1 //===- CFLGraph.h - Abstract stratified sets implementation. -----*- C++-*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This file defines CFLGraph, an auxiliary data structure used by CFL-based 12 /// alias analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_LIB_ANALYSIS_CFLGRAPH_H 17 #define LLVM_LIB_ANALYSIS_CFLGRAPH_H 18 19 #include "AliasAnalysisSummary.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalValue.h" 33 #include "llvm/IR/InstVisitor.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <vector> 45 46 namespace llvm { 47 namespace cflaa { 48 49 /// The Program Expression Graph (PEG) of CFL analysis 50 /// CFLGraph is auxiliary data structure used by CFL-based alias analysis to 51 /// describe flow-insensitive pointer-related behaviors. Given an LLVM function, 52 /// the main purpose of this graph is to abstract away unrelated facts and 53 /// translate the rest into a form that can be easily digested by CFL analyses. 54 /// Each Node in the graph is an InstantiatedValue, and each edge represent a 55 /// pointer assignment between InstantiatedValue. Pointer 56 /// references/dereferences are not explicitly stored in the graph: we 57 /// implicitly assume that for each node (X, I) it has a dereference edge to (X, 58 /// I+1) and a reference edge to (X, I-1). 59 class CFLGraph { 60 public: 61 using Node = InstantiatedValue; 62 63 struct Edge { 64 Node Other; 65 int64_t Offset; 66 }; 67 68 using EdgeList = std::vector<Edge>; 69 70 struct NodeInfo { 71 EdgeList Edges, ReverseEdges; 72 AliasAttrs Attr; 73 }; 74 75 class ValueInfo { 76 std::vector<NodeInfo> Levels; 77 78 public: addNodeToLevel(unsigned Level)79 bool addNodeToLevel(unsigned Level) { 80 auto NumLevels = Levels.size(); 81 if (NumLevels > Level) 82 return false; 83 Levels.resize(Level + 1); 84 return true; 85 } 86 getNodeInfoAtLevel(unsigned Level)87 NodeInfo &getNodeInfoAtLevel(unsigned Level) { 88 assert(Level < Levels.size()); 89 return Levels[Level]; 90 } getNodeInfoAtLevel(unsigned Level)91 const NodeInfo &getNodeInfoAtLevel(unsigned Level) const { 92 assert(Level < Levels.size()); 93 return Levels[Level]; 94 } 95 getNumLevels()96 unsigned getNumLevels() const { return Levels.size(); } 97 }; 98 99 private: 100 using ValueMap = DenseMap<Value *, ValueInfo>; 101 102 ValueMap ValueImpls; 103 getNode(Node N)104 NodeInfo *getNode(Node N) { 105 auto Itr = ValueImpls.find(N.Val); 106 if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel) 107 return nullptr; 108 return &Itr->second.getNodeInfoAtLevel(N.DerefLevel); 109 } 110 111 public: 112 using const_value_iterator = ValueMap::const_iterator; 113 114 bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) { 115 assert(N.Val != nullptr); 116 auto &ValInfo = ValueImpls[N.Val]; 117 auto Changed = ValInfo.addNodeToLevel(N.DerefLevel); 118 ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr; 119 return Changed; 120 } 121 addAttr(Node N,AliasAttrs Attr)122 void addAttr(Node N, AliasAttrs Attr) { 123 auto *Info = getNode(N); 124 assert(Info != nullptr); 125 Info->Attr |= Attr; 126 } 127 128 void addEdge(Node From, Node To, int64_t Offset = 0) { 129 auto *FromInfo = getNode(From); 130 assert(FromInfo != nullptr); 131 auto *ToInfo = getNode(To); 132 assert(ToInfo != nullptr); 133 134 FromInfo->Edges.push_back(Edge{To, Offset}); 135 ToInfo->ReverseEdges.push_back(Edge{From, Offset}); 136 } 137 getNode(Node N)138 const NodeInfo *getNode(Node N) const { 139 auto Itr = ValueImpls.find(N.Val); 140 if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel) 141 return nullptr; 142 return &Itr->second.getNodeInfoAtLevel(N.DerefLevel); 143 } 144 attrFor(Node N)145 AliasAttrs attrFor(Node N) const { 146 auto *Info = getNode(N); 147 assert(Info != nullptr); 148 return Info->Attr; 149 } 150 value_mappings()151 iterator_range<const_value_iterator> value_mappings() const { 152 return make_range<const_value_iterator>(ValueImpls.begin(), 153 ValueImpls.end()); 154 } 155 }; 156 157 ///A builder class used to create CFLGraph instance from a given function 158 /// The CFL-AA that uses this builder must provide its own type as a template 159 /// argument. This is necessary for interprocedural processing: CFLGraphBuilder 160 /// needs a way of obtaining the summary of other functions when callinsts are 161 /// encountered. 162 /// As a result, we expect the said CFL-AA to expose a getAliasSummary() public 163 /// member function that takes a Function& and returns the corresponding summary 164 /// as a const AliasSummary*. 165 template <typename CFLAA> class CFLGraphBuilder { 166 // Input of the builder 167 CFLAA &Analysis; 168 const TargetLibraryInfo &TLI; 169 170 // Output of the builder 171 CFLGraph Graph; 172 SmallVector<Value *, 4> ReturnedValues; 173 174 // Helper class 175 /// Gets the edges our graph should have, based on an Instruction* 176 class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> { 177 CFLAA &AA; 178 const DataLayout &DL; 179 const TargetLibraryInfo &TLI; 180 181 CFLGraph &Graph; 182 SmallVectorImpl<Value *> &ReturnValues; 183 hasUsefulEdges(ConstantExpr * CE)184 static bool hasUsefulEdges(ConstantExpr *CE) { 185 // ConstantExpr doesn't have terminators, invokes, or fences, so only 186 // needs 187 // to check for compares. 188 return CE->getOpcode() != Instruction::ICmp && 189 CE->getOpcode() != Instruction::FCmp; 190 } 191 192 // Returns possible functions called by CS into the given SmallVectorImpl. 193 // Returns true if targets found, false otherwise. getPossibleTargets(CallSite CS,SmallVectorImpl<Function * > & Output)194 static bool getPossibleTargets(CallSite CS, 195 SmallVectorImpl<Function *> &Output) { 196 if (auto *Fn = CS.getCalledFunction()) { 197 Output.push_back(Fn); 198 return true; 199 } 200 201 // TODO: If the call is indirect, we might be able to enumerate all 202 // potential 203 // targets of the call and return them, rather than just failing. 204 return false; 205 } 206 207 void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) { 208 assert(Val != nullptr && Val->getType()->isPointerTy()); 209 if (auto GVal = dyn_cast<GlobalValue>(Val)) { 210 if (Graph.addNode(InstantiatedValue{GVal, 0}, 211 getGlobalOrArgAttrFromValue(*GVal))) 212 Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown()); 213 } else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) { 214 if (hasUsefulEdges(CExpr)) { 215 if (Graph.addNode(InstantiatedValue{CExpr, 0})) 216 visitConstantExpr(CExpr); 217 } 218 } else 219 Graph.addNode(InstantiatedValue{Val, 0}, Attr); 220 } 221 222 void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) { 223 assert(From != nullptr && To != nullptr); 224 if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy()) 225 return; 226 addNode(From); 227 if (To != From) { 228 addNode(To); 229 Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0}, 230 Offset); 231 } 232 } 233 addDerefEdge(Value * From,Value * To,bool IsRead)234 void addDerefEdge(Value *From, Value *To, bool IsRead) { 235 assert(From != nullptr && To != nullptr); 236 // FIXME: This is subtly broken, due to how we model some instructions 237 // (e.g. extractvalue, extractelement) as loads. Since those take 238 // non-pointer operands, we'll entirely skip adding edges for those. 