1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
43 #include "llvm/DebugInfo/CodeView/CodeView.h"
44 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
45 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
46 #include "llvm/DebugInfo/CodeView/Line.h"
47 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
48 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
49 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
50 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
51 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugInfoMetadata.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalValue.h"
58 #include "llvm/IR/GlobalVariable.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/MC/MCAsmInfo.h"
62 #include "llvm/MC/MCContext.h"
63 #include "llvm/MC/MCSectionCOFF.h"
64 #include "llvm/MC/MCStreamer.h"
65 #include "llvm/MC/MCSymbol.h"
66 #include "llvm/Support/BinaryByteStream.h"
67 #include "llvm/Support/BinaryStreamReader.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Endian.h"
72 #include "llvm/Support/Error.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/FormatVariadic.h"
75 #include "llvm/Support/SMLoc.h"
76 #include "llvm/Support/ScopedPrinter.h"
77 #include "llvm/Target/TargetLoweringObjectFile.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cctype>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <limits>
86 #include <string>
87 #include <utility>
88 #include <vector>
89
90 using namespace llvm;
91 using namespace llvm::codeview;
92
93 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section",
94 cl::ReallyHidden, cl::init(false));
95
CodeViewDebug(AsmPrinter * AP)96 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
97 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
98 // If module doesn't have named metadata anchors or COFF debug section
99 // is not available, skip any debug info related stuff.
100 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
101 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
102 Asm = nullptr;
103 return;
104 }
105
106 // Tell MMI that we have debug info.
107 MMI->setDebugInfoAvailability(true);
108 }
109
getFullFilepath(const DIFile * File)110 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
111 std::string &Filepath = FileToFilepathMap[File];
112 if (!Filepath.empty())
113 return Filepath;
114
115 StringRef Dir = File->getDirectory(), Filename = File->getFilename();
116
117 // If this is a Unix-style path, just use it as is. Don't try to canonicalize
118 // it textually because one of the path components could be a symlink.
119 if (!Dir.empty() && Dir[0] == '/') {
120 Filepath = Dir;
121 if (Dir.back() != '/')
122 Filepath += '/';
123 Filepath += Filename;
124 return Filepath;
125 }
126
127 // Clang emits directory and relative filename info into the IR, but CodeView
128 // operates on full paths. We could change Clang to emit full paths too, but
129 // that would increase the IR size and probably not needed for other users.
130 // For now, just concatenate and canonicalize the path here.
131 if (Filename.find(':') == 1)
132 Filepath = Filename;
133 else
134 Filepath = (Dir + "\\" + Filename).str();
135
136 // Canonicalize the path. We have to do it textually because we may no longer
137 // have access the file in the filesystem.
138 // First, replace all slashes with backslashes.
139 std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
140
141 // Remove all "\.\" with "\".
142 size_t Cursor = 0;
143 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
144 Filepath.erase(Cursor, 2);
145
146 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
147 // path should be well-formatted, e.g. start with a drive letter, etc.
148 Cursor = 0;
149 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
150 // Something's wrong if the path starts with "\..\", abort.
151 if (Cursor == 0)
152 break;
153
154 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
155 if (PrevSlash == std::string::npos)
156 // Something's wrong, abort.
157 break;
158
159 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
160 // The next ".." might be following the one we've just erased.
161 Cursor = PrevSlash;
162 }
163
164 // Remove all duplicate backslashes.
165 Cursor = 0;
166 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
167 Filepath.erase(Cursor, 1);
168
169 return Filepath;
170 }
171
maybeRecordFile(const DIFile * F)172 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
173 StringRef FullPath = getFullFilepath(F);
174 unsigned NextId = FileIdMap.size() + 1;
175 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
176 if (Insertion.second) {
177 // We have to compute the full filepath and emit a .cv_file directive.
178 ArrayRef<uint8_t> ChecksumAsBytes;
179 FileChecksumKind CSKind = FileChecksumKind::None;
180 if (F->getChecksum()) {
181 std::string Checksum = fromHex(F->getChecksum()->Value);
182 void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
183 memcpy(CKMem, Checksum.data(), Checksum.size());
184 ChecksumAsBytes = ArrayRef<uint8_t>(
185 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
186 switch (F->getChecksum()->Kind) {
187 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break;
188 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break;
189 }
190 }
191 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
192 static_cast<unsigned>(CSKind));
193 (void)Success;
194 assert(Success && ".cv_file directive failed");
195 }
196 return Insertion.first->second;
197 }
198
199 CodeViewDebug::InlineSite &
getInlineSite(const DILocation * InlinedAt,const DISubprogram * Inlinee)200 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
201 const DISubprogram *Inlinee) {
202 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
203 InlineSite *Site = &SiteInsertion.first->second;
204 if (SiteInsertion.second) {
205 unsigned ParentFuncId = CurFn->FuncId;
206 if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
207 ParentFuncId =
208 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
209 .SiteFuncId;
210
211 Site->SiteFuncId = NextFuncId++;
212 OS.EmitCVInlineSiteIdDirective(
213 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
214 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
215 Site->Inlinee = Inlinee;
216 InlinedSubprograms.insert(Inlinee);
217 getFuncIdForSubprogram(Inlinee);
218 }
219 return *Site;
220 }
221
getPrettyScopeName(const DIScope * Scope)222 static StringRef getPrettyScopeName(const DIScope *Scope) {
223 StringRef ScopeName = Scope->getName();
224 if (!ScopeName.empty())
225 return ScopeName;
226
227 switch (Scope->getTag()) {
228 case dwarf::DW_TAG_enumeration_type:
229 case dwarf::DW_TAG_class_type:
230 case dwarf::DW_TAG_structure_type:
231 case dwarf::DW_TAG_union_type:
232 return "<unnamed-tag>";
233 case dwarf::DW_TAG_namespace:
234 return "`anonymous namespace'";
235 }
236
237 return StringRef();
238 }
239
getQualifiedNameComponents(const DIScope * Scope,SmallVectorImpl<StringRef> & QualifiedNameComponents)240 static const DISubprogram *getQualifiedNameComponents(
241 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
242 const DISubprogram *ClosestSubprogram = nullptr;
243 while (Scope != nullptr) {
244 if (ClosestSubprogram == nullptr)
245 ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
246 StringRef ScopeName = getPrettyScopeName(Scope);
247 if (!ScopeName.empty())
248 QualifiedNameComponents.push_back(ScopeName);
249 Scope = Scope->getScope().resolve();
250 }
251 return ClosestSubprogram;
252 }
253
getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,StringRef TypeName)254 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
255 StringRef TypeName) {
256 std::string FullyQualifiedName;
257 for (StringRef QualifiedNameComponent :
258 llvm::reverse(QualifiedNameComponents)) {
259 FullyQualifiedName.append(QualifiedNameComponent);
260 FullyQualifiedName.append("::");
261 }
262 FullyQualifiedName.append(TypeName);
263 return FullyQualifiedName;
264 }
265
getFullyQualifiedName(const DIScope * Scope,StringRef Name)266 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
267 SmallVector<StringRef, 5> QualifiedNameComponents;
268 getQualifiedNameComponents(Scope, QualifiedNameComponents);
269 return getQualifiedName(QualifiedNameComponents, Name);
270 }
271
272 struct CodeViewDebug::TypeLoweringScope {
TypeLoweringScopeCodeViewDebug::TypeLoweringScope273 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
~TypeLoweringScopeCodeViewDebug::TypeLoweringScope274 ~TypeLoweringScope() {
275 // Don't decrement TypeEmissionLevel until after emitting deferred types, so
276 // inner TypeLoweringScopes don't attempt to emit deferred types.
277 if (CVD.TypeEmissionLevel == 1)
278 CVD.emitDeferredCompleteTypes();
279 --CVD.TypeEmissionLevel;
280 }
281 CodeViewDebug &CVD;
282 };
283
getFullyQualifiedName(const DIScope * Ty)284 static std::string getFullyQualifiedName(const DIScope *Ty) {
285 const DIScope *Scope = Ty->getScope().resolve();
286 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
287 }
288
getScopeIndex(const DIScope * Scope)289 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
290 // No scope means global scope and that uses the zero index.
291 if (!Scope || isa<DIFile>(Scope))
292 return TypeIndex();
293
294 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
295
296 // Check if we've already translated this scope.
297 auto I = TypeIndices.find({Scope, nullptr});
298 if (I != TypeIndices.end())
299 return I->second;
300
301 // Build the fully qualified name of the scope.
302 std::string ScopeName = getFullyQualifiedName(Scope);
303 StringIdRecord SID(TypeIndex(), ScopeName);
304 auto TI = TypeTable.writeLeafType(SID);
305 return recordTypeIndexForDINode(Scope, TI);
306 }
307
getFuncIdForSubprogram(const DISubprogram * SP)308 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
309 assert(SP);
310
311 // Check if we've already translated this subprogram.
312 auto I = TypeIndices.find({SP, nullptr});
313 if (I != TypeIndices.end())
314 return I->second;
315
316 // The display name includes function template arguments. Drop them to match
317 // MSVC.
318 StringRef DisplayName = SP->getName().split('<').first;
319
320 const DIScope *Scope = SP->getScope().resolve();
321 TypeIndex TI;
322 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
323 // If the scope is a DICompositeType, then this must be a method. Member
324 // function types take some special handling, and require access to the
325 // subprogram.
326 TypeIndex ClassType = getTypeIndex(Class);
327 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
328 DisplayName);
329 TI = TypeTable.writeLeafType(MFuncId);
330 } else {
331 // Otherwise, this must be a free function.
332 TypeIndex ParentScope = getScopeIndex(Scope);
333 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
334 TI = TypeTable.writeLeafType(FuncId);
335 }
336
337 return recordTypeIndexForDINode(SP, TI);
338 }
339
getMemberFunctionType(const DISubprogram * SP,const DICompositeType * Class)340 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
341 const DICompositeType *Class) {
342 // Always use the method declaration as the key for the function type. The
343 // method declaration contains the this adjustment.
344 if (SP->getDeclaration())
345 SP = SP->getDeclaration();
346 assert(!SP->getDeclaration() && "should use declaration as key");
347
348 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
349 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
350 auto I = TypeIndices.find({SP, Class});
351 if (I != TypeIndices.end())
352 return I->second;
353
354 // Make sure complete type info for the class is emitted *after* the member
355 // function type, as the complete class type is likely to reference this
356 // member function type.
357 TypeLoweringScope S(*this);
358 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
359 TypeIndex TI = lowerTypeMemberFunction(
360 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod);
361 return recordTypeIndexForDINode(SP, TI, Class);
362 }
363
recordTypeIndexForDINode(const DINode * Node,TypeIndex TI,const DIType * ClassTy)364 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
365 TypeIndex TI,
366 const DIType *ClassTy) {
367 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
368 (void)InsertResult;
369 assert(InsertResult.second && "DINode was already assigned a type index");
370 return TI;
371 }
372
getPointerSizeInBytes()373 unsigned CodeViewDebug::getPointerSizeInBytes() {
374 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
375 }
376
recordLocalVariable(LocalVariable && Var,const LexicalScope * LS)377 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
378 const LexicalScope *LS) {
379 if (const DILocation *InlinedAt = LS->getInlinedAt()) {
380 // This variable was inlined. Associate it with the InlineSite.
381 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
382 InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
383 Site.InlinedLocals.emplace_back(Var);
384 } else {
385 // This variable goes into the corresponding lexical scope.
386 ScopeVariables[LS].emplace_back(Var);
387 }
388 }
389
addLocIfNotPresent(SmallVectorImpl<const DILocation * > & Locs,const DILocation * Loc)390 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
391 const DILocation *Loc) {
392 auto B = Locs.begin(), E = Locs.end();
393 if (std::find(B, E, Loc) == E)
394 Locs.push_back(Loc);
395 }
396
maybeRecordLocation(const DebugLoc & DL,const MachineFunction * MF)397 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
398 const MachineFunction *MF) {
399 // Skip this instruction if it has the same location as the previous one.
400 if (!DL || DL == PrevInstLoc)
401 return;
402
403 const DIScope *Scope = DL.get()->getScope();
404 if (!Scope)
405 return;
406
407 // Skip this line if it is longer than the maximum we can record.
