• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2018 Google LLC.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // This file implements the SSA rewriting algorithm proposed in
16 //
17 //      Simple and Efficient Construction of Static Single Assignment Form.
18 //      Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013)
19 //      In: Jhala R., De Bosschere K. (eds)
20 //      Compiler Construction. CC 2013.
21 //      Lecture Notes in Computer Science, vol 7791.
22 //      Springer, Berlin, Heidelberg
23 //
24 //      https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6
25 //
26 // In contrast to common eager algorithms based on dominance and dominance
27 // frontier information, this algorithm works backwards from load operations.
28 //
29 // When a target variable is loaded, it queries the variable's reaching
30 // definition.  If the reaching definition is unknown at the current location,
31 // it searches backwards in the CFG, inserting Phi instructions at join points
32 // in the CFG along the way until it finds the desired store instruction.
33 //
34 // The algorithm avoids repeated lookups using memoization.
35 //
36 // For reducible CFGs, which are a superset of the structured CFGs in SPIRV,
37 // this algorithm is proven to produce minimal SSA.  That is, it inserts the
38 // minimal number of Phi instructions required to ensure the SSA property, but
39 // some Phi instructions may be dead
40 // (https://en.wikipedia.org/wiki/Static_single_assignment_form).
41 
42 #include "source/opt/ssa_rewrite_pass.h"
43 
44 #include <memory>
45 #include <sstream>
46 
47 #include "source/opcode.h"
48 #include "source/opt/cfg.h"
49 #include "source/opt/mem_pass.h"
50 #include "source/util/make_unique.h"
51 
52 // Debug logging (0: Off, 1-N: Verbosity level).  Replace this with the
53 // implementation done for
54 // https://github.com/KhronosGroup/SPIRV-Tools/issues/1351
55 // #define SSA_REWRITE_DEBUGGING_LEVEL 3
56 
57 #ifdef SSA_REWRITE_DEBUGGING_LEVEL
58 #include <ostream>
59 #else
60 #define SSA_REWRITE_DEBUGGING_LEVEL 0
61 #endif
62 
63 namespace spvtools {
64 namespace opt {
65 
66 namespace {
67 const uint32_t kStoreValIdInIdx = 1;
68 const uint32_t kVariableInitIdInIdx = 1;
69 }  // namespace
70 
PrettyPrint(const CFG * cfg) const71 std::string SSARewriter::PhiCandidate::PrettyPrint(const CFG* cfg) const {
72   std::ostringstream str;
73   str << "%" << result_id_ << " = Phi[%" << var_id_ << ", BB %" << bb_->id()
74       << "](";
75   if (phi_args_.size() > 0) {
76     uint32_t arg_ix = 0;
77     for (uint32_t pred_label : cfg->preds(bb_->id())) {
78       uint32_t arg_id = phi_args_[arg_ix++];
79       str << "[%" << arg_id << ", bb(%" << pred_label << ")] ";
80     }
81   }
82   str << ")";
83   if (copy_of_ != 0) {
84     str << "  [COPY OF " << copy_of_ << "]";
85   }
86   str << ((is_complete_) ? "  [COMPLETE]" : "  [INCOMPLETE]");
87 
88   return str.str();
89 }
90 
CreatePhiCandidate(uint32_t var_id,BasicBlock * bb)91 SSARewriter::PhiCandidate& SSARewriter::CreatePhiCandidate(uint32_t var_id,
92                                                            BasicBlock* bb) {
93   // TODO(1841): Handle id overflow.
94   uint32_t phi_result_id = pass_->context()->TakeNextId();
95   auto result = phi_candidates_.emplace(
96       phi_result_id, PhiCandidate(var_id, phi_result_id, bb));
97   PhiCandidate& phi_candidate = result.first->second;
98   return phi_candidate;
99 }
100 
ReplacePhiUsersWith(const PhiCandidate & phi_to_remove,uint32_t repl_id)101 void SSARewriter::ReplacePhiUsersWith(const PhiCandidate& phi_to_remove,
102                                       uint32_t repl_id) {
103   for (uint32_t user_id : phi_to_remove.users()) {
104     PhiCandidate* user_phi = GetPhiCandidate(user_id);
105     if (user_phi) {
106       // If the user is a Phi candidate, replace all arguments that refer to
107       // |phi_to_remove.result_id()| with |repl_id|.
