1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The machine combiner pass uses machine trace metrics to ensure the combined
11 // instructions do not lengthen the critical path or the resource depth.
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineLoopInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/MachineTraceMetrics.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30
31 using namespace llvm;
32
33 #define DEBUG_TYPE "machine-combiner"
34
35 STATISTIC(NumInstCombined, "Number of machineinst combined");
36
37 static cl::opt<unsigned>
38 inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
39 cl::desc("Incremental depth computation will be used for basic "
40 "blocks with more instructions."), cl::init(500));
41
42 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
43 cl::desc("Dump all substituted intrs"),
44 cl::init(false));
45
46 #ifdef EXPENSIVE_CHECKS
47 static cl::opt<bool> VerifyPatternOrder(
48 "machine-combiner-verify-pattern-order", cl::Hidden,
49 cl::desc(
50 "Verify that the generated patterns are ordered by increasing latency"),
51 cl::init(true));
52 #else
53 static cl::opt<bool> VerifyPatternOrder(
54 "machine-combiner-verify-pattern-order", cl::Hidden,
55 cl::desc(
56 "Verify that the generated patterns are ordered by increasing latency"),
57 cl::init(false));
58 #endif
59
60 namespace {
61 class MachineCombiner : public MachineFunctionPass {
62 const TargetSubtargetInfo *STI;
63 const TargetInstrInfo *TII;
64 const TargetRegisterInfo *TRI;
65 MCSchedModel SchedModel;
66 MachineRegisterInfo *MRI;
67 MachineLoopInfo *MLI; // Current MachineLoopInfo
68 MachineTraceMetrics *Traces;
69 MachineTraceMetrics::Ensemble *MinInstr;
70
71 TargetSchedModel TSchedModel;
72
73 /// True if optimizing for code size.
74 bool OptSize;
75
76 public:
77 static char ID;
MachineCombiner()78 MachineCombiner() : MachineFunctionPass(ID) {
79 initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
80 }
81 void getAnalysisUsage(AnalysisUsage &AU) const override;
82 bool runOnMachineFunction(MachineFunction &MF) override;
getPassName() const83 StringRef getPassName() const override { return "Machine InstCombiner"; }
84
85 private:
86 bool doSubstitute(unsigned NewSize, unsigned OldSize);
87 bool combineInstructions(MachineBasicBlock *);
88 MachineInstr *getOperandDef(const MachineOperand &MO);
89 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
90 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
91 MachineTraceMetrics::Trace BlockTrace);
92 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
93 MachineTraceMetrics::Trace BlockTrace);
94 bool
95 improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
96 MachineTraceMetrics::Trace BlockTrace,
97 SmallVectorImpl<MachineInstr *> &InsInstrs,
98 SmallVectorImpl<MachineInstr *> &DelInstrs,
99 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
100 MachineCombinerPattern Pattern, bool SlackIsAccurate);
101 bool preservesResourceLen(MachineBasicBlock *MBB,
102 MachineTraceMetrics::Trace BlockTrace,
103 SmallVectorImpl<MachineInstr *> &InsInstrs,
104 SmallVectorImpl<MachineInstr *> &DelInstrs);
105 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
106 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
107 std::pair<unsigned, unsigned>
108 getLatenciesForInstrSequences(MachineInstr &MI,
109 SmallVectorImpl<MachineInstr *> &InsInstrs,
110 SmallVectorImpl<MachineInstr *> &DelInstrs,
111 MachineTraceMetrics::Trace BlockTrace);
112
113 void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
114 SmallVector<MachineCombinerPattern, 16> &Patterns);
115 };
116 }
117
118 char MachineCombiner::ID = 0;
119 char &llvm::MachineCombinerID = MachineCombiner::ID;
120
121 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
122 "Machine InstCombiner", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)123 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
124 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
125 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
126 false, false)
127
128 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
129 AU.setPreservesCFG();
130 AU.addPreserved<MachineDominatorTree>();
131 AU.addRequired<MachineLoopInfo>();
132 AU.addPreserved<MachineLoopInfo>();
133 AU.addRequired<MachineTraceMetrics>();
134 AU.addPreserved<MachineTraceMetrics>();
135 MachineFunctionPass::getAnalysisUsage(AU);
136 }
137
getOperandDef(const MachineOperand & MO)138 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
139 MachineInstr *DefInstr = nullptr;
140 // We need a virtual register definition.
