(type)
347         , fLeft(nullptr)
348         , fRight(nullptr)
349         , fPrevEdgeAbove(nullptr)
350         , fNextEdgeAbove(nullptr)
351         , fPrevEdgeBelow(nullptr)
352         , fNextEdgeBelow(nullptr)
353         , fLeftPoly(nullptr)
354         , fRightPoly(nullptr)
355         , fEvent(nullptr)
356         , fLeftPolyPrev(nullptr)
357         , fLeftPolyNext(nullptr)
358         , fRightPolyPrev(nullptr)
359         , fRightPolyNext(nullptr)
360         , fOverlap(false)
361         , fUsedInLeftPoly(false)
362         , fUsedInRightPoly(false)
363         , fLine(top, bottom) {
364         }
365     int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
366     Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
367     Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
368     Type     fType;
369     Edge*    fLeft;             // The linked list of edges in the active edge list.
370     Edge*    fRight;            // "
371     Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
372     Edge*    fNextEdgeAbove;    // "
373     Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
374     Edge*    fNextEdgeBelow;    // "
375     Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
376     Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
377     Event*   fEvent;
378     Edge*    fLeftPolyPrev;
379     Edge*    fLeftPolyNext;
380     Edge*    fRightPolyPrev;
381     Edge*    fRightPolyNext;
382     bool     fOverlap;          // True if there's an overlap region adjacent to this edge.
383     bool     fUsedInLeftPoly;
384     bool     fUsedInRightPoly;
385     Line     fLine;
dist__anonb0770d760111::Edge386     double dist(const SkPoint& p) const {
387         return fLine.dist(p);
388     }
isRightOf__anonb0770d760111::Edge389     bool isRightOf(Vertex* v) const {
390         return fLine.dist(v->fPoint) < 0.0;
391     }
isLeftOf__anonb0770d760111::Edge392     bool isLeftOf(Vertex* v) const {
393         return fLine.dist(v->fPoint) > 0.0;
394     }
recompute__anonb0770d760111::Edge395     void recompute() {
396         fLine = Line(fTop, fBottom);
397     }
intersect__anonb0770d760111::Edge398     bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) const {
399         LOG("intersecting %g -> %g with %g -> %g\n",
400                fTop->fID, fBottom->fID,
401                other.fTop->fID, other.fBottom->fID);
402         if (fTop == other.fTop || fBottom == other.fBottom) {
403             return false;
404         }
405         double denom = fLine.fA * other.fLine.fB - fLine.fB * other.fLine.fA;
406         if (denom == 0.0) {
407             return false;
408         }
409         double dx = static_cast<double>(other.fTop->fPoint.fX) - fTop->fPoint.fX;
410         double dy = static_cast<double>(other.fTop->fPoint.fY) - fTop->fPoint.fY;
411         double sNumer = dy * other.fLine.fB + dx * other.fLine.fA;
412         double tNumer = dy * fLine.fB + dx * fLine.fA;
413         // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
414         // This saves us doing the divide below unless absolutely necessary.
415         if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
416                         : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
417             return false;
418         }
419         double s = sNumer / denom;
420         SkASSERT(s >= 0.0 && s <= 1.0);
421         p->fX = SkDoubleToScalar(fTop->fPoint.fX - s * fLine.fB);
422         p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fLine.fA);
423         if (alpha) {
424             if (fType == Type::kConnector) {
425                 *alpha = (1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha;
426             } else if (other.fType == Type::kConnector) {
427                 double t = tNumer / denom;
428                 *alpha = (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha;
429             } else if (fType == Type::kOuter && other.fType == Type::kOuter) {
430                 *alpha = 0;
431             } else {
432                 *alpha = 255;
433             }
434         }
435         return true;
436     }
437 };
438 
439 struct EdgeList {
EdgeList__anonb0770d760111::EdgeList440     EdgeList() : fHead(nullptr), fTail(nullptr) {}
441     Edge* fHead;
442     Edge* fTail;
insert__anonb0770d760111::EdgeList443     void insert(Edge* edge, Edge* prev, Edge* next) {
444         list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
445     }
append__anonb0770d760111::EdgeList446     void append(Edge* e) {
447         insert(e, fTail, nullptr);
448     }
remove__anonb0770d760111::EdgeList449     void remove(Edge* edge) {
450         list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
451     }
removeAll__anonb0770d760111::EdgeList452     void removeAll() {
453         while (fHead) {
454             this->remove(fHead);
455         }
456     }
close__anonb0770d760111::EdgeList457     void close() {
458         if (fHead && fTail) {
459             fTail->fRight = fHead;
460             fHead->fLeft = fTail;
461         }
462     }
contains__anonb0770d760111::EdgeList463     bool contains(Edge* edge) const {
464         return edge->fLeft || edge->fRight || fHead == edge;
465     }
466 };
467 
468 struct Event {
Event__anonb0770d760111::Event469     Event(Edge* edge, bool isOuterBoundary, const SkPoint& point, uint8_t alpha)
470       : fEdge(edge), fIsOuterBoundary(isOuterBoundary), fPoint(point), fAlpha(alpha)
471       , fPrev(nullptr), fNext(nullptr) {
472     }
473     Edge* fEdge;
474     bool  fIsOuterBoundary;
475     SkPoint fPoint;
476     uint8_t fAlpha;
477     Event* fPrev;
478     Event* fNext;
479     void apply(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc);
480 };
481 
compare(Event * const & e1,Event * const & e2)482 bool compare(Event* const& e1, Event* const& e2) {
483     return e1->fAlpha > e2->fAlpha;
484 }
485 
486 struct EventList : public SkTDPQueue<Event*, &compare> {};
487 
create_event(Edge * e,bool isOuterBoundary,EventList * events,SkArenaAlloc & alloc)488 void create_event(Edge* e, bool isOuterBoundary, EventList* events, SkArenaAlloc& alloc) {
489     Edge bisector1(e->fTop, e->fTop->fPartner, 1, Edge::Type::kConnector);
490     Edge bisector2(e->fBottom, e->fBottom->fPartner, 1, Edge::Type::kConnector);
491     SkPoint p;
492     uint8_t alpha;
493     if (bisector1.intersect(bisector2, &p, &alpha)) {
494         LOG("found overlap edge %g -> %g, will collapse to %g,%g alpha %d\n",
495             e->fTop->fID, e->fBottom->fID, p.fX, p.fY, alpha);
496         e->fEvent = alloc.make<Event>(e, isOuterBoundary, p, alpha);
497         events->insert(e->fEvent);
498     }
499 }
500 
501 /***************************************************************************************/
502 
503 struct Poly {
Poly__anonb0770d760111::Poly504     Poly(Vertex* v, int winding)
505         : fFirstVertex(v)
506         , fWinding(winding)
507         , fHead(nullptr)
508         , fTail(nullptr)
509         , fNext(nullptr)
510         , fPartner(nullptr)
511         , fCount(0)
512     {
513 #if LOGGING_ENABLED
514         static int gID = 0;
515         fID = gID++;
516         LOG("*** created Poly %d\n", fID);
517 #endif
518     }
519     typedef enum { kLeft_Side, kRight_Side } Side;
520     struct MonotonePoly {
MonotonePoly__anonb0770d760111::Poly::MonotonePoly521         MonotonePoly(Edge* edge, Side side)
522             : fSide(side)
523             , fFirstEdge(nullptr)
524             , fLastEdge(nullptr)
525             , fPrev(nullptr)
526             , fNext(nullptr) {
527             this->addEdge(edge);
528         }
529         Side          fSide;
530         Edge*         fFirstEdge;
531         Edge*         fLastEdge;
532         MonotonePoly* fPrev;
533         MonotonePoly* fNext;
addEdge__anonb0770d760111::Poly::MonotonePoly534         void addEdge(Edge* edge) {
535             if (fSide == kRight_Side) {
536                 SkASSERT(!edge->fUsedInRightPoly);
537                 list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
538                     edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
539                 edge->fUsedInRightPoly = true;
540             } else {
541                 SkASSERT(!edge->fUsedInLeftPoly);
542                 list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
543                     edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
544                 edge->fUsedInLeftPoly = true;
545             }
546         }
547 
emit__anonb0770d760111::Poly::MonotonePoly548         void* emit(bool emitCoverage, void* data) {
549             Edge* e = fFirstEdge;
550             VertexList vertices;
551             vertices.append(e->fTop);
552             int count = 1;
553             while (e != nullptr) {
554                 if (kRight_Side == fSide) {
555                     vertices.append(e->fBottom);
556                     e = e->fRightPolyNext;
557                 } else {
558                     vertices.prepend(e->fBottom);
559                     e = e->fLeftPolyNext;
560                 }
561                 count++;
562             }
563             Vertex* first = vertices.fHead;
564             Vertex* v = first->fNext;
565             while (v != vertices.fTail) {
566                 SkASSERT(v && v->fPrev && v->fNext);
567                 Vertex* prev = v->fPrev;
568                 Vertex* curr = v;
569                 Vertex* next = v->fNext;
570                 if (count == 3) {
571                     return emit_triangle(prev, curr, next, emitCoverage, data);
572                 }
573                 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
574                 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
575                 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
576                 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
577                 if (ax * by - ay * bx >= 0.0) {
578                     data = emit_triangle(prev, curr, next, emitCoverage, data);
579                     v->fPrev->fNext = v->fNext;
580                     v->fNext->fPrev = v->fPrev;
581                     count--;
582                     if (v->fPrev == first) {
583                         v = v->fNext;
584                     } else {
585                         v = v->fPrev;
586                     }
587                 } else {
588                     v = v->fNext;
589                 }
590             }
591             return data;
592         }
593     };
addEdge__anonb0770d760111::Poly594     Poly* addEdge(Edge* e, Side side, SkArenaAlloc& alloc) {
595         LOG("addEdge (%g -> %g) to poly %d, %s side\n",
596                e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
597         Poly* partner = fPartner;
598         Poly* poly = this;
599         if (side == kRight_Side) {
600             if (e->fUsedInRightPoly) {
601                 return this;
602             }
603         } else {
604             if (e->fUsedInLeftPoly) {
605                 return this;
606             }
607         }
608         if (partner) {
609             fPartner = partner->fPartner = nullptr;
610         }
611         if (!fTail) {
612             fHead = fTail = alloc.make<MonotonePoly>(e, side);
613             fCount += 2;
614         } else if (e->fBottom == fTail->fLastEdge->fBottom) {
615             return poly;
616         } else if (side == fTail->fSide) {
617             fTail->addEdge(e);
618             fCount++;
619         } else {
620             e = alloc.make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, Edge::Type::kInner);
621             fTail->addEdge(e);
622             fCount++;
623             if (partner) {
624                 partner->addEdge(e, side, alloc);
625                 poly = partner;
626             } else {
627                 MonotonePoly* m = alloc.make<MonotonePoly>(e, side);
628                 m->fPrev = fTail;
629                 fTail->fNext = m;
630                 fTail = m;
631             }
632         }
633         return poly;
634     }
emit__anonb0770d760111::Poly635     void* emit(bool emitCoverage, void *data) {
636         if (fCount < 3) {
637             return data;
638         }
639         LOG("emit() %d, size %d\n", fID, fCount);
640         for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
641             data = m->emit(emitCoverage, data);
642         }
643         return data;
