• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- YAMLParser.cpp - Simple YAML parser --------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements a YAML parser.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Support/YAMLParser.h"
15 #include "llvm/ADT/AllocatorList.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/SMLoc.h"
28 #include "llvm/Support/SourceMgr.h"
29 #include "llvm/Support/Unicode.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <map>
36 #include <memory>
37 #include <string>
38 #include <system_error>
39 #include <utility>
40 
41 using namespace llvm;
42 using namespace yaml;
43 
44 enum UnicodeEncodingForm {
45   UEF_UTF32_LE, ///< UTF-32 Little Endian
46   UEF_UTF32_BE, ///< UTF-32 Big Endian
47   UEF_UTF16_LE, ///< UTF-16 Little Endian
48   UEF_UTF16_BE, ///< UTF-16 Big Endian
49   UEF_UTF8,     ///< UTF-8 or ascii.
50   UEF_Unknown   ///< Not a valid Unicode encoding.
51 };
52 
53 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
54 ///                it exists. Length is in {0, 2, 3, 4}.
55 using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>;
56 
57 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
58 ///                      encoding form of \a Input.
59 ///
60 /// @param Input A string of length 0 or more.
61 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
62 ///          and how long the byte order mark is if one exists.
getUnicodeEncoding(StringRef Input)63 static EncodingInfo getUnicodeEncoding(StringRef Input) {
64   if (Input.empty())
65     return std::make_pair(UEF_Unknown, 0);
66 
67   switch (uint8_t(Input[0])) {
68   case 0x00:
69     if (Input.size() >= 4) {
70       if (  Input[1] == 0
71          && uint8_t(Input[2]) == 0xFE
72          && uint8_t(Input[3]) == 0xFF)
73         return std::make_pair(UEF_UTF32_BE, 4);
74       if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
75         return std::make_pair(UEF_UTF32_BE, 0);
76     }
77 
78     if (Input.size() >= 2 && Input[1] != 0)
79       return std::make_pair(UEF_UTF16_BE, 0);
80     return std::make_pair(UEF_Unknown, 0);
81   case 0xFF:
82     if (  Input.size() >= 4
83        && uint8_t(Input[1]) == 0xFE
84        && Input[2] == 0
85        && Input[3] == 0)
86       return std::make_pair(UEF_UTF32_LE, 4);
87 
88     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
89       return std::make_pair(UEF_UTF16_LE, 2);
90     return std::make_pair(UEF_Unknown, 0);
91   case 0xFE:
92     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
93       return std::make_pair(UEF_UTF16_BE, 2);
94     return std::make_pair(UEF_Unknown, 0);
95   case 0xEF:
96     if (  Input.size() >= 3
97        && uint8_t(Input[1]) == 0xBB
98        && uint8_t(Input[2]) == 0xBF)
99       return std::make_pair(UEF_UTF8, 3);
100     return std::make_pair(UEF_Unknown, 0);
101   }
102 
103   // It could still be utf-32 or utf-16.
104   if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
105     return std::make_pair(UEF_UTF32_LE, 0);
106 
107   if (Input.size() >= 2 && Input[1] == 0)
108     return std::make_pair(UEF_UTF16_LE, 0);
109 
110   return std::make_pair(UEF_UTF8, 0);
111 }
112 
113 /// Pin the vtables to this file.
anchor()114 void Node::anchor() {}
anchor()115 void NullNode::anchor() {}
anchor()116 void ScalarNode::anchor() {}
anchor()117 void BlockScalarNode::anchor() {}
anchor()118 void KeyValueNode::anchor() {}
anchor()119 void MappingNode::anchor() {}
anchor()120 void SequenceNode::anchor() {}
anchor()121 void AliasNode::anchor() {}
122 
123 namespace llvm {
124 namespace yaml {
125 
126 /// Token - A single YAML token.
127 struct Token {
128   enum TokenKind {
129     TK_Error, // Uninitialized token.
130     TK_StreamStart,
131     TK_StreamEnd,
132     TK_VersionDirective,
133     TK_TagDirective,
134     TK_DocumentStart,
135     TK_DocumentEnd,
136     TK_BlockEntry,
137     TK_BlockEnd,
138     TK_BlockSequenceStart,
139     TK_BlockMappingStart,
140     TK_FlowEntry,
141     TK_FlowSequenceStart,
142     TK_FlowSequenceEnd,
143     TK_FlowMappingStart,
144     TK_FlowMappingEnd,
145     TK_Key,
146     TK_Value,
147     TK_Scalar,
148     TK_BlockScalar,
149     TK_Alias,
150     TK_Anchor,
151     TK_Tag
152   } Kind = TK_Error;
153 
154   /// A string of length 0 or more whose begin() points to the logical location
155   /// of the token in the input.
