• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes Mips64 instructions.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Mips Operand, Complex Patterns and Transformations Definitions.
16//===----------------------------------------------------------------------===//
17
18// Instruction operand types
19def shamt_64       : Operand<i64>;
20
21// Unsigned Operand
22def uimm16_64      : Operand<i64> {
23  let PrintMethod = "printUnsignedImm";
24}
25
26// Transformation Function - get Imm - 32.
27def Subtract32 : SDNodeXForm<imm, [{
28  return getI32Imm((unsigned)N->getZExtValue() - 32);
29}]>;
30
31// imm32_63 predicate - True if imm is in range [32, 63].
32def imm32_63 : ImmLeaf<i64,
33                       [{return (int32_t)Imm >= 32 && (int32_t)Imm < 64;}],
34                       Subtract32>;
35
36//===----------------------------------------------------------------------===//
37// Instructions specific format
38//===----------------------------------------------------------------------===//
39// Shifts
40class LogicR_shift_rotate_imm64<bits<6> func, bits<5> _rs, string instr_asm,
41                                SDNode OpNode, PatFrag PF>:
42  FR<0x00, func, (outs CPU64Regs:$rd), (ins CPU64Regs:$rt, shamt_64:$shamt),
43     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
44     [(set CPU64Regs:$rd, (OpNode CPU64Regs:$rt, (i64 PF:$shamt)))],
45     IIAlu> {
46  let rs = _rs;
47}
48
49class LogicR_shift_rotate_reg64<bits<6> func, bits<5> _shamt, string instr_asm,
50                                SDNode OpNode>:
51  FR<0x00, func, (outs CPU64Regs:$rd), (ins CPU64Regs:$rs, CPU64Regs:$rt),
52     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
53     [(set CPU64Regs:$rd, (OpNode CPU64Regs:$rt, CPU64Regs:$rs))], IIAlu> {
54  let shamt = _shamt;
55}
56
57// Mul, Div
58let rd = 0, shamt = 0, Defs = [HI64, LO64] in {
59  let isCommutable = 1 in
60  class Mul64<bits<6> func, string instr_asm, InstrItinClass itin>:
61    FR<0x00, func, (outs), (ins CPU64Regs:$rs, CPU64Regs:$rt),
62       !strconcat(instr_asm, "\t$rs, $rt"), [], itin>;
63
64  class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
65              FR<0x00, func, (outs), (ins CPU64Regs:$rs, CPU64Regs:$rt),
66              !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
67              [(op CPU64Regs:$rs, CPU64Regs:$rt)], itin>;
68}
69
70// Move from Hi/Lo
71let shamt = 0 in {
72let rs = 0, rt = 0 in
73class MoveFromLOHI64<bits<6> func, string instr_asm>:
74  FR<0x00, func, (outs CPU64Regs:$rd), (ins),
75     !strconcat(instr_asm, "\t$rd"), [], IIHiLo>;
76
77let rt = 0, rd = 0 in
78class MoveToLOHI64<bits<6> func, string instr_asm>:
79  FR<0x00, func, (outs), (ins CPU64Regs:$rs),
80     !strconcat(instr_asm, "\t$rs"), [], IIHiLo>;
81}
82
83// Count Leading Ones/Zeros in Word
84class CountLeading64<bits<6> func, string instr_asm, list<dag> pattern>:
85  FR<0x1c, func, (outs CPU64Regs:$rd), (ins CPU64Regs:$rs),
86     !strconcat(instr_asm, "\t$rd, $rs"), pattern, IIAlu>,
87     Requires<[HasBitCount]> {
88  let shamt = 0;
89  let rt = rd;
90}
91
92//===----------------------------------------------------------------------===//
93// Instruction definition
94//===----------------------------------------------------------------------===//
95
96/// Arithmetic Instructions (ALU Immediate)
97def DADDiu   : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16,
98                           CPU64Regs>;
99def DANDi    : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>;
100def SLTi64   : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>;
101def SLTiu64  : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>;
102def ORi64    : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>;
103def XORi64   : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>;
104
105/// Arithmetic Instructions (3-Operand, R-Type)
106def DADDu    : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>;
107def DSUBu    : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>;
108def SLT64    : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>;
109def SLTu64   : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>;
110def AND64    : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>;
111def OR64     : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>;
112def XOR64    : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>;
113def NOR64    : LogicNOR<0x00, 0x27, "nor", CPU64Regs>;
114
115/// Shift Instructions
116def DSLL     : LogicR_shift_rotate_imm64<0x38, 0x00, "dsll", shl, immZExt5>;