644     }
lastVertex__anonb0770d760111::Poly645     Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; }
646     Vertex* fFirstVertex;
647     int fWinding;
648     MonotonePoly* fHead;
649     MonotonePoly* fTail;
650     Poly* fNext;
651     Poly* fPartner;
652     int fCount;
653 #if LOGGING_ENABLED
654     int fID;
655 #endif
656 };
657 
658 /***************************************************************************************/
659 
coincident(const SkPoint & a,const SkPoint & b)660 bool coincident(const SkPoint& a, const SkPoint& b) {
661     return a == b;
662 }
663 
new_poly(Poly ** head,Vertex * v,int winding,SkArenaAlloc & alloc)664 Poly* new_poly(Poly** head, Vertex* v, int winding, SkArenaAlloc& alloc) {
665     Poly* poly = alloc.make<Poly>(v, winding);
666     poly->fNext = *head;
667     *head = poly;
668     return poly;
669 }
670 
append_point_to_contour(const SkPoint & p,VertexList * contour,SkArenaAlloc & alloc)671 void append_point_to_contour(const SkPoint& p, VertexList* contour, SkArenaAlloc& alloc) {
672     Vertex* v = alloc.make<Vertex>(p, 255);
673 #if LOGGING_ENABLED
674     static float gID = 0.0f;
675     v->fID = gID++;
676 #endif
677     contour->append(v);
678 }
679 
quad_error_at(const SkPoint pts[3],SkScalar t,SkScalar u)680 SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) {
681     SkQuadCoeff quad(pts);
682     SkPoint p0 = to_point(quad.eval(t - 0.5f * u));
683     SkPoint mid = to_point(quad.eval(t));
684     SkPoint p1 = to_point(quad.eval(t + 0.5f * u));
685     if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) {
686         return 0;
687     }
688     return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1);
689 }
690 
append_quadratic_to_contour(const SkPoint pts[3],SkScalar toleranceSqd,VertexList * contour,SkArenaAlloc & alloc)691 void append_quadratic_to_contour(const SkPoint pts[3], SkScalar toleranceSqd, VertexList* contour,
692                                  SkArenaAlloc& alloc) {
693     SkQuadCoeff quad(pts);
694     Sk2s aa = quad.fA * quad.fA;
695     SkScalar denom = 2.0f * (aa[0] + aa[1]);
696     Sk2s ab = quad.fA * quad.fB;
697     SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f;
698     int nPoints = 1;
699     SkScalar u = 1.0f;
700     // Test possible subdivision values only at the point of maximum curvature.
701     // If it passes the flatness metric there, it'll pass everywhere.
702     while (nPoints < GrPathUtils::kMaxPointsPerCurve) {
703         u = 1.0f / nPoints;
704         if (quad_error_at(pts, t, u) < toleranceSqd) {
705             break;
706         }
707         nPoints++;
708     }
709     for (int j = 1; j <= nPoints; j++) {
710         append_point_to_contour(to_point(quad.eval(j * u)), contour, alloc);
711     }
712 }
713 
generate_cubic_points(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,VertexList * contour,int pointsLeft,SkArenaAlloc & alloc)714 void generate_cubic_points(const SkPoint& p0,
715                            const SkPoint& p1,
716                            const SkPoint& p2,
717                            const SkPoint& p3,
718                            SkScalar tolSqd,
719                            VertexList* contour,
720                            int pointsLeft,
721                            SkArenaAlloc& alloc) {
722     SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3);
723     SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3);
724     if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
725         !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
726         append_point_to_contour(p3, contour, alloc);
727         return;
728     }
729     const SkPoint q[] = {
730         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
731         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
732         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
733     };
734     const SkPoint r[] = {
735         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
736         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
737     };
738     const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
739     pointsLeft >>= 1;
740     generate_cubic_points(p0, q[0], r[0], s, tolSqd, contour, pointsLeft, alloc);
741     generate_cubic_points(s, r[1], q[2], p3, tolSqd, contour, pointsLeft, alloc);
742 }
743 
744 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
745 
path_to_contours(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,VertexList * contours,SkArenaAlloc & alloc,bool * isLinear)746 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
747                       VertexList* contours, SkArenaAlloc& alloc, bool *isLinear) {
748     SkScalar toleranceSqd = tolerance * tolerance;
749 
750     SkPoint pts[4];
751     *isLinear = true;
752     VertexList* contour = contours;
753     SkPath::Iter iter(path, false);
754     if (path.isInverseFillType()) {
755         SkPoint quad[4];
756         clipBounds.toQuad(quad);
757         for (int i = 3; i >= 0; i--) {
758             append_point_to_contour(quad[i], contours, alloc);
759         }
760         contour++;
761     }
762     SkAutoConicToQuads converter;
763     SkPath::Verb verb;
764     while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
765         switch (verb) {
766             case SkPath::kConic_Verb: {
767                 SkScalar weight = iter.conicWeight();
768                 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
769                 for (int i = 0; i < converter.countQuads(); ++i) {
770                     append_quadratic_to_contour(quadPts, toleranceSqd, contour, alloc);
771                     quadPts += 2;
772                 }
773                 *isLinear = false;
774                 break;
775             }
776             case SkPath::kMove_Verb:
777                 if (contour->fHead) {
778                     contour++;
779                 }
780                 append_point_to_contour(pts[0], contour, alloc);
781                 break;
782             case SkPath::kLine_Verb: {
783                 append_point_to_contour(pts[1], contour, alloc);
784                 break;
785             }
786             case SkPath::kQuad_Verb: {
787                 append_quadratic_to_contour(pts, toleranceSqd, contour, alloc);
788                 *isLinear = false;
789                 break;
790             }
791             case SkPath::kCubic_Verb: {
792                 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
793                 generate_cubic_points(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
794                                       pointsLeft, alloc);
795                 *isLinear = false;
796                 break;
797             }
798             case SkPath::kClose_Verb:
799             case SkPath::kDone_Verb:
800                 break;
801         }
802     }
803 }
804 
apply_fill_type(SkPath::FillType fillType,int winding)805 inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
806     switch (fillType) {
807         case SkPath::kWinding_FillType:
808             return winding != 0;
809         case SkPath::kEvenOdd_FillType:
810             return (winding & 1) != 0;
811         case SkPath::kInverseWinding_FillType:
812             return winding == 1;
813         case SkPath::kInverseEvenOdd_FillType:
814             return (winding & 1) == 1;
815         default:
816             SkASSERT(false);
817             return false;
818     }
819 }
820 
apply_fill_type(SkPath::FillType fillType,Poly * poly)821 inline bool apply_fill_type(SkPath::FillType fillType, Poly* poly) {
822     return poly && apply_fill_type(fillType, poly->fWinding);
823 }
824 
new_edge(Vertex * prev,Vertex * next,Edge::Type type,Comparator & c,SkArenaAlloc & alloc)825 Edge* new_edge(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc) {
826     int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
827     Vertex* top = winding < 0 ? next : prev;
828     Vertex* bottom = winding < 0 ? prev : next;
829     return alloc.make<Edge>(top, bottom, winding, type);
830 }
831 
remove_edge(Edge * edge,EdgeList * edges)832 void remove_edge(Edge* edge, EdgeList* edges) {
833     LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
834     SkASSERT(edges->contains(edge));
835     edges->remove(edge);
836 }
837 
insert_edge(Edge * edge,Edge * prev,EdgeList * edges)838 void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
839     LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
840     SkASSERT(!edges->contains(edge));
841     Edge* next = prev ? prev->fRight : edges->fHead;
842     edges->insert(edge, prev, next);
843 }
844 
find_enclosing_edges(Vertex * v,EdgeList * edges,Edge ** left,Edge ** right)845 void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
846     if (v->fFirstEdgeAbove && v->fLastEdgeAbove) {
847         *left = v->fFirstEdgeAbove->fLeft;
848         *right = v->fLastEdgeAbove->fRight;
849         return;
850     }
851     Edge* next = nullptr;
852     Edge* prev;
853     for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
854         if (prev->isLeftOf(v)) {
855             break;
856         }
857         next = prev;
858     }
859     *left = prev;
860     *right = next;
861 }
862 
insert_edge_above(Edge * edge,Vertex * v,Comparator & c)863 void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
864     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
865         c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
866         return;
867     }
868     LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
869     Edge* prev = nullptr;
870     Edge* next;
871     for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
872         if (next->isRightOf(edge->fTop)) {
873             break;
874         }
875         prev = next;
876     }
877     list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
878         edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
879 }
880 
insert_edge_below(Edge * edge,Vertex * v,Comparator & c)881 void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
882     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
883         c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
884         return;
885     }
886     LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
887     Edge* prev = nullptr;
888     Edge* next;
889     for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
890         if (next->isRightOf(edge->fBottom)) {
891             break;
892         }
893         prev = next;
894     }
895     list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
896         edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
897 }
898 
remove_edge_above(Edge * edge)899 void remove_edge_above(Edge* edge) {
900     SkASSERT(edge->fTop && edge->fBottom);
901     LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
902         edge->fBottom->fID);
903     list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
904         edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
905 }
906 
remove_edge_below(Edge * edge)907 void remove_edge_below(Edge* edge) {
908     SkASSERT(edge->fTop && edge->fBottom);
909     LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
910         edge->fTop->fID);
911     list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
912         edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
913 }
914 
disconnect(Edge * edge)915 void disconnect(Edge* edge)
916 {
917     remove_edge_above(edge);
918     remove_edge_below(edge);
919 }
920 
921 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Vertex** current, Comparator& c);
922 
rewind(EdgeList * activeEdges,Vertex ** current,Vertex * dst,Comparator & c)923 void rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, Comparator& c) {
924     if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) {
925         return;
926     }
927     Vertex* v = *current;
928     LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID);
929     while (v != dst) {
930         v = v->fPrev;
931         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
932             remove_edge(e, activeEdges);
933         }
934         Edge* leftEdge = v->fLeftEnclosingEdge;
935         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
936             insert_edge(e, leftEdge, activeEdges);
937             leftEdge = e;
938         }
939     }
940     *current = v;
941 }
942 
