1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/SelectionDAGISel.h"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/PostOrderIterator.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/CFG.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/CodeGen/FastISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachinePassRegistry.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/SchedulerRegistry.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGNodes.h"
50 #include "llvm/CodeGen/StackProtector.h"
51 #include "llvm/CodeGen/TargetInstrInfo.h"
52 #include "llvm/CodeGen/TargetLowering.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/IR/BasicBlock.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugInfoMetadata.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DiagnosticInfo.h"
62 #include "llvm/IR/Dominators.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/InlineAsm.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/IntrinsicInst.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCInstrDesc.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CodeGen.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/Timer.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetIntrinsicInfo.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <limits>
97 #include <memory>
98 #include <string>
99 #include <utility>
100 #include <vector>
101
102 using namespace llvm;
103
104 #define DEBUG_TYPE "isel"
105
106 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
107 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
108 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
109 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
110 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
111 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
112 STATISTIC(NumFastIselFailLowerArguments,
113 "Number of entry blocks where fast isel failed to lower arguments");
114
115 static cl::opt<int> EnableFastISelAbort(
116 "fast-isel-abort", cl::Hidden,
117 cl::desc("Enable abort calls when \"fast\" instruction selection "
118 "fails to lower an instruction: 0 disable the abort, 1 will "
119 "abort but for args, calls and terminators, 2 will also "
120 "abort for argument lowering, and 3 will never fallback "
121 "to SelectionDAG."));
122
123 static cl::opt<bool> EnableFastISelFallbackReport(
124 "fast-isel-report-on-fallback", cl::Hidden,
125 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
126 "falls back to SelectionDAG."));
127
128 static cl::opt<bool>
129 UseMBPI("use-mbpi",
130 cl::desc("use Machine Branch Probability Info"),
131 cl::init(true), cl::Hidden);
132
133 #ifndef NDEBUG
134 static cl::opt<std::string>
135 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
136 cl::desc("Only display the basic block whose name "
137 "matches this for all view-*-dags options"));
138 static cl::opt<bool>
139 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
140 cl::desc("Pop up a window to show dags before the first "
141 "dag combine pass"));
142 static cl::opt<bool>
143 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
144 cl::desc("Pop up a window to show dags before legalize types"));
145 static cl::opt<bool>
146 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
147 cl::desc("Pop up a window to show dags before legalize"));
148 static cl::opt<bool>
149 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
150 cl::desc("Pop up a window to show dags before the second "
151 "dag combine pass"));
152 static cl::opt<bool>
153 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
154 cl::desc("Pop up a window to show dags before the post legalize types"
155 " dag combine pass"));
156 static cl::opt<bool>
157 ViewISelDAGs("view-isel-dags", cl::Hidden,
158 cl::desc("Pop up a window to show isel dags as they are selected"));
159 static cl::opt<bool>
160 ViewSchedDAGs("view-sched-dags", cl::Hidden,
161 cl::desc("Pop up a window to show sched dags as they are processed"));
162 static cl::opt<bool>
163 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
164 cl::desc("Pop up a window to show SUnit dags after they are processed"));
165 #else
166 static const bool ViewDAGCombine1 = false,
167 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
168 ViewDAGCombine2 = false,
169 ViewDAGCombineLT = false,
170 ViewISelDAGs = false, ViewSchedDAGs = false,
171 ViewSUnitDAGs = false;
172 #endif
173
174 //===---------------------------------------------------------------------===//
175 ///
176 /// RegisterScheduler class - Track the registration of instruction schedulers.
177 ///
178 //===---------------------------------------------------------------------===//
179 MachinePassRegistry RegisterScheduler::Registry;
180
181 //===---------------------------------------------------------------------===//
182 ///
183 /// ISHeuristic command line option for instruction schedulers.
184 ///
185 //===---------------------------------------------------------------------===//
186 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
187 RegisterPassParser<RegisterScheduler>>
188 ISHeuristic("pre-RA-sched",
189 cl::init(&createDefaultScheduler), cl::Hidden,
190 cl::desc("Instruction schedulers available (before register"
191 " allocation):"));
192
193 static RegisterScheduler
194 defaultListDAGScheduler("default", "Best scheduler for the target",
195 createDefaultScheduler);
196
197 namespace llvm {
198
199 //===--------------------------------------------------------------------===//
200 /// This class is used by SelectionDAGISel to temporarily override
201 /// the optimization level on a per-function basis.
202 class OptLevelChanger {
203 SelectionDAGISel &IS;
204 CodeGenOpt::Level SavedOptLevel;
205 bool SavedFastISel;
206
207 public:
OptLevelChanger(SelectionDAGISel & ISel,CodeGenOpt::Level NewOptLevel)208 OptLevelChanger(SelectionDAGISel &ISel,
209 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
210 SavedOptLevel = IS.OptLevel;
211 if (NewOptLevel == SavedOptLevel)
212 return;
213 IS.OptLevel = NewOptLevel;
214 IS.TM.setOptLevel(NewOptLevel);
215 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
216 << IS.MF->getFunction().getName() << "\n");
217 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
218 << NewOptLevel << "\n");
219 SavedFastISel = IS.TM.Options.EnableFastISel;
220 if (NewOptLevel == CodeGenOpt::None) {
221 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
222 LLVM_DEBUG(
223 dbgs() << "\tFastISel is "
224 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
225 << "\n");
226 }
227 }
228
~OptLevelChanger()229 ~OptLevelChanger() {
230 if (IS.OptLevel == SavedOptLevel)
231 return;
232 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
233 << IS.MF->getFunction().getName() << "\n");
234 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
235 << SavedOptLevel << "\n");
236 IS.OptLevel = SavedOptLevel;
237 IS.TM.setOptLevel(SavedOptLevel);
238 IS.TM.setFastISel(SavedFastISel);
239 }
240 };
241
242 //===--------------------------------------------------------------------===//
243 /// createDefaultScheduler - This creates an instruction scheduler appropriate
244 /// for the target.
createDefaultScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)245 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
246 CodeGenOpt::Level OptLevel) {
247 const TargetLowering *TLI = IS->TLI;
248 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
249
250 // Try first to see if the Target has its own way of selecting a scheduler
251 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
252 return SchedulerCtor(IS, OptLevel);
253 }
254
255 if (OptLevel == CodeGenOpt::None ||
256 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
257 TLI->getSchedulingPreference() == Sched::Source)
258 return createSourceListDAGScheduler(IS, OptLevel);
259 if (TLI->getSchedulingPreference() == Sched::RegPressure)
260 return createBURRListDAGScheduler(IS, OptLevel);
261 if (TLI->getSchedulingPreference() == Sched::Hybrid)
262 return createHybridListDAGScheduler(IS, OptLevel);
263 if (TLI->getSchedulingPreference() == Sched::VLIW)
264 return createVLIWDAGScheduler(IS, OptLevel);
265 assert(TLI->getSchedulingPreference() == Sched::ILP &&
266 "Unknown sched type!");
267 return createILPListDAGScheduler(IS, OptLevel);
268 }
269
270 } // end namespace llvm
271
272 // EmitInstrWithCustomInserter - This method should be implemented by targets
273 // that mark instructions with the 'usesCustomInserter' flag. These
274 // instructions are special in various ways, which require special support to
275 // insert. The specified MachineInstr is created but not inserted into any
276 // basic blocks, and this method is called to expand it into a sequence of
277 // instructions, potentially also creating new basic blocks and control flow.
278 // When new basic blocks are inserted and the edges from MBB to its successors
279 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
280 // DenseMap.
281 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const282 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
283 MachineBasicBlock *MBB) const {
284 #ifndef NDEBUG
285 dbgs() << "If a target marks an instruction with "
286 "'usesCustomInserter', it must implement "
287 "TargetLowering::EmitInstrWithCustomInserter!";
288 #endif
289 llvm_unreachable(nullptr);
290 }
291
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const292 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
293 SDNode *Node) const {
294 assert(!MI.hasPostISelHook() &&
295 "If a target marks an instruction with 'hasPostISelHook', "
296 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
297 }
298
299 //===----------------------------------------------------------------------===//
300 // SelectionDAGISel code
301 //===----------------------------------------------------------------------===//
302
SelectionDAGISel(TargetMachine & tm,CodeGenOpt::Level OL)303 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
304 CodeGenOpt::Level OL) :
305 MachineFunctionPass(ID), TM(tm),
306 FuncInfo(new FunctionLoweringInfo()),
307 CurDAG(new SelectionDAG(tm, OL)),
308 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
309 AA(), GFI(),
310 OptLevel(OL),
311 DAGSize(0) {
312 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
313 initializeBranchProbabilityInfoWrapperPassPass(
314 *PassRegistry::getPassRegistry());
315 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
316 initializeTargetLibraryInfoWrapperPassPass(
317 *PassRegistry::getPassRegistry());
318 }
319
~SelectionDAGISel()320 SelectionDAGISel::~SelectionDAGISel() {
321 delete SDB;
322 delete CurDAG;
323 delete FuncInfo;
324 }
325
getAnalysisUsage(AnalysisUsage & AU) const326 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
327 if (OptLevel != CodeGenOpt::None)
328 AU.addRequired<AAResultsWrapperPass>();
329 AU.addRequired<GCModuleInfo>();
330 AU.addRequired<StackProtector>();
331 AU.addPreserved<GCModuleInfo>();
332 AU.addRequired<TargetLibraryInfoWrapperPass>();
333 AU.addRequired<TargetTransformInfoWrapperPass>();
334 if (UseMBPI && OptLevel != CodeGenOpt::None)
335 AU.addRequired<BranchProbabilityInfoWrapperPass>();
336 MachineFunctionPass::getAnalysisUsage(AU);
337 }
338
339 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
340 /// may trap on it. In this case we have to split the edge so that the path
341 /// through the predecessor block that doesn't go to the phi block doesn't
342 /// execute the possibly trapping instruction. If available, we pass domtree
343 /// and loop info to be updated when we split critical edges. This is because
344 /// SelectionDAGISel preserves these analyses.
345 /// This is required for correctness, so it must be done at -O0.
346 ///
SplitCriticalSideEffectEdges(Function & Fn,DominatorTree * DT,LoopInfo * LI)347 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
348 LoopInfo *LI) {
349 // Loop for blocks with phi nodes.
350 for (BasicBlock &BB : Fn) {
351 PHINode *PN = dyn_cast<PHINode>(BB.begin());
352 if (!PN) continue;
353
354 ReprocessBlock:
355 // For each block with a PHI node, check to see if any of the input values
356 // are potentially trapping constant expressions. Constant expressions are
357 // the only potentially trapping value that can occur as the argument to a
358 // PHI.
359 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
360 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
361 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
362 if (!CE || !CE->canTrap()) continue;
363
364 // The only case we have to worry about is when the edge is critical.
365 // Since this block has a PHI Node, we assume it has multiple input
366 // edges: check to see if the pred has multiple successors.
367 BasicBlock *Pred = PN->getIncomingBlock(i);
368 if (Pred->getTerminator()->getNumSuccessors() == 1)
369 continue;
370
371 // Okay, we have to split this edge.
372 SplitCriticalEdge(
373 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
374 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
375 goto ReprocessBlock;
376 }
377 }
378 }
379
runOnMachineFunction(MachineFunction & mf)380 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
381 // If we already selected that function, we do not need to run SDISel.
382 if (mf.getProperties().hasProperty(
383 MachineFunctionProperties::Property::Selected))
384 return false;
385 // Do some sanity-checking on the command-line options.
386 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
387 "-fast-isel-abort > 0 requires -fast-isel");
388
389 const Function &Fn = mf.getFunction();
390 MF = &mf;
391
392 // Reset the target options before resetting the optimization
393 // level below.
394 // FIXME: This is a horrible hack and should be processed via
395 // codegen looking at the optimization level explicitly when
396 // it wants to look at it.
397 TM.resetTargetOptions(Fn);
398 // Reset OptLevel to None for optnone functions.
399 CodeGenOpt::Level NewOptLevel = OptLevel;
400 if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
401 NewOptLevel = CodeGenOpt::None;
402 OptLevelChanger OLC(*this, NewOptLevel);
403
404 TII = MF->getSubtarget().getInstrInfo();
405 TLI = MF->getSubtarget().getTargetLowering();
406 RegInfo = &MF->getRegInfo();
407 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
408 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
409 ORE = make_unique<OptimizationRemarkEmitter>(&Fn);
410 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
411 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
412 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
413 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
414
415 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
416
417 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
418
419 CurDAG->init(*MF, *ORE, this, LibInfo,
420 getAnalysisIfAvailable<DivergenceAnalysis>());
421 FuncInfo->set(Fn, *MF, CurDAG);
422
423 // Now get the optional analyzes if we want to.
424 // This is based on the possibly changed OptLevel (after optnone is taken
425 // into account). That's unfortunate but OK because it just means we won't
426 // ask for passes that have been required anyway.
427
428 if (UseMBPI && OptLevel != CodeGenOpt::None)
429 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
430 else
431 FuncInfo->BPI = nullptr;
432
433 if (OptLevel != CodeGenOpt::None)
434 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
435 else
436 AA = nullptr;
437
438 SDB->init(GFI, AA, LibInfo);
439
440 MF->setHasInlineAsm(false);
441
442 FuncInfo->SplitCSR = false;
443
444 // We split CSR if the target supports it for the given function
445 // and the function has only return exits.
446 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
447 FuncInfo->SplitCSR = true;
448
449 // Collect all the return blocks.
450 for (const BasicBlock &BB : Fn) {
451 if (!succ_empty(&BB))
452 continue;
453
454 const TerminatorInst *Term = BB.getTerminator();
455 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
456 continue;
457
458 // Bail out if the exit block is not Return nor Unreachable.
459 FuncInfo->SplitCSR = false;
460 break;
461 }
462 }
463
464 MachineBasicBlock *EntryMBB = &MF->front();
465 if (FuncInfo->SplitCSR)
466 // This performs initialization so lowering for SplitCSR will be correct.
467 TLI->initializeSplitCSR(EntryMBB);
468
469 SelectAllBasicBlocks(Fn);
470 if (FastISelFailed && EnableFastISelFallbackReport) {
471 DiagnosticInfoISelFallback DiagFallback(Fn);
472 Fn.getContext().diagnose(DiagFallback);
473 }
474
475 // If the first basic block in the function has live ins that need to be
476 // copied into vregs, emit the copies into the top of the block before
477 // emitting the code for the block.
478 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
479 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
480
481 // Insert copies in the entry block and the return blocks.
482 if (FuncInfo->SplitCSR) {
483 SmallVector<MachineBasicBlock*, 4> Returns;
484 // Collect all the return blocks.
485 for (MachineBasicBlock &MBB : mf) {
486 if (!MBB.succ_empty())
487 continue;
488
489 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
490 if (Term != MBB.end() && Term->isReturn()) {
491 Returns.push_back(&MBB);
492 continue;
493 }
494 }
495 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
496 }
497
498 DenseMap<unsigned, unsigned> LiveInMap;
499 if (!FuncInfo->ArgDbgValues.empty())
500 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
501 if (LI.second)
502 LiveInMap.insert(LI);
503
504 // Insert DBG_VALUE instructions for function arguments to the entry block.
505 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
506 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
507 bool hasFI = MI->getOperand(0).isFI();
508 unsigned Reg =
509 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
510 if (TargetRegisterInfo::isPhysicalRegister(Reg))
511 EntryMBB->insert(EntryMBB->begin(), MI);
512 else {
513 MachineInstr *Def = RegInfo->getVRegDef(Reg);
514 if (Def) {
515 MachineBasicBlock::iterator InsertPos = Def;
516 // FIXME: VR def may not be in entry block.
517 Def->getParent()->insert(std::next(InsertPos), MI);
518 } else
519 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
520 << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
521 }
522
523 // If Reg is live-in then update debug info to track its copy in a vreg.
