• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// @file
11 /// This file contains the declarations for the subclasses of Constant,
12 /// which represent the different flavors of constant values that live in LLVM.
13 /// Note that Constants are immutable (once created they never change) and are
14 /// fully shared by structural equivalence.  This means that two structurally
15 /// equivalent constants will always have the same address.  Constant's are
16 /// created on demand as needed and never deleted: thus clients don't have to
17 /// worry about the lifetime of the objects.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef LLVM_CONSTANTS_H
22 #define LLVM_CONSTANTS_H
23 
24 #include "llvm/Constant.h"
25 #include "llvm/OperandTraits.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/ArrayRef.h"
29 
30 namespace llvm {
31 
32 class ArrayType;
33 class IntegerType;
34 class StructType;
35 class PointerType;
36 class VectorType;
37 
38 template<class ConstantClass, class TypeClass, class ValType>
39 struct ConstantCreator;
40 template<class ConstantClass, class TypeClass>
41 struct ConvertConstantType;
42 
43 //===----------------------------------------------------------------------===//
44 /// This is the shared class of boolean and integer constants. This class
45 /// represents both boolean and integral constants.
46 /// @brief Class for constant integers.
47 class ConstantInt : public Constant {
48   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
49   ConstantInt(const ConstantInt &);      // DO NOT IMPLEMENT
50   ConstantInt(IntegerType *Ty, const APInt& V);
51   APInt Val;
52 protected:
53   // allocate space for exactly zero operands
new(size_t s)54   void *operator new(size_t s) {
55     return User::operator new(s, 0);
56   }
57 public:
58   static ConstantInt *getTrue(LLVMContext &Context);
59   static ConstantInt *getFalse(LLVMContext &Context);
60   static Constant *getTrue(Type *Ty);
61   static Constant *getFalse(Type *Ty);
62 
63   /// If Ty is a vector type, return a Constant with a splat of the given
64   /// value. Otherwise return a ConstantInt for the given value.
65   static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
66 
67   /// Return a ConstantInt with the specified integer value for the specified
68   /// type. If the type is wider than 64 bits, the value will be zero-extended
69   /// to fit the type, unless isSigned is true, in which case the value will
70   /// be interpreted as a 64-bit signed integer and sign-extended to fit
71   /// the type.
72   /// @brief Get a ConstantInt for a specific value.
73   static ConstantInt *get(IntegerType *Ty, uint64_t V,
74                           bool isSigned = false);
75 
76   /// Return a ConstantInt with the specified value for the specified type. The
77   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
78   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
79   /// signed value for the type Ty.
80   /// @brief Get a ConstantInt for a specific signed value.
81   static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
82   static Constant *getSigned(Type *Ty, int64_t V);
83 
84   /// Return a ConstantInt with the specified value and an implied Type. The
85   /// type is the integer type that corresponds to the bit width of the value.
86   static ConstantInt *get(LLVMContext &Context, const APInt &V);
87 
88   /// Return a ConstantInt constructed from the string strStart with the given
89   /// radix.
90   static ConstantInt *get(IntegerType *Ty, StringRef Str,
91                           uint8_t radix);
92 
93   /// If Ty is a vector type, return a Constant with a splat of the given
94   /// value. Otherwise return a ConstantInt for the given value.
95   static Constant *get(Type* Ty, const APInt& V);
96 
97   /// Return the constant as an APInt value reference. This allows clients to
98   /// obtain a copy of the value, with all its precision in tact.
99   /// @brief Return the constant's value.
getValue()100   inline const APInt &getValue() const {
101     return Val;
102   }
103 
104   /// getBitWidth - Return the bitwidth of this constant.
getBitWidth()105   unsigned getBitWidth() const { return Val.getBitWidth(); }
106 
107   /// Return the constant as a 64-bit unsigned integer value after it
108   /// has been zero extended as appropriate for the type of this constant. Note
109   /// that this method can assert if the value does not fit in 64 bits.
110   /// @deprecated
111   /// @brief Return the zero extended value.
getZExtValue()112   inline uint64_t getZExtValue() const {
113     return Val.getZExtValue();
114   }
115 
116   /// Return the constant as a 64-bit integer value after it has been sign
117   /// extended as appropriate for the type of this constant. Note that
118   /// this method can assert if the value does not fit in 64 bits.
119   /// @deprecated
120   /// @brief Return the sign extended value.
getSExtValue()121   inline int64_t getSExtValue() const {
122     return Val.getSExtValue();
123   }
124 
125   /// A helper method that can be used to determine if the constant contained
126   /// within is equal to a constant.  This only works for very small values,
127   /// because this is all that can be represented with all types.
