1 //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements an abstract sparse conditional propagation algorithm, 11 // modeled after SCCP, but with a customizable lattice function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_ANALYSIS_SPARSE_PROPAGATION_H 16 #define LLVM_ANALYSIS_SPARSE_PROPAGATION_H 17 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include <vector> 21 #include <set> 22 23 namespace llvm { 24 class Value; 25 class Constant; 26 class Argument; 27 class Instruction; 28 class PHINode; 29 class TerminatorInst; 30 class BasicBlock; 31 class Function; 32 class SparseSolver; 33 class raw_ostream; 34 35 template<typename T> class SmallVectorImpl; 36 37 /// AbstractLatticeFunction - This class is implemented by the dataflow instance 38 /// to specify what the lattice values are and how they handle merges etc. 39 /// This gives the client the power to compute lattice values from instructions, 40 /// constants, etc. The requirement is that lattice values must all fit into 41 /// a void*. If a void* is not sufficient, the implementation should use this 42 /// pointer to be a pointer into a uniquing set or something. 43 /// 44 class AbstractLatticeFunction { 45 public: 46 typedef void *LatticeVal; 47 private: 48 LatticeVal UndefVal, OverdefinedVal, UntrackedVal; 49 public: AbstractLatticeFunction(LatticeVal undefVal,LatticeVal overdefinedVal,LatticeVal untrackedVal)50 AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal, 51 LatticeVal untrackedVal) { 52 UndefVal = undefVal; 53 OverdefinedVal = overdefinedVal; 54 UntrackedVal = untrackedVal; 55 } 56 virtual ~AbstractLatticeFunction(); 57 getUndefVal()58 LatticeVal getUndefVal() const { return UndefVal; } getOverdefinedVal()59 LatticeVal getOverdefinedVal() const { return OverdefinedVal; } getUntrackedVal()60 LatticeVal getUntrackedVal() const { return UntrackedVal; } 61 62 /// IsUntrackedValue - If the specified Value is something that is obviously 63 /// uninteresting to the analysis (and would always return UntrackedVal), 64 /// this function can return true to avoid pointless work. IsUntrackedValue(Value * V)65 virtual bool IsUntrackedValue(Value *V) { 66 return false; 67 } 68 69 /// ComputeConstant - Given a constant value, compute and return a lattice 70 /// value corresponding to the specified constant. ComputeConstant(Constant * C)71 virtual LatticeVal ComputeConstant(Constant *C) { 72 return getOverdefinedVal(); // always safe 73 } 74 75 /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is 76 /// one that the we want to handle through ComputeInstructionState. IsSpecialCasedPHI(PHINode * PN)77 virtual bool IsSpecialCasedPHI(PHINode *PN) { 78 return false; 79 } 80 81 /// GetConstant - If the specified lattice value is representable as an LLVM 82 /// constant value, return it. Otherwise return null. The returned value 83 /// must be in the same LLVM type as Val. GetConstant(LatticeVal LV,Value * Val,SparseSolver & SS)84 virtual Constant *GetConstant(LatticeVal LV, Value *Val, SparseSolver &SS) { 85 return 0; 86 } 87 88 /// ComputeArgument - Given a formal argument value, compute and return a 89 /// lattice value corresponding to the specified argument. ComputeArgument(Argument * I)90 virtual LatticeVal ComputeArgument(Argument *I) { 91 return getOverdefinedVal(); // always safe 92 } 93 94 /// MergeValues - Compute and return the merge of the two specified lattice 95 /// values. Merging should only move one direction down the lattice to 96 /// guarantee convergence (toward overdefined). MergeValues(LatticeVal X,LatticeVal Y)97 virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { 98 return getOverdefinedVal(); // always safe, never useful. 99 } 100 101 /// ComputeInstructionState - Given an instruction and a vector of its operand 102 /// values, compute the result value of the instruction. ComputeInstructionState(Instruction & I,SparseSolver & SS)103 virtual LatticeVal ComputeInstructionState(Instruction &I, SparseSolver &SS) { 104 return getOverdefinedVal(); // always safe, never useful. 105 } 106 107 /// PrintValue - Render the specified lattice value to the specified stream. 