rewind_if_necessary(Edge * edge,EdgeList * activeEdges,Vertex ** current,Comparator & c)943 void rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current, Comparator& c) {
944     if (!activeEdges || !current) {
945         return;
946     }
947     Vertex* top = edge->fTop;
948     Vertex* bottom = edge->fBottom;
949     if (edge->fLeft) {
950         Vertex* leftTop = edge->fLeft->fTop;
951         Vertex* leftBottom = edge->fLeft->fBottom;
952         if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) {
953             rewind(activeEdges, current, leftTop, c);
954         } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) {
955             rewind(activeEdges, current, top, c);
956         } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
957                    !edge->fLeft->isLeftOf(bottom)) {
958             rewind(activeEdges, current, leftTop, c);
959         } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
960             rewind(activeEdges, current, top, c);
961         }
962     }
963     if (edge->fRight) {
964         Vertex* rightTop = edge->fRight->fTop;
965         Vertex* rightBottom = edge->fRight->fBottom;
966         if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) {
967             rewind(activeEdges, current, rightTop, c);
968         } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) {
969             rewind(activeEdges, current, top, c);
970         } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
971                    !edge->fRight->isRightOf(bottom)) {
972             rewind(activeEdges, current, rightTop, c);
973         } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
974                    !edge->isLeftOf(rightBottom)) {
975             rewind(activeEdges, current, top, c);
976         }
977     }
978 }
979 
set_top(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,Comparator & c)980 void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c) {
981     remove_edge_below(edge);
982     edge->fTop = v;
983     edge->recompute();
984     insert_edge_below(edge, v, c);
985     rewind_if_necessary(edge, activeEdges, current, c);
986     merge_collinear_edges(edge, activeEdges, current, c);
987 }
988 
set_bottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,Comparator & c)989 void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c) {
990     remove_edge_above(edge);
991     edge->fBottom = v;
992     edge->recompute();
993     insert_edge_above(edge, v, c);
994     rewind_if_necessary(edge, activeEdges, current, c);
995     merge_collinear_edges(edge, activeEdges, current, c);
996 }
997 
merge_edges_above(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,Comparator & c)998 void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current,
999                        Comparator& c) {
1000     if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
1001         LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
1002             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
1003             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
1004         rewind(activeEdges, current, edge->fTop, c);
1005         other->fWinding += edge->fWinding;
1006         disconnect(edge);
1007         edge->fTop = edge->fBottom = nullptr;
1008     } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
1009         rewind(activeEdges, current, edge->fTop, c);
1010         other->fWinding += edge->fWinding;
1011         set_bottom(edge, other->fTop, activeEdges, current, c);
1012     } else {
1013         rewind(activeEdges, current, other->fTop, c);
1014         edge->fWinding += other->fWinding;
1015         set_bottom(other, edge->fTop, activeEdges, current, c);
1016     }
1017 }
1018 
merge_edges_below(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,Comparator & c)1019 void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current,
1020                        Comparator& c) {
1021     if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
1022         LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
1023             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
1024             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
1025         rewind(activeEdges, current, edge->fTop, c);
1026         other->fWinding += edge->fWinding;
1027         disconnect(edge);
1028         edge->fTop = edge->fBottom = nullptr;
1029     } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
1030         rewind(activeEdges, current, other->fTop, c);
1031         edge->fWinding += other->fWinding;
1032         set_top(other, edge->fBottom, activeEdges, current, c);
1033     } else {
1034         rewind(activeEdges, current, edge->fTop, c);
1035         other->fWinding += edge->fWinding;
1036         set_top(edge, other->fBottom, activeEdges, current, c);
1037     }
1038 }
1039 
top_collinear(Edge * left,Edge * right)1040 bool top_collinear(Edge* left, Edge* right) {
1041     if (!left || !right) {
1042         return false;
1043     }
1044     return left->fTop->fPoint == right->fTop->fPoint ||
1045            !left->isLeftOf(right->fTop) || !right->isRightOf(left->fTop);
1046 }
1047 
bottom_collinear(Edge * left,Edge * right)1048 bool bottom_collinear(Edge* left, Edge* right) {
1049     if (!left || !right) {
1050         return false;
1051     }
1052     return left->fBottom->fPoint == right->fBottom->fPoint ||
1053            !left->isLeftOf(right->fBottom) || !right->isRightOf(left->fBottom);
1054 }
1055 
merge_collinear_edges(Edge * edge,EdgeList * activeEdges,Vertex ** current,Comparator & c)1056 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Vertex** current, Comparator& c) {
1057     for (;;) {
1058         if (top_collinear(edge->fPrevEdgeAbove, edge)) {
1059             merge_edges_above(edge->fPrevEdgeAbove, edge, activeEdges, current, c);
1060         } else if (top_collinear(edge, edge->fNextEdgeAbove)) {
1061             merge_edges_above(edge->fNextEdgeAbove, edge, activeEdges, current, c);
1062         } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) {
1063             merge_edges_below(edge->fPrevEdgeBelow, edge, activeEdges, current, c);
1064         } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) {
1065             merge_edges_below(edge->fNextEdgeBelow, edge, activeEdges, current, c);
1066         } else {
1067             break;
1068         }
1069     }
1070     SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge));
1071     SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove));
1072     SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge));
1073     SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow));
1074 }
1075 
split_edge(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,Comparator & c,SkArenaAlloc & alloc)1076 bool split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c,
1077                 SkArenaAlloc& alloc) {
1078     if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) {
1079         return false;
1080     }
1081     LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
1082         edge->fTop->fID, edge->fBottom->fID,
1083         v->fID, v->fPoint.fX, v->fPoint.fY);
1084     Vertex* top;
1085     Vertex* bottom;
1086     int winding = edge->fWinding;
1087     if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
1088         top = v;
1089         bottom = edge->fTop;
1090         set_top(edge, v, activeEdges, current, c);
1091     } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
1092         top = edge->fBottom;
1093         bottom = v;
1094         set_bottom(edge, v, activeEdges, current, c);
1095     } else {
1096         top = v;
1097         bottom = edge->fBottom;
1098         set_bottom(edge, v, activeEdges, current, c);
1099     }
1100     Edge* newEdge = alloc.make<Edge>(top, bottom, winding, edge->fType);
1101     insert_edge_below(newEdge, top, c);
1102     insert_edge_above(newEdge, bottom, c);
1103     merge_collinear_edges(newEdge, activeEdges, current, c);
1104     return true;
1105 }
1106 
intersect_edge_pair(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,Comparator & c,SkArenaAlloc & alloc)1107 bool intersect_edge_pair(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, Comparator& c, SkArenaAlloc& alloc) {
1108     if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
1109         return false;
1110     }
1111     if (left->fTop == right->fTop || left->fBottom == right->fBottom) {
1112         return false;
1113     }
1114     if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
1115         if (!left->isLeftOf(right->fTop)) {
1116             rewind(activeEdges, current, right->fTop, c);
1117             return split_edge(left, right->fTop, activeEdges, current, c, alloc);
1118         }
1119     } else {
1120         if (!right->isRightOf(left->fTop)) {
1121             rewind(activeEdges, current, left->fTop, c);
1122             return split_edge(right, left->fTop, activeEdges, current, c, alloc);
1123         }
1124     }
1125     if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
1126         if (!left->isLeftOf(right->fBottom)) {
1127             rewind(activeEdges, current, right->fBottom, c);
1128             return split_edge(left, right->fBottom, activeEdges, current, c, alloc);
1129         }
1130     } else {
1131         if (!right->isRightOf(left->fBottom)) {
1132             rewind(activeEdges, current, left->fBottom, c);
1133             return split_edge(right, left->fBottom, activeEdges, current, c, alloc);
1134         }
1135     }
1136     return false;
1137 }
1138 
connect(Vertex * prev,Vertex * next,Edge::Type type,Comparator & c,SkArenaAlloc & alloc,int winding_scale=1)1139 Edge* connect(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc,
1140               int winding_scale = 1) {
1141     if (!prev || !next || prev->fPoint == next->fPoint) {
1142         return nullptr;
1143     }
1144     Edge* edge = new_edge(prev, next, type, c, alloc);
1145     insert_edge_below(edge, edge->fTop, c);
1146     insert_edge_above(edge, edge->fBottom, c);
1147     edge->fWinding *= winding_scale;
1148     merge_collinear_edges(edge, nullptr, nullptr, c);
1149     return edge;
1150 }
1151 
merge_vertices(Vertex * src,Vertex * dst,VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1152 void merge_vertices(Vertex* src, Vertex* dst, VertexList* mesh, Comparator& c,
1153                     SkArenaAlloc& alloc) {
1154     LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
1155         src->fID, dst->fID);
1156     dst->fAlpha = SkTMax(src->fAlpha, dst->fAlpha);
1157     if (src->fPartner) {
1158         src->fPartner->fPartner = dst;
1159     }
1160     while (Edge* edge = src->fFirstEdgeAbove) {
1161         set_bottom(edge, dst, nullptr, nullptr, c);
1162     }
1163     while (Edge* edge = src->fFirstEdgeBelow) {
1164         set_top(edge, dst, nullptr, nullptr, c);
1165     }
1166     mesh->remove(src);
1167 }
1168 
create_sorted_vertex(const SkPoint & p,uint8_t alpha,VertexList * mesh,Vertex * reference,Comparator & c,SkArenaAlloc & alloc)1169 Vertex* create_sorted_vertex(const SkPoint& p, uint8_t alpha, VertexList* mesh,
1170                              Vertex* reference, Comparator& c, SkArenaAlloc& alloc) {
1171     Vertex* prevV = reference;
1172     while (prevV && c.sweep_lt(p, prevV->fPoint)) {
1173         prevV = prevV->fPrev;
1174     }
1175     Vertex* nextV = prevV ? prevV->fNext : mesh->fHead;
1176     while (nextV && c.sweep_lt(nextV->fPoint, p)) {
1177         prevV = nextV;
1178         nextV = nextV->fNext;
1179     }
1180     Vertex* v;
1181     if (prevV && coincident(prevV->fPoint, p)) {
1182         v = prevV;
1183     } else if (nextV && coincident(nextV->fPoint, p)) {
1184         v = nextV;
1185     } else {
1186         v = alloc.make<Vertex>(p, alpha);
1187 #if LOGGING_ENABLED
1188         if (!prevV) {
1189             v->fID = mesh->fHead->fID - 1.0f;
1190         } else if (!nextV) {
1191             v->fID = mesh->fTail->fID + 1.0f;
1192         } else {
1193             v->fID = (prevV->fID + nextV->fID) * 0.5f;
1194         }
1195 #endif
1196         mesh->insert(v, prevV, nextV);
1197     }
1198     return v;
1199 }
1200 
1201 // If an edge's top and bottom points differ only by 1/2 machine epsilon in the primary
1202 // sort criterion, it may not be possible to split correctly, since there is no point which is
1203 // below the top and above the bottom. This function detects that case.