128   /// @brief Determine if this constant's value is same as an unsigned char.
equalsInt(uint64_t V)129   bool equalsInt(uint64_t V) const {
130     return Val == V;
131   }
132 
133   /// getType - Specialize the getType() method to always return an IntegerType,
134   /// which reduces the amount of casting needed in parts of the compiler.
135   ///
getType()136   inline IntegerType *getType() const {
137     return reinterpret_cast<IntegerType*>(Value::getType());
138   }
139 
140   /// This static method returns true if the type Ty is big enough to
141   /// represent the value V. This can be used to avoid having the get method
142   /// assert when V is larger than Ty can represent. Note that there are two
143   /// versions of this method, one for unsigned and one for signed integers.
144   /// Although ConstantInt canonicalizes everything to an unsigned integer,
145   /// the signed version avoids callers having to convert a signed quantity
146   /// to the appropriate unsigned type before calling the method.
147   /// @returns true if V is a valid value for type Ty
148   /// @brief Determine if the value is in range for the given type.
149   static bool isValueValidForType(Type *Ty, uint64_t V);
150   static bool isValueValidForType(Type *Ty, int64_t V);
151 
isNegative()152   bool isNegative() const { return Val.isNegative(); }
153 
154   /// This is just a convenience method to make client code smaller for a
155   /// common code. It also correctly performs the comparison without the
156   /// potential for an assertion from getZExtValue().
isZero()157   bool isZero() const {
158     return Val == 0;
159   }
160 
161   /// This is just a convenience method to make client code smaller for a
162   /// common case. It also correctly performs the comparison without the
163   /// potential for an assertion from getZExtValue().
164   /// @brief Determine if the value is one.
isOne()165   bool isOne() const {
166     return Val == 1;
167   }
168 
169   /// This function will return true iff every bit in this constant is set
170   /// to true.
171   /// @returns true iff this constant's bits are all set to true.
172   /// @brief Determine if the value is all ones.
isMinusOne()173   bool isMinusOne() const {
174     return Val.isAllOnesValue();
175   }
176 
177   /// This function will return true iff this constant represents the largest
178   /// value that may be represented by the constant's type.
179   /// @returns true iff this is the largest value that may be represented
180   /// by this type.
181   /// @brief Determine if the value is maximal.
isMaxValue(bool isSigned)182   bool isMaxValue(bool isSigned) const {
183     if (isSigned)
184       return Val.isMaxSignedValue();
185     else
186       return Val.isMaxValue();
187   }
188 
189   /// This function will return true iff this constant represents the smallest
190   /// value that may be represented by this constant's type.
191   /// @returns true if this is the smallest value that may be represented by
192   /// this type.
193   /// @brief Determine if the value is minimal.
isMinValue(bool isSigned)194   bool isMinValue(bool isSigned) const {
195     if (isSigned)
196       return Val.isMinSignedValue();
197     else
198       return Val.isMinValue();
199   }
200 
201   /// This function will return true iff this constant represents a value with
202   /// active bits bigger than 64 bits or a value greater than the given uint64_t
203   /// value.
204   /// @returns true iff this constant is greater or equal to the given number.
205   /// @brief Determine if the value is greater or equal to the given number.
uge(uint64_t Num)206   bool uge(uint64_t Num) const {
207     return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
208   }
209 
210   /// getLimitedValue - If the value is smaller than the specified limit,
211   /// return it, otherwise return the limit value.  This causes the value
212   /// to saturate to the limit.
213   /// @returns the min of the value of the constant and the specified value
214   /// @brief Get the constant's value with a saturation limit
215   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
216     return Val.getLimitedValue(Limit);
217   }
218 
219   /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const ConstantInt *)220   static inline bool classof(const ConstantInt *) { return true; }
classof(const Value * V)221   static bool classof(const Value *V) {
222     return V->getValueID() == ConstantIntVal;
223   }
224 };
225 
226 
227 //===----------------------------------------------------------------------===//
228 /// ConstantFP - Floating Point Values [float, double]
229 ///
230 class ConstantFP : public Constant {
231   APFloat Val;
232   void *operator new(size_t, unsigned);// DO NOT IMPLEMENT
233   ConstantFP(const ConstantFP &);      // DO NOT IMPLEMENT
234   friend class LLVMContextImpl;
235 protected:
236   ConstantFP(Type *Ty, const APFloat& V);
237 protected:
238   // allocate space for exactly zero operands
new(size_t s)239   void *operator new(size_t s) {
240     return User::operator new(s, 0);
241   }
242 public:
243   /// Floating point negation must be implemented with f(x) = -0.0 - x. This
244   /// method returns the negative zero constant for floating point or vector
245   /// floating point types; for all other types, it returns the null value.