141 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
142 DefInstr = MRI->getUniqueVRegDef(MO.getReg());
143 // PHI's have no depth etc.
144 if (DefInstr && DefInstr->isPHI())
145 DefInstr = nullptr;
146 return DefInstr;
147 }
148
149 /// Computes depth of instructions in vector \InsInstr.
150 ///
151 /// \param InsInstrs is a vector of machine instructions
152 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
153 /// of defining machine instruction in \p InsInstrs
154 /// \param BlockTrace is a trace of machine instructions
155 ///
156 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
157 unsigned
getDepth(SmallVectorImpl<MachineInstr * > & InsInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg,MachineTraceMetrics::Trace BlockTrace)158 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
159 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
160 MachineTraceMetrics::Trace BlockTrace) {
161 SmallVector<unsigned, 16> InstrDepth;
162 assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
163 "Missing machine model\n");
164
165 // For each instruction in the new sequence compute the depth based on the
166 // operands. Use the trace information when possible. For new operands which
167 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
168 for (auto *InstrPtr : InsInstrs) { // for each Use
169 unsigned IDepth = 0;
170 for (const MachineOperand &MO : InstrPtr->operands()) {
171 // Check for virtual register operand.
172 if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
173 continue;
174 if (!MO.isUse())
175 continue;
176 unsigned DepthOp = 0;
177 unsigned LatencyOp = 0;
178 DenseMap<unsigned, unsigned>::iterator II =
179 InstrIdxForVirtReg.find(MO.getReg());
180 if (II != InstrIdxForVirtReg.end()) {
181 // Operand is new virtual register not in trace
182 assert(II->second < InstrDepth.size() && "Bad Index");
183 MachineInstr *DefInstr = InsInstrs[II->second];
184 assert(DefInstr &&
185 "There must be a definition for a new virtual register");
186 DepthOp = InstrDepth[II->second];
187 int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
188 int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
189 LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
190 InstrPtr, UseIdx);
191 } else {
192 MachineInstr *DefInstr = getOperandDef(MO);
193 if (DefInstr) {
194 DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
195 LatencyOp = TSchedModel.computeOperandLatency(
196 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
197 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
198 }
199 }
200 IDepth = std::max(IDepth, DepthOp + LatencyOp);
201 }
202 InstrDepth.push_back(IDepth);
203 }
204 unsigned NewRootIdx = InsInstrs.size() - 1;
205 return InstrDepth[NewRootIdx];
206 }
207
208 /// Computes instruction latency as max of latency of defined operands.
209 ///
210 /// \param Root is a machine instruction that could be replaced by NewRoot.
211 /// It is used to compute a more accurate latency information for NewRoot in
212 /// case there is a dependent instruction in the same trace (\p BlockTrace)
213 /// \param NewRoot is the instruction for which the latency is computed
214 /// \param BlockTrace is a trace of machine instructions
215 ///
216 /// \returns Latency of \p NewRoot
getLatency(MachineInstr * Root,MachineInstr * NewRoot,MachineTraceMetrics::Trace BlockTrace)217 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
218 MachineTraceMetrics::Trace BlockTrace) {
219 assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
220 "Missing machine model\n");
221
222 // Check each definition in NewRoot and compute the latency
223 unsigned NewRootLatency = 0;
224
225 for (const MachineOperand &MO : NewRoot->operands()) {
226 // Check for virtual register operand.
227 if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
228 continue;
229 if (!MO.isDef())
230 continue;
231 // Get the first instruction that uses MO
232 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
233 RI++;
234 MachineInstr *UseMO = RI->getParent();
235 unsigned LatencyOp = 0;
236 if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
237 LatencyOp = TSchedModel.computeOperandLatency(
238 NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
239 UseMO->findRegisterUseOperandIdx(MO.getReg()));
240 } else {
241 LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
242 }
243 NewRootLatency = std::max(NewRootLatency, LatencyOp);
244 }
245 return NewRootLatency;
246 }
247
248 /// The combiner's goal may differ based on which pattern it is attempting
249 /// to optimize.