108       for (uint32_t& arg : user_phi->phi_args()) {
109         if (arg == phi_to_remove.result_id()) {
110           arg = repl_id;
111         }
112       }
113     } else {
114       // For regular loads, traverse the |load_replacement_| table looking for
115       // instances of |phi_to_remove|.
116       for (auto& it : load_replacement_) {
117         if (it.second == phi_to_remove.result_id()) {
118           it.second = repl_id;
119         }
120       }
121     }
122   }
123 }
124 
TryRemoveTrivialPhi(PhiCandidate * phi_candidate)125 uint32_t SSARewriter::TryRemoveTrivialPhi(PhiCandidate* phi_candidate) {
126   uint32_t same_id = 0;
127   for (uint32_t arg_id : phi_candidate->phi_args()) {
128     if (arg_id == same_id || arg_id == phi_candidate->result_id()) {
129       // This is a self-reference operand or a reference to the same value ID.
130       continue;
131     }
132     if (same_id != 0) {
133       // This Phi candidate merges at least two values.  Therefore, it is not
134       // trivial.
135       assert(phi_candidate->copy_of() == 0 &&
136              "Phi candidate transitioning from copy to non-copy.");
137       return phi_candidate->result_id();
138     }
139     same_id = arg_id;
140   }
141 
142   // The previous logic has determined that this Phi candidate |phi_candidate|
143   // is trivial.  It is essentially the copy operation phi_candidate->phi_result
144   // = Phi(same, same, same, ...).  Since it is not necessary, we can re-route
145   // all the users of |phi_candidate->phi_result| to all its users, and remove
146   // |phi_candidate|.
147 
148   // Mark the Phi candidate as a trivial copy of |same_id|, so it won't be
149   // generated.
150   phi_candidate->MarkCopyOf(same_id);
151 
152   assert(same_id != 0 && "Completed Phis cannot have %0 in their arguments");
153 
154   // Since |phi_candidate| always produces |same_id|, replace all the users of
155   // |phi_candidate| with |same_id|.
156   ReplacePhiUsersWith(*phi_candidate, same_id);
157 
158   return same_id;
159 }
160 
AddPhiOperands(PhiCandidate * phi_candidate)161 uint32_t SSARewriter::AddPhiOperands(PhiCandidate* phi_candidate) {
162   assert(phi_candidate->phi_args().size() == 0 &&
163          "Phi candidate already has arguments");
164 
165   bool found_0_arg = false;
166   for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
167     BasicBlock* pred_bb = pass_->cfg()->block(pred);
168 
169     // If |pred_bb| is not sealed, use %0 to indicate that
170     // |phi_candidate| needs to be completed after the whole CFG has
171     // been processed.
172     //
173     // Note that we cannot call GetReachingDef() in these cases
174     // because this would generate an empty Phi candidate in
175     // |pred_bb|.  When |pred_bb| is later processed, a new definition
176     // for |phi_candidate->var_id_| will be lost because
177     // |phi_candidate| will still be reached by the empty Phi.
178     //
179     // Consider:
180     //
181     //       BB %23:
182     //           %38 = Phi[%i](%int_0[%1], %39[%25])
183     //
184     //           ...
185     //
186     //       BB %25: [Starts unsealed]
187     //       %39 = Phi[%i]()
188     //       %34 = ...
189     //       OpStore %i %34    -> Currdef(%i) at %25 is %34
190     //       OpBranch %23
191     //
192     // When we first create the Phi in %38, we add an operandless Phi in
193     // %39 to hold the unknown reaching def for %i.
194     //
195     // But then, when we go to complete %39 at the end.  The reaching def
196     // for %i in %25's predecessor is %38 itself.  So we miss the fact
197     // that %25 has a def for %i that should be used.
198     //
199     // By making the argument %0, we make |phi_candidate| incomplete,
200     // which will cause it to be completed after the whole CFG has
201     // been scanned.