156   StringRef Range;
157 
158   /// The value of a block scalar node.
159   std::string Value;
160 
161   Token() = default;
162 };
163 
164 } // end namespace yaml
165 } // end namespace llvm
166 
167 using TokenQueueT = BumpPtrList<Token>;
168 
169 namespace {
170 
171 /// This struct is used to track simple keys.
172 ///
173 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
174 /// which could legally be the start of a simple key. When peekNext is called,
175 /// if the Token To be returned is referenced by a SimpleKey, we continue
176 /// tokenizing until that potential simple key has either been found to not be
177 /// a simple key (we moved on to the next line or went further than 1024 chars).
178 /// Or when we run into a Value, and then insert a Key token (and possibly
179 /// others) before the SimpleKey's Tok.
180 struct SimpleKey {
181   TokenQueueT::iterator Tok;
182   unsigned Column;
183   unsigned Line;
184   unsigned FlowLevel;
185   bool IsRequired;
186 
operator ==__anon4fa4dd9f0111::SimpleKey187   bool operator ==(const SimpleKey &Other) {
188     return Tok == Other.Tok;
189   }
190 };
191 
192 } // end anonymous namespace
193 
194 /// The Unicode scalar value of a UTF-8 minimal well-formed code unit
195 ///        subsequence and the subsequence's length in code units (uint8_t).
196 ///        A length of 0 represents an error.
197 using UTF8Decoded = std::pair<uint32_t, unsigned>;
198 
decodeUTF8(StringRef Range)199 static UTF8Decoded decodeUTF8(StringRef Range) {
200   StringRef::iterator Position= Range.begin();
201   StringRef::iterator End = Range.end();
202   // 1 byte: [0x00, 0x7f]
203   // Bit pattern: 0xxxxxxx
204   if ((*Position & 0x80) == 0) {
205      return std::make_pair(*Position, 1);
206   }
207   // 2 bytes: [0x80, 0x7ff]
208   // Bit pattern: 110xxxxx 10xxxxxx
209   if (Position + 1 != End &&
210       ((*Position & 0xE0) == 0xC0) &&
211       ((*(Position + 1) & 0xC0) == 0x80)) {
212     uint32_t codepoint = ((*Position & 0x1F) << 6) |
213                           (*(Position + 1) & 0x3F);
214     if (codepoint >= 0x80)
215       return std::make_pair(codepoint, 2);
216   }
217   // 3 bytes: [0x8000, 0xffff]
218   // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
219   if (Position + 2 != End &&
220       ((*Position & 0xF0) == 0xE0) &&
221       ((*(Position + 1) & 0xC0) == 0x80) &&
222       ((*(Position + 2) & 0xC0) == 0x80)) {
223     uint32_t codepoint = ((*Position & 0x0F) << 12) |
224                          ((*(Position + 1) & 0x3F) << 6) |
225                           (*(Position + 2) & 0x3F);
226     // Codepoints between 0xD800 and 0xDFFF are invalid, as
227     // they are high / low surrogate halves used by UTF-16.
228     if (codepoint >= 0x800 &&
229         (codepoint < 0xD800 || codepoint > 0xDFFF))
230       return std::make_pair(codepoint, 3);
231   }
232   // 4 bytes: [0x10000, 0x10FFFF]
233   // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
234   if (Position + 3 != End &&
235       ((*Position & 0xF8) == 0xF0) &&
236       ((*(Position + 1) & 0xC0) == 0x80) &&
237       ((*(Position + 2) & 0xC0) == 0x80) &&
238       ((*(Position + 3) & 0xC0) == 0x80)) {
239     uint32_t codepoint = ((*Position & 0x07) << 18) |
240                          ((*(Position + 1) & 0x3F) << 12) |
241                          ((*(Position + 2) & 0x3F) << 6) |
242                           (*(Position + 3) & 0x3F);
243     if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
244       return std::make_pair(codepoint, 4);
245   }
246   return std::make_pair(0, 0);
247 }
248 
249 namespace llvm {
250 namespace yaml {
251 
252 /// Scans YAML tokens from a MemoryBuffer.