246   static Constant *getZeroValueForNegation(Type *Ty);
247 
248   /// get() - This returns a ConstantFP, or a vector containing a splat of a
249   /// ConstantFP, for the specified value in the specified type.  This should
250   /// only be used for simple constant values like 2.0/1.0 etc, that are
251   /// known-valid both as host double and as the target format.
252   static Constant *get(Type* Ty, double V);
253   static Constant *get(Type* Ty, StringRef Str);
254   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
255   static ConstantFP *getNegativeZero(Type* Ty);
256   static ConstantFP *getInfinity(Type *Ty, bool Negative = false);
257 
258   /// isValueValidForType - return true if Ty is big enough to represent V.
259   static bool isValueValidForType(Type *Ty, const APFloat &V);
getValueAPF()260   inline const APFloat &getValueAPF() const { return Val; }
261 
262   /// isZero - Return true if the value is positive or negative zero.
isZero()263   bool isZero() const { return Val.isZero(); }
264 
265   /// isNegative - Return true if the sign bit is set.
isNegative()266   bool isNegative() const { return Val.isNegative(); }
267 
268   /// isNaN - Return true if the value is a NaN.
isNaN()269   bool isNaN() const { return Val.isNaN(); }
270 
271   /// isExactlyValue - We don't rely on operator== working on double values, as
272   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
273   /// As such, this method can be used to do an exact bit-for-bit comparison of
274   /// two floating point values.  The version with a double operand is retained
275   /// because it's so convenient to write isExactlyValue(2.0), but please use
276   /// it only for simple constants.
277   bool isExactlyValue(const APFloat &V) const;
278 
isExactlyValue(double V)279   bool isExactlyValue(double V) const {
280     bool ignored;
281     // convert is not supported on this type
282     if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
283       return false;
284     APFloat FV(V);
285     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
286     return isExactlyValue(FV);
287   }
288   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const ConstantFP *)289   static inline bool classof(const ConstantFP *) { return true; }
classof(const Value * V)290   static bool classof(const Value *V) {
291     return V->getValueID() == ConstantFPVal;
292   }
293 };
294 
295 //===----------------------------------------------------------------------===//
296 /// ConstantAggregateZero - All zero aggregate value
297 ///
298 class ConstantAggregateZero : public Constant {
299   friend struct ConstantCreator<ConstantAggregateZero, Type, char>;
300   void *operator new(size_t, unsigned);                      // DO NOT IMPLEMENT
301   ConstantAggregateZero(const ConstantAggregateZero &);      // DO NOT IMPLEMENT
302 protected:
303   explicit ConstantAggregateZero(Type *ty)
304     : Constant(ty, ConstantAggregateZeroVal, 0, 0) {}
305 protected:
306   // allocate space for exactly zero operands
307   void *operator new(size_t s) {
308     return User::operator new(s, 0);
309   }
310 public:
311   static ConstantAggregateZero* get(Type *Ty);
312 
313   virtual void destroyConstant();
314 
315   /// Methods for support type inquiry through isa, cast, and dyn_cast:
316   ///
317   static bool classof(const ConstantAggregateZero *) { return true; }
318   static bool classof(const Value *V) {
319     return V->getValueID() == ConstantAggregateZeroVal;
320   }
321 };
322 
323 
324 //===----------------------------------------------------------------------===//
325 /// ConstantArray - Constant Array Declarations
326 ///
327 class ConstantArray : public Constant {
328   friend struct ConstantCreator<ConstantArray, ArrayType,
329                                     std::vector<Constant*> >;
330   ConstantArray(const ConstantArray &);      // DO NOT IMPLEMENT
331 protected:
332   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
333 public:
334   // ConstantArray accessors
335   static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
336 
337   /// This method constructs a ConstantArray and initializes it with a text
338   /// string. The default behavior (AddNull==true) causes a null terminator to
339   /// be placed at the end of the array. This effectively increases the length
340   /// of the array by one (you've been warned).  However, in some situations
341   /// this is not desired so if AddNull==false then the string is copied without
342   /// null termination.