239 // 240 // addAssignEdge seems to have a similar issue with insertvalue, etc. 241 if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy()) 242 return; 243 addNode(From); 244 addNode(To); 245 if (IsRead) { 246 Graph.addNode(InstantiatedValue{From, 1}); 247 Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0}); 248 } else { 249 Graph.addNode(InstantiatedValue{To, 1}); 250 Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1}); 251 } 252 } 253 addLoadEdge(Value * From,Value * To)254 void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); } addStoreEdge(Value * From,Value * To)255 void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); } 256 257 public: GetEdgesVisitor(CFLGraphBuilder & Builder,const DataLayout & DL)258 GetEdgesVisitor(CFLGraphBuilder &Builder, const DataLayout &DL) 259 : AA(Builder.Analysis), DL(DL), TLI(Builder.TLI), Graph(Builder.Graph), 260 ReturnValues(Builder.ReturnedValues) {} 261 visitInstruction(Instruction &)262 void visitInstruction(Instruction &) { 263 llvm_unreachable("Unsupported instruction encountered"); 264 } 265 visitReturnInst(ReturnInst & Inst)266 void visitReturnInst(ReturnInst &Inst) { 267 if (auto RetVal = Inst.getReturnValue()) { 268 if (RetVal->getType()->isPointerTy()) { 269 addNode(RetVal); 270 ReturnValues.push_back(RetVal); 271 } 272 } 273 } 274 visitPtrToIntInst(PtrToIntInst & Inst)275 void visitPtrToIntInst(PtrToIntInst &Inst) { 276 auto *Ptr = Inst.getOperand(0); 277 addNode(Ptr, getAttrEscaped()); 278 } 279 visitIntToPtrInst(IntToPtrInst & Inst)280 void visitIntToPtrInst(IntToPtrInst &Inst) { 281 auto *Ptr = &Inst; 282 addNode(Ptr, getAttrUnknown()); 283 } 284 visitCastInst(CastInst & Inst)285 void visitCastInst(CastInst &Inst) { 286 auto *Src = Inst.getOperand(0); 287 addAssignEdge(Src, &Inst); 288 } 289 visitBinaryOperator(BinaryOperator & Inst)290 void visitBinaryOperator(BinaryOperator &Inst) { 291 auto *Op1 = Inst.getOperand(0); 292 auto *Op2 = Inst.getOperand(1); 293 addAssignEdge(Op1, &Inst); 294 addAssignEdge(Op2, &Inst); 295 } 296 visitAtomicCmpXchgInst(AtomicCmpXchgInst & Inst)297 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) { 298 auto *Ptr = Inst.getPointerOperand(); 299 auto *Val = Inst.getNewValOperand(); 300 addStoreEdge(Val, Ptr); 301 } 302 visitAtomicRMWInst(AtomicRMWInst & Inst)303 void visitAtomicRMWInst(AtomicRMWInst &Inst) { 304 auto *Ptr = Inst.getPointerOperand(); 305 auto *Val = Inst.getValOperand(); 306 addStoreEdge(Val, Ptr); 307 } 308 visitPHINode(PHINode & Inst)309 void visitPHINode(PHINode &Inst) { 310 for (Value *Val : Inst.incoming_values()) 311 addAssignEdge(Val, &Inst); 312 } 313 visitGEP(GEPOperator & GEPOp)314 void visitGEP(GEPOperator &GEPOp) { 315 uint64_t Offset = UnknownOffset; 316 APInt APOffset(DL.getPointerSizeInBits(GEPOp.getPointerAddressSpace()), 317 0); 318 if (GEPOp.accumulateConstantOffset(DL, APOffset)) 319 Offset = APOffset.getSExtValue(); 320 321 auto *Op = GEPOp.getPointerOperand(); 322 addAssignEdge(Op, &GEPOp, Offset); 323 } 324 visitGetElementPtrInst(GetElementPtrInst & Inst)325 void visitGetElementPtrInst(GetElementPtrInst &Inst) { 326 auto *GEPOp = cast<GEPOperator>(&Inst); 327 visitGEP(*GEPOp); 328 } 329 visitSelectInst(SelectInst & Inst)330 void visitSelectInst(SelectInst &Inst) { 331 // Condition is not processed here (The actual statement producing 332 // the condition result is processed elsewhere). For select, the 333 // condition is evaluated, but not loaded, stored, or assigned 334 // simply as a result of being the condition of a select. 