202     uint32_t arg_id = IsBlockSealed(pred_bb)
203                           ? GetReachingDef(phi_candidate->var_id(), pred_bb)
204                           : 0;
205     phi_candidate->phi_args().push_back(arg_id);
206 
207     if (arg_id == 0) {
208       found_0_arg = true;
209     } else {
210       // If this argument is another Phi candidate, add |phi_candidate| to the
211       // list of users for the defining Phi.
212       PhiCandidate* defining_phi = GetPhiCandidate(arg_id);
213       if (defining_phi && defining_phi != phi_candidate) {
214         defining_phi->AddUser(phi_candidate->result_id());
215       }
216     }
217   }
218 
219   // If we could not fill-in all the arguments of this Phi, mark it incomplete
220   // so it gets completed after the whole CFG has been processed.
221   if (found_0_arg) {
222     phi_candidate->MarkIncomplete();
223     incomplete_phis_.push(phi_candidate);
224     return phi_candidate->result_id();
225   }
226 
227   // Try to remove |phi_candidate|, if it's trivial.
228   uint32_t repl_id = TryRemoveTrivialPhi(phi_candidate);
229   if (repl_id == phi_candidate->result_id()) {
230     // |phi_candidate| is complete and not trivial.  Add it to the
231     // list of Phi candidates to generate.
232     phi_candidate->MarkComplete();
233     phis_to_generate_.push_back(phi_candidate);
234   }
235 
236   return repl_id;
237 }
238 
GetReachingDef(uint32_t var_id,BasicBlock * bb)239 uint32_t SSARewriter::GetReachingDef(uint32_t var_id, BasicBlock* bb) {
240   // If |var_id| has a definition in |bb|, return it.
241   const auto& bb_it = defs_at_block_.find(bb);
242   if (bb_it != defs_at_block_.end()) {
243     const auto& current_defs = bb_it->second;
244     const auto& var_it = current_defs.find(var_id);
245     if (var_it != current_defs.end()) {
246       return var_it->second;
247     }
248   }
249 
250   // Otherwise, look up the value for |var_id| in |bb|'s predecessors.
251   uint32_t val_id = 0;
252   auto& predecessors = pass_->cfg()->preds(bb->id());
253   if (predecessors.size() == 1) {
254     // If |bb| has exactly one predecessor, we look for |var_id|'s definition
255     // there.
256     val_id = GetReachingDef(var_id, pass_->cfg()->block(predecessors[0]));
257   } else if (predecessors.size() > 1) {
258     // If there is more than one predecessor, this is a join block which may
259     // require a Phi instruction.  This will act as |var_id|'s current
260     // definition to break potential cycles.
261     PhiCandidate& phi_candidate = CreatePhiCandidate(var_id, bb);
262     WriteVariable(var_id, bb, phi_candidate.result_id());
263     val_id = AddPhiOperands(&phi_candidate);
264   }
265 
266   // If we could not find a store for this variable in the path from the root
267   // of the CFG, the variable is not defined, so we use undef.
268   if (val_id == 0) {
269     val_id = pass_->GetUndefVal(var_id);
270   }
271 
272   WriteVariable(var_id, bb, val_id);
273 
274   return val_id;
275 }
276 
SealBlock(BasicBlock * bb)277 void SSARewriter::SealBlock(BasicBlock* bb) {
278   auto result = sealed_blocks_.insert(bb);
279   (void)result;
280   assert(result.second == true &&
281          "Tried to seal the same basic block more than once.");
282 }
283 
ProcessStore(Instruction * inst,BasicBlock * bb)284 void SSARewriter::ProcessStore(Instruction* inst, BasicBlock* bb) {
285   auto opcode = inst->opcode();
286   assert((opcode == SpvOpStore || opcode == SpvOpVariable) &&
287          "Expecting a store or a variable definition instruction.");
288 
289   uint32_t var_id = 0;
290   uint32_t val_id = 0;
291   if (opcode == SpvOpStore) {
292     (void)pass_->GetPtr(inst, &var_id);
293     val_id = inst->GetSingleWordInOperand(kStoreValIdInIdx);
294   } else if (inst->NumInOperands() >= 2) {
295     var_id = inst->result_id();
296     val_id = inst->GetSingleWordInOperand(kVariableInitIdInIdx);
297   }
298   if (pass_->IsTargetVar(var_id)) {
299     WriteVariable(var_id, bb, val_id);
300 
301 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
302     std::cerr << "\tFound store '%" << var_id << " = %" << val_id << "': "
303               << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
304               << "\n";
305 #endif
306   }
307 }
308 
ProcessLoad(Instruction * inst,BasicBlock * bb)309 void SSARewriter::ProcessLoad(Instruction* inst, BasicBlock* bb) {
310   uint32_t var_id = 0;
311   (void)pass_->GetPtr(inst, &var_id);
312   if (pass_->IsTargetVar(var_id)) {
313     // Get the immediate reaching definition for |var_id|.