408 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
409 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
410 LI.isNeverStepInto())
411 return;
412
413 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
414 if (CI.getStartColumn() != DL.getCol())
415 return;
416
417 if (!CurFn->HaveLineInfo)
418 CurFn->HaveLineInfo = true;
419 unsigned FileId = 0;
420 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
421 FileId = CurFn->LastFileId;
422 else
423 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
424 PrevInstLoc = DL;
425
426 unsigned FuncId = CurFn->FuncId;
427 if (const DILocation *SiteLoc = DL->getInlinedAt()) {
428 const DILocation *Loc = DL.get();
429
430 // If this location was actually inlined from somewhere else, give it the ID
431 // of the inline call site.
432 FuncId =
433 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
434
435 // Ensure we have links in the tree of inline call sites.
436 bool FirstLoc = true;
437 while ((SiteLoc = Loc->getInlinedAt())) {
438 InlineSite &Site =
439 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
440 if (!FirstLoc)
441 addLocIfNotPresent(Site.ChildSites, Loc);
442 FirstLoc = false;
443 Loc = SiteLoc;
444 }
445 addLocIfNotPresent(CurFn->ChildSites, Loc);
446 }
447
448 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
449 /*PrologueEnd=*/false, /*IsStmt=*/false,
450 DL->getFilename(), SMLoc());
451 }
452
emitCodeViewMagicVersion()453 void CodeViewDebug::emitCodeViewMagicVersion() {
454 OS.EmitValueToAlignment(4);
455 OS.AddComment("Debug section magic");
456 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
457 }
458
endModule()459 void CodeViewDebug::endModule() {
460 if (!Asm || !MMI->hasDebugInfo())
461 return;
462
463 assert(Asm != nullptr);
464
465 // The COFF .debug$S section consists of several subsections, each starting
466 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
467 // of the payload followed by the payload itself. The subsections are 4-byte
468 // aligned.
469
470 // Use the generic .debug$S section, and make a subsection for all the inlined
471 // subprograms.
472 switchToDebugSectionForSymbol(nullptr);
473
474 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
475 emitCompilerInformation();
476 endCVSubsection(CompilerInfo);
477
478 emitInlineeLinesSubsection();
479
480 // Emit per-function debug information.
481 for (auto &P : FnDebugInfo)
482 if (!P.first->isDeclarationForLinker())
483 emitDebugInfoForFunction(P.first, *P.second);
484
485 // Emit global variable debug information.
486 setCurrentSubprogram(nullptr);
487 emitDebugInfoForGlobals();
488
489 // Emit retained types.
490 emitDebugInfoForRetainedTypes();
491
492 // Switch back to the generic .debug$S section after potentially processing
493 // comdat symbol sections.
494 switchToDebugSectionForSymbol(nullptr);
495
496 // Emit UDT records for any types used by global variables.
497 if (!GlobalUDTs.empty()) {
498 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
499 emitDebugInfoForUDTs(GlobalUDTs);
500 endCVSubsection(SymbolsEnd);
501 }
502
503 // This subsection holds a file index to offset in string table table.
504 OS.AddComment("File index to string table offset subsection");
505 OS.EmitCVFileChecksumsDirective();
506
507 // This subsection holds the string table.
508 OS.AddComment("String table");
509 OS.EmitCVStringTableDirective();
510
511 // Emit type information and hashes last, so that any types we translate while
512 // emitting function info are included.
513 emitTypeInformation();
514
515 if (EmitDebugGlobalHashes)
516 emitTypeGlobalHashes();
517
518 clear();
519 }
520
emitNullTerminatedSymbolName(MCStreamer & OS,StringRef S,unsigned MaxFixedRecordLength=0xF00)521 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
522 unsigned MaxFixedRecordLength = 0xF00) {
523 // The maximum CV record length is 0xFF00. Most of the strings we emit appear
524 // after a fixed length portion of the record. The fixed length portion should
525 // always be less than 0xF00 (3840) bytes, so truncate the string so that the
526 // overall record size is less than the maximum allowed.
527 SmallString<32> NullTerminatedString(
528 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
529 NullTerminatedString.push_back('\0');
530 OS.EmitBytes(NullTerminatedString);
531 }
532
emitTypeInformation()533 void CodeViewDebug::emitTypeInformation() {
534 if (TypeTable.empty())
535 return;
536
537 // Start the .debug$T or .debug$P section with 0x4.
538 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
539 emitCodeViewMagicVersion();
540
541 SmallString<8> CommentPrefix;
542 if (OS.isVerboseAsm()) {
543 CommentPrefix += '\t';
544 CommentPrefix += Asm->MAI->getCommentString();
545 CommentPrefix += ' ';
546 }
547
548 TypeTableCollection Table(TypeTable.records());
549 Optional<TypeIndex> B = Table.getFirst();
550 while (B) {
551 // This will fail if the record data is invalid.
552 CVType Record = Table.getType(*B);
553
554 if (OS.isVerboseAsm()) {
555 // Emit a block comment describing the type record for readability.
556 SmallString<512> CommentBlock;
557 raw_svector_ostream CommentOS(CommentBlock);
558 ScopedPrinter SP(CommentOS);
559 SP.setPrefix(CommentPrefix);
560 TypeDumpVisitor TDV(Table, &SP, false);
561
562 Error E = codeview::visitTypeRecord(Record, *B, TDV);
563 if (E) {
564 logAllUnhandledErrors(std::move(E), errs(), "error: ");
565 llvm_unreachable("produced malformed type record");
566 }
567 // emitRawComment will insert its own tab and comment string before
568 // the first line, so strip off our first one. It also prints its own
569 // newline.
570 OS.emitRawComment(
571 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
572 }
573 OS.EmitBinaryData(Record.str_data());
574 B = Table.getNext(*B);
575 }
576 }
577
emitTypeGlobalHashes()578 void CodeViewDebug::emitTypeGlobalHashes() {
579 if (TypeTable.empty())
580 return;
581
582 // Start the .debug$H section with the version and hash algorithm, currently
583 // hardcoded to version 0, SHA1.
584 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
585
586 OS.EmitValueToAlignment(4);
587 OS.AddComment("Magic");
588 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4);
589 OS.AddComment("Section Version");
590 OS.EmitIntValue(0, 2);
591 OS.AddComment("Hash Algorithm");
592 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2);
593
594 TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
595 for (const auto &GHR : TypeTable.hashes()) {
596 if (OS.isVerboseAsm()) {
597 // Emit an EOL-comment describing which TypeIndex this hash corresponds
598 // to, as well as the stringified SHA1 hash.
599 SmallString<32> Comment;
600 raw_svector_ostream CommentOS(Comment);
601 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
602 OS.AddComment(Comment);
603 ++TI;
604 }
605 assert(GHR.Hash.size() == 8);
606 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
607 GHR.Hash.size());
608 OS.EmitBinaryData(S);
609 }
610 }
611
MapDWLangToCVLang(unsigned DWLang)612 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
613 switch (DWLang) {
614 case dwarf::DW_LANG_C:
615 case dwarf::DW_LANG_C89:
616 case dwarf::DW_LANG_C99:
617 case dwarf::DW_LANG_C11:
618 case dwarf::DW_LANG_ObjC:
619 return SourceLanguage::C;
620 case dwarf::DW_LANG_C_plus_plus:
621 case dwarf::DW_LANG_C_plus_plus_03:
622 case dwarf::DW_LANG_C_plus_plus_11:
623 case dwarf::DW_LANG_C_plus_plus_14:
624 return SourceLanguage::Cpp;
625 case dwarf::DW_LANG_Fortran77:
626 case dwarf::DW_LANG_Fortran90:
627 case dwarf::DW_LANG_Fortran03:
628 case dwarf::DW_LANG_Fortran08:
629 return SourceLanguage::Fortran;
630 case dwarf::DW_LANG_Pascal83:
631 return SourceLanguage::Pascal;
632 case dwarf::DW_LANG_Cobol74:
633 case dwarf::DW_LANG_Cobol85:
634 return SourceLanguage::Cobol;
635 case dwarf::DW_LANG_Java:
636 return SourceLanguage::Java;
637 case dwarf::DW_LANG_D:
638 return SourceLanguage::D;
639 default:
640 // There's no CodeView representation for this language, and CV doesn't
641 // have an "unknown" option for the language field, so we'll use MASM,
642 // as it's very low level.
643 return SourceLanguage::Masm;
644 }
645 }
646
647 namespace {
648 struct Version {
649 int Part[4];
650 };
651 } // end anonymous namespace
652
653 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
654 // the version number.
parseVersion(StringRef Name)655 static Version parseVersion(StringRef Name) {
656 Version V = {{0}};
657 int N = 0;
658 for (const char C : Name) {
659 if (isdigit(C)) {
660 V.Part[N] *= 10;
661 V.Part[N] += C - '0';
662 } else if (C == '.') {
663 ++N;
664 if (N >= 4)
665 return V;
666 } else if (N > 0)
667 return V;
668 }
669 return V;
670 }
671
mapArchToCVCPUType(Triple::ArchType Type)672 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
673 switch (Type) {
674 case Triple::ArchType::x86:
675 return CPUType::Pentium3;
676 case Triple::ArchType::x86_64:
677 return CPUType::X64;
678 case Triple::ArchType::thumb:
679 return CPUType::Thumb;
680 case Triple::ArchType::aarch64:
681 return CPUType::ARM64;
682 default:
683 report_fatal_error("target architecture doesn't map to a CodeView CPUType");
684 }
685 }
686
emitCompilerInformation()687 void CodeViewDebug::emitCompilerInformation() {
688 MCContext &Context = MMI->getContext();
689 MCSymbol *CompilerBegin = Context.createTempSymbol(),
690 *CompilerEnd = Context.createTempSymbol();
691 OS.AddComment("Record length");
692 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
693 OS.EmitLabel(CompilerBegin);
694 OS.AddComment("Record kind: S_COMPILE3");
695 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
696 uint32_t Flags = 0;
697
698 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
699 const MDNode *Node = *CUs->operands().begin();
700 const auto *CU = cast<DICompileUnit>(Node);
701
702 // The low byte of the flags indicates the source language.
703 Flags = MapDWLangToCVLang(CU->getSourceLanguage());
704 // TODO: Figure out which other flags need to be set.
705
706 OS.AddComment("Flags and language");
707 OS.EmitIntValue(Flags, 4);
708
709 OS.AddComment("CPUType");
710 CPUType CPU =
711 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
712 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
713
714 StringRef CompilerVersion = CU->getProducer();
715 Version FrontVer = parseVersion(CompilerVersion);
716 OS.AddComment("Frontend version");
717 for (int N = 0; N < 4; ++N)
718 OS.EmitIntValue(FrontVer.Part[N], 2);
719
720 // Some Microsoft tools, like Binscope, expect a backend version number of at
721 // least 8.something, so we'll coerce the LLVM version into a form that
722 // guarantees it'll be big enough without really lying about the version.
723 int Major = 1000 * LLVM_VERSION_MAJOR +
724 10 * LLVM_VERSION_MINOR +
725 LLVM_VERSION_PATCH;
726 // Clamp it for builds that use unusually large version numbers.
727 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
728 Version BackVer = {{ Major, 0, 0, 0 }};
729 OS.AddComment("Backend version");
730 for (int N = 0; N < 4; ++N)
731 OS.EmitIntValue(BackVer.Part[N], 2);
732
733 OS.AddComment("Null-terminated compiler version string");
734 emitNullTerminatedSymbolName(OS, CompilerVersion);
735
736 OS.EmitLabel(CompilerEnd);
737 }
738
emitInlineeLinesSubsection()739 void CodeViewDebug::emitInlineeLinesSubsection() {
740 if (InlinedSubprograms.empty())
741 return;
742
743 OS.AddComment("Inlinee lines subsection");
744 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
745
746 // We emit the checksum info for files. This is used by debuggers to
747 // determine if a pdb matches the source before loading it. Visual Studio,
748 // for instance, will display a warning that the breakpoints are not valid if
749 // the pdb does not match the source.