524 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
525 if (LDI != LiveInMap.end()) {
526 assert(!hasFI && "There's no handling of frame pointer updating here yet "
527 "- add if needed");
528 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
529 MachineBasicBlock::iterator InsertPos = Def;
530 const MDNode *Variable = MI->getDebugVariable();
531 const MDNode *Expr = MI->getDebugExpression();
532 DebugLoc DL = MI->getDebugLoc();
533 bool IsIndirect = MI->isIndirectDebugValue();
534 if (IsIndirect)
535 assert(MI->getOperand(1).getImm() == 0 &&
536 "DBG_VALUE with nonzero offset");
537 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
538 "Expected inlined-at fields to agree");
539 // Def is never a terminator here, so it is ok to increment InsertPos.
540 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
541 IsIndirect, LDI->second, Variable, Expr);
542
543 // If this vreg is directly copied into an exported register then
544 // that COPY instructions also need DBG_VALUE, if it is the only
545 // user of LDI->second.
546 MachineInstr *CopyUseMI = nullptr;
547 for (MachineRegisterInfo::use_instr_iterator
548 UI = RegInfo->use_instr_begin(LDI->second),
549 E = RegInfo->use_instr_end(); UI != E; ) {
550 MachineInstr *UseMI = &*(UI++);
551 if (UseMI->isDebugValue()) continue;
552 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
553 CopyUseMI = UseMI; continue;
554 }
555 // Otherwise this is another use or second copy use.
556 CopyUseMI = nullptr; break;
557 }
558 if (CopyUseMI) {
559 // Use MI's debug location, which describes where Variable was
560 // declared, rather than whatever is attached to CopyUseMI.
561 MachineInstr *NewMI =
562 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
563 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
564 MachineBasicBlock::iterator Pos = CopyUseMI;
565 EntryMBB->insertAfter(Pos, NewMI);
566 }
567 }
568 }
569
570 // Determine if there are any calls in this machine function.
571 MachineFrameInfo &MFI = MF->getFrameInfo();
572 for (const auto &MBB : *MF) {
573 if (MFI.hasCalls() && MF->hasInlineAsm())
574 break;
575
576 for (const auto &MI : MBB) {
577 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
578 if ((MCID.isCall() && !MCID.isReturn()) ||
579 MI.isStackAligningInlineAsm()) {
580 MFI.setHasCalls(true);
581 }
582 if (MI.isInlineAsm()) {
583 MF->setHasInlineAsm(true);
584 }
585 }
586 }
587
588 // Determine if there is a call to setjmp in the machine function.
589 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
590
591 // Replace forward-declared registers with the registers containing
592 // the desired value.
593 MachineRegisterInfo &MRI = MF->getRegInfo();
594 for (DenseMap<unsigned, unsigned>::iterator
595 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
596 I != E; ++I) {
597 unsigned From = I->first;
598 unsigned To = I->second;
599 // If To is also scheduled to be replaced, find what its ultimate
600 // replacement is.
601 while (true) {
602 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
603 if (J == E) break;
604 To = J->second;
605 }
606 // Make sure the new register has a sufficiently constrained register class.
607 if (TargetRegisterInfo::isVirtualRegister(From) &&
608 TargetRegisterInfo::isVirtualRegister(To))
609 MRI.constrainRegClass(To, MRI.getRegClass(From));
610 // Replace it.
611
612
613 // Replacing one register with another won't touch the kill flags.
614 // We need to conservatively clear the kill flags as a kill on the old
615 // register might dominate existing uses of the new register.
616 if (!MRI.use_empty(To))
617 MRI.clearKillFlags(From);
618 MRI.replaceRegWith(From, To);
619 }
620
621 TLI->finalizeLowering(*MF);
622
623 // Release function-specific state. SDB and CurDAG are already cleared
624 // at this point.
625 FuncInfo->clear();
626
627 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
628 LLVM_DEBUG(MF->print(dbgs()));
629
630 return true;
631 }
632
reportFastISelFailure(MachineFunction & MF,OptimizationRemarkEmitter & ORE,OptimizationRemarkMissed & R,bool ShouldAbort)633 static void reportFastISelFailure(MachineFunction &MF,
634 OptimizationRemarkEmitter &ORE,
635 OptimizationRemarkMissed &R,
636 bool ShouldAbort) {
637 // Print the function name explicitly if we don't have a debug location (which
638 // makes the diagnostic less useful) or if we're going to emit a raw error.
639 if (!R.getLocation().isValid() || ShouldAbort)
640 R << (" (in function: " + MF.getName() + ")").str();
641
642 if (ShouldAbort)
643 report_fatal_error(R.getMsg());
644
645 ORE.emit(R);
646 }
647
SelectBasicBlock(BasicBlock::const_iterator Begin,BasicBlock::const_iterator End,bool & HadTailCall)648 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
649 BasicBlock::const_iterator End,
650 bool &HadTailCall) {
651 // Allow creating illegal types during DAG building for the basic block.
652 CurDAG->NewNodesMustHaveLegalTypes = false;
653
654 // Lower the instructions. If a call is emitted as a tail call, cease emitting
655 // nodes for this block.
656 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
657 if (!ElidedArgCopyInstrs.count(&*I))
658 SDB->visit(*I);
659 }
660
661 // Make sure the root of the DAG is up-to-date.
662 CurDAG->setRoot(SDB->getControlRoot());
663 HadTailCall = SDB->HasTailCall;
664 SDB->clear();
665
666 // Final step, emit the lowered DAG as machine code.
667 CodeGenAndEmitDAG();
668 }
669
ComputeLiveOutVRegInfo()670 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
671 SmallPtrSet<SDNode*, 16> VisitedNodes;
672 SmallVector<SDNode*, 128> Worklist;
673
674 Worklist.push_back(CurDAG->getRoot().getNode());
675
676 KnownBits Known;
677
678 do {
679 SDNode *N = Worklist.pop_back_val();
680
681 // If we've already seen this node, ignore it.
682 if (!VisitedNodes.insert(N).second)
683 continue;
684
685 // Otherwise, add all chain operands to the worklist.
686 for (const SDValue &Op : N->op_values())
687 if (Op.getValueType() == MVT::Other)
688 Worklist.push_back(Op.getNode());
689
690 // If this is a CopyToReg with a vreg dest, process it.
691 if (N->getOpcode() != ISD::CopyToReg)
692 continue;
693
694 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
695 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
696 continue;
697
698 // Ignore non-scalar or non-integer values.
699 SDValue Src = N->getOperand(2);
700 EVT SrcVT = Src.getValueType();
701 if (!SrcVT.isInteger() || SrcVT.isVector())
702 continue;
703
704 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
705 CurDAG->computeKnownBits(Src, Known);
706 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
707 } while (!Worklist.empty());
708 }
709
CodeGenAndEmitDAG()710 void SelectionDAGISel::CodeGenAndEmitDAG() {
711 StringRef GroupName = "sdag";
712 StringRef GroupDescription = "Instruction Selection and Scheduling";
713 std::string BlockName;
714 int BlockNumber = -1;
715 (void)BlockNumber;
716 bool MatchFilterBB = false; (void)MatchFilterBB;
717 TargetTransformInfo &TTI =
718 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
719
720 // Pre-type legalization allow creation of any node types.
721 CurDAG->NewNodesMustHaveLegalTypes = false;
722
723 #ifndef NDEBUG
724 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
725 FilterDAGBasicBlockName ==
726 FuncInfo->MBB->getBasicBlock()->getName());
727 #endif
728 #ifdef NDEBUG
729 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
730 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
731 ViewSUnitDAGs)
732 #endif
733 {
734 BlockNumber = FuncInfo->MBB->getNumber();
735 BlockName =
736 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
737 }
738 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
739 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
740 << "'\n";
741 CurDAG->dump());
742
743 if (ViewDAGCombine1 && MatchFilterBB)
744 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
745
746 // Run the DAG combiner in pre-legalize mode.
747 {
748 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
749 GroupDescription, TimePassesIsEnabled);
750 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
751 }
752
753 if (TTI.hasBranchDivergence())
754 CurDAG->VerifyDAGDiverence();
755
756 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
757 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
758 << "'\n";
759 CurDAG->dump());
760
761 // Second step, hack on the DAG until it only uses operations and types that
762 // the target supports.
763 if (ViewLegalizeTypesDAGs && MatchFilterBB)
764 CurDAG->viewGraph("legalize-types input for " + BlockName);
765
766 bool Changed;
767 {
768 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
769 GroupDescription, TimePassesIsEnabled);
770 Changed = CurDAG->LegalizeTypes();
771 }
772
773 if (TTI.hasBranchDivergence())
774 CurDAG->VerifyDAGDiverence();
775
776 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
777 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
778 << "'\n";
779 CurDAG->dump());
780
781 // Only allow creation of legal node types.
782 CurDAG->NewNodesMustHaveLegalTypes = true;
783
784 if (Changed) {
785 if (ViewDAGCombineLT && MatchFilterBB)
786 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
787
788 // Run the DAG combiner in post-type-legalize mode.
789 {
790 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
791 GroupName, GroupDescription, TimePassesIsEnabled);
792 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
793 }
794
795 if (TTI.hasBranchDivergence())
796 CurDAG->VerifyDAGDiverence();
797
798 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
799 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
800 << "'\n";
801 CurDAG->dump());
802 }
803
804 {
805 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
806 GroupDescription, TimePassesIsEnabled);
807 Changed = CurDAG->LegalizeVectors();
808 }
809
810 if (Changed) {
811 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
812 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
813 << "'\n";
814 CurDAG->dump());
815
816 {
817 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
818 GroupDescription, TimePassesIsEnabled);
819 CurDAG->LegalizeTypes();
820 }
821
822 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
823 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
824 << "'\n";
825 CurDAG->dump());
826
827 if (ViewDAGCombineLT && MatchFilterBB)
828 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
829
830 // Run the DAG combiner in post-type-legalize mode.
831 {
832 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
833 GroupName, GroupDescription, TimePassesIsEnabled);
834 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
835 }
836
837 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
838 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
839 << "'\n";
840 CurDAG->dump());
841
842 if (TTI.hasBranchDivergence())
843 CurDAG->VerifyDAGDiverence();
844 }
845
846 if (ViewLegalizeDAGs && MatchFilterBB)
847 CurDAG->viewGraph("legalize input for " + BlockName);
848
849 {
850 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
851 GroupDescription, TimePassesIsEnabled);
852 CurDAG->Legalize();
853 }
854
855 if (TTI.hasBranchDivergence())
856 CurDAG->VerifyDAGDiverence();
857
858 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
859 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
860 << "'\n";
861 CurDAG->dump());
862
863 if (ViewDAGCombine2 && MatchFilterBB)
864 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
865
866 // Run the DAG combiner in post-legalize mode.
867 {
868 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
869 GroupDescription, TimePassesIsEnabled);
870 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
871 }
872
873 if (TTI.hasBranchDivergence())
874 CurDAG->VerifyDAGDiverence();
875
876 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
877 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
878 << "'\n";
879 CurDAG->dump());
880
881 if (OptLevel != CodeGenOpt::None)
882 ComputeLiveOutVRegInfo();
883
884 if (ViewISelDAGs && MatchFilterBB)
885 CurDAG->viewGraph("isel input for " + BlockName);
886
887 // Third, instruction select all of the operations to machine code, adding the
888 // code to the MachineBasicBlock.
889 {
890 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
891 GroupDescription, TimePassesIsEnabled);
892 DoInstructionSelection();
893 }
894
895 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
896 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
897 << "'\n";
898 CurDAG->dump());
899
900 if (ViewSchedDAGs && MatchFilterBB)
901 CurDAG->viewGraph("scheduler input for " + BlockName);
902
903 // Schedule machine code.
904 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
905 {
906 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
907 GroupDescription, TimePassesIsEnabled);
908 Scheduler->Run(CurDAG, FuncInfo->MBB);
909 }
910
911 if (ViewSUnitDAGs && MatchFilterBB)
912 Scheduler->viewGraph();
913
914 // Emit machine code to BB. This can change 'BB' to the last block being
915 // inserted into.
916 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
917 {
918 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
919 GroupDescription, TimePassesIsEnabled);
920
921 // FuncInfo->InsertPt is passed by reference and set to the end of the
922 // scheduled instructions.
923 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
924 }
925
926 // If the block was split, make sure we update any references that are used to
927 // update PHI nodes later on.
928 if (FirstMBB != LastMBB)
929 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
930
931 // Free the scheduler state.
932 {
933 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
934 GroupDescription, TimePassesIsEnabled);
935 delete Scheduler;
936 }
937
938 // Free the SelectionDAG state, now that we're finished with it.
939 CurDAG->clear();
940 }
941
942 namespace {
943
944 /// ISelUpdater - helper class to handle updates of the instruction selection
945 /// graph.
946 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
947 SelectionDAG::allnodes_iterator &ISelPosition;
948
949 public:
ISelUpdater(SelectionDAG & DAG,SelectionDAG::allnodes_iterator & isp)950 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
951 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
952
953 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
954 /// deleted is the current ISelPosition node, update ISelPosition.
955 ///
NodeDeleted(SDNode * N,SDNode * E)956 void NodeDeleted(SDNode *N, SDNode *E) override {
957 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
958 ++ISelPosition;
959 }
960 };
961
962 } // end anonymous namespace
963
964 // This function is used to enforce the topological node id property
965 // property leveraged during Instruction selection. Before selection all
966 // nodes are given a non-negative id such that all nodes have a larger id than
967 // their operands. As this holds transitively we can prune checks that a node N
968 // is a predecessor of M another by not recursively checking through M's
969 // operands if N's ID is larger than M's ID. This is significantly improves
970 // performance of for various legality checks (e.g. IsLegalToFold /
971 // UpdateChains).
972
973 // However, when we fuse multiple nodes into a single node
974 // during selection we may induce a predecessor relationship between inputs and
975 // outputs of distinct nodes being merged violating the topological property.
976 // Should a fused node have a successor which has yet to be selected, our
977 // legality checks would be incorrect. To avoid this we mark all unselected
978 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
979 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
980 // We use bit-negation to more clearly enforce that node id -1 can only be
981 // achieved by selected nodes). As the conversion is reversable the original Id,
982 // topological pruning can still be leveraged when looking for unselected nodes.
983 // This method is call internally in all ISel replacement calls.
EnforceNodeIdInvariant(SDNode * Node)984 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
985 SmallVector<SDNode *, 4> Nodes;
986 Nodes.push_back(Node);
987
988 while (!Nodes.empty()) {
989 SDNode *N = Nodes.pop_back_val();
990 for (auto *U : N->uses()) {
991 auto UId = U->getNodeId();
992 if (UId > 0) {
993 InvalidateNodeId(U);
994 Nodes.push_back(U);
995 }
996 }
997 }
998 }
999
1000 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1001 // NodeId with the equivalent node id which is invalid for topological
1002 // pruning.
InvalidateNodeId(SDNode * N)1003 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1004 int InvalidId = -(N->getNodeId() + 1);
1005 N->setNodeId(InvalidId);
1006 }
1007
1008 // getUninvalidatedNodeId - get original uninvalidated node id.
getUninvalidatedNodeId(SDNode * N)1009 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1010 int Id = N->getNodeId();
1011 if (Id < -1)
1012 return -(Id + 1);
1013 return Id;
1014 }
1015
DoInstructionSelection()1016 void SelectionDAGISel::DoInstructionSelection() {
1017 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1018 << printMBBReference(*FuncInfo->MBB) << " '"
1019 << FuncInfo->MBB->getName() << "'\n");
1020
1021 PreprocessISelDAG();
1022
1023 // Select target instructions for the DAG.
1024 {
1025 // Number all nodes with a topological order and set DAGSize.
1026 DAGSize = CurDAG->AssignTopologicalOrder();
1027
1028 // Create a dummy node (which is not added to allnodes), that adds
1029 // a reference to the root node, preventing it from being deleted,
1030 // and tracking any changes of the root.