343   static Constant *get(LLVMContext &Context, StringRef Initializer,
344                        bool AddNull = true);
345 
346   /// Transparently provide more efficient getOperand methods.
347   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
348 
349   /// getType - Specialize the getType() method to always return an ArrayType,
350   /// which reduces the amount of casting needed in parts of the compiler.
351   ///
352   inline ArrayType *getType() const {
353     return reinterpret_cast<ArrayType*>(Value::getType());
354   }
355 
356   /// isString - This method returns true if the array is an array of i8 and
357   /// the elements of the array are all ConstantInt's.
358   bool isString() const;
359 
360   /// isCString - This method returns true if the array is a string (see
361   /// @verbatim
362   /// isString) and it ends in a null byte \0 and does not contains any other
363   /// @endverbatim
364   /// null bytes except its terminator.
365   bool isCString() const;
366 
367   /// getAsString - If this array is isString(), then this method converts the
368   /// array to an std::string and returns it.  Otherwise, it asserts out.
369   ///
370   std::string getAsString() const;
371 
372   /// getAsCString - If this array is isCString(), then this method converts the
373   /// array (without the trailing null byte) to an std::string and returns it.
374   /// Otherwise, it asserts out.
375   ///
376   std::string getAsCString() const;
377 
378   virtual void destroyConstant();
379   virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
380 
381   /// Methods for support type inquiry through isa, cast, and dyn_cast:
382   static inline bool classof(const ConstantArray *) { return true; }
383   static bool classof(const Value *V) {
384     return V->getValueID() == ConstantArrayVal;
385   }
386 };
387 
388 template <>
389 struct OperandTraits<ConstantArray> :
390   public VariadicOperandTraits<ConstantArray> {
391 };
392 
393 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant)
394 
395 //===----------------------------------------------------------------------===//
396 // ConstantStruct - Constant Struct Declarations
397 //
398 class ConstantStruct : public Constant {
399   friend struct ConstantCreator<ConstantStruct, StructType,
400                                     std::vector<Constant*> >;
401   ConstantStruct(const ConstantStruct &);      // DO NOT IMPLEMENT
402 protected:
403   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
404 public:
405   // ConstantStruct accessors
406   static Constant *get(StructType *T, ArrayRef<Constant*> V);
407   static Constant *get(StructType *T, ...) END_WITH_NULL;
408 
409   /// getAnon - Return an anonymous struct that has the specified
410   /// elements.  If the struct is possibly empty, then you must specify a
411   /// context.
412   static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
413     return get(getTypeForElements(V, Packed), V);
414   }
415   static Constant *getAnon(LLVMContext &Ctx,
416                            ArrayRef<Constant*> V, bool Packed = false) {
417     return get(getTypeForElements(Ctx, V, Packed), V);
418   }
419 
420   /// getTypeForElements - Return an anonymous struct type to use for a constant
421   /// with the specified set of elements.  The list must not be empty.
422   static StructType *getTypeForElements(ArrayRef<Constant*> V,
423                                         bool Packed = false);
424   /// getTypeForElements - This version of the method allows an empty list.
425   static StructType *getTypeForElements(LLVMContext &Ctx,
426                                         ArrayRef<Constant*> V,
427                                         bool Packed = false);
428 
429   /// Transparently provide more efficient getOperand methods.
430   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
431 
432   /// getType() specialization - Reduce amount of casting...
433   ///
434   inline StructType *getType() const {
435     return reinterpret_cast<StructType*>(Value::getType());
436   }
437 
438   virtual void destroyConstant();
439   virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
440 
441   /// Methods for support type inquiry through isa, cast, and dyn_cast:
442   static inline bool classof(const ConstantStruct *) { return true; }
443   static bool classof(const Value *V) {
444     return V->getValueID() == ConstantStructVal;
445   }
446 };
447 
448 template <>
449 struct OperandTraits<ConstantStruct> :
450   public VariadicOperandTraits<ConstantStruct> {
451 };
452 
453 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant)
454 
455 
456 //===----------------------------------------------------------------------===//
457 /// ConstantVector - Constant Vector Declarations
458 ///
459 class ConstantVector : public Constant {
460   friend struct ConstantCreator<ConstantVector, VectorType,
461                                     std::vector<Constant*> >;
462   ConstantVector(const ConstantVector &);      // DO NOT IMPLEMENT
463 protected:
464   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
465 public:
466   // ConstantVector accessors
467   static Constant *get(ArrayRef<Constant*> V);
468 
469   /// Transparently provide more efficient getOperand methods.