253 class Scanner {
254 public:
255   Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true,
256           std::error_code *EC = nullptr);
257   Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true,
258           std::error_code *EC = nullptr);
259 
260   /// Parse the next token and return it without popping it.
261   Token &peekNext();
262 
263   /// Parse the next token and pop it from the queue.
264   Token getNext();
265 
printError(SMLoc Loc,SourceMgr::DiagKind Kind,const Twine & Message,ArrayRef<SMRange> Ranges=None)266   void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
267                   ArrayRef<SMRange> Ranges = None) {
268     SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ None, ShowColors);
269   }
270 
setError(const Twine & Message,StringRef::iterator Position)271   void setError(const Twine &Message, StringRef::iterator Position) {
272     if (Current >= End)
273       Current = End - 1;
274 
275     // propagate the error if possible
276     if (EC)
277       *EC = make_error_code(std::errc::invalid_argument);
278 
279     // Don't print out more errors after the first one we encounter. The rest
280     // are just the result of the first, and have no meaning.
281     if (!Failed)
282       printError(SMLoc::getFromPointer(Current), SourceMgr::DK_Error, Message);
283     Failed = true;
284   }
285 
setError(const Twine & Message)286   void setError(const Twine &Message) {
287     setError(Message, Current);
288   }
289 
290   /// Returns true if an error occurred while parsing.
failed()291   bool failed() {
292     return Failed;
293   }
294 
295 private:
296   void init(MemoryBufferRef Buffer);
297 
currentInput()298   StringRef currentInput() {
299     return StringRef(Current, End - Current);
300   }
301 
302   /// Decode a UTF-8 minimal well-formed code unit subsequence starting
303   ///        at \a Position.
304   ///
305   /// If the UTF-8 code units starting at Position do not form a well-formed
306   /// code unit subsequence, then the Unicode scalar value is 0, and the length
307   /// is 0.
decodeUTF8(StringRef::iterator Position)308   UTF8Decoded decodeUTF8(StringRef::iterator Position) {
309     return ::decodeUTF8(StringRef(Position, End - Position));
310   }
311 
312   // The following functions are based on the gramar rules in the YAML spec. The
313   // style of the function names it meant to closely match how they are written
314   // in the spec. The number within the [] is the number of the grammar rule in
315   // the spec.
316   //
317   // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
318   //
319   // c-
320   //   A production starting and ending with a special character.
321   // b-
322   //   A production matching a single line break.
323   // nb-
324   //   A production starting and ending with a non-break character.
325   // s-
326   //   A production starting and ending with a white space character.
327   // ns-
328   //   A production starting and ending with a non-space character.
329   // l-
330   //   A production matching complete line(s).
331 
332   /// Skip a single nb-char[27] starting at Position.
333   ///
334   /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
335   ///                  | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
336   ///
337   /// @returns The code unit after the nb-char, or Position if it's not an
338   ///          nb-char.
339   StringRef::iterator skip_nb_char(StringRef::iterator Position);
340 
341   /// Skip a single b-break[28] starting at Position.
342   ///
343   /// A b-break is 0xD 0xA | 0xD | 0xA
344   ///
345   /// @returns The code unit after the b-break, or Position if it's not a
346   ///          b-break.
347   StringRef::iterator skip_b_break(StringRef::iterator Position);
348 
349   /// Skip a single s-space[31] starting at Position.
350   ///
351   /// An s-space is 0x20
352   ///
353   /// @returns The code unit after the s-space, or Position if it's not a
354   ///          s-space.
355   StringRef::iterator skip_s_space(StringRef::iterator Position);
356 
357   /// Skip a single s-white[33] starting at Position.
358   ///
359   /// A s-white is 0x20 | 0x9
360   ///
361   /// @returns The code unit after the s-white, or Position if it's not a
362   ///          s-white.
363   StringRef::iterator skip_s_white(StringRef::iterator Position);
364 
365   /// Skip a single ns-char[34] starting at Position.
366   ///
367   /// A ns-char is nb-char - s-white
368   ///
369   /// @returns The code unit after the ns-char, or Position if it's not a
370   ///          ns-char.
371   StringRef::iterator skip_ns_char(StringRef::iterator Position);
372 
373   using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator);
374 
375   /// Skip minimal well-formed code unit subsequences until Func
376   ///        returns its input.
377   ///
378   /// @returns The code unit after the last minimal well-formed code unit
379   ///          subsequence that Func accepted.