250 enum class CombinerObjective {
251 MustReduceDepth, // The data dependency chain must be improved.
252 Default // The critical path must not be lengthened.
253 };
254
getCombinerObjective(MachineCombinerPattern P)255 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
256 // TODO: If C++ ever gets a real enum class, make this part of the
257 // MachineCombinerPattern class.
258 switch (P) {
259 case MachineCombinerPattern::REASSOC_AX_BY:
260 case MachineCombinerPattern::REASSOC_AX_YB:
261 case MachineCombinerPattern::REASSOC_XA_BY:
262 case MachineCombinerPattern::REASSOC_XA_YB:
263 return CombinerObjective::MustReduceDepth;
264 default:
265 return CombinerObjective::Default;
266 }
267 }
268
269 /// Estimate the latency of the new and original instruction sequence by summing
270 /// up the latencies of the inserted and deleted instructions. This assumes
271 /// that the inserted and deleted instructions are dependent instruction chains,
272 /// which might not hold in all cases.
getLatenciesForInstrSequences(MachineInstr & MI,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,MachineTraceMetrics::Trace BlockTrace)273 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
274 MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
275 SmallVectorImpl<MachineInstr *> &DelInstrs,
276 MachineTraceMetrics::Trace BlockTrace) {
277 assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
278 unsigned NewRootLatency = 0;
279 // NewRoot is the last instruction in the \p InsInstrs vector.
280 MachineInstr *NewRoot = InsInstrs.back();
281 for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
282 NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
283 NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
284
285 unsigned RootLatency = 0;
286 for (auto I : DelInstrs)
287 RootLatency += TSchedModel.computeInstrLatency(I);
288
289 return {NewRootLatency, RootLatency};
290 }
291
292 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
293 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
294 /// sequence to replace the old sequence is that it cannot lengthen the critical
295 /// path. The definition of "improve" may be restricted by specifying that the
296 /// new path improves the data dependency chain (MustReduceDepth).
improvesCriticalPathLen(MachineBasicBlock * MBB,MachineInstr * Root,MachineTraceMetrics::Trace BlockTrace,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg,MachineCombinerPattern Pattern,bool SlackIsAccurate)297 bool MachineCombiner::improvesCriticalPathLen(
298 MachineBasicBlock *MBB, MachineInstr *Root,
299 MachineTraceMetrics::Trace BlockTrace,
300 SmallVectorImpl<MachineInstr *> &InsInstrs,
301 SmallVectorImpl<MachineInstr *> &DelInstrs,
302 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
303 MachineCombinerPattern Pattern,
304 bool SlackIsAccurate) {
305 assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
306 "Missing machine model\n");
307 // Get depth and latency of NewRoot and Root.
308 unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
309 unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
310
311 LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: "
312 << NewRootDepth << "\tRootDepth: " << RootDepth);
313
314 // For a transform such as reassociation, the cost equation is
315 // conservatively calculated so that we must improve the depth (data
316 // dependency cycles) in the critical path to proceed with the transform.
317 // Being conservative also protects against inaccuracies in the underlying
318 // machine trace metrics and CPU models.
319 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
320 LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
321 LLVM_DEBUG(NewRootDepth < RootDepth
322 ? dbgs() << "\t and it does it\n"
323 : dbgs() << "\t but it does NOT do it\n");
324 return NewRootDepth < RootDepth;
325 }
326
327 // A more flexible cost calculation for the critical path includes the slack
328 // of the original code sequence. This may allow the transform to proceed
329 // even if the instruction depths (data dependency cycles) become worse.