108 virtual void PrintValue(LatticeVal V, raw_ostream &OS); 109 }; 110 111 112 /// SparseSolver - This class is a general purpose solver for Sparse Conditional 113 /// Propagation with a programmable lattice function. 114 /// 115 class SparseSolver { 116 typedef AbstractLatticeFunction::LatticeVal LatticeVal; 117 118 /// LatticeFunc - This is the object that knows the lattice and how to do 119 /// compute transfer functions. 120 AbstractLatticeFunction *LatticeFunc; 121 122 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. 123 SmallPtrSet<BasicBlock*, 16> BBExecutable; // The bbs that are executable. 124 125 std::vector<Instruction*> InstWorkList; // Worklist of insts to process. 126 127 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 128 129 /// KnownFeasibleEdges - Entries in this set are edges which have already had 130 /// PHI nodes retriggered. 131 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 132 std::set<Edge> KnownFeasibleEdges; 133 134 SparseSolver(const SparseSolver&); // DO NOT IMPLEMENT 135 void operator=(const SparseSolver&); // DO NOT IMPLEMENT 136 public: SparseSolver(AbstractLatticeFunction * Lattice)137 explicit SparseSolver(AbstractLatticeFunction *Lattice) 138 : LatticeFunc(Lattice) {} ~SparseSolver()139 ~SparseSolver() { 140 delete LatticeFunc; 141 } 142 143 /// Solve - Solve for constants and executable blocks. 144 /// 145 void Solve(Function &F); 146 147 void Print(Function &F, raw_ostream &OS) const; 148 149 /// getLatticeState - Return the LatticeVal object that corresponds to the 150 /// value. If an value is not in the map, it is returned as untracked, 151 /// unlike the getOrInitValueState method. getLatticeState(Value * V)152 LatticeVal getLatticeState(Value *V) const { 153 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); 154 return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); 155 } 156 157 /// getOrInitValueState - Return the LatticeVal object that corresponds to the 158 /// value, initializing the value's state if it hasn't been entered into the 159 /// map yet. This function is necessary because not all values should start 160 /// out in the underdefined state... Arguments should be overdefined, and 161 /// constants should be marked as constants. 162 /// 163 LatticeVal getOrInitValueState(Value *V); 164 165 /// isEdgeFeasible - Return true if the control flow edge from the 'From' 166 /// basic block to the 'To' basic block is currently feasible. If 167 /// AggressiveUndef is true, then this treats values with unknown lattice 168 /// values as undefined. This is generally only useful when solving the 169 /// lattice, not when querying it. 170 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To, 171 bool AggressiveUndef = false); 172 173 /// isBlockExecutable - Return true if there are any known feasible 174 /// edges into the basic block. This is generally only useful when 175 /// querying the lattice. isBlockExecutable(BasicBlock * BB)176 bool isBlockExecutable(BasicBlock *BB) const { 177 return BBExecutable.count(BB); 178 } 179 180 private: 181 /// UpdateState - When the state for some instruction is potentially updated, 182 /// this function notices and adds I to the worklist if needed. 183 void UpdateState(Instruction &Inst, LatticeVal V); 184 185 /// MarkBlockExecutable - This method can be used by clients to mark all of 186 /// the blocks that are known to be intrinsically live in the processed unit. 187 void MarkBlockExecutable(BasicBlock *BB); 188 189 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 190 /// work list if it is not already executable. 191 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); 192 193 /// getFeasibleSuccessors - Return a vector of booleans to indicate which 194 /// successors are reachable from a given terminator instruction. 195 void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs, 196 bool AggressiveUndef); 197 198 void visitInst(Instruction &I); 199 void visitPHINode(PHINode &I); 200 void visitTerminatorInst(TerminatorInst &TI); 201 202 }; 203 204 } // end namespace llvm 205 206 #endif // LLVM_ANALYSIS_SPARSE_PROPAGATION_H 207