1031 HandleSDNode Dummy(CurDAG->getRoot());
1032 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1033 ++ISelPosition;
1034
1035 // Make sure that ISelPosition gets properly updated when nodes are deleted
1036 // in calls made from this function.
1037 ISelUpdater ISU(*CurDAG, ISelPosition);
1038
1039 // The AllNodes list is now topological-sorted. Visit the
1040 // nodes by starting at the end of the list (the root of the
1041 // graph) and preceding back toward the beginning (the entry
1042 // node).
1043 while (ISelPosition != CurDAG->allnodes_begin()) {
1044 SDNode *Node = &*--ISelPosition;
1045 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1046 // but there are currently some corner cases that it misses. Also, this
1047 // makes it theoretically possible to disable the DAGCombiner.
1048 if (Node->use_empty())
1049 continue;
1050
1051 #ifndef NDEBUG
1052 SmallVector<SDNode *, 4> Nodes;
1053 Nodes.push_back(Node);
1054
1055 while (!Nodes.empty()) {
1056 auto N = Nodes.pop_back_val();
1057 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1058 continue;
1059 for (const SDValue &Op : N->op_values()) {
1060 if (Op->getOpcode() == ISD::TokenFactor)
1061 Nodes.push_back(Op.getNode());
1062 else {
1063 // We rely on topological ordering of node ids for checking for
1064 // cycles when fusing nodes during selection. All unselected nodes
1065 // successors of an already selected node should have a negative id.
1066 // This assertion will catch such cases. If this assertion triggers
1067 // it is likely you using DAG-level Value/Node replacement functions
1068 // (versus equivalent ISEL replacement) in backend-specific
1069 // selections. See comment in EnforceNodeIdInvariant for more
1070 // details.
1071 assert(Op->getNodeId() != -1 &&
1072 "Node has already selected predecessor node");
1073 }
1074 }
1075 }
1076 #endif
1077
1078 // When we are using non-default rounding modes or FP exception behavior
1079 // FP operations are represented by StrictFP pseudo-operations. They
1080 // need to be simplified here so that the target-specific instruction
1081 // selectors know how to handle them.
1082 //
1083 // If the current node is a strict FP pseudo-op, the isStrictFPOp()
1084 // function will provide the corresponding normal FP opcode to which the
1085 // node should be mutated.
1086 //
1087 // FIXME: The backends need a way to handle FP constraints.
1088 if (Node->isStrictFPOpcode())
1089 Node = CurDAG->mutateStrictFPToFP(Node);
1090
1091 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1092 Node->dump(CurDAG));
1093
1094 Select(Node);
1095 }
1096
1097 CurDAG->setRoot(Dummy.getValue());
1098 }
1099
1100 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1101
1102 PostprocessISelDAG();
1103 }
1104
hasExceptionPointerOrCodeUser(const CatchPadInst * CPI)1105 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1106 for (const User *U : CPI->users()) {
1107 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1108 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1109 if (IID == Intrinsic::eh_exceptionpointer ||
1110 IID == Intrinsic::eh_exceptioncode)
1111 return true;
1112 }
1113 }
1114 return false;
1115 }
1116
1117 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1118 /// do other setup for EH landing-pad blocks.
PrepareEHLandingPad()1119 bool SelectionDAGISel::PrepareEHLandingPad() {
1120 MachineBasicBlock *MBB = FuncInfo->MBB;
1121 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1122 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1123 const TargetRegisterClass *PtrRC =
1124 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1125
1126 // Catchpads have one live-in register, which typically holds the exception
1127 // pointer or code.
1128 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1129 if (hasExceptionPointerOrCodeUser(CPI)) {
1130 // Get or create the virtual register to hold the pointer or code. Mark
1131 // the live in physreg and copy into the vreg.
1132 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1133 assert(EHPhysReg && "target lacks exception pointer register");
1134 MBB->addLiveIn(EHPhysReg);
1135 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1136 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1137 TII->get(TargetOpcode::COPY), VReg)
1138 .addReg(EHPhysReg, RegState::Kill);
1139 }
1140 return true;
1141 }
1142
1143 if (!LLVMBB->isLandingPad())
1144 return true;
1145
1146 // Add a label to mark the beginning of the landing pad. Deletion of the
1147 // landing pad can thus be detected via the MachineModuleInfo.
1148 MCSymbol *Label = MF->addLandingPad(MBB);
1149
1150 // Assign the call site to the landing pad's begin label.
1151 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1152
1153 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1154 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1155 .addSym(Label);
1156
1157 // Mark exception register as live in.
1158 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1159 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1160
1161 // Mark exception selector register as live in.
1162 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1163 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1164
1165 return true;
1166 }
1167
1168 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1169 /// side-effect free and is either dead or folded into a generated instruction.
1170 /// Return false if it needs to be emitted.
isFoldedOrDeadInstruction(const Instruction * I,FunctionLoweringInfo * FuncInfo)1171 static bool isFoldedOrDeadInstruction(const Instruction *I,
1172 FunctionLoweringInfo *FuncInfo) {
1173 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1174 !isa<TerminatorInst>(I) && // Terminators aren't folded.
1175 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1176 !I->isEHPad() && // EH pad instructions aren't folded.
1177 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1178 }
1179
1180 /// Set up SwiftErrorVals by going through the function. If the function has
1181 /// swifterror argument, it will be the first entry.
setupSwiftErrorVals(const Function & Fn,const TargetLowering * TLI,FunctionLoweringInfo * FuncInfo)1182 static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
1183 FunctionLoweringInfo *FuncInfo) {
1184 if (!TLI->supportSwiftError())
1185 return;
1186
1187 FuncInfo->SwiftErrorVals.clear();
1188 FuncInfo->SwiftErrorVRegDefMap.clear();
1189 FuncInfo->SwiftErrorVRegUpwardsUse.clear();
1190 FuncInfo->SwiftErrorVRegDefUses.clear();
1191 FuncInfo->SwiftErrorArg = nullptr;
1192
1193 // Check if function has a swifterror argument.
1194 bool HaveSeenSwiftErrorArg = false;
1195 for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
1196 AI != AE; ++AI)
1197 if (AI->hasSwiftErrorAttr()) {
1198 assert(!HaveSeenSwiftErrorArg &&
1199 "Must have only one swifterror parameter");
1200 (void)HaveSeenSwiftErrorArg; // silence warning.
1201 HaveSeenSwiftErrorArg = true;
1202 FuncInfo->SwiftErrorArg = &*AI;
1203 FuncInfo->SwiftErrorVals.push_back(&*AI);
1204 }
1205
1206 for (const auto &LLVMBB : Fn)
1207 for (const auto &Inst : LLVMBB) {
1208 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst))
1209 if (Alloca->isSwiftError())
1210 FuncInfo->SwiftErrorVals.push_back(Alloca);
1211 }
1212 }
1213
createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo * FuncInfo,FastISel * FastIS,const TargetLowering * TLI,const TargetInstrInfo * TII,SelectionDAGBuilder * SDB)1214 static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo,
1215 FastISel *FastIS,
1216 const TargetLowering *TLI,
1217 const TargetInstrInfo *TII,
1218 SelectionDAGBuilder *SDB) {
1219 if (!TLI->supportSwiftError())
1220 return;
1221
1222 // We only need to do this when we have swifterror parameter or swifterror
1223 // alloc.
1224 if (FuncInfo->SwiftErrorVals.empty())
1225 return;
1226
1227 assert(FuncInfo->MBB == &*FuncInfo->MF->begin() &&
1228 "expected to insert into entry block");
1229 auto &DL = FuncInfo->MF->getDataLayout();
1230 auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1231 for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1232 // We will always generate a copy from the argument. It is always used at
1233 // least by the 'return' of the swifterror.
1234 if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal)
1235 continue;
1236 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1237 // Assign Undef to Vreg. We construct MI directly to make sure it works
1238 // with FastISel.
1239 BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(),
1240 SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF),
1241 VReg);
1242
1243 // Keep FastIS informed about the value we just inserted.
1244 if (FastIS)
1245 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1246
1247 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg);
1248 }
1249 }
1250
1251 /// Collect llvm.dbg.declare information. This is done after argument lowering
1252 /// in case the declarations refer to arguments.
processDbgDeclares(FunctionLoweringInfo * FuncInfo)1253 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
1254 MachineFunction *MF = FuncInfo->MF;
1255 const DataLayout &DL = MF->getDataLayout();
1256 for (const BasicBlock &BB : *FuncInfo->Fn) {
1257 for (const Instruction &I : BB) {
1258 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1259 if (!DI)
1260 continue;
1261
1262 assert(DI->getVariable() && "Missing variable");
1263 assert(DI->getDebugLoc() && "Missing location");
1264 const Value *Address = DI->getAddress();
1265 if (!Address)
1266 continue;
1267
1268 // Look through casts and constant offset GEPs. These mostly come from
1269 // inalloca.
1270 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1271 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1272
1273 // Check if the variable is a static alloca or a byval or inalloca
1274 // argument passed in memory. If it is not, then we will ignore this
1275 // intrinsic and handle this during isel like dbg.value.
1276 int FI = std::numeric_limits<int>::max();
1277 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1278 auto SI = FuncInfo->StaticAllocaMap.find(AI);
1279 if (SI != FuncInfo->StaticAllocaMap.end())
1280 FI = SI->second;
1281 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1282 FI = FuncInfo->getArgumentFrameIndex(Arg);
1283
1284 if (FI == std::numeric_limits<int>::max())
1285 continue;
1286
1287 DIExpression *Expr = DI->getExpression();
1288 if (Offset.getBoolValue())
1289 Expr = DIExpression::prepend(Expr, DIExpression::NoDeref,
1290 Offset.getZExtValue());
1291 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1292 }
1293 }
1294 }
1295
1296 /// Propagate swifterror values through the machine function CFG.
propagateSwiftErrorVRegs(FunctionLoweringInfo * FuncInfo)1297 static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) {
1298 auto *TLI = FuncInfo->TLI;
1299 if (!TLI->supportSwiftError())
1300 return;
1301
1302 // We only need to do this when we have swifterror parameter or swifterror
1303 // alloc.
1304 if (FuncInfo->SwiftErrorVals.empty())
1305 return;
1306
1307 // For each machine basic block in reverse post order.
1308 ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF);
1309 for (MachineBasicBlock *MBB : RPOT) {
1310 // For each swifterror value in the function.
1311 for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1312 auto Key = std::make_pair(MBB, SwiftErrorVal);
1313 auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1314 auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key);
1315 bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end();
1316 unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0;
1317 bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end();
1318 assert(!(UpwardsUse && !DownwardDef) &&
1319 "We can't have an upwards use but no downwards def");
1320
1321 // If there is no upwards exposed use and an entry for the swifterror in
1322 // the def map for this value we don't need to do anything: We already
1323 // have a downward def for this basic block.
1324 if (!UpwardsUse && DownwardDef)
1325 continue;
1326
1327 // Otherwise we either have an upwards exposed use vreg that we need to
1328 // materialize or need to forward the downward def from predecessors.
1329
1330 // Check whether we have a single vreg def from all predecessors.
1331 // Otherwise we need a phi.
1332 SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs;
1333 SmallSet<const MachineBasicBlock*, 8> Visited;
1334 for (auto *Pred : MBB->predecessors()) {
1335 if (!Visited.insert(Pred).second)
1336 continue;
1337 VRegs.push_back(std::make_pair(
1338 Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal)));
1339 if (Pred != MBB)
1340 continue;
1341 // We have a self-edge.
1342 // If there was no upwards use in this basic block there is now one: the
1343 // phi needs to use it self.
1344 if (!UpwardsUse) {
1345 UpwardsUse = true;
1346 UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1347 assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end());
1348 UUseVReg = UUseIt->second;
1349 }
1350 }
1351
1352 // We need a phi node if we have more than one predecessor with different
1353 // downward defs.
1354 bool needPHI =
1355 VRegs.size() >= 1 &&
1356 std::find_if(
1357 VRegs.begin(), VRegs.end(),
1358 [&](const std::pair<const MachineBasicBlock *, unsigned> &V)
1359 -> bool { return V.second != VRegs[0].second; }) !=
1360 VRegs.end();
1361
1362 // If there is no upwards exposed used and we don't need a phi just
1363 // forward the swifterror vreg from the predecessor(s).
1364 if (!UpwardsUse && !needPHI) {
1365 assert(!VRegs.empty() &&
1366 "No predecessors? The entry block should bail out earlier");
1367 // Just forward the swifterror vreg from the predecessor(s).
1368 FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second);
1369 continue;
1370 }
1371
1372 auto DLoc = isa<Instruction>(SwiftErrorVal)
1373 ? cast<Instruction>(SwiftErrorVal)->getDebugLoc()
1374 : DebugLoc();
1375 const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo();
1376
1377 // If we don't need a phi create a copy to the upward exposed vreg.
1378 if (!needPHI) {
1379 assert(UpwardsUse);
1380 assert(!VRegs.empty() &&
1381 "No predecessors? Is the Calling Convention correct?");
1382 unsigned DestReg = UUseVReg;
1383 BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY),
1384 DestReg)
1385 .addReg(VRegs[0].second);
1386 continue;
1387 }
1388
1389 // We need a phi: if there is an upwards exposed use we already have a
1390 // destination virtual register number otherwise we generate a new one.
1391 auto &DL = FuncInfo->MF->getDataLayout();
1392 auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1393 unsigned PHIVReg =
1394 UpwardsUse ? UUseVReg
1395 : FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1396 MachineInstrBuilder SwiftErrorPHI =
1397 BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc,
1398 TII->get(TargetOpcode::PHI), PHIVReg);
1399 for (auto BBRegPair : VRegs) {
1400 SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first);
1401 }
1402
1403 // We did not have a definition in this block before: store the phi's vreg
1404 // as this block downward exposed def.
1405 if (!UpwardsUse)
1406 FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg);
1407 }
1408 }
1409 }
1410
preassignSwiftErrorRegs(const TargetLowering * TLI,FunctionLoweringInfo * FuncInfo,BasicBlock::const_iterator Begin,BasicBlock::const_iterator End)1411 static void preassignSwiftErrorRegs(const TargetLowering *TLI,
1412 FunctionLoweringInfo *FuncInfo,
1413 BasicBlock::const_iterator Begin,
1414 BasicBlock::const_iterator End) {
1415 if (!TLI->supportSwiftError() || FuncInfo->SwiftErrorVals.empty())
1416 return;
1417
1418 // Iterator over instructions and assign vregs to swifterror defs and uses.
1419 for (auto It = Begin; It != End; ++It) {
1420 ImmutableCallSite CS(&*It);
1421 if (CS) {
1422 // A call-site with a swifterror argument is both use and def.
1423 const Value *SwiftErrorAddr = nullptr;
1424 for (auto &Arg : CS.args()) {
1425 if (!Arg->isSwiftError())
1426 continue;
1427 // Use of swifterror.
1428 assert(!SwiftErrorAddr && "Cannot have multiple swifterror arguments");
1429 SwiftErrorAddr = &*Arg;
1430 assert(SwiftErrorAddr->isSwiftError() &&
1431 "Must have a swifterror value argument");
1432 unsigned VReg; bool CreatedReg;
1433 std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1434 &*It, FuncInfo->MBB, SwiftErrorAddr);
1435 assert(CreatedReg);
1436 }
1437 if (!SwiftErrorAddr)
1438 continue;
1439
1440 // Def of swifterror.
1441 unsigned VReg; bool CreatedReg;
1442 std::tie(VReg, CreatedReg) =
1443 FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1444 assert(CreatedReg);
1445 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1446
1447 // A load is a use.
1448 } else if (const LoadInst *LI = dyn_cast<const LoadInst>(&*It)) {
1449 const Value *V = LI->getOperand(0);
1450 if (!V->isSwiftError())
1451 continue;
1452
1453 unsigned VReg; bool CreatedReg;
1454 std::tie(VReg, CreatedReg) =
1455 FuncInfo->getOrCreateSwiftErrorVRegUseAt(LI, FuncInfo->MBB, V);
1456 assert(CreatedReg);
1457
1458 // A store is a def.
