1 #include "llvm/DerivedTypes.h"
2 #include "llvm/LLVMContext.h"
3 #include "llvm/Module.h"
4 #include "llvm/Analysis/Verifier.h"
5 #include "llvm/Support/IRBuilder.h"
6 #include <cstdio>
7 #include <string>
8 #include <map>
9 #include <vector>
10 using namespace llvm;
11
12 //===----------------------------------------------------------------------===//
13 // Lexer
14 //===----------------------------------------------------------------------===//
15
16 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
17 // of these for known things.
18 enum Token {
19 tok_eof = -1,
20
21 // commands
22 tok_def = -2, tok_extern = -3,
23
24 // primary
25 tok_identifier = -4, tok_number = -5
26 };
27
28 static std::string IdentifierStr; // Filled in if tok_identifier
29 static double NumVal; // Filled in if tok_number
30
31 /// gettok - Return the next token from standard input.
gettok()32 static int gettok() {
33 static int LastChar = ' ';
34
35 // Skip any whitespace.
36 while (isspace(LastChar))
37 LastChar = getchar();
38
39 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
40 IdentifierStr = LastChar;
41 while (isalnum((LastChar = getchar())))
42 IdentifierStr += LastChar;
43
44 if (IdentifierStr == "def") return tok_def;
45 if (IdentifierStr == "extern") return tok_extern;
46 return tok_identifier;
47 }
48
49 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
50 std::string NumStr;
51 do {
52 NumStr += LastChar;
53 LastChar = getchar();
54 } while (isdigit(LastChar) || LastChar == '.');
55
56 NumVal = strtod(NumStr.c_str(), 0);
57 return tok_number;
58 }
59
60 if (LastChar == '#') {
61 // Comment until end of line.
62 do LastChar = getchar();
63 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
64
65 if (LastChar != EOF)
66 return gettok();
67 }
68
69 // Check for end of file. Don't eat the EOF.
70 if (LastChar == EOF)
71 return tok_eof;
72
73 // Otherwise, just return the character as its ascii value.
74 int ThisChar = LastChar;
75 LastChar = getchar();
76 return ThisChar;
77 }
78
79 //===----------------------------------------------------------------------===//
80 // Abstract Syntax Tree (aka Parse Tree)
81 //===----------------------------------------------------------------------===//
82
83 /// ExprAST - Base class for all expression nodes.
84 class ExprAST {
85 public:
~ExprAST()86 virtual ~ExprAST() {}
87 virtual Value *Codegen() = 0;
88 };
89
90 /// NumberExprAST - Expression class for numeric literals like "1.0".
91 class NumberExprAST : public ExprAST {
92 double Val;
93 public:
NumberExprAST(double val)94 NumberExprAST(double val) : Val(val) {}
95 virtual Value *Codegen();
96 };
97
98 /// VariableExprAST - Expression class for referencing a variable, like "a".
99 class VariableExprAST : public ExprAST {
100 std::string Name;
101 public:
VariableExprAST(const std::string & name)102 VariableExprAST(const std::string &name) : Name(name) {}
103 virtual Value *Codegen();
104 };
105
106 /// BinaryExprAST - Expression class for a binary operator.
107 class BinaryExprAST : public ExprAST {
108 char Op;
109 ExprAST *LHS, *RHS;
110 public:
BinaryExprAST(char op,ExprAST * lhs,ExprAST * rhs)111 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
112 : Op(op), LHS(lhs), RHS(rhs) {}
113 virtual Value *Codegen();
114 };
115
116 /// CallExprAST - Expression class for function calls.
117 class CallExprAST : public ExprAST {
118 std::string Callee;
119 std::vector<ExprAST*> Args;
120 public:
CallExprAST(const std::string & callee,std::vector<ExprAST * > & args)121 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
122 : Callee(callee), Args(args) {}
123 virtual Value *Codegen();
124 };
125
126 /// PrototypeAST - This class represents the "prototype" for a function,
127 /// which captures its name, and its argument names (thus implicitly the number
128 /// of arguments the function takes).
129 class PrototypeAST {
130 std::string Name;
131 std::vector<std::string> Args;
132 public:
PrototypeAST(const std::string & name,const std::vector<std::string> & args)133 PrototypeAST(const std::string &name, const std::vector<std::string> &args)
134 : Name(name), Args(args) {}
135
136 Function *Codegen();
137 };
138
139 /// FunctionAST - This class represents a function definition itself.