470   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
471 
472   /// getType - Specialize the getType() method to always return a VectorType,
473   /// which reduces the amount of casting needed in parts of the compiler.
474   ///
475   inline VectorType *getType() const {
476     return reinterpret_cast<VectorType*>(Value::getType());
477   }
478 
479   /// This function will return true iff every element in this vector constant
480   /// is set to all ones.
481   /// @returns true iff this constant's emements are all set to all ones.
482   /// @brief Determine if the value is all ones.
483   bool isAllOnesValue() const;
484 
485   /// getSplatValue - If this is a splat constant, meaning that all of the
486   /// elements have the same value, return that value. Otherwise return NULL.
487   Constant *getSplatValue() const;
488 
489   virtual void destroyConstant();
490   virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
491 
492   /// Methods for support type inquiry through isa, cast, and dyn_cast:
493   static inline bool classof(const ConstantVector *) { return true; }
494   static bool classof(const Value *V) {
495     return V->getValueID() == ConstantVectorVal;
496   }
497 };
498 
499 template <>
500 struct OperandTraits<ConstantVector> :
501   public VariadicOperandTraits<ConstantVector> {
502 };
503 
504 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant)
505 
506 //===----------------------------------------------------------------------===//
507 /// ConstantPointerNull - a constant pointer value that points to null
508 ///
509 class ConstantPointerNull : public Constant {
510   friend struct ConstantCreator<ConstantPointerNull, PointerType, char>;
511   void *operator new(size_t, unsigned);                  // DO NOT IMPLEMENT
512   ConstantPointerNull(const ConstantPointerNull &);      // DO NOT IMPLEMENT
513 protected:
514   explicit ConstantPointerNull(PointerType *T)
515     : Constant(reinterpret_cast<Type*>(T),
516                Value::ConstantPointerNullVal, 0, 0) {}
517 
518 protected:
519   // allocate space for exactly zero operands
520   void *operator new(size_t s) {
521     return User::operator new(s, 0);
522   }
523 public:
524   /// get() - Static factory methods - Return objects of the specified value
525   static ConstantPointerNull *get(PointerType *T);
526 
527   virtual void destroyConstant();
528 
529   /// getType - Specialize the getType() method to always return an PointerType,
530   /// which reduces the amount of casting needed in parts of the compiler.
531   ///
532   inline PointerType *getType() const {
533     return reinterpret_cast<PointerType*>(Value::getType());
534   }
535 
536   /// Methods for support type inquiry through isa, cast, and dyn_cast:
537   static inline bool classof(const ConstantPointerNull *) { return true; }
538   static bool classof(const Value *V) {
539     return V->getValueID() == ConstantPointerNullVal;
540   }
541 };
542 
543 /// BlockAddress - The address of a basic block.
544 ///
545 class BlockAddress : public Constant {
546   void *operator new(size_t, unsigned);                  // DO NOT IMPLEMENT
547   void *operator new(size_t s) { return User::operator new(s, 2); }
548   BlockAddress(Function *F, BasicBlock *BB);
549 public:
550   /// get - Return a BlockAddress for the specified function and basic block.
551   static BlockAddress *get(Function *F, BasicBlock *BB);
552 
553   /// get - Return a BlockAddress for the specified basic block.  The basic
554   /// block must be embedded into a function.
555   static BlockAddress *get(BasicBlock *BB);
556 
557   /// Transparently provide more efficient getOperand methods.
558   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
559 
560   Function *getFunction() const { return (Function*)Op<0>().get(); }
561   BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
562 
563   virtual void destroyConstant();
564   virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
565 
566   /// Methods for support type inquiry through isa, cast, and dyn_cast:
567   static inline bool classof(const BlockAddress *) { return true; }
568   static inline bool classof(const Value *V) {
569     return V->getValueID() == BlockAddressVal;
570   }
571 };
572 
573 template <>
574 struct OperandTraits<BlockAddress> :
575   public FixedNumOperandTraits<BlockAddress, 2> {
576 };
577 
578 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
579 
580 
581 //===----------------------------------------------------------------------===//
582 /// ConstantExpr - a constant value that is initialized with an expression using
583 /// other constant values.
584 ///
585 /// This class uses the standard Instruction opcodes to define the various
586 /// constant expressions.  The Opcode field for the ConstantExpr class is
587 /// maintained in the Value::SubclassData field.