117def DSRL     : LogicR_shift_rotate_imm64<0x3a, 0x00, "dsrl", srl, immZExt5>;
118def DSRA     : LogicR_shift_rotate_imm64<0x3b, 0x00, "dsra", sra, immZExt5>;
119def DSLL32   : LogicR_shift_rotate_imm64<0x3c, 0x00, "dsll32", shl, imm32_63>;
120def DSRL32   : LogicR_shift_rotate_imm64<0x3e, 0x00, "dsrl32", srl, imm32_63>;
121def DSRA32   : LogicR_shift_rotate_imm64<0x3f, 0x00, "dsra32", sra, imm32_63>;
122def DSLLV    : LogicR_shift_rotate_reg64<0x24, 0x00, "dsllv", shl>;
123def DSRLV    : LogicR_shift_rotate_reg64<0x26, 0x00, "dsrlv", srl>;
124def DSRAV    : LogicR_shift_rotate_reg64<0x27, 0x00, "dsrav", sra>;
125
126// Rotate Instructions
127let Predicates = [HasMips64r2] in {
128  def DROTR    : LogicR_shift_rotate_imm64<0x3a, 0x01, "drotr", rotr, immZExt5>;
129  def DROTR32  : LogicR_shift_rotate_imm64<0x3e, 0x01, "drotr32", rotr,
130                                           imm32_63>;
131  def DROTRV   : LogicR_shift_rotate_reg64<0x16, 0x01, "drotrv", rotr>;
132}
133
134/// Load and Store Instructions
135///  aligned
136defm LB64    : LoadM64<0x20, "lb",  sextloadi8>;
137defm LBu64   : LoadM64<0x24, "lbu", zextloadi8>;
138defm LH64    : LoadM64<0x21, "lh",  sextloadi16_a>;
139defm LHu64   : LoadM64<0x25, "lhu", zextloadi16_a>;
140defm LW64    : LoadM64<0x23, "lw",  sextloadi32_a>;
141defm LWu64   : LoadM64<0x27, "lwu", zextloadi32_a>;
142defm SB64    : StoreM64<0x28, "sb", truncstorei8>;
143defm SH64    : StoreM64<0x29, "sh", truncstorei16_a>;
144defm SW64    : StoreM64<0x2b, "sw", truncstorei32_a>;
145defm LD      : LoadM64<0x37, "ld",  load_a>;
146defm SD      : StoreM64<0x3f, "sd", store_a>;
147
148///  unaligned
149defm ULH64     : LoadM64<0x21, "ulh",  sextloadi16_u, 1>;
150defm ULHu64    : LoadM64<0x25, "ulhu", zextloadi16_u, 1>;
151defm ULW64     : LoadM64<0x23, "ulw",  sextloadi32_u, 1>;
152defm USH64     : StoreM64<0x29, "ush", truncstorei16_u, 1>;
153defm USW64     : StoreM64<0x2b, "usw", truncstorei32_u, 1>;
154defm ULD       : LoadM64<0x37, "uld",  load_u, 1>;
155defm USD       : StoreM64<0x3f, "usd", store_u, 1>;
156
157/// Jump and Branch Instructions
158def BEQ64  : CBranch<0x04, "beq", seteq, CPU64Regs>;
159def BNE64  : CBranch<0x05, "bne", setne, CPU64Regs>;
160def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>;
161def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>;
162def BLEZ64 : CBranchZero<0x07, 0, "blez", setle, CPU64Regs>;
163def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>;
164
165/// Multiply and Divide Instructions.
166def DMULT    : Mul64<0x1c, "dmult", IIImul>;
167def DMULTu   : Mul64<0x1d, "dmultu", IIImul>;
168def DSDIV    : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>;
169def DUDIV    : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>;
170
171let Defs = [HI64] in
172  def MTHI64  : MoveToLOHI64<0x11, "mthi">;
173let Defs = [LO64] in
174  def MTLO64  : MoveToLOHI64<0x13, "mtlo">;
175
176let Uses = [HI64] in
177  def MFHI64  : MoveFromLOHI64<0x10, "mfhi">;
178let Uses = [LO64] in
179  def MFLO64  : MoveFromLOHI64<0x12, "mflo">;
180
181/// Count Leading
182def DCLZ : CountLeading64<0x24, "dclz",
183                          [(set CPU64Regs:$rd, (ctlz CPU64Regs:$rs))]>;
184def DCLO : CountLeading64<0x25, "dclo",
185                          [(set CPU64Regs:$rd, (ctlz (not CPU64Regs:$rs)))]>;
186
187//===----------------------------------------------------------------------===//
188//  Arbitrary patterns that map to one or more instructions
189//===----------------------------------------------------------------------===//
190
191// Small immediates
192def : Pat<(i64 immSExt16:$in),
193          (DADDiu ZERO_64, imm:$in)>;
194def : Pat<(i64 immZExt16:$in),
195          (ORi64 ZERO_64, imm:$in)>;
196
197// zextloadi32_u
198def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64_P8 addr:$a), 32), 32)>,
199      Requires<[IsN64]>;
200def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64 addr:$a), 32), 32)>,
201      Requires<[NotN64]>;
202
203// hi/lo relocs
204def : Pat<(i64 (MipsLo tglobaladdr:$in)), (DADDiu ZERO_64, tglobaladdr:$in)>;
205
206defm : BrcondPats<CPU64Regs, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
207                  ZERO_64>;
208
209// setcc patterns
210defm : SeteqPats<CPU64Regs, SLTiu64, XOR64, SLTu64, ZERO_64>;
211defm : SetlePats<CPU64Regs, SLT64, SLTu64>;
212defm : SetgtPats<CPU64Regs, SLT64, SLTu64>;
213defm : SetgePats<CPU64Regs, SLT64, SLTu64>;
214defm : SetgeImmPats<CPU64Regs, SLTi64, SLTiu64>;
215