1 //===- ShadowStackGCLowering.cpp - Custom lowering for shadow-stack gc ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the custom lowering code required by the shadow-stack GC
11 // strategy.
12 //
13 // This pass implements the code transformation described in this paper:
14 // "Accurate Garbage Collection in an Uncooperative Environment"
15 // Fergus Henderson, ISMM, 2002
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
39 #include <cassert>
40 #include <cstddef>
41 #include <string>
42 #include <utility>
43 #include <vector>
44
45 using namespace llvm;
46
47 #define DEBUG_TYPE "shadow-stack-gc-lowering"
48
49 namespace {
50
51 class ShadowStackGCLowering : public FunctionPass {
52 /// RootChain - This is the global linked-list that contains the chain of GC
53 /// roots.
54 GlobalVariable *Head = nullptr;
55
56 /// StackEntryTy - Abstract type of a link in the shadow stack.
57 StructType *StackEntryTy = nullptr;
58 StructType *FrameMapTy = nullptr;
59
60 /// Roots - GC roots in the current function. Each is a pair of the
61 /// intrinsic call and its corresponding alloca.
62 std::vector<std::pair<CallInst *, AllocaInst *>> Roots;
63
64 public:
65 static char ID;
66
67 ShadowStackGCLowering();
68
69 bool doInitialization(Module &M) override;
70 bool runOnFunction(Function &F) override;
71
72 private:
73 bool IsNullValue(Value *V);
74 Constant *GetFrameMap(Function &F);
75 Type *GetConcreteStackEntryType(Function &F);
76 void CollectRoots(Function &F);
77
78 static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
79 Type *Ty, Value *BasePtr, int Idx1,
80 const char *Name);
81 static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
82 Type *Ty, Value *BasePtr, int Idx1, int Idx2,
83 const char *Name);
84 };
85
86 } // end anonymous namespace
87
88 char ShadowStackGCLowering::ID = 0;
89
90 INITIALIZE_PASS_BEGIN(ShadowStackGCLowering, DEBUG_TYPE,
91 "Shadow Stack GC Lowering", false, false)
INITIALIZE_PASS_DEPENDENCY(GCModuleInfo)92 INITIALIZE_PASS_DEPENDENCY(GCModuleInfo)
93 INITIALIZE_PASS_END(ShadowStackGCLowering, DEBUG_TYPE,
94 "Shadow Stack GC Lowering", false, false)
95
96 FunctionPass *llvm::createShadowStackGCLoweringPass() { return new ShadowStackGCLowering(); }
97
ShadowStackGCLowering()98 ShadowStackGCLowering::ShadowStackGCLowering() : FunctionPass(ID) {
99 initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry());
100 }
101
GetFrameMap(Function & F)102 Constant *ShadowStackGCLowering::GetFrameMap(Function &F) {
103 // doInitialization creates the abstract type of this value.
104 Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
105
106 // Truncate the ShadowStackDescriptor if some metadata is null.
107 unsigned NumMeta = 0;
108 SmallVector<Constant *, 16> Metadata;
109 for (unsigned I = 0; I != Roots.size(); ++I) {
110 Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
111 if (!C->isNullValue())
112 NumMeta = I + 1;
113 Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
114 }
115 Metadata.resize(NumMeta);
116
117 Type *Int32Ty = Type::getInt32Ty(F.getContext());
118
119 Constant *BaseElts[] = {
120 ConstantInt::get(Int32Ty, Roots.size(), false),
121 ConstantInt::get(Int32Ty, NumMeta, false),
122 };
123
124 Constant *DescriptorElts[] = {
125 ConstantStruct::get(FrameMapTy, BaseElts),
126 ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)};
127
128 Type *EltTys[] = {DescriptorElts[0]->getType(), DescriptorElts[1]->getType()};
129 StructType *STy = StructType::create(EltTys, "gc_map." + utostr(NumMeta));
130
131 Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
132
133 // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
134 // that, short of multithreaded LLVM, it should be safe; all that is
135 // necessary is that a simple Module::iterator loop not be invalidated.
136 // Appending to the GlobalVariable list is safe in that sense.
137 //
138 // All of the output passes emit globals last. The ExecutionEngine
139 // explicitly supports adding globals to the module after
140 // initialization.
141 //
142 // Still, if it isn't deemed acceptable, then this transformation needs
143 // to be a ModulePass (which means it cannot be in the 'llc' pipeline
144 // (which uses a FunctionPassManager (which segfaults (not asserts) if
145 // provided a ModulePass))).