nearly_flat(Comparator & c,Edge * edge)1204 bool nearly_flat(Comparator& c, Edge* edge) {
1205     SkPoint diff = edge->fBottom->fPoint - edge->fTop->fPoint;
1206     float primaryDiff = c.fDirection == Comparator::Direction::kHorizontal ? diff.fX : diff.fY;
1207     return fabs(primaryDiff) < std::numeric_limits<float>::epsilon() && primaryDiff != 0.0f;
1208 }
1209 
clamp(SkPoint p,SkPoint min,SkPoint max,Comparator & c)1210 SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, Comparator& c) {
1211     if (c.sweep_lt(p, min)) {
1212         return min;
1213     } else if (c.sweep_lt(max, p)) {
1214         return max;
1215     } else {
1216         return p;
1217     }
1218 }
1219 
check_for_intersection(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1220 bool check_for_intersection(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current,
1221                             VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1222     if (!left || !right) {
1223         return false;
1224     }
1225     SkPoint p;
1226     uint8_t alpha;
1227     if (left->intersect(*right, &p, &alpha) && p.isFinite()) {
1228         Vertex* v;
1229         LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1230         Vertex* top = *current;
1231         // If the intersection point is above the current vertex, rewind to the vertex above the
1232         // intersection.
1233         while (top && c.sweep_lt(p, top->fPoint)) {
1234             top = top->fPrev;
1235         }
1236         if (!nearly_flat(c, left)) {
1237             p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c);
1238         }
1239         if (!nearly_flat(c, right)) {
1240             p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c);
1241         }
1242         if (p == left->fTop->fPoint) {
1243             v = left->fTop;
1244         } else if (p == left->fBottom->fPoint) {
1245             v = left->fBottom;
1246         } else if (p == right->fTop->fPoint) {
1247             v = right->fTop;
1248         } else if (p == right->fBottom->fPoint) {
1249             v = right->fBottom;
1250         } else {
1251             v = create_sorted_vertex(p, alpha, mesh, top, c, alloc);
1252             if (left->fTop->fPartner) {
1253                 Line line1 = left->fLine;
1254                 Line line2 = right->fLine;
1255                 int dir = left->fType == Edge::Type::kOuter ? -1 : 1;
1256                 line1.fC += sqrt(left->fLine.magSq()) * (left->fWinding > 0 ? 1 : -1) * dir;
1257                 line2.fC += sqrt(right->fLine.magSq()) * (right->fWinding > 0 ? 1 : -1) * dir;
1258                 SkPoint p;
1259                 if (line1.intersect(line2, &p)) {
1260                     LOG("synthesizing partner (%g,%g) for intersection vertex %g\n",
1261                         p.fX, p.fY, v->fID);
1262                     v->fPartner = alloc.make<Vertex>(p, 255 - v->fAlpha);
1263                 }
1264             }
1265         }
1266         rewind(activeEdges, current, top ? top : v, c);
1267         split_edge(left, v, activeEdges, current, c, alloc);
1268         split_edge(right, v, activeEdges, current, c, alloc);
1269         v->fAlpha = SkTMax(v->fAlpha, alpha);
1270         return true;
1271     }
1272     return intersect_edge_pair(left, right, activeEdges, current, c, alloc);
1273 }
1274 
sanitize_contours(VertexList * contours,int contourCnt,bool approximate)1275 void sanitize_contours(VertexList* contours, int contourCnt, bool approximate) {
1276     for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1277         SkASSERT(contour->fHead);
1278         Vertex* prev = contour->fTail;
1279         if (approximate) {
1280             round(&prev->fPoint);
1281         }
1282         for (Vertex* v = contour->fHead; v;) {
1283             if (approximate) {
1284                 round(&v->fPoint);
1285             }
1286             Vertex* next = v->fNext;
1287             Vertex* nextWrap = next ? next : contour->fHead;
1288             if (coincident(prev->fPoint, v->fPoint)) {
1289                 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1290                 contour->remove(v);
1291             } else if (!v->fPoint.isFinite()) {
1292                 LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY);
1293                 contour->remove(v);
1294             } else if (Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) {
1295                 LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY);
1296                 contour->remove(v);
1297             } else {
1298                 prev = v;
1299             }
1300             v = next;
1301         }
1302     }
1303 }
1304 
merge_coincident_vertices(VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1305 bool merge_coincident_vertices(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1306     if (!mesh->fHead) {
1307         return false;
1308     }
1309     bool merged = false;
1310     for (Vertex* v = mesh->fHead->fNext; v;) {
1311         Vertex* next = v->fNext;
1312         if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1313             v->fPoint = v->fPrev->fPoint;
1314         }
1315         if (coincident(v->fPrev->fPoint, v->fPoint)) {
1316             merge_vertices(v, v->fPrev, mesh, c, alloc);
1317             merged = true;
1318         }
1319         v = next;
1320     }
1321     return merged;
1322 }
1323 
1324 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1325 
build_edges(VertexList * contours,int contourCnt,VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1326 void build_edges(VertexList* contours, int contourCnt, VertexList* mesh, Comparator& c,
1327                  SkArenaAlloc& alloc) {
1328     for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1329         Vertex* prev = contour->fTail;
1330         for (Vertex* v = contour->fHead; v;) {
1331             Vertex* next = v->fNext;
1332             connect(prev, v, Edge::Type::kInner, c, alloc);
1333             mesh->append(v);
1334             prev = v;
1335             v = next;
1336         }
1337     }
1338 }
1339 
connect_partners(VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1340 void connect_partners(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1341     for (Vertex* outer = mesh->fHead; outer; outer = outer->fNext) {
1342         if (Vertex* inner = outer->fPartner) {
1343             if ((inner->fPrev || inner->fNext) && (outer->fPrev || outer->fNext)) {
1344                 // Connector edges get zero winding, since they're only structural (i.e., to ensure
1345                 // no 0-0-0 alpha triangles are produced), and shouldn't affect the poly winding
1346                 // number.
1347                 connect(outer, inner, Edge::Type::kConnector, c, alloc, 0);
1348                 inner->fPartner = outer->fPartner = nullptr;
1349             }
1350         }
1351     }
1352 }
1353 
1354 template <CompareFunc sweep_lt>
sorted_merge(VertexList * front,VertexList * back,VertexList * result)1355 void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
1356     Vertex* a = front->fHead;
1357     Vertex* b = back->fHead;
1358     while (a && b) {
1359         if (sweep_lt(a->fPoint, b->fPoint)) {
1360             front->remove(a);
1361             result->append(a);
1362             a = front->fHead;
1363         } else {
1364             back->remove(b);
1365             result->append(b);
1366             b = back->fHead;
1367         }
1368     }
1369     result->append(*front);
1370     result->append(*back);
1371 }
1372 
sorted_merge(VertexList * front,VertexList * back,VertexList * result,Comparator & c)1373 void sorted_merge(VertexList* front, VertexList* back, VertexList* result, Comparator& c) {
1374     if (c.fDirection == Comparator::Direction::kHorizontal) {
1375         sorted_merge<sweep_lt_horiz>(front, back, result);
1376     } else {
1377         sorted_merge<sweep_lt_vert>(front, back, result);
1378     }
1379 #if LOGGING_ENABLED
1380     float id = 0.0f;
1381     for (Vertex* v = result->fHead; v; v = v->fNext) {
1382         v->fID = id++;
1383     }
1384 #endif
1385 }
1386 
1387 // Stage 3: sort the vertices by increasing sweep direction.