330
331 // Account for the latency of the inserted and deleted instructions by
332 unsigned NewRootLatency, RootLatency;
333 std::tie(NewRootLatency, RootLatency) =
334 getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
335
336 unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
337 unsigned NewCycleCount = NewRootDepth + NewRootLatency;
338 unsigned OldCycleCount =
339 RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
340 LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
341 << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
342 << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
343 << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
344 << "\n\tRootDepth + RootLatency + RootSlack = "
345 << OldCycleCount;);
346 LLVM_DEBUG(NewCycleCount <= OldCycleCount
347 ? dbgs() << "\n\t It IMPROVES PathLen because"
348 : dbgs() << "\n\t It DOES NOT improve PathLen because");
349 LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
350 << ", OldCycleCount = " << OldCycleCount << "\n");
351
352 return NewCycleCount <= OldCycleCount;
353 }
354
355 /// helper routine to convert instructions into SC
instr2instrSC(SmallVectorImpl<MachineInstr * > & Instrs,SmallVectorImpl<const MCSchedClassDesc * > & InstrsSC)356 void MachineCombiner::instr2instrSC(
357 SmallVectorImpl<MachineInstr *> &Instrs,
358 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
359 for (auto *InstrPtr : Instrs) {
360 unsigned Opc = InstrPtr->getOpcode();
361 unsigned Idx = TII->get(Opc).getSchedClass();
362 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
363 InstrsSC.push_back(SC);
364 }
365 }
366
367 /// True when the new instructions do not increase resource length
preservesResourceLen(MachineBasicBlock * MBB,MachineTraceMetrics::Trace BlockTrace,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs)368 bool MachineCombiner::preservesResourceLen(
369 MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
370 SmallVectorImpl<MachineInstr *> &InsInstrs,
371 SmallVectorImpl<MachineInstr *> &DelInstrs) {
372 if (!TSchedModel.hasInstrSchedModel())
373 return true;
374
375 // Compute current resource length
376
377 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
378 SmallVector <const MachineBasicBlock *, 1> MBBarr;
379 MBBarr.push_back(MBB);
380 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
381
382 // Deal with SC rather than Instructions.
383 SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
384 SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
385
386 instr2instrSC(InsInstrs, InsInstrsSC);
387 instr2instrSC(DelInstrs, DelInstrsSC);
388
389 ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
390 ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
391
392 // Compute new resource length.
393 unsigned ResLenAfterCombine =
394 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
395
396 LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
397 << ResLenBeforeCombine
398 << " and after: " << ResLenAfterCombine << "\n";);
399 LLVM_DEBUG(
400 ResLenAfterCombine <= ResLenBeforeCombine
401 ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n"
402 : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource "
403 "Length\n");
404
405 return ResLenAfterCombine <= ResLenBeforeCombine;
406 }
407
408 /// \returns true when new instruction sequence should be generated
409 /// independent if it lengthens critical path or not
doSubstitute(unsigned NewSize,unsigned OldSize)410 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
411 if (OptSize && (NewSize < OldSize))
412 return true;
413 if (!TSchedModel.hasInstrSchedModelOrItineraries())
414 return true;
415 return false;
416 }
417
418 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
419 /// depths if requested.
420 ///
421 /// \param MBB basic block to insert instructions in
422 /// \param MI current machine instruction
423 /// \param InsInstrs new instructions to insert in \p MBB
424 /// \param DelInstrs instruction to delete from \p MBB
425 /// \param MinInstr is a pointer to the machine trace information
426 /// \param RegUnits set of live registers, needed to compute instruction depths
427 /// \param IncrementalUpdate if true, compute instruction depths incrementally,
428 /// otherwise invalidate the trace
insertDeleteInstructions(MachineBasicBlock * MBB,MachineInstr & MI,SmallVector<MachineInstr *,16> InsInstrs,SmallVector<MachineInstr *,16> DelInstrs,MachineTraceMetrics::Ensemble * MinInstr,SparseSet<LiveRegUnit> & RegUnits,bool IncrementalUpdate)429 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
430 SmallVector<MachineInstr *, 16> InsInstrs,
431 SmallVector<MachineInstr *, 16> DelInstrs,
432 MachineTraceMetrics::Ensemble *MinInstr,
433 SparseSet<LiveRegUnit> &RegUnits,
434 bool IncrementalUpdate) {
435 for (auto *InstrPtr : InsInstrs)
436 MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
437
438 for (auto *InstrPtr : DelInstrs) {
439 InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
440 // Erase all LiveRegs defined by the removed instruction
441 for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
442 if (I->MI == InstrPtr)
443 I = RegUnits.erase(I);
444 else
445 I++;
446 }
447 }
448
449 if (IncrementalUpdate)
450 for (auto *InstrPtr : InsInstrs)
451 MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
452 else
453 MinInstr->invalidate(MBB);
454
455 NumInstCombined++;
456 }
457
458 // Check that the difference between original and new latency is decreasing for
459 // later patterns. This helps to discover sub-optimal pattern orderings.
