1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Common functionality for different debug information format backends.
11 // LLVM currently supports DWARF and CodeView.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "DebugHandlerBase.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/MC/MCStreamer.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "dwarfdebug"
29
30 Optional<DbgVariableLocation>
extractFromMachineInstruction(const MachineInstr & Instruction)31 DbgVariableLocation::extractFromMachineInstruction(
32 const MachineInstr &Instruction) {
33 DbgVariableLocation Location;
34 if (!Instruction.isDebugValue())
35 return None;
36 if (!Instruction.getOperand(0).isReg())
37 return None;
38 Location.Register = Instruction.getOperand(0).getReg();
39 Location.FragmentInfo.reset();
40 // We only handle expressions generated by DIExpression::appendOffset,
41 // which doesn't require a full stack machine.
42 int64_t Offset = 0;
43 const DIExpression *DIExpr = Instruction.getDebugExpression();
44 auto Op = DIExpr->expr_op_begin();
45 while (Op != DIExpr->expr_op_end()) {
46 switch (Op->getOp()) {
47 case dwarf::DW_OP_constu: {
48 int Value = Op->getArg(0);
49 ++Op;
50 if (Op != DIExpr->expr_op_end()) {
51 switch (Op->getOp()) {
52 case dwarf::DW_OP_minus:
53 Offset -= Value;
54 break;
55 case dwarf::DW_OP_plus:
56 Offset += Value;
57 break;
58 default:
59 continue;
60 }
61 }
62 } break;
63 case dwarf::DW_OP_plus_uconst:
64 Offset += Op->getArg(0);
65 break;
66 case dwarf::DW_OP_LLVM_fragment:
67 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
68 break;
69 case dwarf::DW_OP_deref:
70 Location.LoadChain.push_back(Offset);
71 Offset = 0;
72 break;
73 default:
74 return None;
75 }
76 ++Op;
77 }
78
79 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
80 // instruction.
81 // FIXME: Replace these with DIExpression.
82 if (Instruction.isIndirectDebugValue())
83 Location.LoadChain.push_back(Offset);
84
85 return Location;
86 }
87
DebugHandlerBase(AsmPrinter * A)88 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
89
90 // Each LexicalScope has first instruction and last instruction to mark
91 // beginning and end of a scope respectively. Create an inverse map that list
92 // scopes starts (and ends) with an instruction. One instruction may start (or
93 // end) multiple scopes. Ignore scopes that are not reachable.
identifyScopeMarkers()94 void DebugHandlerBase::identifyScopeMarkers() {
95 SmallVector<LexicalScope *, 4> WorkList;
96 WorkList.push_back(LScopes.getCurrentFunctionScope());
97 while (!WorkList.empty()) {
98 LexicalScope *S = WorkList.pop_back_val();
99
100 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
101 if (!Children.empty())
102 WorkList.append(Children.begin(), Children.end());
103
104 if (S->isAbstractScope())
105 continue;
106
107 for (const InsnRange &R : S->getRanges()) {
108 assert(R.first && "InsnRange does not have first instruction!");
109 assert(R.second && "InsnRange does not have second instruction!");
110 requestLabelBeforeInsn(R.first);
111 requestLabelAfterInsn(R.second);
112 }
113 }
114 }
115
116 // Return Label preceding the instruction.
getLabelBeforeInsn(const MachineInstr * MI)117 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) {
118 MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
119 assert(Label && "Didn't insert label before instruction");
120 return Label;
121 }
122
123 // Return Label immediately following the instruction.
getLabelAfterInsn(const MachineInstr * MI)124 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
125 return LabelsAfterInsn.lookup(MI);
126 }
127
128 /// If this type is derived from a base type then return base type size.
getBaseTypeSize(const DITypeRef TyRef)129 uint64_t DebugHandlerBase::getBaseTypeSize(const DITypeRef TyRef) {
130 DIType *Ty = TyRef.resolve();
131 assert(Ty);
132 DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
133 if (!DDTy)
134 return Ty->getSizeInBits();
135
136 unsigned Tag = DDTy->getTag();
137
138 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
139 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
140 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type)
141 return DDTy->getSizeInBits();
142
143 DIType *BaseType = DDTy->getBaseType().resolve();
144
145 if (!BaseType)
146 return 0;
147
148 // If this is a derived type, go ahead and get the base type, unless it's a
149 // reference then it's just the size of the field. Pointer types have no need
150 // of this since they're a different type of qualification on the type.