335 336 auto *TrueVal = Inst.getTrueValue(); 337 auto *FalseVal = Inst.getFalseValue(); 338 addAssignEdge(TrueVal, &Inst); 339 addAssignEdge(FalseVal, &Inst); 340 } 341 visitAllocaInst(AllocaInst & Inst)342 void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); } 343 visitLoadInst(LoadInst & Inst)344 void visitLoadInst(LoadInst &Inst) { 345 auto *Ptr = Inst.getPointerOperand(); 346 auto *Val = &Inst; 347 addLoadEdge(Ptr, Val); 348 } 349 visitStoreInst(StoreInst & Inst)350 void visitStoreInst(StoreInst &Inst) { 351 auto *Ptr = Inst.getPointerOperand(); 352 auto *Val = Inst.getValueOperand(); 353 addStoreEdge(Val, Ptr); 354 } 355 visitVAArgInst(VAArgInst & Inst)356 void visitVAArgInst(VAArgInst &Inst) { 357 // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it 358 // does 359 // two things: 360 // 1. Loads a value from *((T*)*Ptr). 361 // 2. Increments (stores to) *Ptr by some target-specific amount. 362 // For now, we'll handle this like a landingpad instruction (by placing 363 // the 364 // result in its own group, and having that group alias externals). 365 if (Inst.getType()->isPointerTy()) 366 addNode(&Inst, getAttrUnknown()); 367 } 368 isFunctionExternal(Function * Fn)369 static bool isFunctionExternal(Function *Fn) { 370 return !Fn->hasExactDefinition(); 371 } 372 tryInterproceduralAnalysis(CallSite CS,const SmallVectorImpl<Function * > & Fns)373 bool tryInterproceduralAnalysis(CallSite CS, 374 const SmallVectorImpl<Function *> &Fns) { 375 assert(Fns.size() > 0); 376 377 if (CS.arg_size() > MaxSupportedArgsInSummary) 378 return false; 379 380 // Exit early if we'll fail anyway 381 for (auto *Fn : Fns) { 382 if (isFunctionExternal(Fn) || Fn->isVarArg()) 383 return false; 384 // Fail if the caller does not provide enough arguments 385 assert(Fn->arg_size() <= CS.arg_size()); 386 if (!AA.getAliasSummary(*Fn)) 387 return false; 388 } 389 390 for (auto *Fn : Fns) { 391 auto Summary = AA.getAliasSummary(*Fn); 392 assert(Summary != nullptr); 393 394 auto &RetParamRelations = Summary->RetParamRelations; 395 for (auto &Relation : RetParamRelations) { 396 auto IRelation = instantiateExternalRelation(Relation, CS); 397 if (IRelation.hasValue()) { 398 Graph.addNode(IRelation->From); 399 Graph.addNode(IRelation->To); 400 Graph.addEdge(IRelation->From, IRelation->To); 401 } 402 } 403 404 auto &RetParamAttributes = Summary->RetParamAttributes; 405 for (auto &Attribute : RetParamAttributes) { 406 auto IAttr = instantiateExternalAttribute(Attribute, CS); 407 if (IAttr.hasValue()) 408 Graph.addNode(IAttr->IValue, IAttr->Attr); 409 } 410 } 411 412 return true; 413 } 414 visitCallSite(CallSite CS)415 void visitCallSite(CallSite CS) { 416 auto Inst = CS.getInstruction(); 417 418 // Make sure all arguments and return value are added to the graph first 419 for (Value *V : CS.args()) 420 if (V->getType()->isPointerTy()) 421 addNode(V); 422 if (Inst->getType()->isPointerTy()) 423 addNode(Inst); 424 425 // Check if Inst is a call to a library function that 426 // allocates/deallocates on the heap. Those kinds of functions do not 427 // introduce any aliases. 428 // TODO: address other common library functions such as realloc(), 429 // strdup(), etc. 430 if (isMallocOrCallocLikeFn(Inst, &TLI) || isFreeCall(Inst, &TLI)) 431 return; 432 433 // TODO: Add support for noalias args/all the other fun function 434 // attributes that we can tack on. 435 SmallVector<Function *, 4> Targets; 436 if (getPossibleTargets(CS, Targets)) 437 if (tryInterproceduralAnalysis(CS, Targets)) 438 return; 439 440 // Because the function is opaque, we need to note that anything 441 // could have happened to the arguments (unless the function is marked 442 // readonly or readnone), and that the result could alias just about 443 // anything, too (unless the result is marked noalias). 