380   StringRef::iterator skip_while( SkipWhileFunc Func
381                                 , StringRef::iterator Position);
382 
383   /// Skip minimal well-formed code unit subsequences until Func returns its
384   /// input.
385   void advanceWhile(SkipWhileFunc Func);
386 
387   /// Scan ns-uri-char[39]s starting at Cur.
388   ///
389   /// This updates Cur and Column while scanning.
390   void scan_ns_uri_char();
391 
392   /// Consume a minimal well-formed code unit subsequence starting at
393   ///        \a Cur. Return false if it is not the same Unicode scalar value as
394   ///        \a Expected. This updates \a Column.
395   bool consume(uint32_t Expected);
396 
397   /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
398   void skip(uint32_t Distance);
399 
400   /// Return true if the minimal well-formed code unit subsequence at
401   ///        Pos is whitespace or a new line
402   bool isBlankOrBreak(StringRef::iterator Position);
403 
404   /// Consume a single b-break[28] if it's present at the current position.
405   ///
406   /// Return false if the code unit at the current position isn't a line break.
407   bool consumeLineBreakIfPresent();
408 
409   /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
410   void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
411                              , unsigned AtColumn
412                              , bool IsRequired);
413 
414   /// Remove simple keys that can no longer be valid simple keys.
415   ///
416   /// Invalid simple keys are not on the current line or are further than 1024
417   /// columns back.
418   void removeStaleSimpleKeyCandidates();
419 
420   /// Remove all simple keys on FlowLevel \a Level.
421   void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
422 
423   /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
424   ///        tokens if needed.
425   bool unrollIndent(int ToColumn);
426 
427   /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
428   ///        if needed.
429   bool rollIndent( int ToColumn
430                  , Token::TokenKind Kind
431                  , TokenQueueT::iterator InsertPoint);
432 
433   /// Skip a single-line comment when the comment starts at the current
434   /// position of the scanner.
435   void skipComment();
436 
437   /// Skip whitespace and comments until the start of the next token.
438   void scanToNextToken();
439 
440   /// Must be the first token generated.
441   bool scanStreamStart();
442 
443   /// Generate tokens needed to close out the stream.
444   bool scanStreamEnd();
445 
446   /// Scan a %BLAH directive.
447   bool scanDirective();
448 
449   /// Scan a ... or ---.
450   bool scanDocumentIndicator(bool IsStart);
451 
452   /// Scan a [ or { and generate the proper flow collection start token.
453   bool scanFlowCollectionStart(bool IsSequence);
454 
455   /// Scan a ] or } and generate the proper flow collection end token.
456   bool scanFlowCollectionEnd(bool IsSequence);
457 
458   /// Scan the , that separates entries in a flow collection.
459   bool scanFlowEntry();
460 
461   /// Scan the - that starts block sequence entries.
462   bool scanBlockEntry();
463 
464   /// Scan an explicit ? indicating a key.
465   bool scanKey();
466 
467   /// Scan an explicit : indicating a value.
468   bool scanValue();
469 
470   /// Scan a quoted scalar.
471   bool scanFlowScalar(bool IsDoubleQuoted);
472 
473   /// Scan an unquoted scalar.
474   bool scanPlainScalar();
475 
476   /// Scan an Alias or Anchor starting with * or &.
477   bool scanAliasOrAnchor(bool IsAlias);
478 
479   /// Scan a block scalar starting with | or >.
480   bool scanBlockScalar(bool IsLiteral);
481 
482   /// Scan a chomping indicator in a block scalar header.
483   char scanBlockChompingIndicator();
484 
485   /// Scan an indentation indicator in a block scalar header.
486   unsigned scanBlockIndentationIndicator();
487 
488   /// Scan a block scalar header.
489   ///
490   /// Return false if an error occurred.
491   bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator,
492                              bool &IsDone);
493 
494   /// Look for the indentation level of a block scalar.
495   ///
496   /// Return false if an error occurred.
497   bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent,
498                              unsigned &LineBreaks, bool &IsDone);
499 
500   /// Scan the indentation of a text line in a block scalar.
501   ///
502   /// Return false if an error occurred.
503   bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent,
504                              bool &IsDone);
505 
506   /// Scan a tag of the form !stuff.
507   bool scanTag();
508 
509   /// Dispatch to the next scanning function based on \a *Cur.
510   bool fetchMoreTokens();
511 
512   /// The SourceMgr used for diagnostics and buffer management.
513   SourceMgr &SM;
514 
515   /// The original input.