151 if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
152 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
153 return Ty->getSizeInBits();
154
155 return getBaseTypeSize(BaseType);
156 }
157
hasDebugInfo(const MachineModuleInfo * MMI,const MachineFunction * MF)158 static bool hasDebugInfo(const MachineModuleInfo *MMI,
159 const MachineFunction *MF) {
160 if (!MMI->hasDebugInfo())
161 return false;
162 auto *SP = MF->getFunction().getSubprogram();
163 if (!SP)
164 return false;
165 assert(SP->getUnit());
166 auto EK = SP->getUnit()->getEmissionKind();
167 if (EK == DICompileUnit::NoDebug)
168 return false;
169 return true;
170 }
171
beginFunction(const MachineFunction * MF)172 void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
173 PrevInstBB = nullptr;
174
175 if (!Asm || !hasDebugInfo(MMI, MF)) {
176 skippedNonDebugFunction();
177 return;
178 }
179
180 // Grab the lexical scopes for the function, if we don't have any of those
181 // then we're not going to be able to do anything.
182 LScopes.initialize(*MF);
183 if (LScopes.empty()) {
184 beginFunctionImpl(MF);
185 return;
186 }
187
188 // Make sure that each lexical scope will have a begin/end label.
189 identifyScopeMarkers();
190
191 // Calculate history for local variables.
192 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
193 calculateDbgValueHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
194 DbgValues);
195 LLVM_DEBUG(DbgValues.dump());
196
197 // Request labels for the full history.
198 for (const auto &I : DbgValues) {
199 const auto &Ranges = I.second;
200 if (Ranges.empty())
201 continue;
202
203 // The first mention of a function argument gets the CurrentFnBegin
204 // label, so arguments are visible when breaking at function entry.
205 const DILocalVariable *DIVar = Ranges.front().first->getDebugVariable();
206 if (DIVar->isParameter() &&
207 getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) {
208 LabelsBeforeInsn[Ranges.front().first] = Asm->getFunctionBegin();
209 if (Ranges.front().first->getDebugExpression()->isFragment()) {
210 // Mark all non-overlapping initial fragments.
211 for (auto I = Ranges.begin(); I != Ranges.end(); ++I) {
212 const DIExpression *Fragment = I->first->getDebugExpression();
213 if (std::all_of(Ranges.begin(), I,
214 [&](DbgValueHistoryMap::InstrRange Pred) {
215 return !Fragment->fragmentsOverlap(
216 Pred.first->getDebugExpression());
217 }))
218 LabelsBeforeInsn[I->first] = Asm->getFunctionBegin();
219 else
220 break;
221 }
222 }
223 }
224
225 for (const auto &Range : Ranges) {
226 requestLabelBeforeInsn(Range.first);
227 if (Range.second)
228 requestLabelAfterInsn(Range.second);
229 }
230 }
231
232 PrevInstLoc = DebugLoc();
233 PrevLabel = Asm->getFunctionBegin();
234 beginFunctionImpl(MF);
235 }
236
beginInstruction(const MachineInstr * MI)237 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) {
238 if (!MMI->hasDebugInfo())
239 return;
240
241 assert(CurMI == nullptr);
242 CurMI = MI;
243
244 // Insert labels where requested.
245 DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
246 LabelsBeforeInsn.find(MI);
247
248 // No label needed.
249 if (I == LabelsBeforeInsn.end())
250 return;
251
252 // Label already assigned.
253 if (I->second)
254 return;
255
256 if (!PrevLabel) {
257 PrevLabel = MMI->getContext().createTempSymbol();
258 Asm->OutStreamer->EmitLabel(PrevLabel);
259 }
260 I->second = PrevLabel;
261 }
262
endInstruction()263 void DebugHandlerBase::endInstruction() {
264 if (!MMI->hasDebugInfo())
265 return;
266
267 assert(CurMI != nullptr);
268 // Don't create a new label after DBG_VALUE and other instructions that don't
269 // generate code.
270 if (!CurMI->isMetaInstruction()) {
271 PrevLabel = nullptr;
272 PrevInstBB = CurMI->getParent();
273 }
274
275 DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
276 LabelsAfterInsn.find(CurMI);
277 CurMI = nullptr;
278
279 // No label needed.
280 if (I == LabelsAfterInsn.end())
281 return;
282
283 // Label already assigned.
284 if (I->second)
285 return;
286
287 // We need a label after this instruction.
288 if (!PrevLabel) {
289 PrevLabel = MMI->getContext().createTempSymbol();
290 Asm->OutStreamer->EmitLabel(PrevLabel);
291 }
292 I->second = PrevLabel;
293 }
294
endFunction(const MachineFunction * MF)295 void DebugHandlerBase::endFunction(const MachineFunction *MF) {
296 if (hasDebugInfo(MMI, MF))
297 endFunctionImpl(MF);
298 DbgValues.clear();
299 LabelsBeforeInsn.clear();
300 LabelsAfterInsn.clear();
301 }
302