588 class ConstantExpr : public Constant {
589   friend struct ConstantCreator<ConstantExpr,Type,
590                             std::pair<unsigned, std::vector<Constant*> > >;
591   friend struct ConvertConstantType<ConstantExpr, Type>;
592 
593 protected:
594   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
595     : Constant(ty, ConstantExprVal, Ops, NumOps) {
596     // Operation type (an Instruction opcode) is stored as the SubclassData.
597     setValueSubclassData(Opcode);
598   }
599 
600 public:
601   // Static methods to construct a ConstantExpr of different kinds.  Note that
602   // these methods may return a object that is not an instance of the
603   // ConstantExpr class, because they will attempt to fold the constant
604   // expression into something simpler if possible.
605 
606   /// getAlignOf constant expr - computes the alignment of a type in a target
607   /// independent way (Note: the return type is an i64).
608   static Constant *getAlignOf(Type *Ty);
609 
610   /// getSizeOf constant expr - computes the (alloc) size of a type (in
611   /// address-units, not bits) in a target independent way (Note: the return
612   /// type is an i64).
613   ///
614   static Constant *getSizeOf(Type *Ty);
615 
616   /// getOffsetOf constant expr - computes the offset of a struct field in a
617   /// target independent way (Note: the return type is an i64).
618   ///
619   static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
620 
621   /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
622   /// which supports any aggregate type, and any Constant index.
623   ///
624   static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
625 
626   static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
627   static Constant *getFNeg(Constant *C);
628   static Constant *getNot(Constant *C);
629   static Constant *getAdd(Constant *C1, Constant *C2,
630                           bool HasNUW = false, bool HasNSW = false);
631   static Constant *getFAdd(Constant *C1, Constant *C2);
632   static Constant *getSub(Constant *C1, Constant *C2,
633                           bool HasNUW = false, bool HasNSW = false);
634   static Constant *getFSub(Constant *C1, Constant *C2);
635   static Constant *getMul(Constant *C1, Constant *C2,
636                           bool HasNUW = false, bool HasNSW = false);
637   static Constant *getFMul(Constant *C1, Constant *C2);
638   static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
639   static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
640   static Constant *getFDiv(Constant *C1, Constant *C2);
641   static Constant *getURem(Constant *C1, Constant *C2);
642   static Constant *getSRem(Constant *C1, Constant *C2);
643   static Constant *getFRem(Constant *C1, Constant *C2);
644   static Constant *getAnd(Constant *C1, Constant *C2);
645   static Constant *getOr(Constant *C1, Constant *C2);
646   static Constant *getXor(Constant *C1, Constant *C2);
647   static Constant *getShl(Constant *C1, Constant *C2,
648                           bool HasNUW = false, bool HasNSW = false);
649   static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
650   static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
651   static Constant *getTrunc   (Constant *C, Type *Ty);
652   static Constant *getSExt    (Constant *C, Type *Ty);
653   static Constant *getZExt    (Constant *C, Type *Ty);
654   static Constant *getFPTrunc (Constant *C, Type *Ty);
655   static Constant *getFPExtend(Constant *C, Type *Ty);
656   static Constant *getUIToFP  (Constant *C, Type *Ty);
657   static Constant *getSIToFP  (Constant *C, Type *Ty);
658   static Constant *getFPToUI  (Constant *C, Type *Ty);
659   static Constant *getFPToSI  (Constant *C, Type *Ty);
660   static Constant *getPtrToInt(Constant *C, Type *Ty);
661   static Constant *getIntToPtr(Constant *C, Type *Ty);
662   static Constant *getBitCast (Constant *C, Type *Ty);
663 
664   static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
665   static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
666   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
667     return getAdd(C1, C2, false, true);
668   }
669   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
670     return getAdd(C1, C2, true, false);
671   }
672   static Constant *getNSWSub(Constant *C1, Constant *C2) {
673     return getSub(C1, C2, false, true);
674   }
675   static Constant *getNUWSub(Constant *C1, Constant *C2) {
676     return getSub(C1, C2, true, false);
677   }
678   static Constant *getNSWMul(Constant *C1, Constant *C2) {
679     return getMul(C1, C2, false, true);
680   }
681   static Constant *getNUWMul(Constant *C1, Constant *C2) {
682     return getMul(C1, C2, true, false);
683   }
684   static Constant *getNSWShl(Constant *C1, Constant *C2) {
685     return getShl(C1, C2, false, true);
686   }
687   static Constant *getNUWShl(Constant *C1, Constant *C2) {
688     return getShl(C1, C2, true, false);
689   }
690   static Constant *getExactSDiv(Constant *C1, Constant *C2) {
691     return getSDiv(C1, C2, true);
692   }
693   static Constant *getExactUDiv(Constant *C1, Constant *C2) {
694     return getUDiv(C1, C2, true);
695   }
696   static Constant *getExactAShr(Constant *C1, Constant *C2) {
697     return getAShr(C1, C2, true);
698   }
699   static Constant *getExactLShr(Constant *C1, Constant *C2) {
700     return getLShr(C1, C2, true);
701   }
702 
703   /// Transparently provide more efficient getOperand methods.