1459 } else if (const StoreInst *SI = dyn_cast<const StoreInst>(&*It)) {
1460 const Value *SwiftErrorAddr = SI->getOperand(1);
1461 if (!SwiftErrorAddr->isSwiftError())
1462 continue;
1463
1464 // Def of swifterror.
1465 unsigned VReg; bool CreatedReg;
1466 std::tie(VReg, CreatedReg) =
1467 FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1468 assert(CreatedReg);
1469 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1470
1471 // A return in a swiferror returning function is a use.
1472 } else if (const ReturnInst *R = dyn_cast<const ReturnInst>(&*It)) {
1473 const Function *F = R->getParent()->getParent();
1474 if(!F->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1475 continue;
1476
1477 unsigned VReg; bool CreatedReg;
1478 std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1479 R, FuncInfo->MBB, FuncInfo->SwiftErrorArg);
1480 assert(CreatedReg);
1481 }
1482 }
1483 }
1484
SelectAllBasicBlocks(const Function & Fn)1485 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1486 FastISelFailed = false;
1487 // Initialize the Fast-ISel state, if needed.
1488 FastISel *FastIS = nullptr;
1489 if (TM.Options.EnableFastISel) {
1490 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1491 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1492 }
1493
1494 setupSwiftErrorVals(Fn, TLI, FuncInfo);
1495
1496 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1497
1498 // Lower arguments up front. An RPO iteration always visits the entry block
1499 // first.
1500 assert(*RPOT.begin() == &Fn.getEntryBlock());
1501 ++NumEntryBlocks;
1502
1503 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1504 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1505 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1506
1507 CurDAG->setFunctionLoweringInfo(FuncInfo);
1508
1509 if (!FastIS) {
1510 LowerArguments(Fn);
1511 } else {
1512 // See if fast isel can lower the arguments.
1513 FastIS->startNewBlock();
1514 if (!FastIS->lowerArguments()) {
1515 FastISelFailed = true;
1516 // Fast isel failed to lower these arguments
1517 ++NumFastIselFailLowerArguments;
1518
1519 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1520 Fn.getSubprogram(),
1521 &Fn.getEntryBlock());
1522 R << "FastISel didn't lower all arguments: "
1523 << ore::NV("Prototype", Fn.getType());
1524 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1525
1526 // Use SelectionDAG argument lowering
1527 LowerArguments(Fn);
1528 CurDAG->setRoot(SDB->getControlRoot());
1529 SDB->clear();
1530 CodeGenAndEmitDAG();
1531 }
1532
1533 // If we inserted any instructions at the beginning, make a note of
1534 // where they are, so we can be sure to emit subsequent instructions
1535 // after them.
1536 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1537 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1538 else
1539 FastIS->setLastLocalValue(nullptr);
1540 }
1541 createSwiftErrorEntriesInEntryBlock(FuncInfo, FastIS, TLI, TII, SDB);
1542
1543 processDbgDeclares(FuncInfo);
1544
1545 // Iterate over all basic blocks in the function.
1546 StackProtector &SP = getAnalysis<StackProtector>();
1547 for (const BasicBlock *LLVMBB : RPOT) {
1548 if (OptLevel != CodeGenOpt::None) {
1549 bool AllPredsVisited = true;
1550 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1551 PI != PE; ++PI) {
1552 if (!FuncInfo->VisitedBBs.count(*PI)) {
1553 AllPredsVisited = false;
1554 break;
1555 }
1556 }
1557
1558 if (AllPredsVisited) {
1559 for (const PHINode &PN : LLVMBB->phis())
1560 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1561 } else {
1562 for (const PHINode &PN : LLVMBB->phis())
1563 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1564 }
1565
1566 FuncInfo->VisitedBBs.insert(LLVMBB);
1567 }
1568
1569 BasicBlock::const_iterator const Begin =
1570 LLVMBB->getFirstNonPHI()->getIterator();
1571 BasicBlock::const_iterator const End = LLVMBB->end();
1572 BasicBlock::const_iterator BI = End;
1573
1574 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1575 if (!FuncInfo->MBB)
1576 continue; // Some blocks like catchpads have no code or MBB.
1577
1578 // Insert new instructions after any phi or argument setup code.
1579 FuncInfo->InsertPt = FuncInfo->MBB->end();
1580
1581 // Setup an EH landing-pad block.
1582 FuncInfo->ExceptionPointerVirtReg = 0;
1583 FuncInfo->ExceptionSelectorVirtReg = 0;
1584 if (LLVMBB->isEHPad())
1585 if (!PrepareEHLandingPad())
1586 continue;
1587
1588 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1589 if (FastIS) {
1590 if (LLVMBB != &Fn.getEntryBlock())
1591 FastIS->startNewBlock();
1592
1593 unsigned NumFastIselRemaining = std::distance(Begin, End);
1594
1595 // Pre-assign swifterror vregs.
1596 preassignSwiftErrorRegs(TLI, FuncInfo, Begin, End);
1597
1598 // Do FastISel on as many instructions as possible.
1599 for (; BI != Begin; --BI) {
1600 const Instruction *Inst = &*std::prev(BI);
1601
1602 // If we no longer require this instruction, skip it.
1603 if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
1604 ElidedArgCopyInstrs.count(Inst)) {
1605 --NumFastIselRemaining;
1606 continue;
1607 }
1608
1609 // Bottom-up: reset the insert pos at the top, after any local-value
1610 // instructions.
1611 FastIS->recomputeInsertPt();
1612
1613 // Try to select the instruction with FastISel.
1614 if (FastIS->selectInstruction(Inst)) {
1615 --NumFastIselRemaining;
1616 ++NumFastIselSuccess;
1617 // If fast isel succeeded, skip over all the folded instructions, and
1618 // then see if there is a load right before the selected instructions.
1619 // Try to fold the load if so.
1620 const Instruction *BeforeInst = Inst;
1621 while (BeforeInst != &*Begin) {
1622 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1623 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1624 break;
1625 }
1626 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1627 BeforeInst->hasOneUse() &&
1628 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1629 // If we succeeded, don't re-select the load.
1630 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1631 --NumFastIselRemaining;
1632 ++NumFastIselSuccess;
1633 }
1634 continue;
1635 }
1636
1637 FastISelFailed = true;
1638
1639 // Then handle certain instructions as single-LLVM-Instruction blocks.
1640 // We cannot separate out GCrelocates to their own blocks since we need
1641 // to keep track of gc-relocates for a particular gc-statepoint. This is
1642 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1643 // visitGCRelocate.
1644 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst)) {
1645 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1646 Inst->getDebugLoc(), LLVMBB);
1647
1648 R << "FastISel missed call";
1649
1650 if (R.isEnabled() || EnableFastISelAbort) {
1651 std::string InstStrStorage;
1652 raw_string_ostream InstStr(InstStrStorage);
1653 InstStr << *Inst;
1654
1655 R << ": " << InstStr.str();
1656 }
1657
1658 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1659
1660 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1661 !Inst->use_empty()) {
1662 unsigned &R = FuncInfo->ValueMap[Inst];
1663 if (!R)
1664 R = FuncInfo->CreateRegs(Inst->getType());
1665 }
1666
1667 bool HadTailCall = false;
1668 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1669 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1670
1671 // If the call was emitted as a tail call, we're done with the block.
1672 // We also need to delete any previously emitted instructions.
1673 if (HadTailCall) {
1674 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1675 --BI;
1676 break;
1677 }
1678
1679 // Recompute NumFastIselRemaining as Selection DAG instruction
1680 // selection may have handled the call, input args, etc.
1681 unsigned RemainingNow = std::distance(Begin, BI);
1682 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1683 NumFastIselRemaining = RemainingNow;
1684 continue;
1685 }
1686
1687 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1688 Inst->getDebugLoc(), LLVMBB);
1689
1690 bool ShouldAbort = EnableFastISelAbort;
1691 if (isa<TerminatorInst>(Inst)) {
1692 // Use a different message for terminator misses.
1693 R << "FastISel missed terminator";
1694 // Don't abort for terminator unless the level is really high
1695 ShouldAbort = (EnableFastISelAbort > 2);
1696 } else {
1697 R << "FastISel missed";
1698 }
1699
1700 if (R.isEnabled() || EnableFastISelAbort) {
1701 std::string InstStrStorage;
1702 raw_string_ostream InstStr(InstStrStorage);
1703 InstStr << *Inst;
1704 R << ": " << InstStr.str();
1705 }
1706
1707 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1708
1709 NumFastIselFailures += NumFastIselRemaining;
1710 break;
1711 }
1712
1713 FastIS->recomputeInsertPt();
1714 }
1715
1716 if (SP.shouldEmitSDCheck(*LLVMBB)) {
1717 bool FunctionBasedInstrumentation =
1718 TLI->getSSPStackGuardCheck(*Fn.getParent());
1719 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1720 FunctionBasedInstrumentation);
1721 }
1722
1723 if (Begin != BI)
1724 ++NumDAGBlocks;
1725 else
1726 ++NumFastIselBlocks;
1727
1728 if (Begin != BI) {
1729 // Run SelectionDAG instruction selection on the remainder of the block
1730 // not handled by FastISel. If FastISel is not run, this is the entire
1731 // block.
1732 bool HadTailCall;
1733 SelectBasicBlock(Begin, BI, HadTailCall);
1734
1735 // But if FastISel was run, we already selected some of the block.
1736 // If we emitted a tail-call, we need to delete any previously emitted
1737 // instruction that follows it.
1738 if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1739 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1740 }
1741
1742 if (FastIS)
1743 FastIS->finishBasicBlock();
1744 FinishBasicBlock();
1745 FuncInfo->PHINodesToUpdate.clear();
1746 ElidedArgCopyInstrs.clear();
1747 }
1748
1749 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1750
1751 propagateSwiftErrorVRegs(FuncInfo);
1752
1753 delete FastIS;
1754 SDB->clearDanglingDebugInfo();
1755 SDB->SPDescriptor.resetPerFunctionState();
1756 }
1757
1758 /// Given that the input MI is before a partial terminator sequence TSeq, return
1759 /// true if M + TSeq also a partial terminator sequence.
1760 ///
1761 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1762 /// lowering copy vregs into physical registers, which are then passed into
1763 /// terminator instructors so we can satisfy ABI constraints. A partial
1764 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1765 /// may be the whole terminator sequence).
MIIsInTerminatorSequence(const MachineInstr & MI)1766 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1767 // If we do not have a copy or an implicit def, we return true if and only if
1768 // MI is a debug value.
1769 if (!MI.isCopy() && !MI.isImplicitDef())
1770 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1771 // physical registers if there is debug info associated with the terminator
1772 // of our mbb. We want to include said debug info in our terminator
1773 // sequence, so we return true in that case.
1774 return MI.isDebugValue();
1775
1776 // We have left the terminator sequence if we are not doing one of the
1777 // following:
1778 //
1779 // 1. Copying a vreg into a physical register.
1780 // 2. Copying a vreg into a vreg.
1781 // 3. Defining a register via an implicit def.
1782
1783 // OPI should always be a register definition...
1784 MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1785 if (!OPI->isReg() || !OPI->isDef())
1786 return false;
1787
1788 // Defining any register via an implicit def is always ok.
1789 if (MI.isImplicitDef())
1790 return true;
1791
1792 // Grab the copy source...
1793 MachineInstr::const_mop_iterator OPI2 = OPI;
1794 ++OPI2;
1795 assert(OPI2 != MI.operands_end()
1796 && "Should have a copy implying we should have 2 arguments.");
1797
1798 // Make sure that the copy dest is not a vreg when the copy source is a
1799 // physical register.
1800 if (!OPI2->isReg() ||
1801 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1802 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1803 return false;
1804
1805 return true;
1806 }
1807
1808 /// Find the split point at which to splice the end of BB into its success stack
1809 /// protector check machine basic block.
1810 ///
1811 /// On many platforms, due to ABI constraints, terminators, even before register
1812 /// allocation, use physical registers. This creates an issue for us since
1813 /// physical registers at this point can not travel across basic
1814 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1815 /// when they enter functions and moves them through a sequence of copies back
1816 /// into the physical registers right before the terminator creating a
1817 /// ``Terminator Sequence''. This function is searching for the beginning of the
1818 /// terminator sequence so that we can ensure that we splice off not just the
1819 /// terminator, but additionally the copies that move the vregs into the
1820 /// physical registers.
1821 static MachineBasicBlock::iterator
FindSplitPointForStackProtector(MachineBasicBlock * BB)1822 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1823 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1824 //
1825 if (SplitPoint == BB->begin())
1826 return SplitPoint;
1827
1828 MachineBasicBlock::iterator Start = BB->begin();
1829 MachineBasicBlock::iterator Previous = SplitPoint;
1830 --Previous;
1831
1832 while (MIIsInTerminatorSequence(*Previous)) {
1833 SplitPoint = Previous;
1834 if (Previous == Start)
1835 break;
1836 --Previous;
1837 }
1838
1839 return SplitPoint;
1840 }
1841
1842 void
FinishBasicBlock()1843 SelectionDAGISel::FinishBasicBlock() {
1844 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1845 << FuncInfo->PHINodesToUpdate.size() << "\n";
1846 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1847 ++i) dbgs()
1848 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1849 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1850
1851 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1852 // PHI nodes in successors.
1853 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1854 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1855 assert(PHI->isPHI() &&
1856 "This is not a machine PHI node that we are updating!");
1857 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1858 continue;
1859 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1860 }
1861
1862 // Handle stack protector.
1863 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1864 // The target provides a guard check function. There is no need to
1865 // generate error handling code or to split current basic block.
1866 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1867
1868 // Add load and check to the basicblock.
1869 FuncInfo->MBB = ParentMBB;
1870 FuncInfo->InsertPt =
1871 FindSplitPointForStackProtector(ParentMBB);
1872 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1873 CurDAG->setRoot(SDB->getRoot());
1874 SDB->clear();
1875 CodeGenAndEmitDAG();
1876
1877 // Clear the Per-BB State.
1878 SDB->SPDescriptor.resetPerBBState();
1879 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1880 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1881 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1882
1883 // Find the split point to split the parent mbb. At the same time copy all
1884 // physical registers used in the tail of parent mbb into virtual registers
1885 // before the split point and back into physical registers after the split
1886 // point. This prevents us needing to deal with Live-ins and many other
1887 // register allocation issues caused by us splitting the parent mbb. The
1888 // register allocator will clean up said virtual copies later on.
1889 MachineBasicBlock::iterator SplitPoint =
1890 FindSplitPointForStackProtector(ParentMBB);
1891
1892 // Splice the terminator of ParentMBB into SuccessMBB.
1893 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1894 SplitPoint,
1895 ParentMBB->end());
1896
1897 // Add compare/jump on neq/jump to the parent BB.
1898 FuncInfo->MBB = ParentMBB;
1899 FuncInfo->InsertPt = ParentMBB->end();
1900 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1901 CurDAG->setRoot(SDB->getRoot());
1902 SDB->clear();
1903 CodeGenAndEmitDAG();
1904
1905 // CodeGen Failure MBB if we have not codegened it yet.
1906 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1907 if (FailureMBB->empty()) {
1908 FuncInfo->MBB = FailureMBB;
1909 FuncInfo->InsertPt = FailureMBB->end();
1910 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1911 CurDAG->setRoot(SDB->getRoot());
1912 SDB->clear();
1913 CodeGenAndEmitDAG();
1914 }
1915
1916 // Clear the Per-BB State.
1917 SDB->SPDescriptor.resetPerBBState();
1918 }
1919
1920 // Lower each BitTestBlock.