750 OS.AddComment("Inlinee lines signature");
751 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
752
753 for (const DISubprogram *SP : InlinedSubprograms) {
754 assert(TypeIndices.count({SP, nullptr}));
755 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
756
757 OS.AddBlankLine();
758 unsigned FileId = maybeRecordFile(SP->getFile());
759 OS.AddComment("Inlined function " + SP->getName() + " starts at " +
760 SP->getFilename() + Twine(':') + Twine(SP->getLine()));
761 OS.AddBlankLine();
762 OS.AddComment("Type index of inlined function");
763 OS.EmitIntValue(InlineeIdx.getIndex(), 4);
764 OS.AddComment("Offset into filechecksum table");
765 OS.EmitCVFileChecksumOffsetDirective(FileId);
766 OS.AddComment("Starting line number");
767 OS.EmitIntValue(SP->getLine(), 4);
768 }
769
770 endCVSubsection(InlineEnd);
771 }
772
emitInlinedCallSite(const FunctionInfo & FI,const DILocation * InlinedAt,const InlineSite & Site)773 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
774 const DILocation *InlinedAt,
775 const InlineSite &Site) {
776 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
777 *InlineEnd = MMI->getContext().createTempSymbol();
778
779 assert(TypeIndices.count({Site.Inlinee, nullptr}));
780 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
781
782 // SymbolRecord
783 OS.AddComment("Record length");
784 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength
785 OS.EmitLabel(InlineBegin);
786 OS.AddComment("Record kind: S_INLINESITE");
787 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
788
789 OS.AddComment("PtrParent");
790 OS.EmitIntValue(0, 4);
791 OS.AddComment("PtrEnd");
792 OS.EmitIntValue(0, 4);
793 OS.AddComment("Inlinee type index");
794 OS.EmitIntValue(InlineeIdx.getIndex(), 4);
795
796 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
797 unsigned StartLineNum = Site.Inlinee->getLine();
798
799 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
800 FI.Begin, FI.End);
801
802 OS.EmitLabel(InlineEnd);
803
804 emitLocalVariableList(Site.InlinedLocals);
805
806 // Recurse on child inlined call sites before closing the scope.
807 for (const DILocation *ChildSite : Site.ChildSites) {
808 auto I = FI.InlineSites.find(ChildSite);
809 assert(I != FI.InlineSites.end() &&
810 "child site not in function inline site map");
811 emitInlinedCallSite(FI, ChildSite, I->second);
812 }
813
814 // Close the scope.
815 OS.AddComment("Record length");
816 OS.EmitIntValue(2, 2); // RecordLength
817 OS.AddComment("Record kind: S_INLINESITE_END");
818 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
819 }
820
switchToDebugSectionForSymbol(const MCSymbol * GVSym)821 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
822 // If we have a symbol, it may be in a section that is COMDAT. If so, find the
823 // comdat key. A section may be comdat because of -ffunction-sections or
824 // because it is comdat in the IR.
825 MCSectionCOFF *GVSec =
826 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
827 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
828
829 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
830 Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
831 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
832
833 OS.SwitchSection(DebugSec);
834
835 // Emit the magic version number if this is the first time we've switched to
836 // this section.
837 if (ComdatDebugSections.insert(DebugSec).second)
838 emitCodeViewMagicVersion();
839 }
840
841 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
842 // The only supported thunk ordinal is currently the standard type.
emitDebugInfoForThunk(const Function * GV,FunctionInfo & FI,const MCSymbol * Fn)843 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
844 FunctionInfo &FI,
845 const MCSymbol *Fn) {
846 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
847 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
848
849 OS.AddComment("Symbol subsection for " + Twine(FuncName));
850 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
851
852 // Emit S_THUNK32
853 MCSymbol *ThunkRecordBegin = MMI->getContext().createTempSymbol(),
854 *ThunkRecordEnd = MMI->getContext().createTempSymbol();
855 OS.AddComment("Record length");
856 OS.emitAbsoluteSymbolDiff(ThunkRecordEnd, ThunkRecordBegin, 2);
857 OS.EmitLabel(ThunkRecordBegin);
858 OS.AddComment("Record kind: S_THUNK32");
859 OS.EmitIntValue(unsigned(SymbolKind::S_THUNK32), 2);
860 OS.AddComment("PtrParent");
861 OS.EmitIntValue(0, 4);
862 OS.AddComment("PtrEnd");
863 OS.EmitIntValue(0, 4);
864 OS.AddComment("PtrNext");
865 OS.EmitIntValue(0, 4);
866 OS.AddComment("Thunk section relative address");
867 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
868 OS.AddComment("Thunk section index");
869 OS.EmitCOFFSectionIndex(Fn);
870 OS.AddComment("Code size");
871 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
872 OS.AddComment("Ordinal");
873 OS.EmitIntValue(unsigned(ordinal), 1);
874 OS.AddComment("Function name");
875 emitNullTerminatedSymbolName(OS, FuncName);
876 // Additional fields specific to the thunk ordinal would go here.
877 OS.EmitLabel(ThunkRecordEnd);
878
879 // Local variables/inlined routines are purposely omitted here. The point of
880 // marking this as a thunk is so Visual Studio will NOT stop in this routine.
881
882 // Emit S_PROC_ID_END
883 const unsigned RecordLengthForSymbolEnd = 2;
884 OS.AddComment("Record length");
885 OS.EmitIntValue(RecordLengthForSymbolEnd, 2);
886 OS.AddComment("Record kind: S_PROC_ID_END");
887 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
888
889 endCVSubsection(SymbolsEnd);
890 }
891
emitDebugInfoForFunction(const Function * GV,FunctionInfo & FI)892 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
893 FunctionInfo &FI) {
894 // For each function there is a separate subsection which holds the PC to
895 // file:line table.
896 const MCSymbol *Fn = Asm->getSymbol(GV);
897 assert(Fn);
898
899 // Switch to the to a comdat section, if appropriate.
900 switchToDebugSectionForSymbol(Fn);
901
902 std::string FuncName;
903 auto *SP = GV->getSubprogram();
904 assert(SP);
905 setCurrentSubprogram(SP);
906
907 if (SP->isThunk()) {
908 emitDebugInfoForThunk(GV, FI, Fn);
909 return;
910 }
911
912 // If we have a display name, build the fully qualified name by walking the
913 // chain of scopes.
914 if (!SP->getName().empty())
915 FuncName =
916 getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
917
918 // If our DISubprogram name is empty, use the mangled name.
919 if (FuncName.empty())
920 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
921
922 // Emit FPO data, but only on 32-bit x86. No other platforms use it.
923 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
924 OS.EmitCVFPOData(Fn);
925
926 // Emit a symbol subsection, required by VS2012+ to find function boundaries.
927 OS.AddComment("Symbol subsection for " + Twine(FuncName));
928 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
929 {
930 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
931 *ProcRecordEnd = MMI->getContext().createTempSymbol();
932 OS.AddComment("Record length");
933 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
934 OS.EmitLabel(ProcRecordBegin);
935
936 if (GV->hasLocalLinkage()) {
937 OS.AddComment("Record kind: S_LPROC32_ID");
938 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
939 } else {
940 OS.AddComment("Record kind: S_GPROC32_ID");
941 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
942 }
943
944 // These fields are filled in by tools like CVPACK which run after the fact.
945 OS.AddComment("PtrParent");
946 OS.EmitIntValue(0, 4);
947 OS.AddComment("PtrEnd");
948 OS.EmitIntValue(0, 4);
949 OS.AddComment("PtrNext");
950 OS.EmitIntValue(0, 4);
951 // This is the important bit that tells the debugger where the function
952 // code is located and what's its size:
953 OS.AddComment("Code size");
954 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
955 OS.AddComment("Offset after prologue");
956 OS.EmitIntValue(0, 4);
957 OS.AddComment("Offset before epilogue");
958 OS.EmitIntValue(0, 4);
959 OS.AddComment("Function type index");
960 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
961 OS.AddComment("Function section relative address");
962 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
963 OS.AddComment("Function section index");
964 OS.EmitCOFFSectionIndex(Fn);
965 OS.AddComment("Flags");
966 OS.EmitIntValue(0, 1);
967 // Emit the function display name as a null-terminated string.
968 OS.AddComment("Function name");
969 // Truncate the name so we won't overflow the record length field.
970 emitNullTerminatedSymbolName(OS, FuncName);
971 OS.EmitLabel(ProcRecordEnd);
972
973 emitLocalVariableList(FI.Locals);
974 emitLexicalBlockList(FI.ChildBlocks, FI);
975
976 // Emit inlined call site information. Only emit functions inlined directly
977 // into the parent function. We'll emit the other sites recursively as part
978 // of their parent inline site.
979 for (const DILocation *InlinedAt : FI.ChildSites) {
980 auto I = FI.InlineSites.find(InlinedAt);
981 assert(I != FI.InlineSites.end() &&
982 "child site not in function inline site map");
983 emitInlinedCallSite(FI, InlinedAt, I->second);
984 }
985
986 for (auto Annot : FI.Annotations) {
987 MCSymbol *Label = Annot.first;
988 MDTuple *Strs = cast<MDTuple>(Annot.second);
989 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(),
990 *AnnotEnd = MMI->getContext().createTempSymbol();
991 OS.AddComment("Record length");
992 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2);
993 OS.EmitLabel(AnnotBegin);
994 OS.AddComment("Record kind: S_ANNOTATION");
995 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2);
996 OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
997 // FIXME: Make sure we don't overflow the max record size.
998 OS.EmitCOFFSectionIndex(Label);
999 OS.EmitIntValue(Strs->getNumOperands(), 2);
1000 for (Metadata *MD : Strs->operands()) {
1001 // MDStrings are null terminated, so we can do EmitBytes and get the
1002 // nice .asciz directive.
1003 StringRef Str = cast<MDString>(MD)->getString();
1004 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1005 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
1006 }
1007 OS.EmitLabel(AnnotEnd);
1008 }
1009
1010 if (SP != nullptr)
1011 emitDebugInfoForUDTs(LocalUDTs);
1012
1013 // We're done with this function.
1014 OS.AddComment("Record length");
1015 OS.EmitIntValue(0x0002, 2);
1016 OS.AddComment("Record kind: S_PROC_ID_END");
1017 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
1018 }
1019 endCVSubsection(SymbolsEnd);
1020
1021 // We have an assembler directive that takes care of the whole line table.
1022 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1023 }
1024
1025 CodeViewDebug::LocalVarDefRange
createDefRangeMem(uint16_t CVRegister,int Offset)1026 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1027 LocalVarDefRange DR;
1028 DR.InMemory = -1;
1029 DR.DataOffset = Offset;
1030 assert(DR.DataOffset == Offset && "truncation");
1031 DR.IsSubfield = 0;
1032 DR.StructOffset = 0;
1033 DR.CVRegister = CVRegister;
1034 return DR;
1035 }
1036
1037 CodeViewDebug::LocalVarDefRange
createDefRangeGeneral(uint16_t CVRegister,bool InMemory,int Offset,bool IsSubfield,uint16_t StructOffset)1038 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
1039 int Offset, bool IsSubfield,
1040 uint16_t StructOffset) {
1041 LocalVarDefRange DR;
1042 DR.InMemory = InMemory;
1043 DR.DataOffset = Offset;
1044 DR.IsSubfield = IsSubfield;
1045 DR.StructOffset = StructOffset;
1046 DR.CVRegister = CVRegister;
1047 return DR;
1048 }
1049
collectVariableInfoFromMFTable(DenseSet<InlinedVariable> & Processed)1050 void CodeViewDebug::collectVariableInfoFromMFTable(
1051 DenseSet<InlinedVariable> &Processed) {
1052 const MachineFunction &MF = *Asm->MF;
1053 const TargetSubtargetInfo &TSI = MF.getSubtarget();
1054 const TargetFrameLowering *TFI = TSI.getFrameLowering();
1055 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1056
1057 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1058 if (!VI.Var)
1059 continue;
1060 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1061 "Expected inlined-at fields to agree");
1062
1063 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
1064 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1065
1066 // If variable scope is not found then skip this variable.
1067 if (!Scope)
1068 continue;
1069
1070 // If the variable has an attached offset expression, extract it.
1071 // FIXME: Try to handle DW_OP_deref as well.
1072 int64_t ExprOffset = 0;
1073 if (VI.Expr)
1074 if (!VI.Expr->extractIfOffset(ExprOffset))
1075 continue;
1076
1077 // Get the frame register used and the offset.
1078 unsigned FrameReg = 0;
1079 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1080 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1081
1082 // Calculate the label ranges.