1388 
1389 template <CompareFunc sweep_lt>
merge_sort(VertexList * vertices)1390 void merge_sort(VertexList* vertices) {
1391     Vertex* slow = vertices->fHead;
1392     if (!slow) {
1393         return;
1394     }
1395     Vertex* fast = slow->fNext;
1396     if (!fast) {
1397         return;
1398     }
1399     do {
1400         fast = fast->fNext;
1401         if (fast) {
1402             fast = fast->fNext;
1403             slow = slow->fNext;
1404         }
1405     } while (fast);
1406     VertexList front(vertices->fHead, slow);
1407     VertexList back(slow->fNext, vertices->fTail);
1408     front.fTail->fNext = back.fHead->fPrev = nullptr;
1409 
1410     merge_sort<sweep_lt>(&front);
1411     merge_sort<sweep_lt>(&back);
1412 
1413     vertices->fHead = vertices->fTail = nullptr;
1414     sorted_merge<sweep_lt>(&front, &back, vertices);
1415 }
1416 
dump_mesh(const VertexList & mesh)1417 void dump_mesh(const VertexList& mesh) {
1418 #if LOGGING_ENABLED
1419     for (Vertex* v = mesh.fHead; v; v = v->fNext) {
1420         LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1421         if (Vertex* p = v->fPartner) {
1422             LOG(", partner %g (%g, %g) alpha %d\n", p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha);
1423         } else {
1424             LOG(", null partner\n");
1425         }
1426         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1427             LOG("  edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1428         }
1429         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1430             LOG("  edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1431         }
1432     }
1433 #endif
1434 }
1435 
1436 #ifdef SK_DEBUG
validate_edge_pair(Edge * left,Edge * right,Comparator & c)1437 void validate_edge_pair(Edge* left, Edge* right, Comparator& c) {
1438     if (!left || !right) {
1439         return;
1440     }
1441     if (left->fTop == right->fTop) {
1442         SkASSERT(left->isLeftOf(right->fBottom));
1443         SkASSERT(right->isRightOf(left->fBottom));
1444     } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
1445         SkASSERT(left->isLeftOf(right->fTop));
1446     } else {
1447         SkASSERT(right->isRightOf(left->fTop));
1448     }
1449     if (left->fBottom == right->fBottom) {
1450         SkASSERT(left->isLeftOf(right->fTop));
1451         SkASSERT(right->isRightOf(left->fTop));
1452     } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
1453         SkASSERT(left->isLeftOf(right->fBottom));
1454     } else {
1455         SkASSERT(right->isRightOf(left->fBottom));
1456     }
1457 }
1458 
validate_edge_list(EdgeList * edges,Comparator & c)1459 void validate_edge_list(EdgeList* edges, Comparator& c) {
1460     Edge* left = edges->fHead;
1461     if (!left) {
1462         return;
1463     }
1464     for (Edge* right = left->fRight; right; right = right->fRight) {
1465         validate_edge_pair(left, right, c);
1466         left = right;
1467     }
1468 }
1469 #endif
1470 
1471 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1472 
simplify(VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1473 bool simplify(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1474     LOG("simplifying complex polygons\n");
1475     EdgeList activeEdges;
1476     bool found = false;
1477     for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
1478         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1479             continue;
1480         }
1481         Edge* leftEnclosingEdge;
1482         Edge* rightEnclosingEdge;
1483         bool restartChecks;
1484         do {
1485             LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1486             restartChecks = false;
1487             find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1488             v->fLeftEnclosingEdge = leftEnclosingEdge;
1489             v->fRightEnclosingEdge = rightEnclosingEdge;
1490             if (v->fFirstEdgeBelow) {
1491                 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1492                     if (check_for_intersection(leftEnclosingEdge, edge, &activeEdges, &v, mesh, c,
1493                                                alloc)) {
1494                         restartChecks = true;
1495                         break;
1496                     }
1497                     if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, &v, mesh, c,
1498                                                alloc)) {
1499                         restartChecks = true;
1500                         break;
1501                     }
1502                 }
1503             } else {
1504                 if (check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1505                                            &activeEdges, &v, mesh, c, alloc)) {
1506                     restartChecks = true;
1507                 }
1508 
1509             }
1510             found = found || restartChecks;
1511         } while (restartChecks);
1512 #ifdef SK_DEBUG
1513         validate_edge_list(&activeEdges, c);
1514 #endif
1515         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1516             remove_edge(e, &activeEdges);
1517         }
1518         Edge* leftEdge = leftEnclosingEdge;
1519         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1520             insert_edge(e, leftEdge, &activeEdges);
1521             leftEdge = e;
1522         }
1523     }
1524     SkASSERT(!activeEdges.fHead && !activeEdges.fTail);
1525     return found;
1526 }
1527 
1528 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1529 
tessellate(const VertexList & vertices,SkArenaAlloc & alloc)1530 Poly* tessellate(const VertexList& vertices, SkArenaAlloc& alloc) {
1531     LOG("\ntessellating simple polygons\n");
1532     EdgeList activeEdges;
1533     Poly* polys = nullptr;
1534     for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1535         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1536             continue;
1537         }
1538 #if LOGGING_ENABLED
1539         LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1540 #endif
1541         Edge* leftEnclosingEdge;
1542         Edge* rightEnclosingEdge;
1543         find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1544         Poly* leftPoly;
1545         Poly* rightPoly;
1546         if (v->fFirstEdgeAbove) {
1547             leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1548             rightPoly = v->fLastEdgeAbove->fRightPoly;
1549         } else {
1550             leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1551             rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1552         }
1553 #if LOGGING_ENABLED
1554         LOG("edges above:\n");
1555         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1556             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1557                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1558         }
1559         LOG("edges below:\n");
1560         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1561             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1562                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1563         }
1564 #endif
1565         if (v->fFirstEdgeAbove) {
1566             if (leftPoly) {
1567                 leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, Poly::kRight_Side, alloc);
1568             }
1569             if (rightPoly) {
1570                 rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, Poly::kLeft_Side, alloc);
1571             }
1572             for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1573                 Edge* rightEdge = e->fNextEdgeAbove;
1574                 remove_edge(e, &activeEdges);
1575                 if (e->fRightPoly) {
1576                     e->fRightPoly->addEdge(e, Poly::kLeft_Side, alloc);
1577                 }
1578                 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
1579                     rightEdge->fLeftPoly->addEdge(e, Poly::kRight_Side, alloc);
1580                 }
1581             }
1582             remove_edge(v->fLastEdgeAbove, &activeEdges);
1583             if (!v->fFirstEdgeBelow) {
1584                 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1585                     SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1586                     rightPoly->fPartner = leftPoly;
1587                     leftPoly->fPartner = rightPoly;
1588                 }
1589             }
1590         }
1591         if (v->fFirstEdgeBelow) {
1592             if (!v->fFirstEdgeAbove) {
1593                 if (leftPoly && rightPoly) {
1594                     if (leftPoly == rightPoly) {
1595                         if (leftPoly->fTail && leftPoly->fTail->fSide == Poly::kLeft_Side) {
1596                             leftPoly = new_poly(&polys, leftPoly->lastVertex(),
1597                                                  leftPoly->fWinding, alloc);
1598                             leftEnclosingEdge->fRightPoly = leftPoly;
1599                         } else {
1600                             rightPoly = new_poly(&polys, rightPoly->lastVertex(),
1601                                                  rightPoly->fWinding, alloc);
1602                             rightEnclosingEdge->fLeftPoly = rightPoly;
1603                         }
1604                     }
1605                     Edge* join = alloc.make<Edge>(leftPoly->lastVertex(), v, 1, Edge::Type::kInner);
1606                     leftPoly = leftPoly->addEdge(join, Poly::kRight_Side, alloc);
1607                     rightPoly = rightPoly->addEdge(join, Poly::kLeft_Side, alloc);
1608                 }
1609             }
1610             Edge* leftEdge = v->fFirstEdgeBelow;
1611             leftEdge->fLeftPoly = leftPoly;
1612             insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1613             for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1614                  rightEdge = rightEdge->fNextEdgeBelow) {
1615                 insert_edge(rightEdge, leftEdge, &activeEdges);
1616                 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1617                 winding += leftEdge->fWinding;
1618                 if (winding != 0) {
1619                     Poly* poly = new_poly(&polys, v, winding, alloc);
1620                     leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1621                 }
1622                 leftEdge = rightEdge;
1623             }
1624             v->fLastEdgeBelow->fRightPoly = rightPoly;
1625         }
1626 #if LOGGING_ENABLED
1627         LOG("\nactive edges:\n");
1628         for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1629             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1630                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1631         }
1632 #endif
1633     }
1634     return polys;
1635 }
1636 
remove_non_boundary_edges(const VertexList & mesh,SkPath::FillType fillType,SkArenaAlloc & alloc)1637 void remove_non_boundary_edges(const VertexList& mesh, SkPath::FillType fillType,
1638                                SkArenaAlloc& alloc) {
1639     LOG("removing non-boundary edges\n");
1640     EdgeList activeEdges;
1641     for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) {
1642         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1643             continue;
1644         }
1645         Edge* leftEnclosingEdge;
1646         Edge* rightEnclosingEdge;
1647         find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1648         bool prevFilled = leftEnclosingEdge &&
1649                           apply_fill_type(fillType, leftEnclosingEdge->fWinding);
1650         for (Edge* e = v->fFirstEdgeAbove; e;) {
1651             Edge* next = e->fNextEdgeAbove;
1652             remove_edge(e, &activeEdges);
1653             bool filled = apply_fill_type(fillType, e->fWinding);
1654             if (filled == prevFilled) {
1655                 disconnect(e);
1656             }
1657             prevFilled = filled;
1658             e = next;
1659         }
1660         Edge* prev = leftEnclosingEdge;
1661         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1662             if (prev) {
1663                 e->fWinding += prev->fWinding;
1664             }
1665             insert_edge(e, prev, &activeEdges);
1666             prev = e;
1667         }
1668     }
1669 }
1670 
1671 // Note: this is the normal to the edge, but not necessarily unit length.
get_edge_normal(const Edge * e,SkVector * normal)1672 void get_edge_normal(const Edge* e, SkVector* normal) {
1673     normal->set(SkDoubleToScalar(e->fLine.fA),
1674                 SkDoubleToScalar(e->fLine.fB));
1675 }
1676 
reconnect(Edge * edge,Vertex * src,Vertex * dst,Comparator & c)1677 void reconnect(Edge* edge, Vertex* src, Vertex* dst, Comparator& c) {
1678     disconnect(edge);
1679     if (src == edge->fTop) {
1680         edge->fTop = dst;
1681     } else {
1682         SkASSERT(src == edge->fBottom);
1683         edge->fBottom = dst;
1684     }
1685     if (edge->fEvent) {
1686         edge->fEvent->fEdge = nullptr;
1687     }
1688     if (edge->fTop == edge->fBottom) {
1689         return;
1690     }
1691     if (c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
1692         using std::swap;
1693         swap(edge->fTop, edge->fBottom);
1694         edge->fWinding *= -1;
1695     }
1696     edge->recompute();
1697     insert_edge_below(edge, edge->fTop, c);
1698     insert_edge_above(edge, edge->fBottom, c);
1699     merge_collinear_edges(edge, nullptr, nullptr, c);
1700 }
1701 
1702 // Stage 5c: detect and remove "pointy" vertices whose edge normals point in opposite directions
1703 // and whose adjacent vertices are less than a quarter pixel from an edge. These are guaranteed to
1704 // invert on stroking.