146 Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
147 GlobalVariable::InternalLinkage, FrameMap,
148 "__gc_" + F.getName());
149
150 Constant *GEPIndices[2] = {
151 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
152 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)};
153 return ConstantExpr::getGetElementPtr(FrameMap->getType(), GV, GEPIndices);
154 }
155
GetConcreteStackEntryType(Function & F)156 Type *ShadowStackGCLowering::GetConcreteStackEntryType(Function &F) {
157 // doInitialization creates the generic version of this type.
158 std::vector<Type *> EltTys;
159 EltTys.push_back(StackEntryTy);
160 for (size_t I = 0; I != Roots.size(); I++)
161 EltTys.push_back(Roots[I].second->getAllocatedType());
162
163 return StructType::create(EltTys, ("gc_stackentry." + F.getName()).str());
164 }
165
166 /// doInitialization - If this module uses the GC intrinsics, find them now. If
167 /// not, exit fast.
doInitialization(Module & M)168 bool ShadowStackGCLowering::doInitialization(Module &M) {
169 bool Active = false;
170 for (Function &F : M) {
171 if (F.hasGC() && F.getGC() == std::string("shadow-stack")) {
172 Active = true;
173 break;
174 }
175 }
176 if (!Active)
177 return false;
178
179 // struct FrameMap {
180 // int32_t NumRoots; // Number of roots in stack frame.
181 // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots.
182 // void *Meta[]; // May be absent for roots without metadata.
183 // };
184 std::vector<Type *> EltTys;
185 // 32 bits is ok up to a 32GB stack frame. :)
186 EltTys.push_back(Type::getInt32Ty(M.getContext()));
187 // Specifies length of variable length array.
188 EltTys.push_back(Type::getInt32Ty(M.getContext()));
189 FrameMapTy = StructType::create(EltTys, "gc_map");
190 PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
191
192 // struct StackEntry {
193 // ShadowStackEntry *Next; // Caller's stack entry.
194 // FrameMap *Map; // Pointer to constant FrameMap.
195 // void *Roots[]; // Stack roots (in-place array, so we pretend).
196 // };
197
198 StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
199
200 EltTys.clear();
201 EltTys.push_back(PointerType::getUnqual(StackEntryTy));
202 EltTys.push_back(FrameMapPtrTy);
203 StackEntryTy->setBody(EltTys);
204 PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
205
206 // Get the root chain if it already exists.
207 Head = M.getGlobalVariable("llvm_gc_root_chain");
208 if (!Head) {
209 // If the root chain does not exist, insert a new one with linkonce
210 // linkage!
211 Head = new GlobalVariable(
212 M, StackEntryPtrTy, false, GlobalValue::LinkOnceAnyLinkage,
213 Constant::getNullValue(StackEntryPtrTy), "llvm_gc_root_chain");
214 } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
215 Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
216 Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
217 }
218
219 return true;
220 }
221
IsNullValue(Value * V)222 bool ShadowStackGCLowering::IsNullValue(Value *V) {
223 if (Constant *C = dyn_cast<Constant>(V))
224 return C->isNullValue();
225 return false;
226 }
227
CollectRoots(Function & F)228 void ShadowStackGCLowering::CollectRoots(Function &F) {
229 // FIXME: Account for original alignment. Could fragment the root array.
230 // Approach 1: Null initialize empty slots at runtime. Yuck.
231 // Approach 2: Emit a map of the array instead of just a count.
232
233 assert(Roots.empty() && "Not cleaned up?");
234
235 SmallVector<std::pair<CallInst *, AllocaInst *>, 16> MetaRoots;
236
237 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
238 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
239 if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
240 if (Function *F = CI->getCalledFunction())
241 if (F->getIntrinsicID() == Intrinsic::gcroot) {
242 std::pair<CallInst *, AllocaInst *> Pair = std::make_pair(
243 CI,
244 cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
245 if (IsNullValue(CI->getArgOperand(1)))
246 Roots.push_back(Pair);
247 else
248 MetaRoots.push_back(Pair);
249 }
250
251 // Number roots with metadata (usually empty) at the beginning, so that the
252 // FrameMap::Meta array can be elided.