444 if (!CS.onlyReadsMemory()) 445 for (Value *V : CS.args()) { 446 if (V->getType()->isPointerTy()) { 447 // The argument itself escapes. 448 Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped()); 449 // The fate of argument memory is unknown. Note that since 450 // AliasAttrs is transitive with respect to dereference, we only 451 // need to specify it for the first-level memory. 452 Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown()); 453 } 454 } 455 456 if (Inst->getType()->isPointerTy()) { 457 auto *Fn = CS.getCalledFunction(); 458 if (Fn == nullptr || !Fn->returnDoesNotAlias()) 459 // No need to call addNode() since we've added Inst at the 460 // beginning of this function and we know it is not a global. 461 Graph.addAttr(InstantiatedValue{Inst, 0}, getAttrUnknown()); 462 } 463 } 464 465 /// Because vectors/aggregates are immutable and unaddressable, there's 466 /// nothing we can do to coax a value out of them, other than calling 467 /// Extract{Element,Value}. We can effectively treat them as pointers to 468 /// arbitrary memory locations we can store in and load from. visitExtractElementInst(ExtractElementInst & Inst)469 void visitExtractElementInst(ExtractElementInst &Inst) { 470 auto *Ptr = Inst.getVectorOperand(); 471 auto *Val = &Inst; 472 addLoadEdge(Ptr, Val); 473 } 474 visitInsertElementInst(InsertElementInst & Inst)475 void visitInsertElementInst(InsertElementInst &Inst) { 476 auto *Vec = Inst.getOperand(0); 477 auto *Val = Inst.getOperand(1); 478 addAssignEdge(Vec, &Inst); 479 addStoreEdge(Val, &Inst); 480 } 481 visitLandingPadInst(LandingPadInst & Inst)482 void visitLandingPadInst(LandingPadInst &Inst) { 483 // Exceptions come from "nowhere", from our analysis' perspective. 484 // So we place the instruction its own group, noting that said group may 485 // alias externals 486 if (Inst.getType()->isPointerTy()) 487 addNode(&Inst, getAttrUnknown()); 488 } 489 visitInsertValueInst(InsertValueInst & Inst)490 void visitInsertValueInst(InsertValueInst &Inst) { 491 auto *Agg = Inst.getOperand(0); 492 auto *Val = Inst.getOperand(1); 493 addAssignEdge(Agg, &Inst); 494 addStoreEdge(Val, &Inst); 495 } 496 visitExtractValueInst(ExtractValueInst & Inst)497 void visitExtractValueInst(ExtractValueInst &Inst) { 498 auto *Ptr = Inst.getAggregateOperand(); 499 addLoadEdge(Ptr, &Inst); 500 } 501 visitShuffleVectorInst(ShuffleVectorInst & Inst)502 void visitShuffleVectorInst(ShuffleVectorInst &Inst) { 503 auto *From1 = Inst.getOperand(0); 504 auto *From2 = Inst.getOperand(1); 505 addAssignEdge(From1, &Inst); 506 addAssignEdge(From2, &Inst); 507 } 508 visitConstantExpr(ConstantExpr * CE)509 void visitConstantExpr(ConstantExpr *CE) { 510 switch (CE->getOpcode()) { 511 case Instruction::GetElementPtr: { 512 auto GEPOp = cast<GEPOperator>(CE); 513 visitGEP(*GEPOp); 514 break; 515 } 516 517 case Instruction::PtrToInt: { 518 addNode(CE->getOperand(0), getAttrEscaped()); 519 break; 520 } 521 522 case Instruction::IntToPtr: { 523 addNode(CE, getAttrUnknown()); 524 break; 525 } 526 527 case Instruction::BitCast: 528 case Instruction::AddrSpaceCast: 529 case Instruction::Trunc: 530 case Instruction::ZExt: 531 case Instruction::SExt: 532 case Instruction::FPExt: 533 case Instruction::FPTrunc: 534 case Instruction::UIToFP: 535 case Instruction::SIToFP: 536 case Instruction::FPToUI: 537 case Instruction::FPToSI: { 538 addAssignEdge(CE->getOperand(0), CE); 