314     uint32_t val_id = GetReachingDef(var_id, bb);
315 
316     // Schedule a replacement for the result of this load instruction with
317     // |val_id|. After all the rewriting decisions are made, every use of
318     // this load will be replaced with |val_id|.
319     const uint32_t load_id = inst->result_id();
320     assert(load_replacement_.count(load_id) == 0);
321     load_replacement_[load_id] = val_id;
322     PhiCandidate* defining_phi = GetPhiCandidate(val_id);
323     if (defining_phi) {
324       defining_phi->AddUser(load_id);
325     }
326 
327 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
328     std::cerr << "\tFound load: "
329               << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
330               << " (replacement for %" << load_id << " is %" << val_id << ")\n";
331 #endif
332   }
333 }
334 
PrintPhiCandidates() const335 void SSARewriter::PrintPhiCandidates() const {
336   std::cerr << "\nPhi candidates:\n";
337   for (const auto& phi_it : phi_candidates_) {
338     std::cerr << "\tBB %" << phi_it.second.bb()->id() << ": "
339               << phi_it.second.PrettyPrint(pass_->cfg()) << "\n";
340   }
341   std::cerr << "\n";
342 }
343 
PrintReplacementTable() const344 void SSARewriter::PrintReplacementTable() const {
345   std::cerr << "\nLoad replacement table\n";
346   for (const auto& it : load_replacement_) {
347     std::cerr << "\t%" << it.first << " -> %" << it.second << "\n";
348   }
349   std::cerr << "\n";
350 }
351 
GenerateSSAReplacements(BasicBlock * bb)352 void SSARewriter::GenerateSSAReplacements(BasicBlock* bb) {
353 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
354   std::cerr << "Generating SSA replacements for block: " << bb->id() << "\n";
355   std::cerr << bb->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
356             << "\n";
357 #endif
358 
359   for (auto& inst : *bb) {
360     auto opcode = inst.opcode();
361     if (opcode == SpvOpStore || opcode == SpvOpVariable) {
362       ProcessStore(&inst, bb);
363     } else if (inst.opcode() == SpvOpLoad) {
364       ProcessLoad(&inst, bb);
365     }
366   }
367 
368   // Seal |bb|. This means that all the stores in it have been scanned and it's
369   // ready to feed them into its successors.
370   SealBlock(bb);
371 
372 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
373   PrintPhiCandidates();
374   PrintReplacementTable();
375   std::cerr << "\n\n";
376 #endif
377 }
378 
GetReplacement(std::pair<uint32_t,uint32_t> repl)379 uint32_t SSARewriter::GetReplacement(std::pair<uint32_t, uint32_t> repl) {
380   uint32_t val_id = repl.second;
381   auto it = load_replacement_.find(val_id);
382   while (it != load_replacement_.end()) {
383     val_id = it->second;
384     it = load_replacement_.find(val_id);
385   }
386   return val_id;
387 }
388 
GetPhiArgument(const PhiCandidate * phi_candidate,uint32_t ix)389 uint32_t SSARewriter::GetPhiArgument(const PhiCandidate* phi_candidate,
390                                      uint32_t ix) {
391   assert(phi_candidate->IsReady() &&
392          "Tried to get the final argument from an incomplete/trivial Phi");
393 
394   uint32_t arg_id = phi_candidate->phi_args()[ix];
395   while (arg_id != 0) {
396     PhiCandidate* phi_user = GetPhiCandidate(arg_id);
397     if (phi_user == nullptr || phi_user->IsReady()) {
398       // If the argument is not a Phi or it's a Phi candidate ready to be
399       // emitted, return it.