1921 for (auto &BTB : SDB->BitTestCases) {
1922 // Lower header first, if it wasn't already lowered
1923 if (!BTB.Emitted) {
1924 // Set the current basic block to the mbb we wish to insert the code into
1925 FuncInfo->MBB = BTB.Parent;
1926 FuncInfo->InsertPt = FuncInfo->MBB->end();
1927 // Emit the code
1928 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1929 CurDAG->setRoot(SDB->getRoot());
1930 SDB->clear();
1931 CodeGenAndEmitDAG();
1932 }
1933
1934 BranchProbability UnhandledProb = BTB.Prob;
1935 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1936 UnhandledProb -= BTB.Cases[j].ExtraProb;
1937 // Set the current basic block to the mbb we wish to insert the code into
1938 FuncInfo->MBB = BTB.Cases[j].ThisBB;
1939 FuncInfo->InsertPt = FuncInfo->MBB->end();
1940 // Emit the code
1941
1942 // If all cases cover a contiguous range, it is not necessary to jump to
1943 // the default block after the last bit test fails. This is because the
1944 // range check during bit test header creation has guaranteed that every
1945 // case here doesn't go outside the range. In this case, there is no need
1946 // to perform the last bit test, as it will always be true. Instead, make
1947 // the second-to-last bit-test fall through to the target of the last bit
1948 // test, and delete the last bit test.
1949
1950 MachineBasicBlock *NextMBB;
1951 if (BTB.ContiguousRange && j + 2 == ej) {
1952 // Second-to-last bit-test with contiguous range: fall through to the
1953 // target of the final bit test.
1954 NextMBB = BTB.Cases[j + 1].TargetBB;
1955 } else if (j + 1 == ej) {
1956 // For the last bit test, fall through to Default.
1957 NextMBB = BTB.Default;
1958 } else {
1959 // Otherwise, fall through to the next bit test.
1960 NextMBB = BTB.Cases[j + 1].ThisBB;
1961 }
1962
1963 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1964 FuncInfo->MBB);
1965
1966 CurDAG->setRoot(SDB->getRoot());
1967 SDB->clear();
1968 CodeGenAndEmitDAG();
1969
1970 if (BTB.ContiguousRange && j + 2 == ej) {
1971 // Since we're not going to use the final bit test, remove it.
1972 BTB.Cases.pop_back();
1973 break;
1974 }
1975 }
1976
1977 // Update PHI Nodes
1978 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1979 pi != pe; ++pi) {
1980 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1981 MachineBasicBlock *PHIBB = PHI->getParent();
1982 assert(PHI->isPHI() &&
1983 "This is not a machine PHI node that we are updating!");
1984 // This is "default" BB. We have two jumps to it. From "header" BB and
1985 // from last "case" BB, unless the latter was skipped.
1986 if (PHIBB == BTB.Default) {
1987 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1988 if (!BTB.ContiguousRange) {
1989 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1990 .addMBB(BTB.Cases.back().ThisBB);
1991 }
1992 }
1993 // One of "cases" BB.
1994 for (unsigned j = 0, ej = BTB.Cases.size();
1995 j != ej; ++j) {
1996 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1997 if (cBB->isSuccessor(PHIBB))
1998 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1999 }
2000 }
2001 }
2002 SDB->BitTestCases.clear();
2003
2004 // If the JumpTable record is filled in, then we need to emit a jump table.
2005 // Updating the PHI nodes is tricky in this case, since we need to determine
2006 // whether the PHI is a successor of the range check MBB or the jump table MBB
2007 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
2008 // Lower header first, if it wasn't already lowered
2009 if (!SDB->JTCases[i].first.Emitted) {
2010 // Set the current basic block to the mbb we wish to insert the code into
2011 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
2012 FuncInfo->InsertPt = FuncInfo->MBB->end();
2013 // Emit the code
2014 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
2015 FuncInfo->MBB);
2016 CurDAG->setRoot(SDB->getRoot());
2017 SDB->clear();
2018 CodeGenAndEmitDAG();
2019 }
2020
2021 // Set the current basic block to the mbb we wish to insert the code into
2022 FuncInfo->MBB = SDB->JTCases[i].second.MBB;
2023 FuncInfo->InsertPt = FuncInfo->MBB->end();
2024 // Emit the code
2025 SDB->visitJumpTable(SDB->JTCases[i].second);
2026 CurDAG->setRoot(SDB->getRoot());
2027 SDB->clear();
2028 CodeGenAndEmitDAG();
2029
2030 // Update PHI Nodes
2031 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
2032 pi != pe; ++pi) {
2033 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
2034 MachineBasicBlock *PHIBB = PHI->getParent();
2035 assert(PHI->isPHI() &&
2036 "This is not a machine PHI node that we are updating!");
2037 // "default" BB. We can go there only from header BB.
2038 if (PHIBB == SDB->JTCases[i].second.Default)
2039 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
2040 .addMBB(SDB->JTCases[i].first.HeaderBB);
2041 // JT BB. Just iterate over successors here
2042 if (FuncInfo->MBB->isSuccessor(PHIBB))
2043 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
2044 }
2045 }
2046 SDB->JTCases.clear();
2047
2048 // If we generated any switch lowering information, build and codegen any
2049 // additional DAGs necessary.
2050 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
2051 // Set the current basic block to the mbb we wish to insert the code into
2052 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
2053 FuncInfo->InsertPt = FuncInfo->MBB->end();
2054
2055 // Determine the unique successors.
2056 SmallVector<MachineBasicBlock *, 2> Succs;
2057 Succs.push_back(SDB->SwitchCases[i].TrueBB);
2058 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
2059 Succs.push_back(SDB->SwitchCases[i].FalseBB);
2060
2061 // Emit the code. Note that this could result in FuncInfo->MBB being split.
2062 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
2063 CurDAG->setRoot(SDB->getRoot());
2064 SDB->clear();
2065 CodeGenAndEmitDAG();
2066
2067 // Remember the last block, now that any splitting is done, for use in
2068 // populating PHI nodes in successors.
2069 MachineBasicBlock *ThisBB = FuncInfo->MBB;
2070
2071 // Handle any PHI nodes in successors of this chunk, as if we were coming
2072 // from the original BB before switch expansion. Note that PHI nodes can
2073 // occur multiple times in PHINodesToUpdate. We have to be very careful to
2074 // handle them the right number of times.
2075 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
2076 FuncInfo->MBB = Succs[i];
2077 FuncInfo->InsertPt = FuncInfo->MBB->end();
2078 // FuncInfo->MBB may have been removed from the CFG if a branch was
2079 // constant folded.
2080 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
2081 for (MachineBasicBlock::iterator
2082 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
2083 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
2084 MachineInstrBuilder PHI(*MF, MBBI);
2085 // This value for this PHI node is recorded in PHINodesToUpdate.
2086 for (unsigned pn = 0; ; ++pn) {
2087 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
2088 "Didn't find PHI entry!");
2089 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
2090 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
2091 break;
2092 }
2093 }
2094 }
2095 }
2096 }
2097 }
2098 SDB->SwitchCases.clear();
2099 }
2100
2101 /// Create the scheduler. If a specific scheduler was specified
2102 /// via the SchedulerRegistry, use it, otherwise select the
2103 /// one preferred by the target.
2104 ///
CreateScheduler()2105 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2106 return ISHeuristic(this, OptLevel);
2107 }
2108
2109 //===----------------------------------------------------------------------===//
2110 // Helper functions used by the generated instruction selector.
2111 //===----------------------------------------------------------------------===//
2112 // Calls to these methods are generated by tblgen.
2113
2114 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
2115 /// the dag combiner simplified the 255, we still want to match. RHS is the
2116 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2117 /// specified in the .td file (e.g. 255).
CheckAndMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const2118 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2119 int64_t DesiredMaskS) const {
2120 const APInt &ActualMask = RHS->getAPIntValue();
2121 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2122
2123 // If the actual mask exactly matches, success!
2124 if (ActualMask == DesiredMask)
2125 return true;
2126
2127 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2128 if (!ActualMask.isSubsetOf(DesiredMask))
2129 return false;
2130
2131 // Otherwise, the DAG Combiner may have proven that the value coming in is
2132 // either already zero or is not demanded. Check for known zero input bits.
2133 APInt NeededMask = DesiredMask & ~ActualMask;
2134 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2135 return true;
2136
2137 // TODO: check to see if missing bits are just not demanded.
2138
2139 // Otherwise, this pattern doesn't match.
2140 return false;
2141 }
2142
2143 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
2144 /// the dag combiner simplified the 255, we still want to match. RHS is the
2145 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2146 /// specified in the .td file (e.g. 255).
CheckOrMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const2147 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2148 int64_t DesiredMaskS) const {
2149 const APInt &ActualMask = RHS->getAPIntValue();
2150 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2151
2152 // If the actual mask exactly matches, success!
2153 if (ActualMask == DesiredMask)
2154 return true;
2155
2156 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2157 if (!ActualMask.isSubsetOf(DesiredMask))
2158 return false;
2159
2160 // Otherwise, the DAG Combiner may have proven that the value coming in is
2161 // either already zero or is not demanded. Check for known zero input bits.
2162 APInt NeededMask = DesiredMask & ~ActualMask;
2163
2164 KnownBits Known;
2165 CurDAG->computeKnownBits(LHS, Known);
2166
2167 // If all the missing bits in the or are already known to be set, match!
2168 if (NeededMask.isSubsetOf(Known.One))
2169 return true;
2170
2171 // TODO: check to see if missing bits are just not demanded.
2172
2173 // Otherwise, this pattern doesn't match.
2174 return false;
2175 }
2176
2177 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2178 /// by tblgen. Others should not call it.
SelectInlineAsmMemoryOperands(std::vector<SDValue> & Ops,const SDLoc & DL)2179 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2180 const SDLoc &DL) {
2181 std::vector<SDValue> InOps;
2182 std::swap(InOps, Ops);
2183
2184 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2185 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
2186 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
2187 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
2188
2189 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2190 if (InOps[e-1].getValueType() == MVT::Glue)
2191 --e; // Don't process a glue operand if it is here.
2192
2193 while (i != e) {
2194 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2195 if (!InlineAsm::isMemKind(Flags)) {
2196 // Just skip over this operand, copying the operands verbatim.
2197 Ops.insert(Ops.end(), InOps.begin()+i,
2198 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2199 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2200 } else {
2201 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2202 "Memory operand with multiple values?");
2203
2204 unsigned TiedToOperand;
2205 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2206 // We need the constraint ID from the operand this is tied to.
2207 unsigned CurOp = InlineAsm::Op_FirstOperand;
2208 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2209 for (; TiedToOperand; --TiedToOperand) {
2210 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2211 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2212 }
2213 }
2214
2215 // Otherwise, this is a memory operand. Ask the target to select it.
2216 std::vector<SDValue> SelOps;
2217 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2218 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2219 report_fatal_error("Could not match memory address. Inline asm"
2220 " failure!");
2221
2222 // Add this to the output node.
2223 unsigned NewFlags =
2224 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2225 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2226 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2227 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2228 i += 2;
2229 }
2230 }
2231
2232 // Add the glue input back if present.
2233 if (e != InOps.size())
2234 Ops.push_back(InOps.back());
2235 }
2236
2237 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2238 /// SDNode.
2239 ///
findGlueUse(SDNode * N)2240 static SDNode *findGlueUse(SDNode *N) {
2241 unsigned FlagResNo = N->getNumValues()-1;
2242 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2243 SDUse &Use = I.getUse();
2244 if (Use.getResNo() == FlagResNo)
2245 return Use.getUser();
2246 }
2247 return nullptr;
2248 }
2249
2250 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2251 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
findNonImmUse(SDNode * Root,SDNode * Def,SDNode * ImmedUse,bool IgnoreChains)2252 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2253 bool IgnoreChains) {
2254 SmallPtrSet<const SDNode *, 16> Visited;
2255 SmallVector<const SDNode *, 16> WorkList;
2256 // Only check if we have non-immediate uses of Def.
2257 if (ImmedUse->isOnlyUserOf(Def))
2258 return false;
2259
2260 // We don't care about paths to Def that go through ImmedUse so mark it
2261 // visited and mark non-def operands as used.
2262 Visited.insert(ImmedUse);
2263 for (const SDValue &Op : ImmedUse->op_values()) {
2264 SDNode *N = Op.getNode();
2265 // Ignore chain deps (they are validated by
2266 // HandleMergeInputChains) and immediate uses
2267 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2268 continue;
2269 if (!Visited.insert(N).second)
2270 continue;
2271 WorkList.push_back(N);
2272 }
2273
2274 // Initialize worklist to operands of Root.
2275 if (Root != ImmedUse) {
2276 for (const SDValue &Op : Root->op_values()) {
2277 SDNode *N = Op.getNode();
2278 // Ignore chains (they are validated by HandleMergeInputChains)
2279 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2280 continue;
2281 if (!Visited.insert(N).second)
2282 continue;
2283 WorkList.push_back(N);
2284 }
2285 }
2286
2287 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2288 }
2289
2290 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2291 /// operand node N of U during instruction selection that starts at Root.
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const2292 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2293 SDNode *Root) const {
2294 if (OptLevel == CodeGenOpt::None) return false;
2295 return N.hasOneUse();
2296 }
2297
2298 /// IsLegalToFold - Returns true if the specific operand node N of
2299 /// U can be folded during instruction selection that starts at Root.
IsLegalToFold(SDValue N,SDNode * U,SDNode * Root,CodeGenOpt::Level OptLevel,bool IgnoreChains)2300 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2301 CodeGenOpt::Level OptLevel,
2302 bool IgnoreChains) {
2303 if (OptLevel == CodeGenOpt::None) return false;
2304
2305 // If Root use can somehow reach N through a path that that doesn't contain
2306 // U then folding N would create a cycle. e.g. In the following
2307 // diagram, Root can reach N through X. If N is folded into Root, then
2308 // X is both a predecessor and a successor of U.
2309 //
2310 // [N*] //
2311 // ^ ^ //
2312 // / \ //
2313 // [U*] [X]? //
2314 // ^ ^ //
2315 // \ / //
2316 // \ / //
2317 // [Root*] //
2318 //
2319 // * indicates nodes to be folded together.
2320 //
2321 // If Root produces glue, then it gets (even more) interesting. Since it
2322 // will be "glued" together with its glue use in the scheduler, we need to
2323 // check if it might reach N.
2324 //
2325 // [N*] //
2326 // ^ ^ //
2327 // / \ //
2328 // [U*] [X]? //
2329 // ^ ^ //
2330 // \ \ //
2331 // \ | //
2332 // [Root*] | //
2333 // ^ | //
2334 // f | //
2335 // | / //
2336 // [Y] / //
2337 // ^ / //
2338 // f / //
2339 // | / //
2340 // [GU] //
2341 //
2342 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2343 // (call it Fold), then X is a predecessor of GU and a successor of
2344 // Fold. But since Fold and GU are glued together, this will create
2345 // a cycle in the scheduling graph.
2346
2347 // If the node has glue, walk down the graph to the "lowest" node in the
2348 // glueged set.
2349 EVT VT = Root->getValueType(Root->getNumValues()-1);
2350 while (VT == MVT::Glue) {
2351 SDNode *GU = findGlueUse(Root);
2352 if (!GU)
2353 break;
2354 Root = GU;
2355 VT = Root->getValueType(Root->getNumValues()-1);
2356
2357 // If our query node has a glue result with a use, we've walked up it. If
2358 // the user (which has already been selected) has a chain or indirectly uses
2359 // the chain, HandleMergeInputChains will not consider it. Because of
2360 // this, we cannot ignore chains in this predicate.