539 break; 540 } 541 542 case Instruction::Select: { 543 addAssignEdge(CE->getOperand(1), CE); 544 addAssignEdge(CE->getOperand(2), CE); 545 break; 546 } 547 548 case Instruction::InsertElement: 549 case Instruction::InsertValue: { 550 addAssignEdge(CE->getOperand(0), CE); 551 addStoreEdge(CE->getOperand(1), CE); 552 break; 553 } 554 555 case Instruction::ExtractElement: 556 case Instruction::ExtractValue: { 557 addLoadEdge(CE->getOperand(0), CE); 558 break; 559 } 560 561 case Instruction::Add: 562 case Instruction::Sub: 563 case Instruction::FSub: 564 case Instruction::Mul: 565 case Instruction::FMul: 566 case Instruction::UDiv: 567 case Instruction::SDiv: 568 case Instruction::FDiv: 569 case Instruction::URem: 570 case Instruction::SRem: 571 case Instruction::FRem: 572 case Instruction::And: 573 case Instruction::Or: 574 case Instruction::Xor: 575 case Instruction::Shl: 576 case Instruction::LShr: 577 case Instruction::AShr: 578 case Instruction::ICmp: 579 case Instruction::FCmp: 580 case Instruction::ShuffleVector: { 581 addAssignEdge(CE->getOperand(0), CE); 582 addAssignEdge(CE->getOperand(1), CE); 583 break; 584 } 585 586 default: 587 llvm_unreachable("Unknown instruction type encountered!"); 588 } 589 } 590 }; 591 592 // Helper functions 593 594 // Determines whether or not we an instruction is useless to us (e.g. 595 // FenceInst) hasUsefulEdges(Instruction * Inst)596 static bool hasUsefulEdges(Instruction *Inst) { 597 bool IsNonInvokeRetTerminator = isa<TerminatorInst>(Inst) && 598 !isa<InvokeInst>(Inst) && 599 !isa<ReturnInst>(Inst); 600 return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && 601 !IsNonInvokeRetTerminator; 602 } 603 addArgumentToGraph(Argument & Arg)604 void addArgumentToGraph(Argument &Arg) { 605 if (Arg.getType()->isPointerTy()) { 606 Graph.addNode(InstantiatedValue{&Arg, 0}, 607 getGlobalOrArgAttrFromValue(Arg)); 608 // Pointees of a formal parameter is known to the caller 609 Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller()); 610 } 611 } 612 613 // Given an Instruction, this will add it to the graph, along with any 614 // Instructions that are potentially only available from said Instruction 615 // For example, given the following line: 616 // %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2 617 // addInstructionToGraph would add both the `load` and `getelementptr` 618 // instructions to the graph appropriately. addInstructionToGraph(GetEdgesVisitor & Visitor,Instruction & Inst)619 void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) { 620 if (!hasUsefulEdges(&Inst)) 621 return; 622 623 Visitor.visit(Inst); 624 } 625 626 // Builds the graph needed for constructing the StratifiedSets for the given 627 // function buildGraphFrom(Function & Fn)628 void buildGraphFrom(Function &Fn) { 629 GetEdgesVisitor Visitor(*this, Fn.getParent()->getDataLayout()); 630 631 for (auto &Bb : Fn.getBasicBlockList()) 632 for (auto &Inst : Bb.getInstList()) 633 addInstructionToGraph(Visitor, Inst); 634 635 for (auto &Arg : Fn.args()) 636 addArgumentToGraph(Arg); 637 } 638 639 public: CFLGraphBuilder(CFLAA & Analysis,const TargetLibraryInfo & TLI,Function & Fn)640 CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn) 641 : Analysis(Analysis), TLI(TLI) { 642 buildGraphFrom(Fn); 643 } 644 getCFLGraph()645 const CFLGraph &getCFLGraph() const { return Graph; } getReturnValues()646 const SmallVector<Value *, 4> &getReturnValues() const { 647 return ReturnedValues; 648 } 649 }; 650 651 } // end namespace cflaa 652 } // end namespace llvm 653 654 #endif // LLVM_LIB_ANALYSIS_CFLGRAPH_H 655