verifyPatternOrder(MachineBasicBlock * MBB,MachineInstr & Root,SmallVector<MachineCombinerPattern,16> & Patterns)460 void MachineCombiner::verifyPatternOrder(
461 MachineBasicBlock *MBB, MachineInstr &Root,
462 SmallVector<MachineCombinerPattern, 16> &Patterns) {
463 long PrevLatencyDiff = std::numeric_limits<long>::max();
464 (void)PrevLatencyDiff; // Variable is used in assert only.
465 for (auto P : Patterns) {
466 SmallVector<MachineInstr *, 16> InsInstrs;
467 SmallVector<MachineInstr *, 16> DelInstrs;
468 DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
469 TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
470 InstrIdxForVirtReg);
471 // Found pattern, but did not generate alternative sequence.
472 // This can happen e.g. when an immediate could not be materialized
473 // in a single instruction.
474 if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
475 continue;
476
477 unsigned NewRootLatency, RootLatency;
478 std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
479 Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
480 long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
481 assert(CurrentLatencyDiff <= PrevLatencyDiff &&
482 "Current pattern is better than previous pattern.");
483 PrevLatencyDiff = CurrentLatencyDiff;
484 }
485 }
486
487 /// Substitute a slow code sequence with a faster one by
488 /// evaluating instruction combining pattern.
489 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
490 /// combining based on machine trace metrics. Only combine a sequence of
491 /// instructions when this neither lengthens the critical path nor increases
492 /// resource pressure. When optimizing for codesize always combine when the new
493 /// sequence is shorter.
combineInstructions(MachineBasicBlock * MBB)494 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
495 bool Changed = false;
496 LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
497
498 bool IncrementalUpdate = false;
499 auto BlockIter = MBB->begin();
500 decltype(BlockIter) LastUpdate;
501 // Check if the block is in a loop.
502 const MachineLoop *ML = MLI->getLoopFor(MBB);
503 if (!MinInstr)
504 MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
505
506 SparseSet<LiveRegUnit> RegUnits;
507 RegUnits.setUniverse(TRI->getNumRegUnits());
508
509 while (BlockIter != MBB->end()) {
510 auto &MI = *BlockIter++;
511 SmallVector<MachineCombinerPattern, 16> Patterns;
512 // The motivating example is:
513 //
514 // MUL Other MUL_op1 MUL_op2 Other
515 // \ / \ | /
516 // ADD/SUB => MADD/MSUB
517 // (=Root) (=NewRoot)
518
519 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
520 // usually beneficial for code size it unfortunately can hurt performance
521 // when the ADD is on the critical path, but the MUL is not. With the
522 // substitution the MUL becomes part of the critical path (in form of the
523 // MADD) and can lengthen it on architectures where the MADD latency is
524 // longer than the ADD latency.
525 //
526 // For each instruction we check if it can be the root of a combiner
527 // pattern. Then for each pattern the new code sequence in form of MI is
528 // generated and evaluated. When the efficiency criteria (don't lengthen
529 // critical path, don't use more resources) is met the new sequence gets
530 // hooked up into the basic block before the old sequence is removed.
531 //
532 // The algorithm does not try to evaluate all patterns and pick the best.
533 // This is only an artificial restriction though. In practice there is
534 // mostly one pattern, and getMachineCombinerPatterns() can order patterns
535 // based on an internal cost heuristic. If
536 // machine-combiner-verify-pattern-order is enabled, all patterns are
537 // checked to ensure later patterns do not provide better latency savings.