2361 IgnoreChains = false;
2362 }
2363
2364 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2365 }
2366
Select_INLINEASM(SDNode * N)2367 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2368 SDLoc DL(N);
2369
2370 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2371 SelectInlineAsmMemoryOperands(Ops, DL);
2372
2373 const EVT VTs[] = {MVT::Other, MVT::Glue};
2374 SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
2375 New->setNodeId(-1);
2376 ReplaceUses(N, New.getNode());
2377 CurDAG->RemoveDeadNode(N);
2378 }
2379
Select_READ_REGISTER(SDNode * Op)2380 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2381 SDLoc dl(Op);
2382 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2383 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2384 unsigned Reg =
2385 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
2386 *CurDAG);
2387 SDValue New = CurDAG->getCopyFromReg(
2388 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2389 New->setNodeId(-1);
2390 ReplaceUses(Op, New.getNode());
2391 CurDAG->RemoveDeadNode(Op);
2392 }
2393
Select_WRITE_REGISTER(SDNode * Op)2394 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2395 SDLoc dl(Op);
2396 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2397 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2398 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
2399 Op->getOperand(2).getValueType(),
2400 *CurDAG);
2401 SDValue New = CurDAG->getCopyToReg(
2402 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2403 New->setNodeId(-1);
2404 ReplaceUses(Op, New.getNode());
2405 CurDAG->RemoveDeadNode(Op);
2406 }
2407
Select_UNDEF(SDNode * N)2408 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2409 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2410 }
2411
2412 /// GetVBR - decode a vbr encoding whose top bit is set.
2413 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
GetVBR(uint64_t Val,const unsigned char * MatcherTable,unsigned & Idx)2414 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2415 assert(Val >= 128 && "Not a VBR");
2416 Val &= 127; // Remove first vbr bit.
2417
2418 unsigned Shift = 7;
2419 uint64_t NextBits;
2420 do {
2421 NextBits = MatcherTable[Idx++];
2422 Val |= (NextBits&127) << Shift;
2423 Shift += 7;
2424 } while (NextBits & 128);
2425
2426 return Val;
2427 }
2428
2429 /// When a match is complete, this method updates uses of interior chain results
2430 /// to use the new results.
UpdateChains(SDNode * NodeToMatch,SDValue InputChain,SmallVectorImpl<SDNode * > & ChainNodesMatched,bool isMorphNodeTo)2431 void SelectionDAGISel::UpdateChains(
2432 SDNode *NodeToMatch, SDValue InputChain,
2433 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2434 SmallVector<SDNode*, 4> NowDeadNodes;
2435
2436 // Now that all the normal results are replaced, we replace the chain and
2437 // glue results if present.
2438 if (!ChainNodesMatched.empty()) {
2439 assert(InputChain.getNode() &&
2440 "Matched input chains but didn't produce a chain");
2441 // Loop over all of the nodes we matched that produced a chain result.
2442 // Replace all the chain results with the final chain we ended up with.
2443 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2444 SDNode *ChainNode = ChainNodesMatched[i];
2445 // If ChainNode is null, it's because we replaced it on a previous
2446 // iteration and we cleared it out of the map. Just skip it.
2447 if (!ChainNode)
2448 continue;
2449
2450 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2451 "Deleted node left in chain");
2452
2453 // Don't replace the results of the root node if we're doing a
2454 // MorphNodeTo.
2455 if (ChainNode == NodeToMatch && isMorphNodeTo)
2456 continue;
2457
2458 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2459 if (ChainVal.getValueType() == MVT::Glue)
2460 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2461 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2462 SelectionDAG::DAGNodeDeletedListener NDL(
2463 *CurDAG, [&](SDNode *N, SDNode *E) {
2464 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2465 static_cast<SDNode *>(nullptr));
2466 });
2467 if (ChainNode->getOpcode() != ISD::TokenFactor)
2468 ReplaceUses(ChainVal, InputChain);
2469
2470 // If the node became dead and we haven't already seen it, delete it.
2471 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2472 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2473 NowDeadNodes.push_back(ChainNode);
2474 }
2475 }
2476
2477 if (!NowDeadNodes.empty())
2478 CurDAG->RemoveDeadNodes(NowDeadNodes);
2479
2480 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2481 }
2482
2483 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2484 /// operation for when the pattern matched at least one node with a chains. The
2485 /// input vector contains a list of all of the chained nodes that we match. We
2486 /// must determine if this is a valid thing to cover (i.e. matching it won't
2487 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2488 /// be used as the input node chain for the generated nodes.
2489 static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode * > & ChainNodesMatched,SelectionDAG * CurDAG)2490 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2491 SelectionDAG *CurDAG) {
2492
2493 SmallPtrSet<const SDNode *, 16> Visited;
2494 SmallVector<const SDNode *, 8> Worklist;
2495 SmallVector<SDValue, 3> InputChains;
2496 unsigned int Max = 8192;
2497
2498 // Quick exit on trivial merge.
2499 if (ChainNodesMatched.size() == 1)
2500 return ChainNodesMatched[0]->getOperand(0);
2501
2502 // Add chains that aren't already added (internal). Peek through
2503 // token factors.
2504 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2505 if (V.getValueType() != MVT::Other)
2506 return;
2507 if (V->getOpcode() == ISD::EntryToken)
2508 return;
2509 if (!Visited.insert(V.getNode()).second)
2510 return;
2511 if (V->getOpcode() == ISD::TokenFactor) {
2512 for (const SDValue &Op : V->op_values())
2513 AddChains(Op);
2514 } else
2515 InputChains.push_back(V);
2516 };
2517
2518 for (auto *N : ChainNodesMatched) {
2519 Worklist.push_back(N);
2520 Visited.insert(N);
2521 }
2522
2523 while (!Worklist.empty())
2524 AddChains(Worklist.pop_back_val()->getOperand(0));
2525
2526 // Skip the search if there are no chain dependencies.
2527 if (InputChains.size() == 0)
2528 return CurDAG->getEntryNode();
2529
2530 // If one of these chains is a successor of input, we must have a
2531 // node that is both the predecessor and successor of the
2532 // to-be-merged nodes. Fail.
2533 Visited.clear();
2534 for (SDValue V : InputChains)
2535 Worklist.push_back(V.getNode());
2536
2537 for (auto *N : ChainNodesMatched)
2538 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2539 return SDValue();
2540
2541 // Return merged chain.
2542 if (InputChains.size() == 1)
2543 return InputChains[0];
2544 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2545 MVT::Other, InputChains);
2546 }
2547
2548 /// MorphNode - Handle morphing a node in place for the selector.
2549 SDNode *SelectionDAGISel::
MorphNode(SDNode * Node,unsigned TargetOpc,SDVTList VTList,ArrayRef<SDValue> Ops,unsigned EmitNodeInfo)2550 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2551 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2552 // It is possible we're using MorphNodeTo to replace a node with no
2553 // normal results with one that has a normal result (or we could be
2554 // adding a chain) and the input could have glue and chains as well.
2555 // In this case we need to shift the operands down.
2556 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2557 // than the old isel though.
2558 int OldGlueResultNo = -1, OldChainResultNo = -1;
2559
2560 unsigned NTMNumResults = Node->getNumValues();
2561 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2562 OldGlueResultNo = NTMNumResults-1;
2563 if (NTMNumResults != 1 &&
2564 Node->getValueType(NTMNumResults-2) == MVT::Other)
2565 OldChainResultNo = NTMNumResults-2;
2566 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2567 OldChainResultNo = NTMNumResults-1;
2568
2569 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2570 // that this deletes operands of the old node that become dead.
2571 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2572
2573 // MorphNodeTo can operate in two ways: if an existing node with the
2574 // specified operands exists, it can just return it. Otherwise, it
2575 // updates the node in place to have the requested operands.
2576 if (Res == Node) {
2577 // If we updated the node in place, reset the node ID. To the isel,
2578 // this should be just like a newly allocated machine node.
2579 Res->setNodeId(-1);
2580 }
2581
2582 unsigned ResNumResults = Res->getNumValues();
2583 // Move the glue if needed.
2584 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2585 (unsigned)OldGlueResultNo != ResNumResults-1)
2586 ReplaceUses(SDValue(Node, OldGlueResultNo),
2587 SDValue(Res, ResNumResults - 1));
2588
2589 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2590 --ResNumResults;
2591
2592 // Move the chain reference if needed.
2593 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2594 (unsigned)OldChainResultNo != ResNumResults-1)
2595 ReplaceUses(SDValue(Node, OldChainResultNo),
2596 SDValue(Res, ResNumResults - 1));
2597
2598 // Otherwise, no replacement happened because the node already exists. Replace
2599 // Uses of the old node with the new one.
2600 if (Res != Node) {
2601 ReplaceNode(Node, Res);
2602 } else {
2603 EnforceNodeIdInvariant(Res);
2604 }
2605
2606 return Res;
2607 }
2608
2609 /// CheckSame - Implements OP_CheckSame.
2610 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2611 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2612 SDValue N,
2613 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2614 // Accept if it is exactly the same as a previously recorded node.
2615 unsigned RecNo = MatcherTable[MatcherIndex++];
2616 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2617 return N == RecordedNodes[RecNo].first;
2618 }
2619
2620 /// CheckChildSame - Implements OP_CheckChildXSame.
2621 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes,unsigned ChildNo)2622 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2623 SDValue N,
2624 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2625 unsigned ChildNo) {
2626 if (ChildNo >= N.getNumOperands())
2627 return false; // Match fails if out of range child #.
2628 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2629 RecordedNodes);
2630 }
2631
2632 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2633 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckPatternPredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel)2634 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2635 const SelectionDAGISel &SDISel) {
2636 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2637 }
2638
2639 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2640 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckNodePredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel,SDNode * N)2641 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2642 const SelectionDAGISel &SDISel, SDNode *N) {
2643 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2644 }
2645
2646 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOpcode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDNode * N)2647 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2648 SDNode *N) {
2649 uint16_t Opc = MatcherTable[MatcherIndex++];
2650 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2651 return N->getOpcode() == Opc;
2652 }
2653
2654 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2655 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2656 const TargetLowering *TLI, const DataLayout &DL) {
2657 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2658 if (N.getValueType() == VT) return true;
2659
2660 // Handle the case when VT is iPTR.
2661 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2662 }
2663
2664 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL,unsigned ChildNo)2665 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2666 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2667 unsigned ChildNo) {
2668 if (ChildNo >= N.getNumOperands())
2669 return false; // Match fails if out of range child #.
2670 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2671 DL);
2672 }
2673
2674 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckCondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2675 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2676 SDValue N) {
2677 return cast<CondCodeSDNode>(N)->get() ==
2678 (ISD::CondCode)MatcherTable[MatcherIndex++];
2679 }
2680
2681 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckValueType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2682 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2683 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2684 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2685 if (cast<VTSDNode>(N)->getVT() == VT)
2686 return true;
2687
2688 // Handle the case when VT is iPTR.
2689 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2690 }
2691
2692 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2693 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2694 SDValue N) {
2695 int64_t Val = MatcherTable[MatcherIndex++];
2696 if (Val & 128)
2697 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2698
2699 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2700 return C && C->getSExtValue() == Val;
2701 }
2702
2703 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,unsigned ChildNo)2704 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2705 SDValue N, unsigned ChildNo) {
2706 if (ChildNo >= N.getNumOperands())
2707 return false; // Match fails if out of range child #.
2708 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2709 }
2710
2711 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckAndImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2712 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2713 SDValue N, const SelectionDAGISel &SDISel) {
2714 int64_t Val = MatcherTable[MatcherIndex++];
2715 if (Val & 128)
2716 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2717
2718 if (N->getOpcode() != ISD::AND) return false;
2719
2720 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2721 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2722 }
2723
2724 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOrImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2725 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2726 SDValue N, const SelectionDAGISel &SDISel) {
2727 int64_t Val = MatcherTable[MatcherIndex++];
2728 if (Val & 128)
2729 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2730
2731 if (N->getOpcode() != ISD::OR) return false;
2732
2733 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2734 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2735 }
2736
2737 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2738 /// scope, evaluate the current node. If the current predicate is known to
2739 /// fail, set Result=true and return anything. If the current predicate is
2740 /// known to pass, set Result=false and return the MatcherIndex to continue
2741 /// with. If the current predicate is unknown, set Result=false and return the
2742 /// MatcherIndex to continue with.
IsPredicateKnownToFail(const unsigned char * Table,unsigned Index,SDValue N,bool & Result,const SelectionDAGISel & SDISel,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2743 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2744 unsigned Index, SDValue N,
2745 bool &Result,
2746 const SelectionDAGISel &SDISel,
2747 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2748 switch (Table[Index++]) {
2749 default:
2750 Result = false;
2751 return Index-1; // Could not evaluate this predicate.
2752 case SelectionDAGISel::OPC_CheckSame:
2753 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2754 return Index;
2755 case SelectionDAGISel::OPC_CheckChild0Same:
2756 case SelectionDAGISel::OPC_CheckChild1Same:
2757 case SelectionDAGISel::OPC_CheckChild2Same:
2758 case SelectionDAGISel::OPC_CheckChild3Same:
2759 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2760 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2761 return Index;
2762 case SelectionDAGISel::OPC_CheckPatternPredicate:
2763 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2764 return Index;
2765 case SelectionDAGISel::OPC_CheckPredicate:
2766 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2767 return Index;
2768 case SelectionDAGISel::OPC_CheckOpcode:
2769 Result = !::CheckOpcode(Table, Index, N.getNode());
2770 return Index;
2771 case SelectionDAGISel::OPC_CheckType:
2772 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2773 SDISel.CurDAG->getDataLayout());
2774 return Index;
2775 case SelectionDAGISel::OPC_CheckTypeRes: {
2776 unsigned Res = Table[Index++];
2777 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2778 SDISel.CurDAG->getDataLayout());
2779 return Index;
2780 }
2781 case SelectionDAGISel::OPC_CheckChild0Type:
2782 case SelectionDAGISel::OPC_CheckChild1Type:
2783 case SelectionDAGISel::OPC_CheckChild2Type:
2784 case SelectionDAGISel::OPC_CheckChild3Type:
2785 case SelectionDAGISel::OPC_CheckChild4Type:
2786 case SelectionDAGISel::OPC_CheckChild5Type:
2787 case SelectionDAGISel::OPC_CheckChild6Type:
2788 case SelectionDAGISel::OPC_CheckChild7Type:
2789 Result = !::CheckChildType(
2790 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2791 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2792 return Index;
2793 case SelectionDAGISel::OPC_CheckCondCode:
2794 Result = !::CheckCondCode(Table, Index, N);
2795 return Index;
2796 case SelectionDAGISel::OPC_CheckValueType:
2797 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2798 SDISel.CurDAG->getDataLayout());
2799 return Index;
2800 case SelectionDAGISel::OPC_CheckInteger:
2801 Result = !::CheckInteger(Table, Index, N);
2802 return Index;
2803 case SelectionDAGISel::OPC_CheckChild0Integer:
2804 case SelectionDAGISel::OPC_CheckChild1Integer:
2805 case SelectionDAGISel::OPC_CheckChild2Integer:
2806 case SelectionDAGISel::OPC_CheckChild3Integer:
2807 case SelectionDAGISel::OPC_CheckChild4Integer:
2808 Result = !::CheckChildInteger(Table, Index, N,
2809 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2810 return Index;
2811 case SelectionDAGISel::OPC_CheckAndImm:
2812 Result = !::CheckAndImm(Table, Index, N, SDISel);
2813 return Index;
2814 case SelectionDAGISel::OPC_CheckOrImm:
2815 Result = !::CheckOrImm(Table, Index, N, SDISel);
2816 return Index;
2817 }
2818 }
2819
2820 namespace {
2821
2822 struct MatchScope {
2823 /// FailIndex - If this match fails, this is the index to continue with.
2824 unsigned FailIndex;
2825
2826 /// NodeStack - The node stack when the scope was formed.
2827 SmallVector<SDValue, 4> NodeStack;
2828
2829 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2830 unsigned NumRecordedNodes;
2831
2832 /// NumMatchedMemRefs - The number of matched memref entries.
2833 unsigned NumMatchedMemRefs;
2834
2835 /// InputChain/InputGlue - The current chain/glue
2836 SDValue InputChain, InputGlue;
2837
2838 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2839 bool HasChainNodesMatched;
2840 };
2841
2842 /// \A DAG update listener to keep the matching state
2843 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2844 /// change the DAG while matching. X86 addressing mode matcher is an example
2845 /// for this.