140 class FunctionAST {
141 PrototypeAST *Proto;
142 ExprAST *Body;
143 public:
FunctionAST(PrototypeAST * proto,ExprAST * body)144 FunctionAST(PrototypeAST *proto, ExprAST *body)
145 : Proto(proto), Body(body) {}
146
147 Function *Codegen();
148 };
149
150 //===----------------------------------------------------------------------===//
151 // Parser
152 //===----------------------------------------------------------------------===//
153
154 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
155 /// token the parser is looking at. getNextToken reads another token from the
156 /// lexer and updates CurTok with its results.
157 static int CurTok;
getNextToken()158 static int getNextToken() {
159 return CurTok = gettok();
160 }
161
162 /// BinopPrecedence - This holds the precedence for each binary operator that is
163 /// defined.
164 static std::map<char, int> BinopPrecedence;
165
166 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()167 static int GetTokPrecedence() {
168 if (!isascii(CurTok))
169 return -1;
170
171 // Make sure it's a declared binop.
172 int TokPrec = BinopPrecedence[CurTok];
173 if (TokPrec <= 0) return -1;
174 return TokPrec;
175 }
176
177 /// Error* - These are little helper functions for error handling.
Error(const char * Str)178 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
ErrorP(const char * Str)179 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
ErrorF(const char * Str)180 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
181
182 static ExprAST *ParseExpression();
183
184 /// identifierexpr
185 /// ::= identifier
186 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()187 static ExprAST *ParseIdentifierExpr() {
188 std::string IdName = IdentifierStr;
189
190 getNextToken(); // eat identifier.
191
192 if (CurTok != '(') // Simple variable ref.
193 return new VariableExprAST(IdName);
194
195 // Call.
196 getNextToken(); // eat (
197 std::vector<ExprAST*> Args;
198 if (CurTok != ')') {
199 while (1) {
200 ExprAST *Arg = ParseExpression();
201 if (!Arg) return 0;
202 Args.push_back(Arg);
203
204 if (CurTok == ')') break;
205
206 if (CurTok != ',')
207 return Error("Expected ')' or ',' in argument list");
208 getNextToken();
209 }
210 }
211
212 // Eat the ')'.
213 getNextToken();
214
215 return new CallExprAST(IdName, Args);
216 }
217
218 /// numberexpr ::= number
ParseNumberExpr()219 static ExprAST *ParseNumberExpr() {
220 ExprAST *Result = new NumberExprAST(NumVal);
221 getNextToken(); // consume the number
222 return Result;
223 }
224
225 /// parenexpr ::= '(' expression ')'
ParseParenExpr()226 static ExprAST *ParseParenExpr() {
227 getNextToken(); // eat (.
228 ExprAST *V = ParseExpression();
229 if (!V) return 0;
230
231 if (CurTok != ')')
232 return Error("expected ')'");
233 getNextToken(); // eat ).
234 return V;
235 }
236
237 /// primary
238 /// ::= identifierexpr
239 /// ::= numberexpr
240 /// ::= parenexpr
ParsePrimary()241 static ExprAST *ParsePrimary() {
242 switch (CurTok) {
243 default: return Error("unknown token when expecting an expression");
244 case tok_identifier: return ParseIdentifierExpr();
245 case tok_number: return ParseNumberExpr();
246 case '(': return ParseParenExpr();
247 }
248 }
249
250 /// binoprhs
251 /// ::= ('+' primary)*
ParseBinOpRHS(int ExprPrec,ExprAST * LHS)252 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
253 // If this is a binop, find its precedence.
254 while (1) {
255 int TokPrec = GetTokPrecedence();
256
257 // If this is a binop that binds at least as tightly as the current binop,
258 // consume it, otherwise we are done.
259 if (TokPrec < ExprPrec)
260 return LHS;
261
262 // Okay, we know this is a binop.
263 int BinOp = CurTok;
264 getNextToken(); // eat binop
265
266 // Parse the primary expression after the binary operator.
267 ExprAST *RHS = ParsePrimary();
268 if (!RHS) return 0;
269
270 // If BinOp binds less tightly with RHS than the operator after RHS, let
271 // the pending operator take RHS as its LHS.
272 int NextPrec = GetTokPrecedence();
273 if (TokPrec < NextPrec) {
274 RHS = ParseBinOpRHS(TokPrec+1, RHS);
275 if (RHS == 0) return 0;
276 }
277
278 // Merge LHS/RHS.