253 Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
254 }
255
CreateGEP(LLVMContext & Context,IRBuilder<> & B,Type * Ty,Value * BasePtr,int Idx,int Idx2,const char * Name)256 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
257 IRBuilder<> &B, Type *Ty,
258 Value *BasePtr, int Idx,
259 int Idx2,
260 const char *Name) {
261 Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
262 ConstantInt::get(Type::getInt32Ty(Context), Idx),
263 ConstantInt::get(Type::getInt32Ty(Context), Idx2)};
264 Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
265
266 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
267
268 return dyn_cast<GetElementPtrInst>(Val);
269 }
270
CreateGEP(LLVMContext & Context,IRBuilder<> & B,Type * Ty,Value * BasePtr,int Idx,const char * Name)271 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
272 IRBuilder<> &B, Type *Ty, Value *BasePtr,
273 int Idx, const char *Name) {
274 Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
275 ConstantInt::get(Type::getInt32Ty(Context), Idx)};
276 Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
277
278 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
279
280 return dyn_cast<GetElementPtrInst>(Val);
281 }
282
283 /// runOnFunction - Insert code to maintain the shadow stack.
runOnFunction(Function & F)284 bool ShadowStackGCLowering::runOnFunction(Function &F) {
285 // Quick exit for functions that do not use the shadow stack GC.
286 if (!F.hasGC() ||
287 F.getGC() != std::string("shadow-stack"))
288 return false;
289
290 LLVMContext &Context = F.getContext();
291
292 // Find calls to llvm.gcroot.
293 CollectRoots(F);
294
295 // If there are no roots in this function, then there is no need to add a
296 // stack map entry for it.
297 if (Roots.empty())
298 return false;
299
300 // Build the constant map and figure the type of the shadow stack entry.
301 Value *FrameMap = GetFrameMap(F);
302 Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
303
304 // Build the shadow stack entry at the very start of the function.
305 BasicBlock::iterator IP = F.getEntryBlock().begin();
306 IRBuilder<> AtEntry(IP->getParent(), IP);
307
308 Instruction *StackEntry =
309 AtEntry.CreateAlloca(ConcreteStackEntryTy, nullptr, "gc_frame");
310
311 while (isa<AllocaInst>(IP))
312 ++IP;
313 AtEntry.SetInsertPoint(IP->getParent(), IP);
314
315 // Initialize the map pointer and load the current head of the shadow stack.
316 Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead");
317 Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
318 StackEntry, 0, 1, "gc_frame.map");
319 AtEntry.CreateStore(FrameMap, EntryMapPtr);
320
321 // After all the allocas...
322 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
323 // For each root, find the corresponding slot in the aggregate...
324 Value *SlotPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
325 StackEntry, 1 + I, "gc_root");
326
327 // And use it in lieu of the alloca.
328 AllocaInst *OriginalAlloca = Roots[I].second;
329 SlotPtr->takeName(OriginalAlloca);
330 OriginalAlloca->replaceAllUsesWith(SlotPtr);
331 }
332
333 // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
334 // really necessary (the collector would never see the intermediate state at
335 // runtime), but it's nicer not to push the half-initialized entry onto the
336 // shadow stack.
337 while (isa<StoreInst>(IP))
338 ++IP;
339 AtEntry.SetInsertPoint(IP->getParent(), IP);
340
341 // Push the entry onto the shadow stack.
342 Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
343 StackEntry, 0, 0, "gc_frame.next");
344 Instruction *NewHeadVal = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
345 StackEntry, 0, "gc_newhead");
346 AtEntry.CreateStore(CurrentHead, EntryNextPtr);
347 AtEntry.CreateStore(NewHeadVal, Head);
348
349 // For each instruction that escapes...
350 EscapeEnumerator EE(F, "gc_cleanup");
351 while (IRBuilder<> *AtExit = EE.Next()) {
352 // Pop the entry from the shadow stack. Don't reuse CurrentHead from
353 // AtEntry, since that would make the value live for the entire function.
354 Instruction *EntryNextPtr2 =
355 CreateGEP(Context, *AtExit, ConcreteStackEntryTy, StackEntry, 0, 0,
356 "gc_frame.next");
357 Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
358 AtExit->CreateStore(SavedHead, Head);
359 }
360
361 // Delete the original allocas (which are no longer used) and the intrinsic
362 // calls (which are no longer valid). Doing this last avoids invalidating
363 // iterators.
364 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
365 Roots[I].first->eraseFromParent();
366 Roots[I].second->eraseFromParent();
367 }
368
369 Roots.clear();
370 return true;
371 }
372