2846 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2847 {
2848 SDNode **NodeToMatch;
2849 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2850 SmallVectorImpl<MatchScope> &MatchScopes;
2851
2852 public:
MatchStateUpdater(SelectionDAG & DAG,SDNode ** NodeToMatch,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RN,SmallVectorImpl<MatchScope> & MS)2853 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2854 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2855 SmallVectorImpl<MatchScope> &MS)
2856 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2857 RecordedNodes(RN), MatchScopes(MS) {}
2858
NodeDeleted(SDNode * N,SDNode * E)2859 void NodeDeleted(SDNode *N, SDNode *E) override {
2860 // Some early-returns here to avoid the search if we deleted the node or
2861 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2862 // do, so it's unnecessary to update matching state at that point).
2863 // Neither of these can occur currently because we only install this
2864 // update listener during matching a complex patterns.
2865 if (!E || E->isMachineOpcode())
2866 return;
2867 // Check if NodeToMatch was updated.
2868 if (N == *NodeToMatch)
2869 *NodeToMatch = E;
2870 // Performing linear search here does not matter because we almost never
2871 // run this code. You'd have to have a CSE during complex pattern
2872 // matching.
2873 for (auto &I : RecordedNodes)
2874 if (I.first.getNode() == N)
2875 I.first.setNode(E);
2876
2877 for (auto &I : MatchScopes)
2878 for (auto &J : I.NodeStack)
2879 if (J.getNode() == N)
2880 J.setNode(E);
2881 }
2882 };
2883
2884 } // end anonymous namespace
2885
SelectCodeCommon(SDNode * NodeToMatch,const unsigned char * MatcherTable,unsigned TableSize)2886 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2887 const unsigned char *MatcherTable,
2888 unsigned TableSize) {
2889 // FIXME: Should these even be selected? Handle these cases in the caller?
2890 switch (NodeToMatch->getOpcode()) {
2891 default:
2892 break;
2893 case ISD::EntryToken: // These nodes remain the same.
2894 case ISD::BasicBlock:
2895 case ISD::Register:
2896 case ISD::RegisterMask:
2897 case ISD::HANDLENODE:
2898 case ISD::MDNODE_SDNODE:
2899 case ISD::TargetConstant:
2900 case ISD::TargetConstantFP:
2901 case ISD::TargetConstantPool:
2902 case ISD::TargetFrameIndex:
2903 case ISD::TargetExternalSymbol:
2904 case ISD::MCSymbol:
2905 case ISD::TargetBlockAddress:
2906 case ISD::TargetJumpTable:
2907 case ISD::TargetGlobalTLSAddress:
2908 case ISD::TargetGlobalAddress:
2909 case ISD::TokenFactor:
2910 case ISD::CopyFromReg:
2911 case ISD::CopyToReg:
2912 case ISD::EH_LABEL:
2913 case ISD::ANNOTATION_LABEL:
2914 case ISD::LIFETIME_START:
2915 case ISD::LIFETIME_END:
2916 NodeToMatch->setNodeId(-1); // Mark selected.
2917 return;
2918 case ISD::AssertSext:
2919 case ISD::AssertZext:
2920 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2921 CurDAG->RemoveDeadNode(NodeToMatch);
2922 return;
2923 case ISD::INLINEASM:
2924 Select_INLINEASM(NodeToMatch);
2925 return;
2926 case ISD::READ_REGISTER:
2927 Select_READ_REGISTER(NodeToMatch);
2928 return;
2929 case ISD::WRITE_REGISTER:
2930 Select_WRITE_REGISTER(NodeToMatch);
2931 return;
2932 case ISD::UNDEF:
2933 Select_UNDEF(NodeToMatch);
2934 return;
2935 }
2936
2937 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2938
2939 // Set up the node stack with NodeToMatch as the only node on the stack.
2940 SmallVector<SDValue, 8> NodeStack;
2941 SDValue N = SDValue(NodeToMatch, 0);
2942 NodeStack.push_back(N);
2943
2944 // MatchScopes - Scopes used when matching, if a match failure happens, this
2945 // indicates where to continue checking.
2946 SmallVector<MatchScope, 8> MatchScopes;
2947
2948 // RecordedNodes - This is the set of nodes that have been recorded by the
2949 // state machine. The second value is the parent of the node, or null if the
2950 // root is recorded.
2951 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2952
2953 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2954 // pattern.
2955 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2956
2957 // These are the current input chain and glue for use when generating nodes.
2958 // Various Emit operations change these. For example, emitting a copytoreg
2959 // uses and updates these.
2960 SDValue InputChain, InputGlue;
2961
2962 // ChainNodesMatched - If a pattern matches nodes that have input/output
2963 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2964 // which ones they are. The result is captured into this list so that we can
2965 // update the chain results when the pattern is complete.
2966 SmallVector<SDNode*, 3> ChainNodesMatched;
2967
2968 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2969
2970 // Determine where to start the interpreter. Normally we start at opcode #0,
2971 // but if the state machine starts with an OPC_SwitchOpcode, then we
2972 // accelerate the first lookup (which is guaranteed to be hot) with the
2973 // OpcodeOffset table.
2974 unsigned MatcherIndex = 0;
2975
2976 if (!OpcodeOffset.empty()) {
2977 // Already computed the OpcodeOffset table, just index into it.
2978 if (N.getOpcode() < OpcodeOffset.size())
2979 MatcherIndex = OpcodeOffset[N.getOpcode()];
2980 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
2981
2982 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2983 // Otherwise, the table isn't computed, but the state machine does start
2984 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2985 // is the first time we're selecting an instruction.
2986 unsigned Idx = 1;
2987 while (true) {
2988 // Get the size of this case.
2989 unsigned CaseSize = MatcherTable[Idx++];
2990 if (CaseSize & 128)
2991 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2992 if (CaseSize == 0) break;
2993
2994 // Get the opcode, add the index to the table.
2995 uint16_t Opc = MatcherTable[Idx++];
2996 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2997 if (Opc >= OpcodeOffset.size())
2998 OpcodeOffset.resize((Opc+1)*2);
2999 OpcodeOffset[Opc] = Idx;
3000 Idx += CaseSize;
3001 }
3002
3003 // Okay, do the lookup for the first opcode.
3004 if (N.getOpcode() < OpcodeOffset.size())
3005 MatcherIndex = OpcodeOffset[N.getOpcode()];
3006 }
3007
3008 while (true) {
3009 assert(MatcherIndex < TableSize && "Invalid index");
3010 #ifndef NDEBUG
3011 unsigned CurrentOpcodeIndex = MatcherIndex;
3012 #endif
3013 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
3014 switch (Opcode) {
3015 case OPC_Scope: {
3016 // Okay, the semantics of this operation are that we should push a scope
3017 // then evaluate the first child. However, pushing a scope only to have
3018 // the first check fail (which then pops it) is inefficient. If we can
3019 // determine immediately that the first check (or first several) will
3020 // immediately fail, don't even bother pushing a scope for them.
3021 unsigned FailIndex;
3022
3023 while (true) {
3024 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3025 if (NumToSkip & 128)
3026 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3027 // Found the end of the scope with no match.
3028 if (NumToSkip == 0) {
3029 FailIndex = 0;
3030 break;
3031 }
3032
3033 FailIndex = MatcherIndex+NumToSkip;
3034
3035 unsigned MatcherIndexOfPredicate = MatcherIndex;
3036 (void)MatcherIndexOfPredicate; // silence warning.
3037
3038 // If we can't evaluate this predicate without pushing a scope (e.g. if
3039 // it is a 'MoveParent') or if the predicate succeeds on this node, we
3040 // push the scope and evaluate the full predicate chain.
3041 bool Result;
3042 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3043 Result, *this, RecordedNodes);
3044 if (!Result)
3045 break;
3046
3047 LLVM_DEBUG(
3048 dbgs() << " Skipped scope entry (due to false predicate) at "
3049 << "index " << MatcherIndexOfPredicate << ", continuing at "
3050 << FailIndex << "\n");
3051 ++NumDAGIselRetries;
3052
3053 // Otherwise, we know that this case of the Scope is guaranteed to fail,
3054 // move to the next case.
3055 MatcherIndex = FailIndex;
3056 }
3057
3058 // If the whole scope failed to match, bail.
3059 if (FailIndex == 0) break;
3060
3061 // Push a MatchScope which indicates where to go if the first child fails
3062 // to match.
3063 MatchScope NewEntry;
3064 NewEntry.FailIndex = FailIndex;
3065 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3066 NewEntry.NumRecordedNodes = RecordedNodes.size();
3067 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3068 NewEntry.InputChain = InputChain;
3069 NewEntry.InputGlue = InputGlue;
3070 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3071 MatchScopes.push_back(NewEntry);
3072 continue;
3073 }
3074 case OPC_RecordNode: {
3075 // Remember this node, it may end up being an operand in the pattern.
3076 SDNode *Parent = nullptr;
3077 if (NodeStack.size() > 1)
3078 Parent = NodeStack[NodeStack.size()-2].getNode();
3079 RecordedNodes.push_back(std::make_pair(N, Parent));
3080 continue;
3081 }
3082
3083 case OPC_RecordChild0: case OPC_RecordChild1:
3084 case OPC_RecordChild2: case OPC_RecordChild3:
3085 case OPC_RecordChild4: case OPC_RecordChild5:
3086 case OPC_RecordChild6: case OPC_RecordChild7: {
3087 unsigned ChildNo = Opcode-OPC_RecordChild0;
3088 if (ChildNo >= N.getNumOperands())
3089 break; // Match fails if out of range child #.
3090
3091 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3092 N.getNode()));
3093 continue;
3094 }
3095 case OPC_RecordMemRef:
3096 if (auto *MN = dyn_cast<MemSDNode>(N))
3097 MatchedMemRefs.push_back(MN->getMemOperand());
3098 else {
3099 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3100 dbgs() << '\n');
3101 }
3102
3103 continue;
3104
3105 case OPC_CaptureGlueInput:
3106 // If the current node has an input glue, capture it in InputGlue.
3107 if (N->getNumOperands() != 0 &&
3108 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3109 InputGlue = N->getOperand(N->getNumOperands()-1);
3110 continue;
3111
3112 case OPC_MoveChild: {
3113 unsigned ChildNo = MatcherTable[MatcherIndex++];
3114 if (ChildNo >= N.getNumOperands())
3115 break; // Match fails if out of range child #.
3116 N = N.getOperand(ChildNo);
3117 NodeStack.push_back(N);
3118 continue;
3119 }
3120
3121 case OPC_MoveChild0: case OPC_MoveChild1:
3122 case OPC_MoveChild2: case OPC_MoveChild3:
3123 case OPC_MoveChild4: case OPC_MoveChild5:
3124 case OPC_MoveChild6: case OPC_MoveChild7: {
3125 unsigned ChildNo = Opcode-OPC_MoveChild0;
3126 if (ChildNo >= N.getNumOperands())
3127 break; // Match fails if out of range child #.
3128 N = N.getOperand(ChildNo);
3129 NodeStack.push_back(N);
3130 continue;
3131 }
3132
3133 case OPC_MoveParent:
3134 // Pop the current node off the NodeStack.
3135 NodeStack.pop_back();
3136 assert(!NodeStack.empty() && "Node stack imbalance!");
3137 N = NodeStack.back();
3138 continue;
3139
3140 case OPC_CheckSame:
3141 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3142 continue;
3143
3144 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3145 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3146 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3147 Opcode-OPC_CheckChild0Same))
3148 break;
3149 continue;
3150
3151 case OPC_CheckPatternPredicate:
3152 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3153 continue;
3154 case OPC_CheckPredicate:
3155 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3156 N.getNode()))
3157 break;
3158 continue;
3159 case OPC_CheckComplexPat: {
3160 unsigned CPNum = MatcherTable[MatcherIndex++];
3161 unsigned RecNo = MatcherTable[MatcherIndex++];
3162 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3163
3164 // If target can modify DAG during matching, keep the matching state
3165 // consistent.
3166 std::unique_ptr<MatchStateUpdater> MSU;
3167 if (ComplexPatternFuncMutatesDAG())
3168 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3169 MatchScopes));
3170
3171 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3172 RecordedNodes[RecNo].first, CPNum,
3173 RecordedNodes))
3174 break;
3175 continue;
3176 }
3177 case OPC_CheckOpcode:
3178 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3179 continue;
3180
3181 case OPC_CheckType:
3182 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3183 CurDAG->getDataLayout()))
3184 break;
3185 continue;
3186
3187 case OPC_CheckTypeRes: {
3188 unsigned Res = MatcherTable[MatcherIndex++];
3189 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3190 CurDAG->getDataLayout()))
3191 break;
3192 continue;
3193 }
3194
3195 case OPC_SwitchOpcode: {
3196 unsigned CurNodeOpcode = N.getOpcode();
3197 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3198 unsigned CaseSize;
3199 while (true) {
3200 // Get the size of this case.
3201 CaseSize = MatcherTable[MatcherIndex++];
3202 if (CaseSize & 128)
3203 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3204 if (CaseSize == 0) break;
3205
3206 uint16_t Opc = MatcherTable[MatcherIndex++];
3207 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3208
3209 // If the opcode matches, then we will execute this case.
3210 if (CurNodeOpcode == Opc)
3211 break;
3212
3213 // Otherwise, skip over this case.
3214 MatcherIndex += CaseSize;
3215 }
3216
3217 // If no cases matched, bail out.
3218 if (CaseSize == 0) break;
3219
3220 // Otherwise, execute the case we found.
3221 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3222 << MatcherIndex << "\n");
3223 continue;
3224 }
3225
3226 case OPC_SwitchType: {
3227 MVT CurNodeVT = N.getSimpleValueType();
3228 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3229 unsigned CaseSize;
3230 while (true) {
3231 // Get the size of this case.
3232 CaseSize = MatcherTable[MatcherIndex++];
3233 if (CaseSize & 128)
3234 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3235 if (CaseSize == 0) break;
3236
3237 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3238 if (CaseVT == MVT::iPTR)
3239 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3240
3241 // If the VT matches, then we will execute this case.
3242 if (CurNodeVT == CaseVT)
3243 break;
3244
3245 // Otherwise, skip over this case.
3246 MatcherIndex += CaseSize;
3247 }
3248
3249 // If no cases matched, bail out.
3250 if (CaseSize == 0) break;
3251
3252 // Otherwise, execute the case we found.
3253 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3254 << "] from " << SwitchStart << " to " << MatcherIndex
3255 << '\n');
3256 continue;
3257 }
3258 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3259 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3260 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3261 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3262 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3263 CurDAG->getDataLayout(),
3264 Opcode - OPC_CheckChild0Type))
3265 break;
3266 continue;
3267 case OPC_CheckCondCode:
3268 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3269 continue;
3270 case OPC_CheckValueType:
3271 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3272 CurDAG->getDataLayout()))
3273 break;
3274 continue;
3275 case OPC_CheckInteger:
3276 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3277 continue;
3278 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3279 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3280 case OPC_CheckChild4Integer:
3281 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3282 Opcode-OPC_CheckChild0Integer)) break;
3283 continue;
3284 case OPC_CheckAndImm:
3285 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3286 continue;
3287 case OPC_CheckOrImm:
3288 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3289 continue;
3290
3291 case OPC_CheckFoldableChainNode: {
3292 assert(NodeStack.size() != 1 && "No parent node");
3293 // Verify that all intermediate nodes between the root and this one have
3294 // a single use.
3295 bool HasMultipleUses = false;
3296 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
3297 if (!NodeStack[i].getNode()->hasOneUse()) {
3298 HasMultipleUses = true;
3299 break;
3300 }
3301 if (HasMultipleUses) break;
3302
3303 // Check to see that the target thinks this is profitable to fold and that
3304 // we can fold it without inducing cycles in the graph.