1705 
simplify_boundary(EdgeList * boundary,Comparator & c,SkArenaAlloc & alloc)1706 void simplify_boundary(EdgeList* boundary, Comparator& c, SkArenaAlloc& alloc) {
1707     Edge* prevEdge = boundary->fTail;
1708     SkVector prevNormal;
1709     get_edge_normal(prevEdge, &prevNormal);
1710     for (Edge* e = boundary->fHead; e != nullptr;) {
1711         Vertex* prev = prevEdge->fWinding == 1 ? prevEdge->fTop : prevEdge->fBottom;
1712         Vertex* next = e->fWinding == 1 ? e->fBottom : e->fTop;
1713         double distPrev = e->dist(prev->fPoint);
1714         double distNext = prevEdge->dist(next->fPoint);
1715         SkVector normal;
1716         get_edge_normal(e, &normal);
1717         constexpr double kQuarterPixelSq = 0.25f * 0.25f;
1718         if (prev != next && prevNormal.dot(normal) < 0.0 &&
1719             (distPrev * distPrev <= kQuarterPixelSq || distNext * distNext <= kQuarterPixelSq)) {
1720             Edge* join = new_edge(prev, next, Edge::Type::kInner, c, alloc);
1721             if (prev->fPoint != next->fPoint) {
1722                 join->fLine.normalize();
1723                 join->fLine = join->fLine * join->fWinding;
1724             }
1725             insert_edge(join, e, boundary);
1726             remove_edge(prevEdge, boundary);
1727             remove_edge(e, boundary);
1728             if (join->fLeft && join->fRight) {
1729                 prevEdge = join->fLeft;
1730                 e = join;
1731             } else {
1732                 prevEdge = boundary->fTail;
1733                 e = boundary->fHead; // join->fLeft ? join->fLeft : join;
1734             }
1735             get_edge_normal(prevEdge, &prevNormal);
1736         } else {
1737             prevEdge = e;
1738             prevNormal = normal;
1739             e = e->fRight;
1740         }
1741     }
1742 }
1743 
reconnect_all_overlap_edges(Vertex * src,Vertex * dst,Edge * current,Comparator & c)1744 void reconnect_all_overlap_edges(Vertex* src, Vertex* dst, Edge* current, Comparator& c) {
1745     if (src->fPartner) {
1746         src->fPartner->fPartner = dst;
1747     }
1748     for (Edge* e = src->fFirstEdgeAbove; e; ) {
1749         Edge* next = e->fNextEdgeAbove;
1750         if (e->fOverlap && e != current) {
1751             reconnect(e, src, dst, c);
1752         }
1753         e = next;
1754     }
1755     for (Edge* e = src->fFirstEdgeBelow; e; ) {
1756         Edge* next = e->fNextEdgeBelow;
1757         if (e->fOverlap && e != current) {
1758             reconnect(e, src, dst, c);
1759         }
1760         e = next;
1761     }
1762 }
1763 
apply(VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1764 void Event::apply(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1765     if (!fEdge || !fEdge->fTop || !fEdge->fBottom) {
1766         return;
1767     }
1768     Vertex* top = fEdge->fTop;
1769     Vertex* bottom = fEdge->fBottom;
1770     Vertex* dest = create_sorted_vertex(fPoint, fAlpha, mesh, fEdge->fTop, c, alloc);
1771     LOG("collapsing edge %g -> %g to %g (%g, %g) alpha %d\n",
1772         top->fID, bottom->fID, dest->fID, fPoint.fX, fPoint.fY, fAlpha);
1773     reconnect_all_overlap_edges(top, dest, fEdge, c);
1774     reconnect_all_overlap_edges(bottom, dest, fEdge, c);
1775 
1776     // Since the destination has multiple partners, give it none.
1777     dest->fPartner = nullptr;
1778 
1779     // Disconnect all collapsed edges except outer boundaries.
1780     // Those are required to preserve shape coverage and winding correctness.
1781     if (!fIsOuterBoundary) {
1782         disconnect(fEdge);
1783     } else {
1784         LOG("edge %g -> %g is outer boundary; not disconnecting.\n",
1785             fEdge->fTop->fID, fEdge->fBottom->fID);
1786         fEdge->fWinding = fEdge->fWinding >= 0 ? 1 : -1;
1787     }
1788 
1789     // If top still has some connected edges, set its partner to dest.
1790     top->fPartner = top->fFirstEdgeAbove || top->fFirstEdgeBelow ? dest : nullptr;
1791 
1792     // If bottom still has some connected edges, set its partner to dest.
1793     bottom->fPartner = bottom->fFirstEdgeAbove || bottom->fFirstEdgeBelow ? dest : nullptr;
1794 }
1795 
is_overlap_edge(Edge * e)1796 bool is_overlap_edge(Edge* e) {
1797     if (e->fType == Edge::Type::kOuter) {
1798         return e->fWinding != 0 && e->fWinding != 1;
1799     } else if (e->fType == Edge::Type::kInner) {
1800         return e->fWinding != 0 && e->fWinding != -2;
1801     } else {
1802         return false;
1803     }
1804 }
1805 
1806 // This is a stripped-down version of tessellate() which computes edges which
1807 // join two filled regions, which represent overlap regions, and collapses them.
collapse_overlap_regions(VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1808 bool collapse_overlap_regions(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1809     LOG("\nfinding overlap regions\n");
1810     EdgeList activeEdges;
1811     EventList events;
1812     for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
1813         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1814             continue;
1815         }
1816         Edge* leftEnclosingEdge;
1817         Edge* rightEnclosingEdge;
1818         find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1819         for (Edge* e = v->fLastEdgeAbove; e; e = e->fPrevEdgeAbove) {
1820             Edge* prev = e->fPrevEdgeAbove ? e->fPrevEdgeAbove : leftEnclosingEdge;
1821             remove_edge(e, &activeEdges);
1822             if (prev) {
1823                 e->fWinding -= prev->fWinding;
1824             }
1825         }
1826         Edge* prev = leftEnclosingEdge;
1827         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1828             if (prev) {
1829                 e->fWinding += prev->fWinding;
1830                 e->fOverlap = e->fOverlap || is_overlap_edge(prev);
1831             }
1832             e->fOverlap = e->fOverlap || is_overlap_edge(e);
1833             if (e->fOverlap) {
1834                 // If this edge borders a zero-winding area, it's a boundary; don't disconnect it.
1835                 bool isOuterBoundary = e->fType == Edge::Type::kOuter &&
1836                                        (!prev || prev->fWinding == 0 || e->fWinding == 0);
1837                 create_event(e, isOuterBoundary, &events, alloc);
1838             }
1839             insert_edge(e, prev, &activeEdges);
1840             prev = e;
1841         }
1842     }
1843     LOG("\ncollapsing overlap regions\n");
1844     if (events.count() == 0) {
1845         return false;
1846     }
1847     while (events.count() > 0) {
1848         Event* event = events.peek();
1849         events.pop();
1850         event->apply(mesh, c, alloc);
1851     }
1852     return true;
1853 }
1854 
inversion(Vertex * prev,Vertex * next,Edge * origEdge,Comparator & c)1855 bool inversion(Vertex* prev, Vertex* next, Edge* origEdge, Comparator& c) {
1856     if (!prev || !next) {
1857         return true;
1858     }
1859     int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
1860     return winding != origEdge->fWinding;
1861 }
1862 
1863 // Stage 5d: Displace edges by half a pixel inward and outward along their normals. Intersect to
1864 // find new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a
1865 // new antialiased mesh from those vertices.
1866 
stroke_boundary(EdgeList * boundary,VertexList * innerMesh,VertexList * outerMesh,Comparator & c,SkArenaAlloc & alloc)1867 void stroke_boundary(EdgeList* boundary, VertexList* innerMesh, VertexList* outerMesh,
1868                      Comparator& c, SkArenaAlloc& alloc) {
1869     LOG("\nstroking boundary\n");
1870     // A boundary with fewer than 3 edges is degenerate.
1871     if (!boundary->fHead || !boundary->fHead->fRight || !boundary->fHead->fRight->fRight) {
1872         return;
1873     }
1874     Edge* prevEdge = boundary->fTail;
1875     Vertex* prevV = prevEdge->fWinding > 0 ? prevEdge->fTop : prevEdge->fBottom;
1876     SkVector prevNormal;
1877     get_edge_normal(prevEdge, &prevNormal);
1878     double radius = 0.5;
1879     Line prevInner(prevEdge->fLine);
1880     prevInner.fC -= radius;
1881     Line prevOuter(prevEdge->fLine);
1882     prevOuter.fC += radius;
1883     VertexList innerVertices;
1884     VertexList outerVertices;
1885     bool innerInversion = true;
1886     bool outerInversion = true;
1887     for (Edge* e = boundary->fHead; e != nullptr; e = e->fRight) {
1888         Vertex* v = e->fWinding > 0 ? e->fTop : e->fBottom;
1889         SkVector normal;
1890         get_edge_normal(e, &normal);
1891         Line inner(e->fLine);
1892         inner.fC -= radius;
1893         Line outer(e->fLine);
1894         outer.fC += radius;
1895         SkPoint innerPoint, outerPoint;
1896         LOG("stroking vertex %g (%g, %g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1897         if (!prevEdge->fLine.nearParallel(e->fLine) && prevInner.intersect(inner, &innerPoint) &&
1898             prevOuter.intersect(outer, &outerPoint)) {
1899             float cosAngle = normal.dot(prevNormal);
1900             if (cosAngle < -kCosMiterAngle) {
1901                 Vertex* nextV = e->fWinding > 0 ? e->fBottom : e->fTop;
1902 
1903                 // This is a pointy vertex whose angle is smaller than the threshold; miter it.