1083 LocalVarDefRange DefRange =
1084 createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1085 for (const InsnRange &Range : Scope->getRanges()) {
1086 const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1087 const MCSymbol *End = getLabelAfterInsn(Range.second);
1088 End = End ? End : Asm->getFunctionEnd();
1089 DefRange.Ranges.emplace_back(Begin, End);
1090 }
1091
1092 LocalVariable Var;
1093 Var.DIVar = VI.Var;
1094 Var.DefRanges.emplace_back(std::move(DefRange));
1095 recordLocalVariable(std::move(Var), Scope);
1096 }
1097 }
1098
canUseReferenceType(const DbgVariableLocation & Loc)1099 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1100 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1101 }
1102
needsReferenceType(const DbgVariableLocation & Loc)1103 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1104 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1105 }
1106
calculateRanges(LocalVariable & Var,const DbgValueHistoryMap::InstrRanges & Ranges)1107 void CodeViewDebug::calculateRanges(
1108 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
1109 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1110
1111 // Calculate the definition ranges.
1112 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1113 const InsnRange &Range = *I;
1114 const MachineInstr *DVInst = Range.first;
1115 assert(DVInst->isDebugValue() && "Invalid History entry");
1116 // FIXME: Find a way to represent constant variables, since they are
1117 // relatively common.
1118 Optional<DbgVariableLocation> Location =
1119 DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1120 if (!Location)
1121 continue;
1122
1123 // CodeView can only express variables in register and variables in memory
1124 // at a constant offset from a register. However, for variables passed
1125 // indirectly by pointer, it is common for that pointer to be spilled to a
1126 // stack location. For the special case of one offseted load followed by a
1127 // zero offset load (a pointer spilled to the stack), we change the type of
1128 // the local variable from a value type to a reference type. This tricks the
1129 // debugger into doing the load for us.
1130 if (Var.UseReferenceType) {
1131 // We're using a reference type. Drop the last zero offset load.
1132 if (canUseReferenceType(*Location))
1133 Location->LoadChain.pop_back();
1134 else
1135 continue;
1136 } else if (needsReferenceType(*Location)) {
1137 // This location can't be expressed without switching to a reference type.
1138 // Start over using that.
1139 Var.UseReferenceType = true;
1140 Var.DefRanges.clear();
1141 calculateRanges(Var, Ranges);
1142 return;
1143 }
1144
1145 // We can only handle a register or an offseted load of a register.
1146 if (Location->Register == 0 || Location->LoadChain.size() > 1)
1147 continue;
1148 {
1149 LocalVarDefRange DR;
1150 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1151 DR.InMemory = !Location->LoadChain.empty();
1152 DR.DataOffset =
1153 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1154 if (Location->FragmentInfo) {
1155 DR.IsSubfield = true;
1156 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1157 } else {
1158 DR.IsSubfield = false;
1159 DR.StructOffset = 0;
1160 }
1161
1162 if (Var.DefRanges.empty() ||
1163 Var.DefRanges.back().isDifferentLocation(DR)) {
1164 Var.DefRanges.emplace_back(std::move(DR));
1165 }
1166 }
1167
1168 // Compute the label range.
1169 const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1170 const MCSymbol *End = getLabelAfterInsn(Range.second);
1171 if (!End) {
1172 // This range is valid until the next overlapping bitpiece. In the
1173 // common case, ranges will not be bitpieces, so they will overlap.
1174 auto J = std::next(I);
1175 const DIExpression *DIExpr = DVInst->getDebugExpression();
1176 while (J != E &&
1177 !DIExpr->fragmentsOverlap(J->first->getDebugExpression()))
1178 ++J;
1179 if (J != E)
1180 End = getLabelBeforeInsn(J->first);
1181 else
1182 End = Asm->getFunctionEnd();
1183 }
1184
1185 // If the last range end is our begin, just extend the last range.
1186 // Otherwise make a new range.
1187 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1188 Var.DefRanges.back().Ranges;
1189 if (!R.empty() && R.back().second == Begin)
1190 R.back().second = End;
1191 else
1192 R.emplace_back(Begin, End);
1193
1194 // FIXME: Do more range combining.
1195 }
1196 }
1197
collectVariableInfo(const DISubprogram * SP)1198 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1199 DenseSet<InlinedVariable> Processed;
1200 // Grab the variable info that was squirreled away in the MMI side-table.
1201 collectVariableInfoFromMFTable(Processed);
1202
1203 for (const auto &I : DbgValues) {
1204 InlinedVariable IV = I.first;
1205 if (Processed.count(IV))
1206 continue;
1207 const DILocalVariable *DIVar = IV.first;
1208 const DILocation *InlinedAt = IV.second;
1209
1210 // Instruction ranges, specifying where IV is accessible.
1211 const auto &Ranges = I.second;
1212
1213 LexicalScope *Scope = nullptr;
1214 if (InlinedAt)
1215 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1216 else
1217 Scope = LScopes.findLexicalScope(DIVar->getScope());
1218 // If variable scope is not found then skip this variable.
1219 if (!Scope)
1220 continue;
1221
1222 LocalVariable Var;
1223 Var.DIVar = DIVar;
1224
1225 calculateRanges(Var, Ranges);
1226 recordLocalVariable(std::move(Var), Scope);
1227 }
1228 }
1229
beginFunctionImpl(const MachineFunction * MF)1230 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1231 const Function &GV = MF->getFunction();
1232 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()});
1233 assert(Insertion.second && "function already has info");
1234 CurFn = Insertion.first->second.get();
1235 CurFn->FuncId = NextFuncId++;
1236 CurFn->Begin = Asm->getFunctionBegin();
1237
1238 OS.EmitCVFuncIdDirective(CurFn->FuncId);
1239
1240 // Find the end of the function prolog. First known non-DBG_VALUE and
1241 // non-frame setup location marks the beginning of the function body.
1242 // FIXME: is there a simpler a way to do this? Can we just search
1243 // for the first instruction of the function, not the last of the prolog?
1244 DebugLoc PrologEndLoc;
1245 bool EmptyPrologue = true;
1246 for (const auto &MBB : *MF) {
1247 for (const auto &MI : MBB) {
1248 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1249 MI.getDebugLoc()) {
1250 PrologEndLoc = MI.getDebugLoc();
1251 break;
1252 } else if (!MI.isMetaInstruction()) {
1253 EmptyPrologue = false;
1254 }
1255 }
1256 }
1257
1258 // Record beginning of function if we have a non-empty prologue.
1259 if (PrologEndLoc && !EmptyPrologue) {
1260 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1261 maybeRecordLocation(FnStartDL, MF);
1262 }
1263 }
1264
shouldEmitUdt(const DIType * T)1265 static bool shouldEmitUdt(const DIType *T) {
1266 if (!T)
1267 return false;
1268
1269 // MSVC does not emit UDTs for typedefs that are scoped to classes.
1270 if (T->getTag() == dwarf::DW_TAG_typedef) {
1271 if (DIScope *Scope = T->getScope().resolve()) {
1272 switch (Scope->getTag()) {
1273 case dwarf::DW_TAG_structure_type:
1274 case dwarf::DW_TAG_class_type:
1275 case dwarf::DW_TAG_union_type:
1276 return false;
1277 }
1278 }
1279 }
1280
1281 while (true) {
1282 if (!T || T->isForwardDecl())
1283 return false;
1284
1285 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1286 if (!DT)
1287 return true;
1288 T = DT->getBaseType().resolve();
1289 }
1290 return true;
1291 }
1292
addToUDTs(const DIType * Ty)1293 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1294 // Don't record empty UDTs.
1295 if (Ty->getName().empty())
1296 return;
1297 if (!shouldEmitUdt(Ty))
1298 return;
1299
1300 SmallVector<StringRef, 5> QualifiedNameComponents;
1301 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1302 Ty->getScope().resolve(), QualifiedNameComponents);
1303
1304 std::string FullyQualifiedName =
1305 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1306
1307 if (ClosestSubprogram == nullptr) {
1308 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1309 } else if (ClosestSubprogram == CurrentSubprogram) {
1310 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1311 }
1312
1313 // TODO: What if the ClosestSubprogram is neither null or the current
1314 // subprogram? Currently, the UDT just gets dropped on the floor.
1315 //
1316 // The current behavior is not desirable. To get maximal fidelity, we would
1317 // need to perform all type translation before beginning emission of .debug$S
1318 // and then make LocalUDTs a member of FunctionInfo
1319 }
1320
lowerType(const DIType * Ty,const DIType * ClassTy)1321 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1322 // Generic dispatch for lowering an unknown type.
1323 switch (Ty->getTag()) {
1324 case dwarf::DW_TAG_array_type:
1325 return lowerTypeArray(cast<DICompositeType>(Ty));
1326 case dwarf::DW_TAG_typedef:
1327 return lowerTypeAlias(cast<DIDerivedType>(Ty));
1328 case dwarf::DW_TAG_base_type:
1329 return lowerTypeBasic(cast<DIBasicType>(Ty));
1330 case dwarf::DW_TAG_pointer_type:
1331 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1332 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1333 LLVM_FALLTHROUGH;
1334 case dwarf::DW_TAG_reference_type:
1335 case dwarf::DW_TAG_rvalue_reference_type:
1336 return lowerTypePointer(cast<DIDerivedType>(Ty));
1337 case dwarf::DW_TAG_ptr_to_member_type:
1338 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1339 case dwarf::DW_TAG_restrict_type:
1340 case dwarf::DW_TAG_const_type:
1341 case dwarf::DW_TAG_volatile_type:
1342 // TODO: add support for DW_TAG_atomic_type here
1343 return lowerTypeModifier(cast<DIDerivedType>(Ty));
1344 case dwarf::DW_TAG_subroutine_type:
1345 if (ClassTy) {
1346 // The member function type of a member function pointer has no
1347 // ThisAdjustment.
1348 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1349 /*ThisAdjustment=*/0,
1350 /*IsStaticMethod=*/false);
1351 }
1352 return lowerTypeFunction(cast<DISubroutineType>(Ty));
1353 case dwarf::DW_TAG_enumeration_type:
1354 return lowerTypeEnum(cast<DICompositeType>(Ty));
1355 case dwarf::DW_TAG_class_type:
1356 case dwarf::DW_TAG_structure_type:
1357 return lowerTypeClass(cast<DICompositeType>(Ty));
1358 case dwarf::DW_TAG_union_type:
1359 return lowerTypeUnion(cast<DICompositeType>(Ty));
1360 case dwarf::DW_TAG_unspecified_type:
1361 return TypeIndex::None();
1362 default:
1363 // Use the null type index.
1364 return TypeIndex();
1365 }
1366 }
1367
lowerTypeAlias(const DIDerivedType * Ty)1368 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1369 DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1370 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1371 StringRef TypeName = Ty->getName();
1372
1373 addToUDTs(Ty);
1374
1375 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1376 TypeName == "HRESULT")
1377 return TypeIndex(SimpleTypeKind::HResult);
1378 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1379 TypeName == "wchar_t")
1380 return TypeIndex(SimpleTypeKind::WideCharacter);
1381
1382 return UnderlyingTypeIndex;
1383 }
1384
lowerTypeArray(const DICompositeType * Ty)1385 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1386 DITypeRef ElementTypeRef = Ty->getBaseType();
1387 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1388 // IndexType is size_t, which depends on the bitness of the target.
1389 TypeIndex IndexType = getPointerSizeInBytes() == 8
1390 ? TypeIndex(SimpleTypeKind::UInt64Quad)
1391 : TypeIndex(SimpleTypeKind::UInt32Long);
1392
1393 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1394
1395 // Add subranges to array type.
1396 DINodeArray Elements = Ty->getElements();
1397 for (int i = Elements.size() - 1; i >= 0; --i) {
1398 const DINode *Element = Elements[i];
1399 assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1400
1401 const DISubrange *Subrange = cast<DISubrange>(Element);
1402 assert(Subrange->getLowerBound() == 0 &&
1403 "codeview doesn't support subranges with lower bounds");
1404 int64_t Count = -1;
1405 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1406 Count = CI->getSExtValue();
1407
1408 // Forward declarations of arrays without a size and VLAs use a count of -1.
1409 // Emit a count of zero in these cases to match what MSVC does for arrays
1410 // without a size. MSVC doesn't support VLAs, so it's not clear what we
1411 // should do for them even if we could distinguish them.
1412 if (Count == -1)
1413 Count = 0;
1414
1415 // Update the element size and element type index for subsequent subranges.
1416 ElementSize *= Count;
1417
1418 // If this is the outermost array, use the size from the array. It will be
1419 // more accurate if we had a VLA or an incomplete element type size.