400       return arg_id;
401     }
402     arg_id = phi_user->copy_of();
403   }
404 
405   assert(false &&
406          "No Phi candidates in the copy-of chain are ready to be generated");
407 
408   return 0;
409 }
410 
ApplyReplacements()411 bool SSARewriter::ApplyReplacements() {
412   bool modified = false;
413 
414 #if SSA_REWRITE_DEBUGGING_LEVEL > 2
415   std::cerr << "\n\nApplying replacement decisions to IR\n\n";
416   PrintPhiCandidates();
417   PrintReplacementTable();
418   std::cerr << "\n\n";
419 #endif
420 
421   // Add Phi instructions from completed Phi candidates.
422   std::vector<Instruction*> generated_phis;
423   for (const PhiCandidate* phi_candidate : phis_to_generate_) {
424 #if SSA_REWRITE_DEBUGGING_LEVEL > 2
425     std::cerr << "Phi candidate: " << phi_candidate->PrettyPrint(pass_->cfg())
426               << "\n";
427 #endif
428 
429     assert(phi_candidate->is_complete() &&
430            "Tried to instantiate a Phi instruction from an incomplete Phi "
431            "candidate");
432 
433     // Build the vector of operands for the new OpPhi instruction.
434     uint32_t type_id = pass_->GetPointeeTypeId(
435         pass_->get_def_use_mgr()->GetDef(phi_candidate->var_id()));
436     std::vector<Operand> phi_operands;
437     uint32_t arg_ix = 0;
438     std::unordered_map<uint32_t, uint32_t> already_seen;
439     for (uint32_t pred_label : pass_->cfg()->preds(phi_candidate->bb()->id())) {
440       uint32_t op_val_id = GetPhiArgument(phi_candidate, arg_ix++);
441       if (already_seen.count(pred_label) == 0) {
442         phi_operands.push_back(
443             {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {op_val_id}});
444         phi_operands.push_back(
445             {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {pred_label}});
446         already_seen[pred_label] = op_val_id;
447       } else {
448         // It is possible that there are two edges from the same parent block.
449         // Since the OpPhi can have only one entry for each parent, we have to
450         // make sure the two edges are consistent with each other.
451         assert(already_seen[pred_label] == op_val_id &&
452                "Inconsistent value for duplicate edges.");
453       }
454     }
455 
456     // Generate a new OpPhi instruction and insert it in its basic
457     // block.
458     std::unique_ptr<Instruction> phi_inst(
459         new Instruction(pass_->context(), SpvOpPhi, type_id,
460                         phi_candidate->result_id(), phi_operands));
461     generated_phis.push_back(phi_inst.get());
462     pass_->get_def_use_mgr()->AnalyzeInstDef(&*phi_inst);
463     pass_->context()->set_instr_block(&*phi_inst, phi_candidate->bb());
464     auto insert_it = phi_candidate->bb()->begin();
465     insert_it.InsertBefore(std::move(phi_inst));
466     pass_->context()->get_decoration_mgr()->CloneDecorations(
467         phi_candidate->var_id(), phi_candidate->result_id(),
468         {SpvDecorationRelaxedPrecision});
469 
470     modified = true;
471   }
472 
473   // Scan uses for all inserted Phi instructions. Do this separately from the
474   // registration of the Phi instruction itself to avoid trying to analyze uses
475   // of Phi instructions that have not been registered yet.
476   for (Instruction* phi_inst : generated_phis) {
477     pass_->get_def_use_mgr()->AnalyzeInstUse(&*phi_inst);
478   }
479 
480 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
481   std::cerr << "\n\nReplacing the result of load instructions with the "
482                "corresponding SSA id\n\n";
483 #endif
484 
485   // Apply replacements from the load replacement table.
486   for (auto& repl : load_replacement_) {
487     uint32_t load_id = repl.first;
488     uint32_t val_id = GetReplacement(repl);
489     Instruction* load_inst =
490         pass_->context()->get_def_use_mgr()->GetDef(load_id);
491 
492 #if SSA_REWRITE_DEBUGGING_LEVEL > 2
493     std::cerr << "\t"
494               << load_inst->PrettyPrint(
495                      SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
496               << "  (%" << load_id << " -> %" << val_id << ")\n";
497 #endif
498 
499     // Remove the load instruction and replace all the uses of this load's
500     // result with |val_id|.  Kill any names or decorates using the load's
501     // result before replacing to prevent incorrect replacement in those
502     // instructions.