1904                 Line bisector(innerPoint, outerPoint);
1905                 Line tangent(v->fPoint, v->fPoint + SkPoint::Make(bisector.fA, bisector.fB));
1906                 if (tangent.fA == 0 && tangent.fB == 0) {
1907                     continue;
1908                 }
1909                 tangent.normalize();
1910                 Line innerTangent(tangent);
1911                 Line outerTangent(tangent);
1912                 innerTangent.fC -= 0.5;
1913                 outerTangent.fC += 0.5;
1914                 SkPoint innerPoint1, innerPoint2, outerPoint1, outerPoint2;
1915                 if (prevNormal.cross(normal) > 0) {
1916                     // Miter inner points
1917                     if (!innerTangent.intersect(prevInner, &innerPoint1) ||
1918                         !innerTangent.intersect(inner, &innerPoint2) ||
1919                         !outerTangent.intersect(bisector, &outerPoint)) {
1920                         continue;
1921                     }
1922                     Line prevTangent(prevV->fPoint,
1923                                      prevV->fPoint + SkVector::Make(prevOuter.fA, prevOuter.fB));
1924                     Line nextTangent(nextV->fPoint,
1925                                      nextV->fPoint + SkVector::Make(outer.fA, outer.fB));
1926                     if (prevTangent.dist(outerPoint) > 0) {
1927                         bisector.intersect(prevTangent, &outerPoint);
1928                     }
1929                     if (nextTangent.dist(outerPoint) < 0) {
1930                         bisector.intersect(nextTangent, &outerPoint);
1931                     }
1932                     outerPoint1 = outerPoint2 = outerPoint;
1933                 } else {
1934                     // Miter outer points
1935                     if (!outerTangent.intersect(prevOuter, &outerPoint1) ||
1936                         !outerTangent.intersect(outer, &outerPoint2)) {
1937                         continue;
1938                     }
1939                     Line prevTangent(prevV->fPoint,
1940                                      prevV->fPoint + SkVector::Make(prevInner.fA, prevInner.fB));
1941                     Line nextTangent(nextV->fPoint,
1942                                      nextV->fPoint + SkVector::Make(inner.fA, inner.fB));
1943                     if (prevTangent.dist(innerPoint) > 0) {
1944                         bisector.intersect(prevTangent, &innerPoint);
1945                     }
1946                     if (nextTangent.dist(innerPoint) < 0) {
1947                         bisector.intersect(nextTangent, &innerPoint);
1948                     }
1949                     innerPoint1 = innerPoint2 = innerPoint;
1950                 }
1951                 if (!innerPoint1.isFinite() || !innerPoint2.isFinite() ||
1952                     !outerPoint1.isFinite() || !outerPoint2.isFinite()) {
1953                     continue;
1954                 }
1955                 LOG("inner (%g, %g), (%g, %g), ",
1956                     innerPoint1.fX, innerPoint1.fY, innerPoint2.fX, innerPoint2.fY);
1957                 LOG("outer (%g, %g), (%g, %g)\n",
1958                     outerPoint1.fX, outerPoint1.fY, outerPoint2.fX, outerPoint2.fY);
1959                 Vertex* innerVertex1 = alloc.make<Vertex>(innerPoint1, 255);
1960                 Vertex* innerVertex2 = alloc.make<Vertex>(innerPoint2, 255);
1961                 Vertex* outerVertex1 = alloc.make<Vertex>(outerPoint1, 0);
1962                 Vertex* outerVertex2 = alloc.make<Vertex>(outerPoint2, 0);
1963                 innerVertex1->fPartner = outerVertex1;
1964                 innerVertex2->fPartner = outerVertex2;
1965                 outerVertex1->fPartner = innerVertex1;
1966                 outerVertex2->fPartner = innerVertex2;
1967                 if (!inversion(innerVertices.fTail, innerVertex1, prevEdge, c)) {
1968                     innerInversion = false;
1969                 }
1970                 if (!inversion(outerVertices.fTail, outerVertex1, prevEdge, c)) {
1971                     outerInversion = false;
1972                 }
1973                 innerVertices.append(innerVertex1);
1974                 innerVertices.append(innerVertex2);
1975                 outerVertices.append(outerVertex1);
1976                 outerVertices.append(outerVertex2);
1977             } else {
1978                 LOG("inner (%g, %g), ", innerPoint.fX, innerPoint.fY);
1979                 LOG("outer (%g, %g)\n", outerPoint.fX, outerPoint.fY);
1980                 Vertex* innerVertex = alloc.make<Vertex>(innerPoint, 255);
1981                 Vertex* outerVertex = alloc.make<Vertex>(outerPoint, 0);
1982                 innerVertex->fPartner = outerVertex;
1983                 outerVertex->fPartner = innerVertex;
1984                 if (!inversion(innerVertices.fTail, innerVertex, prevEdge, c)) {
1985                     innerInversion = false;
1986                 }
1987                 if (!inversion(outerVertices.fTail, outerVertex, prevEdge, c)) {
1988                     outerInversion = false;
1989                 }
1990                 innerVertices.append(innerVertex);
1991                 outerVertices.append(outerVertex);
1992             }
1993         }
1994         prevInner = inner;
1995         prevOuter = outer;
1996         prevV = v;
1997         prevEdge = e;
1998         prevNormal = normal;
1999     }
2000     if (!inversion(innerVertices.fTail, innerVertices.fHead, prevEdge, c)) {
2001         innerInversion = false;
2002     }
2003     if (!inversion(outerVertices.fTail, outerVertices.fHead, prevEdge, c)) {
2004         outerInversion = false;
2005     }
2006     // Outer edges get 1 winding, and inner edges get -2 winding. This ensures that the interior
2007     // is always filled (1 + -2 = -1 for normal cases, 1 + 2 = 3 for thin features where the
2008     // interior inverts).
2009     // For total inversion cases, the shape has now reversed handedness, so invert the winding
2010     // so it will be detected during collapse_overlap_regions().
2011     int innerWinding = innerInversion ? 2 : -2;
2012     int outerWinding = outerInversion ? -1 : 1;
2013     for (Vertex* v = innerVertices.fHead; v && v->fNext; v = v->fNext) {
2014         connect(v, v->fNext, Edge::Type::kInner, c, alloc, innerWinding);
2015     }
2016     connect(innerVertices.fTail, innerVertices.fHead, Edge::Type::kInner, c, alloc, innerWinding);
2017     for (Vertex* v = outerVertices.fHead; v && v->fNext; v = v->fNext) {
2018         connect(v, v->fNext, Edge::Type::kOuter, c, alloc, outerWinding);
2019     }
2020     connect(outerVertices.fTail, outerVertices.fHead, Edge::Type::kOuter, c, alloc, outerWinding);
2021     innerMesh->append(innerVertices);
2022     outerMesh->append(outerVertices);
2023 }
2024 
extract_boundary(EdgeList * boundary,Edge * e,SkPath::FillType fillType,SkArenaAlloc & alloc)2025 void extract_boundary(EdgeList* boundary, Edge* e, SkPath::FillType fillType, SkArenaAlloc& alloc) {
2026     LOG("\nextracting boundary\n");
2027     bool down = apply_fill_type(fillType, e->fWinding);
2028     while (e) {
2029         e->fWinding = down ? 1 : -1;
2030         Edge* next;
2031         e->fLine.normalize();
2032         e->fLine = e->fLine * e->fWinding;
2033         boundary->append(e);
2034         if (down) {
2035             // Find outgoing edge, in clockwise order.
2036             if ((next = e->fNextEdgeAbove)) {
2037                 down = false;
2038             } else if ((next = e->fBottom->fLastEdgeBelow)) {
2039                 down = true;
2040             } else if ((next = e->fPrevEdgeAbove)) {
2041                 down = false;
2042             }
2043         } else {
2044             // Find outgoing edge, in counter-clockwise order.
2045             if ((next = e->fPrevEdgeBelow)) {
2046                 down = true;
2047             } else if ((next = e->fTop->fFirstEdgeAbove)) {
2048                 down = false;
2049             } else if ((next = e->fNextEdgeBelow)) {
2050                 down = true;
2051             }
2052         }
2053         disconnect(e);
2054         e = next;
2055     }
2056 }
2057 
2058 // Stage 5b: Extract boundaries from mesh, simplify and stroke them into a new mesh.
2059 
extract_boundaries(const VertexList & inMesh,VertexList * innerVertices,VertexList * outerVertices,SkPath::FillType fillType,Comparator & c,SkArenaAlloc & alloc)2060 void extract_boundaries(const VertexList& inMesh, VertexList* innerVertices,
2061                         VertexList* outerVertices, SkPath::FillType fillType,
2062                         Comparator& c, SkArenaAlloc& alloc) {
2063     remove_non_boundary_edges(inMesh, fillType, alloc);
2064     for (Vertex* v = inMesh.fHead; v; v = v->fNext) {
2065         while (v->fFirstEdgeBelow) {
2066             EdgeList boundary;
2067             extract_boundary(&boundary, v->fFirstEdgeBelow, fillType, alloc);
2068             simplify_boundary(&boundary, c, alloc);
2069             stroke_boundary(&boundary, innerVertices, outerVertices, c, alloc);
2070         }
2071     }
2072 }
2073 
2074 // This is a driver function that calls stages 2-5 in turn.