1420 uint64_t ArraySize =
1421 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1422
1423 StringRef Name = (i == 0) ? Ty->getName() : "";
1424 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1425 ElementTypeIndex = TypeTable.writeLeafType(AR);
1426 }
1427
1428 return ElementTypeIndex;
1429 }
1430
lowerTypeBasic(const DIBasicType * Ty)1431 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1432 TypeIndex Index;
1433 dwarf::TypeKind Kind;
1434 uint32_t ByteSize;
1435
1436 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1437 ByteSize = Ty->getSizeInBits() / 8;
1438
1439 SimpleTypeKind STK = SimpleTypeKind::None;
1440 switch (Kind) {
1441 case dwarf::DW_ATE_address:
1442 // FIXME: Translate
1443 break;
1444 case dwarf::DW_ATE_boolean:
1445 switch (ByteSize) {
1446 case 1: STK = SimpleTypeKind::Boolean8; break;
1447 case 2: STK = SimpleTypeKind::Boolean16; break;
1448 case 4: STK = SimpleTypeKind::Boolean32; break;
1449 case 8: STK = SimpleTypeKind::Boolean64; break;
1450 case 16: STK = SimpleTypeKind::Boolean128; break;
1451 }
1452 break;
1453 case dwarf::DW_ATE_complex_float:
1454 switch (ByteSize) {
1455 case 2: STK = SimpleTypeKind::Complex16; break;
1456 case 4: STK = SimpleTypeKind::Complex32; break;
1457 case 8: STK = SimpleTypeKind::Complex64; break;
1458 case 10: STK = SimpleTypeKind::Complex80; break;
1459 case 16: STK = SimpleTypeKind::Complex128; break;
1460 }
1461 break;
1462 case dwarf::DW_ATE_float:
1463 switch (ByteSize) {
1464 case 2: STK = SimpleTypeKind::Float16; break;
1465 case 4: STK = SimpleTypeKind::Float32; break;
1466 case 6: STK = SimpleTypeKind::Float48; break;
1467 case 8: STK = SimpleTypeKind::Float64; break;
1468 case 10: STK = SimpleTypeKind::Float80; break;
1469 case 16: STK = SimpleTypeKind::Float128; break;
1470 }
1471 break;
1472 case dwarf::DW_ATE_signed:
1473 switch (ByteSize) {
1474 case 1: STK = SimpleTypeKind::SignedCharacter; break;
1475 case 2: STK = SimpleTypeKind::Int16Short; break;
1476 case 4: STK = SimpleTypeKind::Int32; break;
1477 case 8: STK = SimpleTypeKind::Int64Quad; break;
1478 case 16: STK = SimpleTypeKind::Int128Oct; break;
1479 }
1480 break;
1481 case dwarf::DW_ATE_unsigned:
1482 switch (ByteSize) {
1483 case 1: STK = SimpleTypeKind::UnsignedCharacter; break;
1484 case 2: STK = SimpleTypeKind::UInt16Short; break;
1485 case 4: STK = SimpleTypeKind::UInt32; break;
1486 case 8: STK = SimpleTypeKind::UInt64Quad; break;
1487 case 16: STK = SimpleTypeKind::UInt128Oct; break;
1488 }
1489 break;
1490 case dwarf::DW_ATE_UTF:
1491 switch (ByteSize) {
1492 case 2: STK = SimpleTypeKind::Character16; break;
1493 case 4: STK = SimpleTypeKind::Character32; break;
1494 }
1495 break;
1496 case dwarf::DW_ATE_signed_char:
1497 if (ByteSize == 1)
1498 STK = SimpleTypeKind::SignedCharacter;
1499 break;
1500 case dwarf::DW_ATE_unsigned_char:
1501 if (ByteSize == 1)
1502 STK = SimpleTypeKind::UnsignedCharacter;
1503 break;
1504 default:
1505 break;
1506 }
1507
1508 // Apply some fixups based on the source-level type name.
1509 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1510 STK = SimpleTypeKind::Int32Long;
1511 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1512 STK = SimpleTypeKind::UInt32Long;
1513 if (STK == SimpleTypeKind::UInt16Short &&
1514 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1515 STK = SimpleTypeKind::WideCharacter;
1516 if ((STK == SimpleTypeKind::SignedCharacter ||
1517 STK == SimpleTypeKind::UnsignedCharacter) &&
1518 Ty->getName() == "char")
1519 STK = SimpleTypeKind::NarrowCharacter;
1520
1521 return TypeIndex(STK);
1522 }
1523
lowerTypePointer(const DIDerivedType * Ty,PointerOptions PO)1524 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1525 PointerOptions PO) {
1526 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1527
1528 // Pointers to simple types without any options can use SimpleTypeMode, rather
1529 // than having a dedicated pointer type record.
1530 if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1531 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1532 Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1533 SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1534 ? SimpleTypeMode::NearPointer64
1535 : SimpleTypeMode::NearPointer32;
1536 return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1537 }
1538
1539 PointerKind PK =
1540 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1541 PointerMode PM = PointerMode::Pointer;
1542 switch (Ty->getTag()) {
1543 default: llvm_unreachable("not a pointer tag type");
1544 case dwarf::DW_TAG_pointer_type:
1545 PM = PointerMode::Pointer;
1546 break;
1547 case dwarf::DW_TAG_reference_type:
1548 PM = PointerMode::LValueReference;
1549 break;
1550 case dwarf::DW_TAG_rvalue_reference_type:
1551 PM = PointerMode::RValueReference;
1552 break;
1553 }
1554
1555 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1556 return TypeTable.writeLeafType(PR);
1557 }
1558
1559 static PointerToMemberRepresentation
translatePtrToMemberRep(unsigned SizeInBytes,bool IsPMF,unsigned Flags)1560 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1561 // SizeInBytes being zero generally implies that the member pointer type was
1562 // incomplete, which can happen if it is part of a function prototype. In this
1563 // case, use the unknown model instead of the general model.
1564 if (IsPMF) {
1565 switch (Flags & DINode::FlagPtrToMemberRep) {
1566 case 0:
1567 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1568 : PointerToMemberRepresentation::GeneralFunction;
1569 case DINode::FlagSingleInheritance:
1570 return PointerToMemberRepresentation::SingleInheritanceFunction;
1571 case DINode::FlagMultipleInheritance:
1572 return PointerToMemberRepresentation::MultipleInheritanceFunction;
1573 case DINode::FlagVirtualInheritance:
1574 return PointerToMemberRepresentation::VirtualInheritanceFunction;
1575 }
1576 } else {
1577 switch (Flags & DINode::FlagPtrToMemberRep) {
1578 case 0:
1579 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1580 : PointerToMemberRepresentation::GeneralData;
1581 case DINode::FlagSingleInheritance:
1582 return PointerToMemberRepresentation::SingleInheritanceData;
1583 case DINode::FlagMultipleInheritance:
1584 return PointerToMemberRepresentation::MultipleInheritanceData;
1585 case DINode::FlagVirtualInheritance:
1586 return PointerToMemberRepresentation::VirtualInheritanceData;
1587 }
1588 }
1589 llvm_unreachable("invalid ptr to member representation");
1590 }
1591
lowerTypeMemberPointer(const DIDerivedType * Ty,PointerOptions PO)1592 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1593 PointerOptions PO) {
1594 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1595 TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1596 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1597 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1598 : PointerKind::Near32;
1599 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1600 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1601 : PointerMode::PointerToDataMember;
1602
1603 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1604 uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1605 MemberPointerInfo MPI(
1606 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1607 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1608 return TypeTable.writeLeafType(PR);
1609 }
1610
1611 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1612 /// have a translation, use the NearC convention.
dwarfCCToCodeView(unsigned DwarfCC)1613 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1614 switch (DwarfCC) {
1615 case dwarf::DW_CC_normal: return CallingConvention::NearC;
1616 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1617 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall;
1618 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall;
1619 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal;
1620 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector;
1621 }
1622 return CallingConvention::NearC;
1623 }
1624
lowerTypeModifier(const DIDerivedType * Ty)1625 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1626 ModifierOptions Mods = ModifierOptions::None;
1627 PointerOptions PO = PointerOptions::None;
1628 bool IsModifier = true;
1629 const DIType *BaseTy = Ty;
1630 while (IsModifier && BaseTy) {
1631 // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1632 switch (BaseTy->getTag()) {
1633 case dwarf::DW_TAG_const_type:
1634 Mods |= ModifierOptions::Const;
1635 PO |= PointerOptions::Const;
1636 break;
1637 case dwarf::DW_TAG_volatile_type:
1638 Mods |= ModifierOptions::Volatile;
1639 PO |= PointerOptions::Volatile;
1640 break;
1641 case dwarf::DW_TAG_restrict_type:
1642 // Only pointer types be marked with __restrict. There is no known flag
1643 // for __restrict in LF_MODIFIER records.
1644 PO |= PointerOptions::Restrict;
1645 break;
1646 default:
1647 IsModifier = false;
1648 break;
1649 }
1650 if (IsModifier)
1651 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1652 }
1653
1654 // Check if the inner type will use an LF_POINTER record. If so, the
1655 // qualifiers will go in the LF_POINTER record. This comes up for types like
1656 // 'int *const' and 'int *__restrict', not the more common cases like 'const
1657 // char *'.
1658 if (BaseTy) {
1659 switch (BaseTy->getTag()) {
1660 case dwarf::DW_TAG_pointer_type:
1661 case dwarf::DW_TAG_reference_type:
1662 case dwarf::DW_TAG_rvalue_reference_type:
1663 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1664 case dwarf::DW_TAG_ptr_to_member_type:
1665 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1666 default:
1667 break;
1668 }
1669 }
1670
1671 TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1672
1673 // Return the base type index if there aren't any modifiers. For example, the
1674 // metadata could contain restrict wrappers around non-pointer types.
1675 if (Mods == ModifierOptions::None)
1676 return ModifiedTI;
1677
1678 ModifierRecord MR(ModifiedTI, Mods);
1679 return TypeTable.writeLeafType(MR);
1680 }
1681
lowerTypeFunction(const DISubroutineType * Ty)1682 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1683 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1684 for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1685 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1686
1687 // MSVC uses type none for variadic argument.
1688 if (ReturnAndArgTypeIndices.size() > 1 &&
1689 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1690 ReturnAndArgTypeIndices.back() = TypeIndex::None();
1691 }
1692 TypeIndex ReturnTypeIndex = TypeIndex::Void();
1693 ArrayRef<TypeIndex> ArgTypeIndices = None;
1694 if (!ReturnAndArgTypeIndices.empty()) {
1695 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1696 ReturnTypeIndex = ReturnAndArgTypesRef.front();
1697 ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1698 }
1699
1700 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1701 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1702
1703 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1704
1705 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1706 ArgTypeIndices.size(), ArgListIndex);
1707 return TypeTable.writeLeafType(Procedure);
1708 }
1709
lowerTypeMemberFunction(const DISubroutineType * Ty,const DIType * ClassTy,int ThisAdjustment,bool IsStaticMethod)1710 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1711 const DIType *ClassTy,
1712 int ThisAdjustment,
1713 bool IsStaticMethod) {
1714 // Lower the containing class type.
1715 TypeIndex ClassType = getTypeIndex(ClassTy);
1716
1717 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1718 for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1719 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1720
1721 // MSVC uses type none for variadic argument.
1722 if (ReturnAndArgTypeIndices.size() > 1 &&
1723 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1724 ReturnAndArgTypeIndices.back() = TypeIndex::None();
1725 }
1726 TypeIndex ReturnTypeIndex = TypeIndex::Void();
1727 ArrayRef<TypeIndex> ArgTypeIndices = None;
1728 if (!ReturnAndArgTypeIndices.empty()) {
1729 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1730 ReturnTypeIndex = ReturnAndArgTypesRef.front();
1731 ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1732 }
1733 TypeIndex ThisTypeIndex;
1734 if (!IsStaticMethod && !ArgTypeIndices.empty()) {
1735 ThisTypeIndex = ArgTypeIndices.front();
1736 ArgTypeIndices = ArgTypeIndices.drop_front();
1737 }
1738
1739 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1740 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1741
1742 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1743
1744 // TODO: Need to use the correct values for FunctionOptions.