704   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
705 
706   // @brief Convenience function for getting one of the casting operations
707   // using a CastOps opcode.
708   static Constant *getCast(
709     unsigned ops,  ///< The opcode for the conversion
710     Constant *C,   ///< The constant to be converted
711     Type *Ty ///< The type to which the constant is converted
712   );
713 
714   // @brief Create a ZExt or BitCast cast constant expression
715   static Constant *getZExtOrBitCast(
716     Constant *C,   ///< The constant to zext or bitcast
717     Type *Ty ///< The type to zext or bitcast C to
718   );
719 
720   // @brief Create a SExt or BitCast cast constant expression
721   static Constant *getSExtOrBitCast(
722     Constant *C,   ///< The constant to sext or bitcast
723     Type *Ty ///< The type to sext or bitcast C to
724   );
725 
726   // @brief Create a Trunc or BitCast cast constant expression
727   static Constant *getTruncOrBitCast(
728     Constant *C,   ///< The constant to trunc or bitcast
729     Type *Ty ///< The type to trunc or bitcast C to
730   );
731 
732   /// @brief Create a BitCast or a PtrToInt cast constant expression
733   static Constant *getPointerCast(
734     Constant *C,   ///< The pointer value to be casted (operand 0)
735     Type *Ty ///< The type to which cast should be made
736   );
737 
738   /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
739   static Constant *getIntegerCast(
740     Constant *C,    ///< The integer constant to be casted
741     Type *Ty, ///< The integer type to cast to
742     bool isSigned   ///< Whether C should be treated as signed or not
743   );
744 
745   /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
746   static Constant *getFPCast(
747     Constant *C,    ///< The integer constant to be casted
748     Type *Ty ///< The integer type to cast to
749   );
750 
751   /// @brief Return true if this is a convert constant expression
752   bool isCast() const;
753 
754   /// @brief Return true if this is a compare constant expression
755   bool isCompare() const;
756 
757   /// @brief Return true if this is an insertvalue or extractvalue expression,
758   /// and the getIndices() method may be used.
759   bool hasIndices() const;
760 
761   /// @brief Return true if this is a getelementptr expression and all
762   /// the index operands are compile-time known integers within the
763   /// corresponding notional static array extents. Note that this is
764   /// not equivalant to, a subset of, or a superset of the "inbounds"
765   /// property.
766   bool isGEPWithNoNotionalOverIndexing() const;
767 
768   /// Select constant expr
769   ///
770   static Constant *getSelect(Constant *C, Constant *V1, Constant *V2);
771 
772   /// get - Return a binary or shift operator constant expression,
773   /// folding if possible.
774   ///
775   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
776                        unsigned Flags = 0);
777 
778   /// @brief Return an ICmp or FCmp comparison operator constant expression.
779   static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2);
780 
781   /// get* - Return some common constants without having to
782   /// specify the full Instruction::OPCODE identifier.
783   ///
784   static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS);
785   static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
786 
787   /// Getelementptr form.  Value* is only accepted for convenience;
788   /// all elements must be Constant's.
789   ///
790   static Constant *getGetElementPtr(Constant *C,
791                                     ArrayRef<Constant *> IdxList,
792                                     bool InBounds = false) {
793     return getGetElementPtr(C, makeArrayRef((Value * const *)IdxList.data(),
794                                             IdxList.size()),
795                             InBounds);
796   }
797   static Constant *getGetElementPtr(Constant *C,
798                                     Constant *Idx,
799                                     bool InBounds = false) {
800     // This form of the function only exists to avoid ambiguous overload
801     // warnings about whether to convert Idx to ArrayRef<Constant *> or
802     // ArrayRef<Value *>.
803     return getGetElementPtr(C, cast<Value>(Idx), InBounds);
804   }
805   static Constant *getGetElementPtr(Constant *C,
806                                     ArrayRef<Value *> IdxList,
807                                     bool InBounds = false);
808 
809   /// Create an "inbounds" getelementptr. See the documentation for the
810   /// "inbounds" flag in LangRef.html for details.