279 LHS = new BinaryExprAST(BinOp, LHS, RHS);
280 }
281 }
282
283 /// expression
284 /// ::= primary binoprhs
285 ///
ParseExpression()286 static ExprAST *ParseExpression() {
287 ExprAST *LHS = ParsePrimary();
288 if (!LHS) return 0;
289
290 return ParseBinOpRHS(0, LHS);
291 }
292
293 /// prototype
294 /// ::= id '(' id* ')'
ParsePrototype()295 static PrototypeAST *ParsePrototype() {
296 if (CurTok != tok_identifier)
297 return ErrorP("Expected function name in prototype");
298
299 std::string FnName = IdentifierStr;
300 getNextToken();
301
302 if (CurTok != '(')
303 return ErrorP("Expected '(' in prototype");
304
305 std::vector<std::string> ArgNames;
306 while (getNextToken() == tok_identifier)
307 ArgNames.push_back(IdentifierStr);
308 if (CurTok != ')')
309 return ErrorP("Expected ')' in prototype");
310
311 // success.
312 getNextToken(); // eat ')'.
313
314 return new PrototypeAST(FnName, ArgNames);
315 }
316
317 /// definition ::= 'def' prototype expression
ParseDefinition()318 static FunctionAST *ParseDefinition() {
319 getNextToken(); // eat def.
320 PrototypeAST *Proto = ParsePrototype();
321 if (Proto == 0) return 0;
322
323 if (ExprAST *E = ParseExpression())
324 return new FunctionAST(Proto, E);
325 return 0;
326 }
327
328 /// toplevelexpr ::= expression
ParseTopLevelExpr()329 static FunctionAST *ParseTopLevelExpr() {
330 if (ExprAST *E = ParseExpression()) {
331 // Make an anonymous proto.
332 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
333 return new FunctionAST(Proto, E);
334 }
335 return 0;
336 }
337
338 /// external ::= 'extern' prototype
ParseExtern()339 static PrototypeAST *ParseExtern() {
340 getNextToken(); // eat extern.
341 return ParsePrototype();
342 }
343
344 //===----------------------------------------------------------------------===//
345 // Code Generation
346 //===----------------------------------------------------------------------===//
347
348 static Module *TheModule;
349 static IRBuilder<> Builder(getGlobalContext());
350 static std::map<std::string, Value*> NamedValues;
351
ErrorV(const char * Str)352 Value *ErrorV(const char *Str) { Error(Str); return 0; }
353
Codegen()354 Value *NumberExprAST::Codegen() {
355 return ConstantFP::get(getGlobalContext(), APFloat(Val));
356 }
357
Codegen()358 Value *VariableExprAST::Codegen() {
359 // Look this variable up in the function.
360 Value *V = NamedValues[Name];
361 return V ? V : ErrorV("Unknown variable name");
362 }
363
Codegen()364 Value *BinaryExprAST::Codegen() {
365 Value *L = LHS->Codegen();
366 Value *R = RHS->Codegen();
367 if (L == 0 || R == 0) return 0;
368
369 switch (Op) {
370 case '+': return Builder.CreateFAdd(L, R, "addtmp");
371 case '-': return Builder.CreateFSub(L, R, "subtmp");
372 case '*': return Builder.CreateFMul(L, R, "multmp");
373 case '<':
374 L = Builder.CreateFCmpULT(L, R, "cmptmp");
375 // Convert bool 0/1 to double 0.0 or 1.0
376 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
377 "booltmp");
378 default: return ErrorV("invalid binary operator");
379 }
380 }
381
Codegen()382 Value *CallExprAST::Codegen() {
383 // Look up the name in the global module table.
384 Function *CalleeF = TheModule->getFunction(Callee);
385 if (CalleeF == 0)
386 return ErrorV("Unknown function referenced");
387
388 // If argument mismatch error.
389 if (CalleeF->arg_size() != Args.size())
390 return ErrorV("Incorrect # arguments passed");
391
392 std::vector<Value*> ArgsV;
393 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
394 ArgsV.push_back(Args[i]->Codegen());
395 if (ArgsV.back() == 0) return 0;
396 }
397
398 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
399 }
400
Codegen()401 Function *PrototypeAST::Codegen() {
402 // Make the function type: double(double,double) etc.
403 std::vector<Type*> Doubles(Args.size(),
404 Type::getDoubleTy(getGlobalContext()));
405 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
406 Doubles, false);
407
408 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
409
410 // If F conflicted, there was already something named 'Name'. If it has a
411 // body, don't allow redefinition or reextern.