3305 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3306 NodeToMatch) ||
3307 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3308 NodeToMatch, OptLevel,
3309 true/*We validate our own chains*/))
3310 break;
3311
3312 continue;
3313 }
3314 case OPC_EmitInteger: {
3315 MVT::SimpleValueType VT =
3316 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3317 int64_t Val = MatcherTable[MatcherIndex++];
3318 if (Val & 128)
3319 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3320 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3321 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3322 VT), nullptr));
3323 continue;
3324 }
3325 case OPC_EmitRegister: {
3326 MVT::SimpleValueType VT =
3327 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3328 unsigned RegNo = MatcherTable[MatcherIndex++];
3329 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3330 CurDAG->getRegister(RegNo, VT), nullptr));
3331 continue;
3332 }
3333 case OPC_EmitRegister2: {
3334 // For targets w/ more than 256 register names, the register enum
3335 // values are stored in two bytes in the matcher table (just like
3336 // opcodes).
3337 MVT::SimpleValueType VT =
3338 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3339 unsigned RegNo = MatcherTable[MatcherIndex++];
3340 RegNo |= MatcherTable[MatcherIndex++] << 8;
3341 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3342 CurDAG->getRegister(RegNo, VT), nullptr));
3343 continue;
3344 }
3345
3346 case OPC_EmitConvertToTarget: {
3347 // Convert from IMM/FPIMM to target version.
3348 unsigned RecNo = MatcherTable[MatcherIndex++];
3349 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3350 SDValue Imm = RecordedNodes[RecNo].first;
3351
3352 if (Imm->getOpcode() == ISD::Constant) {
3353 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3354 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3355 Imm.getValueType());
3356 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3357 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3358 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3359 Imm.getValueType());
3360 }
3361
3362 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3363 continue;
3364 }
3365
3366 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3367 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3368 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3369 // These are space-optimized forms of OPC_EmitMergeInputChains.
3370 assert(!InputChain.getNode() &&
3371 "EmitMergeInputChains should be the first chain producing node");
3372 assert(ChainNodesMatched.empty() &&
3373 "Should only have one EmitMergeInputChains per match");
3374
3375 // Read all of the chained nodes.
3376 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3377 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3378 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3379
3380 // FIXME: What if other value results of the node have uses not matched
3381 // by this pattern?
3382 if (ChainNodesMatched.back() != NodeToMatch &&
3383 !RecordedNodes[RecNo].first.hasOneUse()) {
3384 ChainNodesMatched.clear();
3385 break;
3386 }
3387
3388 // Merge the input chains if they are not intra-pattern references.
3389 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3390
3391 if (!InputChain.getNode())
3392 break; // Failed to merge.
3393 continue;
3394 }
3395
3396 case OPC_EmitMergeInputChains: {
3397 assert(!InputChain.getNode() &&
3398 "EmitMergeInputChains should be the first chain producing node");
3399 // This node gets a list of nodes we matched in the input that have
3400 // chains. We want to token factor all of the input chains to these nodes
3401 // together. However, if any of the input chains is actually one of the
3402 // nodes matched in this pattern, then we have an intra-match reference.
3403 // Ignore these because the newly token factored chain should not refer to
3404 // the old nodes.
3405 unsigned NumChains = MatcherTable[MatcherIndex++];
3406 assert(NumChains != 0 && "Can't TF zero chains");
3407
3408 assert(ChainNodesMatched.empty() &&
3409 "Should only have one EmitMergeInputChains per match");
3410
3411 // Read all of the chained nodes.
3412 for (unsigned i = 0; i != NumChains; ++i) {
3413 unsigned RecNo = MatcherTable[MatcherIndex++];
3414 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3415 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3416
3417 // FIXME: What if other value results of the node have uses not matched
3418 // by this pattern?
3419 if (ChainNodesMatched.back() != NodeToMatch &&
3420 !RecordedNodes[RecNo].first.hasOneUse()) {
3421 ChainNodesMatched.clear();
3422 break;
3423 }
3424 }
3425
3426 // If the inner loop broke out, the match fails.
3427 if (ChainNodesMatched.empty())
3428 break;
3429
3430 // Merge the input chains if they are not intra-pattern references.
3431 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3432
3433 if (!InputChain.getNode())
3434 break; // Failed to merge.
3435
3436 continue;
3437 }
3438
3439 case OPC_EmitCopyToReg: {
3440 unsigned RecNo = MatcherTable[MatcherIndex++];
3441 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3442 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3443
3444 if (!InputChain.getNode())
3445 InputChain = CurDAG->getEntryNode();
3446
3447 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3448 DestPhysReg, RecordedNodes[RecNo].first,
3449 InputGlue);
3450
3451 InputGlue = InputChain.getValue(1);
3452 continue;
3453 }
3454
3455 case OPC_EmitNodeXForm: {
3456 unsigned XFormNo = MatcherTable[MatcherIndex++];
3457 unsigned RecNo = MatcherTable[MatcherIndex++];
3458 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3459 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3460 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3461 continue;
3462 }
3463 case OPC_Coverage: {
3464 // This is emitted right before MorphNode/EmitNode.
3465 // So it should be safe to assume that this node has been selected
3466 unsigned index = MatcherTable[MatcherIndex++];
3467 index |= (MatcherTable[MatcherIndex++] << 8);
3468 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3469 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3470 continue;
3471 }
3472
3473 case OPC_EmitNode: case OPC_MorphNodeTo:
3474 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
3475 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3476 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3477 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3478 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3479 // Get the result VT list.
3480 unsigned NumVTs;
3481 // If this is one of the compressed forms, get the number of VTs based
3482 // on the Opcode. Otherwise read the next byte from the table.
3483 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3484 NumVTs = Opcode - OPC_MorphNodeTo0;
3485 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3486 NumVTs = Opcode - OPC_EmitNode0;
3487 else
3488 NumVTs = MatcherTable[MatcherIndex++];
3489 SmallVector<EVT, 4> VTs;
3490 for (unsigned i = 0; i != NumVTs; ++i) {
3491 MVT::SimpleValueType VT =
3492 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3493 if (VT == MVT::iPTR)
3494 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3495 VTs.push_back(VT);
3496 }
3497
3498 if (EmitNodeInfo & OPFL_Chain)
3499 VTs.push_back(MVT::Other);
3500 if (EmitNodeInfo & OPFL_GlueOutput)
3501 VTs.push_back(MVT::Glue);
3502
3503 // This is hot code, so optimize the two most common cases of 1 and 2
3504 // results.
3505 SDVTList VTList;
3506 if (VTs.size() == 1)
3507 VTList = CurDAG->getVTList(VTs[0]);
3508 else if (VTs.size() == 2)
3509 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3510 else
3511 VTList = CurDAG->getVTList(VTs);
3512
3513 // Get the operand list.
3514 unsigned NumOps = MatcherTable[MatcherIndex++];
3515 SmallVector<SDValue, 8> Ops;
3516 for (unsigned i = 0; i != NumOps; ++i) {
3517 unsigned RecNo = MatcherTable[MatcherIndex++];
3518 if (RecNo & 128)
3519 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3520
3521 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3522 Ops.push_back(RecordedNodes[RecNo].first);
3523 }
3524
3525 // If there are variadic operands to add, handle them now.
3526 if (EmitNodeInfo & OPFL_VariadicInfo) {
3527 // Determine the start index to copy from.
3528 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3529 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3530 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3531 "Invalid variadic node");
3532 // Copy all of the variadic operands, not including a potential glue
3533 // input.
3534 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3535 i != e; ++i) {
3536 SDValue V = NodeToMatch->getOperand(i);
3537 if (V.getValueType() == MVT::Glue) break;
3538 Ops.push_back(V);
3539 }
3540 }
3541
3542 // If this has chain/glue inputs, add them.
3543 if (EmitNodeInfo & OPFL_Chain)
3544 Ops.push_back(InputChain);
3545 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3546 Ops.push_back(InputGlue);
3547
3548 // Create the node.
3549 MachineSDNode *Res = nullptr;
3550 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3551 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3552 if (!IsMorphNodeTo) {
3553 // If this is a normal EmitNode command, just create the new node and
3554 // add the results to the RecordedNodes list.
3555 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3556 VTList, Ops);
3557
3558 // Add all the non-glue/non-chain results to the RecordedNodes list.
3559 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3560 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3561 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3562 nullptr));
3563 }
3564 } else {
3565 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3566 "NodeToMatch was removed partway through selection");
3567 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3568 SDNode *E) {
3569 CurDAG->salvageDebugInfo(*N);
3570 auto &Chain = ChainNodesMatched;
3571 assert((!E || !is_contained(Chain, N)) &&
3572 "Chain node replaced during MorphNode");
3573 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3574 });
3575 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3576 Ops, EmitNodeInfo));
3577 }
3578
3579 // If the node had chain/glue results, update our notion of the current
3580 // chain and glue.
3581 if (EmitNodeInfo & OPFL_GlueOutput) {
3582 InputGlue = SDValue(Res, VTs.size()-1);
3583 if (EmitNodeInfo & OPFL_Chain)
3584 InputChain = SDValue(Res, VTs.size()-2);
3585 } else if (EmitNodeInfo & OPFL_Chain)
3586 InputChain = SDValue(Res, VTs.size()-1);
3587
3588 // If the OPFL_MemRefs glue is set on this node, slap all of the
3589 // accumulated memrefs onto it.
3590 //
3591 // FIXME: This is vastly incorrect for patterns with multiple outputs
3592 // instructions that access memory and for ComplexPatterns that match
3593 // loads.
3594 if (EmitNodeInfo & OPFL_MemRefs) {
3595 // Only attach load or store memory operands if the generated
3596 // instruction may load or store.
3597 const MCInstrDesc &MCID = TII->get(TargetOpc);
3598 bool mayLoad = MCID.mayLoad();
3599 bool mayStore = MCID.mayStore();
3600
3601 unsigned NumMemRefs = 0;
3602 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3603 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3604 if ((*I)->isLoad()) {
3605 if (mayLoad)
3606 ++NumMemRefs;
3607 } else if ((*I)->isStore()) {
3608 if (mayStore)
3609 ++NumMemRefs;
3610 } else {
3611 ++NumMemRefs;
3612 }
3613 }
3614
3615 MachineSDNode::mmo_iterator MemRefs =
3616 MF->allocateMemRefsArray(NumMemRefs);
3617
3618 MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3619 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3620 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3621 if ((*I)->isLoad()) {
3622 if (mayLoad)
3623 *MemRefsPos++ = *I;
3624 } else if ((*I)->isStore()) {
3625 if (mayStore)
3626 *MemRefsPos++ = *I;
3627 } else {
3628 *MemRefsPos++ = *I;
3629 }
3630 }
3631
3632 Res->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3633 }
3634
3635 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3636 << " Dropping mem operands\n";
3637 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
3638 << " node: ";
3639 Res->dump(CurDAG););
3640
3641 // If this was a MorphNodeTo then we're completely done!
3642 if (IsMorphNodeTo) {
3643 // Update chain uses.
3644 UpdateChains(Res, InputChain, ChainNodesMatched, true);
3645 return;
3646 }
3647 continue;
3648 }
3649
3650 case OPC_CompleteMatch: {
3651 // The match has been completed, and any new nodes (if any) have been
3652 // created. Patch up references to the matched dag to use the newly
3653 // created nodes.
3654 unsigned NumResults = MatcherTable[MatcherIndex++];
3655
3656 for (unsigned i = 0; i != NumResults; ++i) {
3657 unsigned ResSlot = MatcherTable[MatcherIndex++];
3658 if (ResSlot & 128)
3659 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3660
3661 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3662 SDValue Res = RecordedNodes[ResSlot].first;
3663
3664 assert(i < NodeToMatch->getNumValues() &&
3665 NodeToMatch->getValueType(i) != MVT::Other &&
3666 NodeToMatch->getValueType(i) != MVT::Glue &&
3667 "Invalid number of results to complete!");
3668 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3669 NodeToMatch->getValueType(i) == MVT::iPTR ||
3670 Res.getValueType() == MVT::iPTR ||
3671 NodeToMatch->getValueType(i).getSizeInBits() ==
3672 Res.getValueSizeInBits()) &&
3673 "invalid replacement");
3674 ReplaceUses(SDValue(NodeToMatch, i), Res);
3675 }
3676
3677 // Update chain uses.
3678 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3679
3680 // If the root node defines glue, we need to update it to the glue result.
3681 // TODO: This never happens in our tests and I think it can be removed /
3682 // replaced with an assert, but if we do it this the way the change is
3683 // NFC.
3684 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3685 MVT::Glue &&
3686 InputGlue.getNode())
3687 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3688 InputGlue);
3689
3690 assert(NodeToMatch->use_empty() &&
3691 "Didn't replace all uses of the node?");
3692 CurDAG->RemoveDeadNode(NodeToMatch);
3693
3694 return;
3695 }
3696 }
3697
3698 // If the code reached this point, then the match failed. See if there is
3699 // another child to try in the current 'Scope', otherwise pop it until we
3700 // find a case to check.
3701 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3702 << "\n");
3703 ++NumDAGIselRetries;
3704 while (true) {
3705 if (MatchScopes.empty()) {
3706 CannotYetSelect(NodeToMatch);
3707 return;
3708 }
3709
3710 // Restore the interpreter state back to the point where the scope was
3711 // formed.
3712 MatchScope &LastScope = MatchScopes.back();
3713 RecordedNodes.resize(LastScope.NumRecordedNodes);
3714 NodeStack.clear();
3715 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3716 N = NodeStack.back();
3717
3718 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3719 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3720 MatcherIndex = LastScope.FailIndex;
3721
3722 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3723
3724 InputChain = LastScope.InputChain;
3725 InputGlue = LastScope.InputGlue;
3726 if (!LastScope.HasChainNodesMatched)
3727 ChainNodesMatched.clear();
3728
3729 // Check to see what the offset is at the new MatcherIndex. If it is zero
3730 // we have reached the end of this scope, otherwise we have another child
3731 // in the current scope to try.
3732 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3733 if (NumToSkip & 128)
3734 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3735
3736 // If we have another child in this scope to match, update FailIndex and
3737 // try it.
3738 if (NumToSkip != 0) {
3739 LastScope.FailIndex = MatcherIndex+NumToSkip;
3740 break;
3741 }
3742
3743 // End of this scope, pop it and try the next child in the containing
3744 // scope.
3745 MatchScopes.pop_back();
3746 }
3747 }
3748 }
3749
isOrEquivalentToAdd(const SDNode * N) const3750 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3751 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3752 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3753 if (!C)
3754 return false;
3755
3756 // Detect when "or" is used to add an offset to a stack object.
3757 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3758 MachineFrameInfo &MFI = MF->getFrameInfo();
3759 unsigned A = MFI.getObjectAlignment(FN->getIndex());
3760 assert(isPowerOf2_32(A) && "Unexpected alignment");
3761 int32_t Off = C->getSExtValue();
3762 // If the alleged offset fits in the zero bits guaranteed by
3763 // the alignment, then this or is really an add.
3764 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3765 }
3766 return false;
3767 }
3768
CannotYetSelect(SDNode * N)3769 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3770 std::string msg;
3771 raw_string_ostream Msg(msg);
3772 Msg << "Cannot select: ";
3773
3774 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3775 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3776 N->getOpcode() != ISD::INTRINSIC_VOID) {
3777 N->printrFull(Msg, CurDAG);
3778 Msg << "\nIn function: " << MF->getName();
3779 } else {
3780 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3781 unsigned iid =
3782 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3783 if (iid < Intrinsic::num_intrinsics)
3784 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3785 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3786 Msg << "target intrinsic %" << TII->getName(iid);
3787 else
3788 Msg << "unknown intrinsic #" << iid;
3789 }
3790 report_fatal_error(Msg.str());
3791 }
3792
3793 char SelectionDAGISel::ID = 0;
3794