1745 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1746 FunctionOptions::None, ArgTypeIndices.size(),
1747 ArgListIndex, ThisAdjustment);
1748 return TypeTable.writeLeafType(MFR);
1749 }
1750
lowerTypeVFTableShape(const DIDerivedType * Ty)1751 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1752 unsigned VSlotCount =
1753 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1754 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1755
1756 VFTableShapeRecord VFTSR(Slots);
1757 return TypeTable.writeLeafType(VFTSR);
1758 }
1759
translateAccessFlags(unsigned RecordTag,unsigned Flags)1760 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1761 switch (Flags & DINode::FlagAccessibility) {
1762 case DINode::FlagPrivate: return MemberAccess::Private;
1763 case DINode::FlagPublic: return MemberAccess::Public;
1764 case DINode::FlagProtected: return MemberAccess::Protected;
1765 case 0:
1766 // If there was no explicit access control, provide the default for the tag.
1767 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1768 : MemberAccess::Public;
1769 }
1770 llvm_unreachable("access flags are exclusive");
1771 }
1772
translateMethodOptionFlags(const DISubprogram * SP)1773 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1774 if (SP->isArtificial())
1775 return MethodOptions::CompilerGenerated;
1776
1777 // FIXME: Handle other MethodOptions.
1778
1779 return MethodOptions::None;
1780 }
1781
translateMethodKindFlags(const DISubprogram * SP,bool Introduced)1782 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1783 bool Introduced) {
1784 if (SP->getFlags() & DINode::FlagStaticMember)
1785 return MethodKind::Static;
1786
1787 switch (SP->getVirtuality()) {
1788 case dwarf::DW_VIRTUALITY_none:
1789 break;
1790 case dwarf::DW_VIRTUALITY_virtual:
1791 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1792 case dwarf::DW_VIRTUALITY_pure_virtual:
1793 return Introduced ? MethodKind::PureIntroducingVirtual
1794 : MethodKind::PureVirtual;
1795 default:
1796 llvm_unreachable("unhandled virtuality case");
1797 }
1798
1799 return MethodKind::Vanilla;
1800 }
1801
getRecordKind(const DICompositeType * Ty)1802 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1803 switch (Ty->getTag()) {
1804 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class;
1805 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1806 }
1807 llvm_unreachable("unexpected tag");
1808 }
1809
1810 /// Return ClassOptions that should be present on both the forward declaration
1811 /// and the defintion of a tag type.
getCommonClassOptions(const DICompositeType * Ty)1812 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1813 ClassOptions CO = ClassOptions::None;
1814
1815 // MSVC always sets this flag, even for local types. Clang doesn't always
1816 // appear to give every type a linkage name, which may be problematic for us.
1817 // FIXME: Investigate the consequences of not following them here.
1818 if (!Ty->getIdentifier().empty())
1819 CO |= ClassOptions::HasUniqueName;
1820
1821 // Put the Nested flag on a type if it appears immediately inside a tag type.
1822 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1823 // here. That flag is only set on definitions, and not forward declarations.
1824 const DIScope *ImmediateScope = Ty->getScope().resolve();
1825 if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1826 CO |= ClassOptions::Nested;
1827
1828 // Put the Scoped flag on function-local types.
1829 for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1830 Scope = Scope->getScope().resolve()) {
1831 if (isa<DISubprogram>(Scope)) {
1832 CO |= ClassOptions::Scoped;
1833 break;
1834 }
1835 }
1836
1837 return CO;
1838 }
1839
addUDTSrcLine(const DIType * Ty,TypeIndex TI)1840 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
1841 switch (Ty->getTag()) {
1842 case dwarf::DW_TAG_class_type:
1843 case dwarf::DW_TAG_structure_type:
1844 case dwarf::DW_TAG_union_type:
1845 case dwarf::DW_TAG_enumeration_type:
1846 break;
1847 default:
1848 return;
1849 }
1850
1851 if (const auto *File = Ty->getFile()) {
1852 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1853 TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
1854
1855 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
1856 TypeTable.writeLeafType(USLR);
1857 }
1858 }
1859
lowerTypeEnum(const DICompositeType * Ty)1860 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1861 ClassOptions CO = getCommonClassOptions(Ty);
1862 TypeIndex FTI;
1863 unsigned EnumeratorCount = 0;
1864
1865 if (Ty->isForwardDecl()) {
1866 CO |= ClassOptions::ForwardReference;
1867 } else {
1868 ContinuationRecordBuilder ContinuationBuilder;
1869 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
1870 for (const DINode *Element : Ty->getElements()) {
1871 // We assume that the frontend provides all members in source declaration
1872 // order, which is what MSVC does.
1873 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1874 EnumeratorRecord ER(MemberAccess::Public,
1875 APSInt::getUnsigned(Enumerator->getValue()),
1876 Enumerator->getName());
1877 ContinuationBuilder.writeMemberType(ER);
1878 EnumeratorCount++;
1879 }
1880 }
1881 FTI = TypeTable.insertRecord(ContinuationBuilder);
1882 }
1883
1884 std::string FullName = getFullyQualifiedName(Ty);
1885
1886 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1887 getTypeIndex(Ty->getBaseType()));
1888 TypeIndex EnumTI = TypeTable.writeLeafType(ER);
1889
1890 addUDTSrcLine(Ty, EnumTI);
1891
1892 return EnumTI;
1893 }
1894
1895 //===----------------------------------------------------------------------===//
1896 // ClassInfo
1897 //===----------------------------------------------------------------------===//
1898
1899 struct llvm::ClassInfo {
1900 struct MemberInfo {
1901 const DIDerivedType *MemberTypeNode;
1902 uint64_t BaseOffset;
1903 };
1904 // [MemberInfo]
1905 using MemberList = std::vector<MemberInfo>;
1906
1907 using MethodsList = TinyPtrVector<const DISubprogram *>;
1908 // MethodName -> MethodsList
1909 using MethodsMap = MapVector<MDString *, MethodsList>;
1910
1911 /// Base classes.
1912 std::vector<const DIDerivedType *> Inheritance;
1913
1914 /// Direct members.
1915 MemberList Members;
1916 // Direct overloaded methods gathered by name.
1917 MethodsMap Methods;
1918
1919 TypeIndex VShapeTI;
1920
1921 std::vector<const DIType *> NestedTypes;
1922 };
1923
clear()1924 void CodeViewDebug::clear() {
1925 assert(CurFn == nullptr);
1926 FileIdMap.clear();
1927 FnDebugInfo.clear();
1928 FileToFilepathMap.clear();
1929 LocalUDTs.clear();
1930 GlobalUDTs.clear();
1931 TypeIndices.clear();
1932 CompleteTypeIndices.clear();
1933 }
1934
collectMemberInfo(ClassInfo & Info,const DIDerivedType * DDTy)1935 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1936 const DIDerivedType *DDTy) {
1937 if (!DDTy->getName().empty()) {
1938 Info.Members.push_back({DDTy, 0});
1939 return;
1940 }
1941
1942 // An unnamed member may represent a nested struct or union. Attempt to
1943 // interpret the unnamed member as a DICompositeType possibly wrapped in
1944 // qualifier types. Add all the indirect fields to the current record if that
1945 // succeeds, and drop the member if that fails.
1946 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1947 uint64_t Offset = DDTy->getOffsetInBits();
1948 const DIType *Ty = DDTy->getBaseType().resolve();
1949 bool FullyResolved = false;
1950 while (!FullyResolved) {
1951 switch (Ty->getTag()) {
1952 case dwarf::DW_TAG_const_type:
1953 case dwarf::DW_TAG_volatile_type:
1954 // FIXME: we should apply the qualifier types to the indirect fields
1955 // rather than dropping them.
1956 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve();
1957 break;
1958 default:
1959 FullyResolved = true;
1960 break;
1961 }
1962 }
1963
1964 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
1965 if (!DCTy)
1966 return;
1967
1968 ClassInfo NestedInfo = collectClassInfo(DCTy);
1969 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1970 Info.Members.push_back(
1971 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1972 }
1973
collectClassInfo(const DICompositeType * Ty)1974 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1975 ClassInfo Info;
1976 // Add elements to structure type.
1977 DINodeArray Elements = Ty->getElements();
1978 for (auto *Element : Elements) {
1979 // We assume that the frontend provides all members in source declaration
1980 // order, which is what MSVC does.
1981 if (!Element)
1982 continue;
1983 if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1984 Info.Methods[SP->getRawName()].push_back(SP);
1985 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1986 if (DDTy->getTag() == dwarf::DW_TAG_member) {
1987 collectMemberInfo(Info, DDTy);
1988 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1989 Info.Inheritance.push_back(DDTy);
1990 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1991 DDTy->getName() == "__vtbl_ptr_type") {
1992 Info.VShapeTI = getTypeIndex(DDTy);
1993 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
1994 Info.NestedTypes.push_back(DDTy);
1995 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1996 // Ignore friend members. It appears that MSVC emitted info about
1997 // friends in the past, but modern versions do not.
1998 }
1999 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2000 Info.NestedTypes.push_back(Composite);
2001 }
2002 // Skip other unrecognized kinds of elements.
2003 }
2004 return Info;
2005 }
2006
shouldAlwaysEmitCompleteClassType(const DICompositeType * Ty)2007 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2008 // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2009 // if a complete type should be emitted instead of a forward reference.
2010 return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2011 !Ty->isForwardDecl();
2012 }
2013
lowerTypeClass(const DICompositeType * Ty)2014 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2015 // Emit the complete type for unnamed structs. C++ classes with methods
2016 // which have a circular reference back to the class type are expected to
2017 // be named by the front-end and should not be "unnamed". C unnamed
2018 // structs should not have circular references.
2019 if (shouldAlwaysEmitCompleteClassType(Ty)) {
2020 // If this unnamed complete type is already in the process of being defined
2021 // then the description of the type is malformed and cannot be emitted
2022 // into CodeView correctly so report a fatal error.
2023 auto I = CompleteTypeIndices.find(Ty);
2024 if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2025 report_fatal_error("cannot debug circular reference to unnamed type");
2026 return getCompleteTypeIndex(Ty);
2027 }
2028
2029 // First, construct the forward decl. Don't look into Ty to compute the
2030 // forward decl options, since it might not be available in all TUs.
2031 TypeRecordKind Kind = getRecordKind(Ty);
2032 ClassOptions CO =
2033 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2034 std::string FullName = getFullyQualifiedName(Ty);
2035 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2036 FullName, Ty->getIdentifier());
2037 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2038 if (!Ty->isForwardDecl())
2039 DeferredCompleteTypes.push_back(Ty);
2040 return FwdDeclTI;
2041 }
2042
lowerCompleteTypeClass(const DICompositeType * Ty)2043 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2044 // Construct the field list and complete type record.
2045 TypeRecordKind Kind = getRecordKind(Ty);
2046 ClassOptions CO = getCommonClassOptions(Ty);
2047 TypeIndex FieldTI;
2048 TypeIndex VShapeTI;
2049 unsigned FieldCount;
2050 bool ContainsNestedClass;
2051 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2052 lowerRecordFieldList(Ty);
2053
2054 if (ContainsNestedClass)
2055 CO |= ClassOptions::ContainsNestedClass;
2056
2057 std::string FullName = getFullyQualifiedName(Ty);
2058
2059 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2060
2061 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2062 SizeInBytes, FullName, Ty->getIdentifier());
2063 TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2064
2065 addUDTSrcLine(Ty, ClassTI);
2066
2067 addToUDTs(Ty);
2068
2069 return ClassTI;
2070 }
2071
lowerTypeUnion(const DICompositeType * Ty)2072 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2073 // Emit the complete type for unnamed unions.
2074 if (shouldAlwaysEmitCompleteClassType(Ty))
2075 return getCompleteTypeIndex(Ty);
2076
2077 ClassOptions CO =
2078 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2079 std::string FullName = getFullyQualifiedName(Ty);
2080 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2081 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2082 if (!Ty->isForwardDecl())
2083 DeferredCompleteTypes.push_back(Ty);
2084 return FwdDeclTI;
2085 }
2086
lowerCompleteTypeUnion(const DICompositeType * Ty)2087 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2088 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2089 TypeIndex FieldTI;
2090 unsigned FieldCount;
2091 bool ContainsNestedClass;
2092 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2093 lowerRecordFieldList(Ty);
2094
2095 if (ContainsNestedClass)
2096 CO |= ClassOptions::ContainsNestedClass;
2097
2098 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2099 std::string FullName = getFullyQualifiedName(Ty);
2100
2101 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2102 Ty->getIdentifier());
2103 TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2104
2105 addUDTSrcLine(Ty, UnionTI);
2106
2107 addToUDTs(Ty);
2108
2109 return UnionTI;
2110 }
2111
2112 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
lowerRecordFieldList(const DICompositeType * Ty)2113 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2114 // Manually count members. MSVC appears to count everything that generates a
2115 // field list record. Each individual overload in a method overload group
2116 // contributes to this count, even though the overload group is a single field
2117 // list record.