412 if (F->getName() != Name) {
413 // Delete the one we just made and get the existing one.
414 F->eraseFromParent();
415 F = TheModule->getFunction(Name);
416
417 // If F already has a body, reject this.
418 if (!F->empty()) {
419 ErrorF("redefinition of function");
420 return 0;
421 }
422
423 // If F took a different number of args, reject.
424 if (F->arg_size() != Args.size()) {
425 ErrorF("redefinition of function with different # args");
426 return 0;
427 }
428 }
429
430 // Set names for all arguments.
431 unsigned Idx = 0;
432 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
433 ++AI, ++Idx) {
434 AI->setName(Args[Idx]);
435
436 // Add arguments to variable symbol table.
437 NamedValues[Args[Idx]] = AI;
438 }
439
440 return F;
441 }
442
Codegen()443 Function *FunctionAST::Codegen() {
444 NamedValues.clear();
445
446 Function *TheFunction = Proto->Codegen();
447 if (TheFunction == 0)
448 return 0;
449
450 // Create a new basic block to start insertion into.
451 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
452 Builder.SetInsertPoint(BB);
453
454 if (Value *RetVal = Body->Codegen()) {
455 // Finish off the function.
456 Builder.CreateRet(RetVal);
457
458 // Validate the generated code, checking for consistency.
459 verifyFunction(*TheFunction);
460
461 return TheFunction;
462 }
463
464 // Error reading body, remove function.
465 TheFunction->eraseFromParent();
466 return 0;
467 }
468
469 //===----------------------------------------------------------------------===//
470 // Top-Level parsing and JIT Driver
471 //===----------------------------------------------------------------------===//
472
HandleDefinition()473 static void HandleDefinition() {
474 if (FunctionAST *F = ParseDefinition()) {
475 if (Function *LF = F->Codegen()) {
476 fprintf(stderr, "Read function definition:");
477 LF->dump();
478 }
479 } else {
480 // Skip token for error recovery.
481 getNextToken();
482 }
483 }
484
HandleExtern()485 static void HandleExtern() {
486 if (PrototypeAST *P = ParseExtern()) {
487 if (Function *F = P->Codegen()) {
488 fprintf(stderr, "Read extern: ");
489 F->dump();
490 }
491 } else {
492 // Skip token for error recovery.
493 getNextToken();
494 }
495 }
496
HandleTopLevelExpression()497 static void HandleTopLevelExpression() {
498 // Evaluate a top-level expression into an anonymous function.
499 if (FunctionAST *F = ParseTopLevelExpr()) {
500 if (Function *LF = F->Codegen()) {
501 fprintf(stderr, "Read top-level expression:");
502 LF->dump();
503 }
504 } else {
505 // Skip token for error recovery.
506 getNextToken();
507 }
508 }
509
510 /// top ::= definition | external | expression | ';'
MainLoop()511 static void MainLoop() {
512 while (1) {
513 fprintf(stderr, "ready> ");
514 switch (CurTok) {
515 case tok_eof: return;
516 case ';': getNextToken(); break; // ignore top-level semicolons.
517 case tok_def: HandleDefinition(); break;
518 case tok_extern: HandleExtern(); break;
519 default: HandleTopLevelExpression(); break;
520 }
521 }
522 }
523
524 //===----------------------------------------------------------------------===//
525 // "Library" functions that can be "extern'd" from user code.
526 //===----------------------------------------------------------------------===//
527
528 /// putchard - putchar that takes a double and returns 0.
529 extern "C"
putchard(double X)530 double putchard(double X) {
531 putchar((char)X);
532 return 0;
533 }
534
535 //===----------------------------------------------------------------------===//
536 // Main driver code.
537 //===----------------------------------------------------------------------===//
538
main()539 int main() {
540 LLVMContext &Context = getGlobalContext();
541
542 // Install standard binary operators.
543 // 1 is lowest precedence.
544 BinopPrecedence['<'] = 10;
545 BinopPrecedence['+'] = 20;
546 BinopPrecedence['-'] = 20;
547 BinopPrecedence['*'] = 40; // highest.
548
549 // Prime the first token.
550 fprintf(stderr, "ready> ");
551 getNextToken();
552
553 // Make the module, which holds all the code.
554 TheModule = new Module("my cool jit", Context);
555
556 // Run the main "interpreter loop" now.
557 MainLoop();
558
559 // Print out all of the generated code.
560 TheModule->dump();
561
562 return 0;
563 }
564