538
539 if (!TII->getMachineCombinerPatterns(MI, Patterns))
540 continue;
541
542 if (VerifyPatternOrder)
543 verifyPatternOrder(MBB, MI, Patterns);
544
545 for (auto P : Patterns) {
546 SmallVector<MachineInstr *, 16> InsInstrs;
547 SmallVector<MachineInstr *, 16> DelInstrs;
548 DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
549 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
550 InstrIdxForVirtReg);
551 unsigned NewInstCount = InsInstrs.size();
552 unsigned OldInstCount = DelInstrs.size();
553 // Found pattern, but did not generate alternative sequence.
554 // This can happen e.g. when an immediate could not be materialized
555 // in a single instruction.
556 if (!NewInstCount)
557 continue;
558
559 LLVM_DEBUG(if (dump_intrs) {
560 dbgs() << "\tFor the Pattern (" << (int)P << ") these instructions could be removed\n";
561 for (auto const *InstrPtr : DelInstrs) {
562 dbgs() << "\t\t" << STI->getSchedInfoStr(*InstrPtr) << ": ";
563 InstrPtr->print(dbgs(), false, false, false, TII);
564 }
565 dbgs() << "\tThese instructions could replace the removed ones\n";
566 for (auto const *InstrPtr : InsInstrs) {
567 dbgs() << "\t\t" << STI->getSchedInfoStr(*InstrPtr) << ": ";
568 InstrPtr->print(dbgs(), false, false, false, TII);
569 }
570 });
571
572 bool SubstituteAlways = false;
573 if (ML && TII->isThroughputPattern(P))
574 SubstituteAlways = true;
575
576 if (IncrementalUpdate) {
577 // Update depths since the last incremental update.
578 MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
579 LastUpdate = BlockIter;
580 }
581
582 // Substitute when we optimize for codesize and the new sequence has
583 // fewer instructions OR
584 // the new sequence neither lengthens the critical path nor increases
585 // resource pressure.
586 if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount)) {
587 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
588 RegUnits, IncrementalUpdate);
589 // Eagerly stop after the first pattern fires.
590 Changed = true;
591 break;
592 } else {
593 // For big basic blocks, we only compute the full trace the first time
594 // we hit this. We do not invalidate the trace, but instead update the
595 // instruction depths incrementally.
596 // NOTE: Only the instruction depths up to MI are accurate. All other
597 // trace information is not updated.
598 MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
599 Traces->verifyAnalysis();
600 if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
601 InstrIdxForVirtReg, P,
602 !IncrementalUpdate) &&
603 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
604 if (MBB->size() > inc_threshold) {
605 // Use incremental depth updates for basic blocks above treshold
606 IncrementalUpdate = true;
607 LastUpdate = BlockIter;
608 }
609
610 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
611 RegUnits, IncrementalUpdate);
612
613 // Eagerly stop after the first pattern fires.
614 Changed = true;
615 break;
616 }
617 // Cleanup instructions of the alternative code sequence. There is no
618 // use for them.
619 MachineFunction *MF = MBB->getParent();
620 for (auto *InstrPtr : InsInstrs)
621 MF->DeleteMachineInstr(InstrPtr);
622 }
623 InstrIdxForVirtReg.clear();
624 }
625 }
626
627 if (Changed && IncrementalUpdate)
628 Traces->invalidate(MBB);
629 return Changed;
630 }
631
runOnMachineFunction(MachineFunction & MF)632 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
633 STI = &MF.getSubtarget();
634 TII = STI->getInstrInfo();
635 TRI = STI->getRegisterInfo();
636 SchedModel = STI->getSchedModel();
637 TSchedModel.init(STI);
638 MRI = &MF.getRegInfo();
639 MLI = &getAnalysis<MachineLoopInfo>();
640 Traces = &getAnalysis<MachineTraceMetrics>();
641 MinInstr = nullptr;
642 OptSize = MF.getFunction().optForSize();
643
644 LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
645 if (!TII->useMachineCombiner()) {
646 LLVM_DEBUG(
647 dbgs()
648 << " Skipping pass: Target does not support machine combiner\n");
649 return false;
650 }
651
652 bool Changed = false;
653
654 // Try to combine instructions.
655 for (auto &MBB : MF)
656 Changed |= combineInstructions(&MBB);
657
658 return Changed;
659 }
660