811   static Constant *getInBoundsGetElementPtr(Constant *C,
812                                             ArrayRef<Constant *> IdxList) {
813     return getGetElementPtr(C, IdxList, true);
814   }
815   static Constant *getInBoundsGetElementPtr(Constant *C,
816                                             Constant *Idx) {
817     // This form of the function only exists to avoid ambiguous overload
818     // warnings about whether to convert Idx to ArrayRef<Constant *> or
819     // ArrayRef<Value *>.
820     return getGetElementPtr(C, Idx, true);
821   }
822   static Constant *getInBoundsGetElementPtr(Constant *C,
823                                             ArrayRef<Value *> IdxList) {
824     return getGetElementPtr(C, IdxList, true);
825   }
826 
827   static Constant *getExtractElement(Constant *Vec, Constant *Idx);
828   static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
829   static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask);
830   static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs);
831   static Constant *getInsertValue(Constant *Agg, Constant *Val,
832                                   ArrayRef<unsigned> Idxs);
833 
834   /// getOpcode - Return the opcode at the root of this constant expression
835   unsigned getOpcode() const { return getSubclassDataFromValue(); }
836 
837   /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
838   /// not an ICMP or FCMP constant expression.
839   unsigned getPredicate() const;
840 
841   /// getIndices - Assert that this is an insertvalue or exactvalue
842   /// expression and return the list of indices.
843   ArrayRef<unsigned> getIndices() const;
844 
845   /// getOpcodeName - Return a string representation for an opcode.
846   const char *getOpcodeName() const;
847 
848   /// getWithOperandReplaced - Return a constant expression identical to this
849   /// one, but with the specified operand set to the specified value.
850   Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
851 
852   /// getWithOperands - This returns the current constant expression with the
853   /// operands replaced with the specified values.  The specified array must
854   /// have the same number of operands as our current one.
855   Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
856     return getWithOperands(Ops, getType());
857   }
858 
859   /// getWithOperands - This returns the current constant expression with the
860   /// operands replaced with the specified values and with the specified result
861   /// type.  The specified array must have the same number of operands as our
862   /// current one.
863   Constant *getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const;
864 
865   virtual void destroyConstant();
866   virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
867 
868   /// Methods for support type inquiry through isa, cast, and dyn_cast:
869   static inline bool classof(const ConstantExpr *) { return true; }
870   static inline bool classof(const Value *V) {
871     return V->getValueID() == ConstantExprVal;
872   }
873 
874 private:
875   // Shadow Value::setValueSubclassData with a private forwarding method so that
876   // subclasses cannot accidentally use it.
877   void setValueSubclassData(unsigned short D) {
878     Value::setValueSubclassData(D);
879   }
880 };
881 
882 template <>
883 struct OperandTraits<ConstantExpr> :
884   public VariadicOperandTraits<ConstantExpr, 1> {
885 };
886 
887 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
888 
889 //===----------------------------------------------------------------------===//
890 /// UndefValue - 'undef' values are things that do not have specified contents.
891 /// These are used for a variety of purposes, including global variable
892 /// initializers and operands to instructions.  'undef' values can occur with
893 /// any first-class type.
894 ///
895 /// Undef values aren't exactly constants; if they have multiple uses, they
896 /// can appear to have different bit patterns at each use. See
897 /// LangRef.html#undefvalues for details.
898 ///
899 class UndefValue : public Constant {
900   friend struct ConstantCreator<UndefValue, Type, char>;
901   void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
902   UndefValue(const UndefValue &);      // DO NOT IMPLEMENT
903 protected:
904   explicit UndefValue(Type *T) : Constant(T, UndefValueVal, 0, 0) {}
905 protected:
906   // allocate space for exactly zero operands
907   void *operator new(size_t s) {
908     return User::operator new(s, 0);
909   }
910 public:
911   /// get() - Static factory methods - Return an 'undef' object of the specified
912   /// type.
913   ///
914   static UndefValue *get(Type *T);
915 
916   virtual void destroyConstant();
917 
918   /// Methods for support type inquiry through isa, cast, and dyn_cast:
919   static inline bool classof(const UndefValue *) { return true; }
920   static bool classof(const Value *V) {
921     return V->getValueID() == UndefValueVal;
922   }
923 };
924 
925 } // End llvm namespace
926 
927 #endif
928