2118 unsigned MemberCount = 0;
2119 ClassInfo Info = collectClassInfo(Ty);
2120 ContinuationRecordBuilder ContinuationBuilder;
2121 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2122
2123 // Create base classes.
2124 for (const DIDerivedType *I : Info.Inheritance) {
2125 if (I->getFlags() & DINode::FlagVirtual) {
2126 // Virtual base.
2127 unsigned VBPtrOffset = I->getVBPtrOffset();
2128 // FIXME: Despite the accessor name, the offset is really in bytes.
2129 unsigned VBTableIndex = I->getOffsetInBits() / 4;
2130 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2131 ? TypeRecordKind::IndirectVirtualBaseClass
2132 : TypeRecordKind::VirtualBaseClass;
2133 VirtualBaseClassRecord VBCR(
2134 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2135 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2136 VBTableIndex);
2137
2138 ContinuationBuilder.writeMemberType(VBCR);
2139 MemberCount++;
2140 } else {
2141 assert(I->getOffsetInBits() % 8 == 0 &&
2142 "bases must be on byte boundaries");
2143 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2144 getTypeIndex(I->getBaseType()),
2145 I->getOffsetInBits() / 8);
2146 ContinuationBuilder.writeMemberType(BCR);
2147 MemberCount++;
2148 }
2149 }
2150
2151 // Create members.
2152 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2153 const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2154 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2155 StringRef MemberName = Member->getName();
2156 MemberAccess Access =
2157 translateAccessFlags(Ty->getTag(), Member->getFlags());
2158
2159 if (Member->isStaticMember()) {
2160 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2161 ContinuationBuilder.writeMemberType(SDMR);
2162 MemberCount++;
2163 continue;
2164 }
2165
2166 // Virtual function pointer member.
2167 if ((Member->getFlags() & DINode::FlagArtificial) &&
2168 Member->getName().startswith("_vptr$")) {
2169 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2170 ContinuationBuilder.writeMemberType(VFPR);
2171 MemberCount++;
2172 continue;
2173 }
2174
2175 // Data member.
2176 uint64_t MemberOffsetInBits =
2177 Member->getOffsetInBits() + MemberInfo.BaseOffset;
2178 if (Member->isBitField()) {
2179 uint64_t StartBitOffset = MemberOffsetInBits;
2180 if (const auto *CI =
2181 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2182 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2183 }
2184 StartBitOffset -= MemberOffsetInBits;
2185 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2186 StartBitOffset);
2187 MemberBaseType = TypeTable.writeLeafType(BFR);
2188 }
2189 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2190 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2191 MemberName);
2192 ContinuationBuilder.writeMemberType(DMR);
2193 MemberCount++;
2194 }
2195
2196 // Create methods
2197 for (auto &MethodItr : Info.Methods) {
2198 StringRef Name = MethodItr.first->getString();
2199
2200 std::vector<OneMethodRecord> Methods;
2201 for (const DISubprogram *SP : MethodItr.second) {
2202 TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2203 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2204
2205 unsigned VFTableOffset = -1;
2206 if (Introduced)
2207 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2208
2209 Methods.push_back(OneMethodRecord(
2210 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2211 translateMethodKindFlags(SP, Introduced),
2212 translateMethodOptionFlags(SP), VFTableOffset, Name));
2213 MemberCount++;
2214 }
2215 assert(!Methods.empty() && "Empty methods map entry");
2216 if (Methods.size() == 1)
2217 ContinuationBuilder.writeMemberType(Methods[0]);
2218 else {
2219 // FIXME: Make this use its own ContinuationBuilder so that
2220 // MethodOverloadList can be split correctly.
2221 MethodOverloadListRecord MOLR(Methods);
2222 TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2223
2224 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2225 ContinuationBuilder.writeMemberType(OMR);
2226 }
2227 }
2228
2229 // Create nested classes.
2230 for (const DIType *Nested : Info.NestedTypes) {
2231 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
2232 ContinuationBuilder.writeMemberType(R);
2233 MemberCount++;
2234 }
2235
2236 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2237 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2238 !Info.NestedTypes.empty());
2239 }
2240
getVBPTypeIndex()2241 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2242 if (!VBPType.getIndex()) {
2243 // Make a 'const int *' type.
2244 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2245 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2246
2247 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2248 : PointerKind::Near32;
2249 PointerMode PM = PointerMode::Pointer;
2250 PointerOptions PO = PointerOptions::None;
2251 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2252 VBPType = TypeTable.writeLeafType(PR);
2253 }
2254
2255 return VBPType;
2256 }
2257
getTypeIndex(DITypeRef TypeRef,DITypeRef ClassTyRef)2258 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
2259 const DIType *Ty = TypeRef.resolve();
2260 const DIType *ClassTy = ClassTyRef.resolve();
2261
2262 // The null DIType is the void type. Don't try to hash it.
2263 if (!Ty)
2264 return TypeIndex::Void();
2265
2266 // Check if we've already translated this type. Don't try to do a
2267 // get-or-create style insertion that caches the hash lookup across the
2268 // lowerType call. It will update the TypeIndices map.
2269 auto I = TypeIndices.find({Ty, ClassTy});
2270 if (I != TypeIndices.end())
2271 return I->second;
2272
2273 TypeLoweringScope S(*this);
2274 TypeIndex TI = lowerType(Ty, ClassTy);
2275 return recordTypeIndexForDINode(Ty, TI, ClassTy);
2276 }
2277
getTypeIndexForReferenceTo(DITypeRef TypeRef)2278 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2279 DIType *Ty = TypeRef.resolve();
2280 PointerRecord PR(getTypeIndex(Ty),
2281 getPointerSizeInBytes() == 8 ? PointerKind::Near64
2282 : PointerKind::Near32,
2283 PointerMode::LValueReference, PointerOptions::None,
2284 Ty->getSizeInBits() / 8);
2285 return TypeTable.writeLeafType(PR);
2286 }
2287
getCompleteTypeIndex(DITypeRef TypeRef)2288 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2289 const DIType *Ty = TypeRef.resolve();
2290
2291 // The null DIType is the void type. Don't try to hash it.
2292 if (!Ty)
2293 return TypeIndex::Void();
2294
2295 // If this is a non-record type, the complete type index is the same as the
2296 // normal type index. Just call getTypeIndex.
2297 switch (Ty->getTag()) {
2298 case dwarf::DW_TAG_class_type:
2299 case dwarf::DW_TAG_structure_type:
2300 case dwarf::DW_TAG_union_type:
2301 break;
2302 default:
2303 return getTypeIndex(Ty);
2304 }
2305
2306 // Check if we've already translated the complete record type.
2307 const auto *CTy = cast<DICompositeType>(Ty);
2308 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2309 if (!InsertResult.second)
2310 return InsertResult.first->second;
2311
2312 TypeLoweringScope S(*this);
2313
2314 // Make sure the forward declaration is emitted first. It's unclear if this
2315 // is necessary, but MSVC does it, and we should follow suit until we can show
2316 // otherwise.
2317 // We only emit a forward declaration for named types.
2318 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2319 TypeIndex FwdDeclTI = getTypeIndex(CTy);
2320
2321 // Just use the forward decl if we don't have complete type info. This
2322 // might happen if the frontend is using modules and expects the complete
2323 // definition to be emitted elsewhere.
2324 if (CTy->isForwardDecl())
2325 return FwdDeclTI;
2326 }
2327
2328 TypeIndex TI;
2329 switch (CTy->getTag()) {
2330 case dwarf::DW_TAG_class_type:
2331 case dwarf::DW_TAG_structure_type:
2332 TI = lowerCompleteTypeClass(CTy);
2333 break;
2334 case dwarf::DW_TAG_union_type:
2335 TI = lowerCompleteTypeUnion(CTy);
2336 break;
2337 default:
2338 llvm_unreachable("not a record");
2339 }
2340
2341 // Update the type index associated with this CompositeType. This cannot
2342 // use the 'InsertResult' iterator above because it is potentially
2343 // invalidated by map insertions which can occur while lowering the class
2344 // type above.
2345 CompleteTypeIndices[CTy] = TI;
2346 return TI;
2347 }
2348
2349 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2350 /// and do this until fixpoint, as each complete record type typically
2351 /// references
2352 /// many other record types.
emitDeferredCompleteTypes()2353 void CodeViewDebug::emitDeferredCompleteTypes() {
2354 SmallVector<const DICompositeType *, 4> TypesToEmit;
2355 while (!DeferredCompleteTypes.empty()) {
2356 std::swap(DeferredCompleteTypes, TypesToEmit);
2357 for (const DICompositeType *RecordTy : TypesToEmit)
2358 getCompleteTypeIndex(RecordTy);
2359 TypesToEmit.clear();
2360 }
2361 }
2362
emitLocalVariableList(ArrayRef<LocalVariable> Locals)2363 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2364 // Get the sorted list of parameters and emit them first.
2365 SmallVector<const LocalVariable *, 6> Params;
2366 for (const LocalVariable &L : Locals)
2367 if (L.DIVar->isParameter())
2368 Params.push_back(&L);
2369 llvm::sort(Params.begin(), Params.end(),
2370 [](const LocalVariable *L, const LocalVariable *R) {
2371 return L->DIVar->getArg() < R->DIVar->getArg();
2372 });
2373 for (const LocalVariable *L : Params)
2374 emitLocalVariable(*L);
2375
2376 // Next emit all non-parameters in the order that we found them.
2377 for (const LocalVariable &L : Locals)
2378 if (!L.DIVar->isParameter())
2379 emitLocalVariable(L);
2380 }
2381
emitLocalVariable(const LocalVariable & Var)2382 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2383 // LocalSym record, see SymbolRecord.h for more info.
2384 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2385 *LocalEnd = MMI->getContext().createTempSymbol();
2386 OS.AddComment("Record length");
2387 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2388 OS.EmitLabel(LocalBegin);
2389
2390 OS.AddComment("Record kind: S_LOCAL");
2391 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2392
2393 LocalSymFlags Flags = LocalSymFlags::None;
2394 if (Var.DIVar->isParameter())
2395 Flags |= LocalSymFlags::IsParameter;
2396 if (Var.DefRanges.empty())
2397 Flags |= LocalSymFlags::IsOptimizedOut;
2398
2399 OS.AddComment("TypeIndex");
2400 TypeIndex TI = Var.UseReferenceType
2401 ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2402 : getCompleteTypeIndex(Var.DIVar->getType());
2403 OS.EmitIntValue(TI.getIndex(), 4);
2404 OS.AddComment("Flags");
2405 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2406 // Truncate the name so we won't overflow the record length field.
2407 emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2408 OS.EmitLabel(LocalEnd);
2409
2410 // Calculate the on disk prefix of the appropriate def range record. The
2411 // records and on disk formats are described in SymbolRecords.h. BytePrefix
2412 // should be big enough to hold all forms without memory allocation.
2413 SmallString<20> BytePrefix;
2414 for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2415 BytePrefix.clear();
2416 if (DefRange.InMemory) {
2417 uint16_t RegRelFlags = 0;
2418 if (DefRange.IsSubfield) {
2419 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2420 (DefRange.StructOffset
2421 << DefRangeRegisterRelSym::OffsetInParentShift);
2422 }
2423 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2424 Sym.Hdr.Register = DefRange.CVRegister;
2425 Sym.Hdr.Flags = RegRelFlags;
2426 Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2427 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2428 BytePrefix +=
2429 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2430 BytePrefix +=
2431 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2432 } else {
2433 assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2434 if (DefRange.IsSubfield) {
2435 // Unclear what matters here.
2436 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2437 Sym.Hdr.Register = DefRange.CVRegister;
2438 Sym.Hdr.MayHaveNoName = 0;
2439 Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2440
2441 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2442 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2443 sizeof(SymKind));
2444 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2445 sizeof(Sym.Hdr));
2446 } else {
2447 // Unclear what matters here.