2075 
contours_to_mesh(VertexList * contours,int contourCnt,bool antialias,VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)2076 void contours_to_mesh(VertexList* contours, int contourCnt, bool antialias,
2077                       VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
2078 #if LOGGING_ENABLED
2079     for (int i = 0; i < contourCnt; ++i) {
2080         Vertex* v = contours[i].fHead;
2081         SkASSERT(v);
2082         LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
2083         for (v = v->fNext; v; v = v->fNext) {
2084             LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
2085         }
2086     }
2087 #endif
2088     sanitize_contours(contours, contourCnt, antialias);
2089     build_edges(contours, contourCnt, mesh, c, alloc);
2090 }
2091 
sort_mesh(VertexList * vertices,Comparator & c,SkArenaAlloc & alloc)2092 void sort_mesh(VertexList* vertices, Comparator& c, SkArenaAlloc& alloc) {
2093     if (!vertices || !vertices->fHead) {
2094         return;
2095     }
2096 
2097     // Sort vertices in Y (secondarily in X).
2098     if (c.fDirection == Comparator::Direction::kHorizontal) {
2099         merge_sort<sweep_lt_horiz>(vertices);
2100     } else {
2101         merge_sort<sweep_lt_vert>(vertices);
2102     }
2103 #if LOGGING_ENABLED
2104     for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
2105         static float gID = 0.0f;
2106         v->fID = gID++;
2107     }
2108 #endif
2109 }
2110 
contours_to_polys(VertexList * contours,int contourCnt,SkPath::FillType fillType,const SkRect & pathBounds,bool antialias,VertexList * outerMesh,SkArenaAlloc & alloc)2111 Poly* contours_to_polys(VertexList* contours, int contourCnt, SkPath::FillType fillType,
2112                         const SkRect& pathBounds, bool antialias, VertexList* outerMesh,
2113                         SkArenaAlloc& alloc) {
2114     Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
2115                                                           : Comparator::Direction::kVertical);
2116     VertexList mesh;
2117     contours_to_mesh(contours, contourCnt, antialias, &mesh, c, alloc);
2118     sort_mesh(&mesh, c, alloc);
2119     merge_coincident_vertices(&mesh, c, alloc);
2120     simplify(&mesh, c, alloc);
2121     if (antialias) {
2122         VertexList innerMesh;
2123         extract_boundaries(mesh, &innerMesh, outerMesh, fillType, c, alloc);
2124         sort_mesh(&innerMesh, c, alloc);
2125         sort_mesh(outerMesh, c, alloc);
2126         merge_coincident_vertices(&innerMesh, c, alloc);
2127         bool was_complex = merge_coincident_vertices(outerMesh, c, alloc);
2128         was_complex = simplify(&innerMesh, c, alloc) || was_complex;
2129         was_complex = simplify(outerMesh, c, alloc) || was_complex;
2130         LOG("\ninner mesh before:\n");
2131         dump_mesh(innerMesh);
2132         LOG("\nouter mesh before:\n");
2133         dump_mesh(*outerMesh);
2134         was_complex = collapse_overlap_regions(&innerMesh, c, alloc) || was_complex;
2135         was_complex = collapse_overlap_regions(outerMesh, c, alloc) || was_complex;
2136         if (was_complex) {
2137             LOG("found complex mesh; taking slow path\n");
2138             VertexList aaMesh;
2139             LOG("\ninner mesh after:\n");
2140             dump_mesh(innerMesh);
2141             LOG("\nouter mesh after:\n");
2142             dump_mesh(*outerMesh);
2143             connect_partners(outerMesh, c, alloc);
2144             connect_partners(&innerMesh, c, alloc);
2145             sorted_merge(&innerMesh, outerMesh, &aaMesh, c);
2146             merge_coincident_vertices(&aaMesh, c, alloc);
2147             simplify(&aaMesh, c, alloc);
2148             dump_mesh(aaMesh);
2149             outerMesh->fHead = outerMesh->fTail = nullptr;
2150             return tessellate(aaMesh, alloc);
2151         } else {
2152             LOG("no complex polygons; taking fast path\n");
2153             return tessellate(innerMesh, alloc);
2154         }
2155     } else {
2156         return tessellate(mesh, alloc);
2157     }
2158 }
2159 
2160 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
polys_to_triangles(Poly * polys,SkPath::FillType fillType,bool emitCoverage,void * data)2161 void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, bool emitCoverage, void* data) {
2162     for (Poly* poly = polys; poly; poly = poly->fNext) {
2163         if (apply_fill_type(fillType, poly)) {
2164             data = poly->emit(emitCoverage, data);
2165         }
2166     }
2167     return data;
2168 }
2169 
path_to_polys(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,int contourCnt,SkArenaAlloc & alloc,bool antialias,bool * isLinear,VertexList * outerMesh)2170 Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
2171                     int contourCnt, SkArenaAlloc& alloc, bool antialias, bool* isLinear,
2172                     VertexList* outerMesh) {
2173     SkPath::FillType fillType = path.getFillType();
2174     if (SkPath::IsInverseFillType(fillType)) {
2175         contourCnt++;
2176     }
2177     std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
2178 
2179     path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
2180     return contours_to_polys(contours.get(), contourCnt, path.getFillType(), path.getBounds(),
2181                              antialias, outerMesh, alloc);
2182 }
2183 
get_contour_count(const SkPath & path,SkScalar tolerance)2184 int get_contour_count(const SkPath& path, SkScalar tolerance) {
2185     int contourCnt;
2186     int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tolerance);
2187     if (maxPts <= 0) {
2188         return 0;
2189     }
2190     return contourCnt;
2191 }
2192 
count_points(Poly * polys,SkPath::FillType fillType)2193 int64_t count_points(Poly* polys, SkPath::FillType fillType) {
2194     int64_t count = 0;
2195     for (Poly* poly = polys; poly; poly = poly->fNext) {
2196         if (apply_fill_type(fillType, poly) && poly->fCount >= 3) {
2197             count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
2198         }
2199     }
2200     return count;
2201 }
2202 
count_outer_mesh_points(const VertexList & outerMesh)2203 int64_t count_outer_mesh_points(const VertexList& outerMesh) {
2204     int64_t count = 0;
2205     for (Vertex* v = outerMesh.fHead; v; v = v->fNext) {
2206         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
2207             count += TESSELLATOR_WIREFRAME ? 12 : 6;
2208         }
2209     }
2210     return count;
2211 }
2212 
outer_mesh_to_triangles(const VertexList & outerMesh,bool emitCoverage,void * data)2213 void* outer_mesh_to_triangles(const VertexList& outerMesh, bool emitCoverage, void* data) {
2214     for (Vertex* v = outerMesh.fHead; v; v = v->fNext) {
2215         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
2216             Vertex* v0 = e->fTop;
2217             Vertex* v1 = e->fBottom;
2218             Vertex* v2 = e->fBottom->fPartner;
2219             Vertex* v3 = e->fTop->fPartner;
2220             data = emit_triangle(v0, v1, v2, emitCoverage, data);
2221             data = emit_triangle(v0, v2, v3, emitCoverage, data);
2222         }
2223     }
2224     return data;
2225 }
2226 
2227 } // namespace
2228 
2229 namespace GrTessellator {
2230 
2231 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
2232 
PathToTriangles(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,VertexAllocator * vertexAllocator,bool antialias,bool * isLinear)2233 int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
2234                     VertexAllocator* vertexAllocator, bool antialias, bool* isLinear) {
2235     int contourCnt = get_contour_count(path, tolerance);
2236     if (contourCnt <= 0) {
2237         *isLinear = true;
2238         return 0;
2239     }
2240     SkArenaAlloc alloc(kArenaChunkSize);
2241     VertexList outerMesh;
2242     Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, antialias,
2243                                 isLinear, &outerMesh);
2244     SkPath::FillType fillType = antialias ? SkPath::kWinding_FillType : path.getFillType();
2245     int64_t count64 = count_points(polys, fillType);
2246     if (antialias) {
2247         count64 += count_outer_mesh_points(outerMesh);
2248     }
2249     if (0 == count64 || count64 > SK_MaxS32) {
2250         return 0;
2251     }
2252     int count = count64;
2253 
2254     void* verts = vertexAllocator->lock(count);
2255     if (!verts) {
2256         SkDebugf("Could not allocate vertices\n");
2257         return 0;
2258     }
2259 
2260     LOG("emitting %d verts\n", count);
2261     void* end = polys_to_triangles(polys, fillType, antialias, verts);
2262     end = outer_mesh_to_triangles(outerMesh, true, end);
2263 
2264     int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
2265                                        / vertexAllocator->stride());
2266     SkASSERT(actualCount <= count);
2267     vertexAllocator->unlock(actualCount);
2268     return actualCount;
2269 }
2270 
PathToVertices(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,GrTessellator::WindingVertex ** verts)2271 int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
2272                    GrTessellator::WindingVertex** verts) {
2273     int contourCnt = get_contour_count(path, tolerance);
2274     if (contourCnt <= 0) {
2275         *verts = nullptr;
2276         return 0;
2277     }
2278     SkArenaAlloc alloc(kArenaChunkSize);
2279     bool isLinear;
2280     Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, false, &isLinear,
2281                                 nullptr);
2282     SkPath::FillType fillType = path.getFillType();
2283     int64_t count64 = count_points(polys, fillType);
2284     if (0 == count64 || count64 > SK_MaxS32) {
2285         *verts = nullptr;
2286         return 0;
2287     }
2288     int count = count64;
2289 
2290     *verts = new GrTessellator::WindingVertex[count];
2291     GrTessellator::WindingVertex* vertsEnd = *verts;
2292     SkPoint* points = new SkPoint[count];
2293     SkPoint* pointsEnd = points;
2294     for (Poly* poly = polys; poly; poly = poly->fNext) {
2295         if (apply_fill_type(fillType, poly)) {
2296             SkPoint* start = pointsEnd;
2297             pointsEnd = static_cast<SkPoint*>(poly->emit(false, pointsEnd));
2298             while (start != pointsEnd) {
2299                 vertsEnd->fPos = *start;
2300                 vertsEnd->fWinding = poly->fWinding;
2301                 ++start;
2302                 ++vertsEnd;
2303             }
2304         }
2305     }
2306     int actualCount = static_cast<int>(vertsEnd - *verts);
2307     SkASSERT(actualCount <= count);
2308     SkASSERT(pointsEnd - points == actualCount);
2309     delete[] points;
2310     return actualCount;
2311 }
2312 
2313 } // namespace
2314