503     pass_->context()->KillNamesAndDecorates(load_id);
504     pass_->context()->ReplaceAllUsesWith(load_id, val_id);
505     pass_->context()->KillInst(load_inst);
506     modified = true;
507   }
508 
509   return modified;
510 }
511 
FinalizePhiCandidate(PhiCandidate * phi_candidate)512 void SSARewriter::FinalizePhiCandidate(PhiCandidate* phi_candidate) {
513   assert(phi_candidate->phi_args().size() > 0 &&
514          "Phi candidate should have arguments");
515 
516   uint32_t ix = 0;
517   for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
518     BasicBlock* pred_bb = pass_->cfg()->block(pred);
519     uint32_t& arg_id = phi_candidate->phi_args()[ix++];
520     if (arg_id == 0) {
521       // If |pred_bb| is still not sealed, it means it's unreachable. In this
522       // case, we just use Undef as an argument.
523       arg_id = IsBlockSealed(pred_bb)
524                    ? GetReachingDef(phi_candidate->var_id(), pred_bb)
525                    : pass_->GetUndefVal(phi_candidate->var_id());
526     }
527   }
528 
529   // This candidate is now completed.
530   phi_candidate->MarkComplete();
531 
532   // If |phi_candidate| is not trivial, add it to the list of Phis to generate.
533   if (TryRemoveTrivialPhi(phi_candidate) == phi_candidate->result_id()) {
534     // If we could not remove |phi_candidate|, it means that it is complete
535     // and not trivial. Add it to the list of Phis to generate.
536     assert(!phi_candidate->copy_of() && "A completed Phi cannot be trivial.");
537     phis_to_generate_.push_back(phi_candidate);
538   }
539 }
540 
FinalizePhiCandidates()541 void SSARewriter::FinalizePhiCandidates() {
542 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
543   std::cerr << "Finalizing Phi candidates:\n\n";
544   PrintPhiCandidates();
545   std::cerr << "\n";
546 #endif
547 
548   // Now, complete the collected candidates.
549   while (incomplete_phis_.size() > 0) {
550     PhiCandidate* phi_candidate = incomplete_phis_.front();
551     incomplete_phis_.pop();
552     FinalizePhiCandidate(phi_candidate);
553   }
554 }
555 
RewriteFunctionIntoSSA(Function * fp)556 bool SSARewriter::RewriteFunctionIntoSSA(Function* fp) {
557 #if SSA_REWRITE_DEBUGGING_LEVEL > 0
558   std::cerr << "Function before SSA rewrite:\n"
559             << fp->PrettyPrint(0) << "\n\n\n";
560 #endif
561 
562   // Collect variables that can be converted into SSA IDs.
563   pass_->CollectTargetVars(fp);
564 
565   // Generate all the SSA replacements and Phi candidates. This will
566   // generate incomplete and trivial Phis.
567   pass_->cfg()->ForEachBlockInReversePostOrder(
568       fp->entry().get(),
569       [this](BasicBlock* bb) { GenerateSSAReplacements(bb); });
570 
571   // Remove trivial Phis and add arguments to incomplete Phis.
572   FinalizePhiCandidates();
573 
574   // Finally, apply all the replacements in the IR.
575   bool modified = ApplyReplacements();
576 
577 #if SSA_REWRITE_DEBUGGING_LEVEL > 0
578   std::cerr << "\n\n\nFunction after SSA rewrite:\n"
579             << fp->PrettyPrint(0) << "\n";
580 #endif
581 
582   return modified;
583 }
584 
Process()585 Pass::Status SSARewritePass::Process() {
586   bool modified = false;
587   for (auto& fn : *get_module()) {
588     modified |= SSARewriter(this).RewriteFunctionIntoSSA(&fn);
589   }
590   return modified ? Pass::Status::SuccessWithChange
591                   : Pass::Status::SuccessWithoutChange;
592 }
593 
594 }  // namespace opt
595 }  // namespace spvtools
596