2448 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2449 Sym.Hdr.Register = DefRange.CVRegister;
2450 Sym.Hdr.MayHaveNoName = 0;
2451 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2452 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2453 sizeof(SymKind));
2454 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2455 sizeof(Sym.Hdr));
2456 }
2457 }
2458 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2459 }
2460 }
2461
emitLexicalBlockList(ArrayRef<LexicalBlock * > Blocks,const FunctionInfo & FI)2462 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2463 const FunctionInfo& FI) {
2464 for (LexicalBlock *Block : Blocks)
2465 emitLexicalBlock(*Block, FI);
2466 }
2467
2468 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2469 /// lexical block scope.
emitLexicalBlock(const LexicalBlock & Block,const FunctionInfo & FI)2470 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2471 const FunctionInfo& FI) {
2472 MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(),
2473 *RecordEnd = MMI->getContext().createTempSymbol();
2474
2475 // Lexical block symbol record.
2476 OS.AddComment("Record length");
2477 OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2); // Record Length
2478 OS.EmitLabel(RecordBegin);
2479 OS.AddComment("Record kind: S_BLOCK32");
2480 OS.EmitIntValue(SymbolKind::S_BLOCK32, 2); // Record Kind
2481 OS.AddComment("PtrParent");
2482 OS.EmitIntValue(0, 4); // PtrParent
2483 OS.AddComment("PtrEnd");
2484 OS.EmitIntValue(0, 4); // PtrEnd
2485 OS.AddComment("Code size");
2486 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size
2487 OS.AddComment("Function section relative address");
2488 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset
2489 OS.AddComment("Function section index");
2490 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol
2491 OS.AddComment("Lexical block name");
2492 emitNullTerminatedSymbolName(OS, Block.Name); // Name
2493 OS.EmitLabel(RecordEnd);
2494
2495 // Emit variables local to this lexical block.
2496 emitLocalVariableList(Block.Locals);
2497
2498 // Emit lexical blocks contained within this block.
2499 emitLexicalBlockList(Block.Children, FI);
2500
2501 // Close the lexical block scope.
2502 OS.AddComment("Record length");
2503 OS.EmitIntValue(2, 2); // Record Length
2504 OS.AddComment("Record kind: S_END");
2505 OS.EmitIntValue(SymbolKind::S_END, 2); // Record Kind
2506 }
2507
2508 /// Convenience routine for collecting lexical block information for a list
2509 /// of lexical scopes.
collectLexicalBlockInfo(SmallVectorImpl<LexicalScope * > & Scopes,SmallVectorImpl<LexicalBlock * > & Blocks,SmallVectorImpl<LocalVariable> & Locals)2510 void CodeViewDebug::collectLexicalBlockInfo(
2511 SmallVectorImpl<LexicalScope *> &Scopes,
2512 SmallVectorImpl<LexicalBlock *> &Blocks,
2513 SmallVectorImpl<LocalVariable> &Locals) {
2514 for (LexicalScope *Scope : Scopes)
2515 collectLexicalBlockInfo(*Scope, Blocks, Locals);
2516 }
2517
2518 /// Populate the lexical blocks and local variable lists of the parent with
2519 /// information about the specified lexical scope.
collectLexicalBlockInfo(LexicalScope & Scope,SmallVectorImpl<LexicalBlock * > & ParentBlocks,SmallVectorImpl<LocalVariable> & ParentLocals)2520 void CodeViewDebug::collectLexicalBlockInfo(
2521 LexicalScope &Scope,
2522 SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2523 SmallVectorImpl<LocalVariable> &ParentLocals) {
2524 if (Scope.isAbstractScope())
2525 return;
2526
2527 auto LocalsIter = ScopeVariables.find(&Scope);
2528 if (LocalsIter == ScopeVariables.end()) {
2529 // This scope does not contain variables and can be eliminated.
2530 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2531 return;
2532 }
2533 SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second;
2534
2535 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2536 if (!DILB) {
2537 // This scope is not a lexical block and can be eliminated, but keep any
2538 // local variables it contains.
2539 ParentLocals.append(Locals.begin(), Locals.end());
2540 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2541 return;
2542 }
2543
2544 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2545 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) {
2546 // This lexical block scope has too many address ranges to represent in the
2547 // current CodeView format or does not have a valid address range.
2548 // Eliminate this lexical scope and promote any locals it contains to the
2549 // parent scope.
2550 //
2551 // For lexical scopes with multiple address ranges you may be tempted to
2552 // construct a single range covering every instruction where the block is
2553 // live and everything in between. Unfortunately, Visual Studio only
2554 // displays variables from the first matching lexical block scope. If the
2555 // first lexical block contains exception handling code or cold code which
2556 // is moved to the bottom of the routine creating a single range covering
2557 // nearly the entire routine, then it will hide all other lexical blocks
2558 // and the variables they contain.
2559 //
2560 ParentLocals.append(Locals.begin(), Locals.end());
2561 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2562 return;
2563 }
2564
2565 // Create a new CodeView lexical block for this lexical scope. If we've
2566 // seen this DILexicalBlock before then the scope tree is malformed and
2567 // we can handle this gracefully by not processing it a second time.
2568 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2569 if (!BlockInsertion.second)
2570 return;
2571
2572 // Create a lexical block containing the local variables and collect the
2573 // the lexical block information for the children.
2574 const InsnRange &Range = Ranges.front();
2575 assert(Range.first && Range.second);
2576 LexicalBlock &Block = BlockInsertion.first->second;
2577 Block.Begin = getLabelBeforeInsn(Range.first);
2578 Block.End = getLabelAfterInsn(Range.second);
2579 assert(Block.Begin && "missing label for scope begin");
2580 assert(Block.End && "missing label for scope end");
2581 Block.Name = DILB->getName();
2582 Block.Locals = std::move(Locals);
2583 ParentBlocks.push_back(&Block);
2584 collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals);
2585 }
2586
endFunctionImpl(const MachineFunction * MF)2587 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2588 const Function &GV = MF->getFunction();
2589 assert(FnDebugInfo.count(&GV));
2590 assert(CurFn == FnDebugInfo[&GV].get());
2591
2592 collectVariableInfo(GV.getSubprogram());
2593
2594 // Build the lexical block structure to emit for this routine.
2595 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2596 collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals);
2597
2598 // Clear the scope and variable information from the map which will not be
2599 // valid after we have finished processing this routine. This also prepares
2600 // the map for the subsequent routine.
2601 ScopeVariables.clear();
2602
2603 // Don't emit anything if we don't have any line tables.
2604 // Thunks are compiler-generated and probably won't have source correlation.
2605 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2606 FnDebugInfo.erase(&GV);
2607 CurFn = nullptr;
2608 return;
2609 }
2610
2611 CurFn->Annotations = MF->getCodeViewAnnotations();
2612
2613 CurFn->End = Asm->getFunctionEnd();
2614
2615 CurFn = nullptr;
2616 }
2617
beginInstruction(const MachineInstr * MI)2618 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2619 DebugHandlerBase::beginInstruction(MI);
2620
2621 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2622 if (!Asm || !CurFn || MI->isDebugInstr() ||
2623 MI->getFlag(MachineInstr::FrameSetup))
2624 return;
2625
2626 // If the first instruction of a new MBB has no location, find the first
2627 // instruction with a location and use that.
2628 DebugLoc DL = MI->getDebugLoc();
2629 if (!DL && MI->getParent() != PrevInstBB) {
2630 for (const auto &NextMI : *MI->getParent()) {
2631 if (NextMI.isDebugInstr())
2632 continue;
2633 DL = NextMI.getDebugLoc();
2634 if (DL)
2635 break;
2636 }
2637 }
2638 PrevInstBB = MI->getParent();
2639
2640 // If we still don't have a debug location, don't record a location.
2641 if (!DL)
2642 return;
2643
2644 maybeRecordLocation(DL, Asm->MF);
2645 }
2646
beginCVSubsection(DebugSubsectionKind Kind)2647 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2648 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2649 *EndLabel = MMI->getContext().createTempSymbol();
2650 OS.EmitIntValue(unsigned(Kind), 4);
2651 OS.AddComment("Subsection size");
2652 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2653 OS.EmitLabel(BeginLabel);
2654 return EndLabel;
2655 }
2656
endCVSubsection(MCSymbol * EndLabel)2657 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2658 OS.EmitLabel(EndLabel);
2659 // Every subsection must be aligned to a 4-byte boundary.
2660 OS.EmitValueToAlignment(4);
2661 }
2662
emitDebugInfoForUDTs(ArrayRef<std::pair<std::string,const DIType * >> UDTs)2663 void CodeViewDebug::emitDebugInfoForUDTs(
2664 ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2665 for (const auto &UDT : UDTs) {
2666 const DIType *T = UDT.second;
2667 assert(shouldEmitUdt(T));
2668
2669 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2670 *UDTRecordEnd = MMI->getContext().createTempSymbol();
2671 OS.AddComment("Record length");
2672 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2673 OS.EmitLabel(UDTRecordBegin);
2674
2675 OS.AddComment("Record kind: S_UDT");
2676 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2677
2678 OS.AddComment("Type");
2679 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2680
2681 emitNullTerminatedSymbolName(OS, UDT.first);
2682 OS.EmitLabel(UDTRecordEnd);
2683 }
2684 }
2685
emitDebugInfoForGlobals()2686 void CodeViewDebug::emitDebugInfoForGlobals() {
2687 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2688 GlobalMap;
2689 for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2690 SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2691 GV.getDebugInfo(GVEs);
2692 for (const auto *GVE : GVEs)
2693 GlobalMap[GVE] = &GV;
2694 }
2695
2696 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2697 for (const MDNode *Node : CUs->operands()) {
2698 const auto *CU = cast<DICompileUnit>(Node);
2699
2700 // First, emit all globals that are not in a comdat in a single symbol
2701 // substream. MSVC doesn't like it if the substream is empty, so only open
2702 // it if we have at least one global to emit.
2703 switchToDebugSectionForSymbol(nullptr);
2704 MCSymbol *EndLabel = nullptr;
2705 for (const auto *GVE : CU->getGlobalVariables()) {
2706 if (const auto *GV = GlobalMap.lookup(GVE))
2707 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2708 if (!EndLabel) {
2709 OS.AddComment("Symbol subsection for globals");
2710 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2711 }
2712 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2713 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2714 }
2715 }
2716 if (EndLabel)
2717 endCVSubsection(EndLabel);
2718
2719 // Second, emit each global that is in a comdat into its own .debug$S
2720 // section along with its own symbol substream.
2721 for (const auto *GVE : CU->getGlobalVariables()) {
2722 if (const auto *GV = GlobalMap.lookup(GVE)) {
2723 if (GV->hasComdat()) {
2724 MCSymbol *GVSym = Asm->getSymbol(GV);
2725 OS.AddComment("Symbol subsection for " +
2726 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2727 switchToDebugSectionForSymbol(GVSym);
2728 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2729 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2730 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2731 endCVSubsection(EndLabel);
2732 }
2733 }
2734 }
2735 }
2736 }
2737
emitDebugInfoForRetainedTypes()2738 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2739 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2740 for (const MDNode *Node : CUs->operands()) {
2741 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2742 if (DIType *RT = dyn_cast<DIType>(Ty)) {
2743 getTypeIndex(RT);
2744 // FIXME: Add to global/local DTU list.
2745 }
2746 }
2747 }
2748 }
2749
emitDebugInfoForGlobal(const DIGlobalVariable * DIGV,const GlobalVariable * GV,MCSymbol * GVSym)2750 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2751 const GlobalVariable *GV,
2752 MCSymbol *GVSym) {
2753 // DataSym record, see SymbolRecord.h for more info.
2754 // FIXME: Thread local data, etc
2755 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2756 *DataEnd = MMI->getContext().createTempSymbol();
2757 const unsigned FixedLengthOfThisRecord = 12;
2758 OS.AddComment("Record length");
2759 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2760 OS.EmitLabel(DataBegin);
2761 if (DIGV->isLocalToUnit()) {
2762 if (GV->isThreadLocal()) {
2763 OS.AddComment("Record kind: S_LTHREAD32");
2764 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2765 } else {
2766 OS.AddComment("Record kind: S_LDATA32");
2767 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2768 }
2769 } else {
2770 if (GV->isThreadLocal()) {
2771 OS.AddComment("Record kind: S_GTHREAD32");
2772 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2773 } else {
2774 OS.AddComment("Record kind: S_GDATA32");
2775 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2776 }
2777 }
2778 OS.AddComment("Type");
2779 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2780 OS.AddComment("DataOffset");
2781 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2782 OS.AddComment("Segment");
2783 OS.EmitCOFFSectionIndex(GVSym);
2784 OS.AddComment("Name");
2785 emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord);
2786 OS.EmitLabel(DataEnd);
2787 }
2788