516   MemoryBufferRef InputBuffer;
517 
518   /// The current position of the scanner.
519   StringRef::iterator Current;
520 
521   /// The end of the input (one past the last character).
522   StringRef::iterator End;
523 
524   /// Current YAML indentation level in spaces.
525   int Indent;
526 
527   /// Current column number in Unicode code points.
528   unsigned Column;
529 
530   /// Current line number.
531   unsigned Line;
532 
533   /// How deep we are in flow style containers. 0 Means at block level.
534   unsigned FlowLevel;
535 
536   /// Are we at the start of the stream?
537   bool IsStartOfStream;
538 
539   /// Can the next token be the start of a simple key?
540   bool IsSimpleKeyAllowed;
541 
542   /// True if an error has occurred.
543   bool Failed;
544 
545   /// Should colors be used when printing out the diagnostic messages?
546   bool ShowColors;
547 
548   /// Queue of tokens. This is required to queue up tokens while looking
549   ///        for the end of a simple key. And for cases where a single character
550   ///        can produce multiple tokens (e.g. BlockEnd).
551   TokenQueueT TokenQueue;
552 
553   /// Indentation levels.
554   SmallVector<int, 4> Indents;
555 
556   /// Potential simple keys.
557   SmallVector<SimpleKey, 4> SimpleKeys;
558 
559   std::error_code *EC;
560 };
561 
562 } // end namespace yaml
563 } // end namespace llvm
564 
565 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
encodeUTF8(uint32_t UnicodeScalarValue,SmallVectorImpl<char> & Result)566 static void encodeUTF8( uint32_t UnicodeScalarValue
567                       , SmallVectorImpl<char> &Result) {
568   if (UnicodeScalarValue <= 0x7F) {
569     Result.push_back(UnicodeScalarValue & 0x7F);
570   } else if (UnicodeScalarValue <= 0x7FF) {
571     uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
572     uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
573     Result.push_back(FirstByte);
574     Result.push_back(SecondByte);
575   } else if (UnicodeScalarValue <= 0xFFFF) {
576     uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
577     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
578     uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
579     Result.push_back(FirstByte);
580     Result.push_back(SecondByte);
581     Result.push_back(ThirdByte);
582   } else if (UnicodeScalarValue <= 0x10FFFF) {
583     uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
584     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
585     uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
586     uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
587     Result.push_back(FirstByte);
588     Result.push_back(SecondByte);
589     Result.push_back(ThirdByte);
590     Result.push_back(FourthByte);
591   }
592 }
593 
dumpTokens(StringRef Input,raw_ostream & OS)594 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
595   SourceMgr SM;
596   Scanner scanner(Input, SM);
597   while (true) {
598     Token T = scanner.getNext();
599     switch (T.Kind) {
600     case Token::TK_StreamStart:
601       OS << "Stream-Start: ";
602       break;
603     case Token::TK_StreamEnd:
604       OS << "Stream-End: ";
605       break;
606     case Token::TK_VersionDirective:
607       OS << "Version-Directive: ";
608       break;
609     case Token::TK_TagDirective:
610       OS << "Tag-Directive: ";
611       break;
612     case Token::TK_DocumentStart:
613       OS << "Document-Start: ";
614       break;
615     case Token::TK_DocumentEnd:
616       OS << "Document-End: ";
617       break;
618     case Token::TK_BlockEntry:
619       OS << "Block-Entry: ";
620       break;
621     case Token::TK_BlockEnd:
622       OS << "Block-End: ";
623       break;
624     case Token::TK_BlockSequenceStart:
625       OS << "Block-Sequence-Start: ";
626       break;
627     case Token::TK_BlockMappingStart:
628       OS << "Block-Mapping-Start: ";
629       break;
630     case Token::TK_FlowEntry:
631       OS << "Flow-Entry: ";
632       break;
633     case Token::TK_FlowSequenceStart:
634       OS << "Flow-Sequence-Start: ";
635       break;
636     case Token::TK_FlowSequenceEnd:
637       OS << "Flow-Sequence-End: ";
638       break;
639     case Token::TK_FlowMappingStart:
640       OS << "Flow-Mapping-Start: ";
641       break;
642     case Token::TK_FlowMappingEnd:
643       OS << "Flow-Mapping-End: ";
644       break;
645     case Token::TK_Key:
646       OS << "Key: ";
647       break;
648     case Token::TK_Value:
649       OS << "Value: ";
650       break;
651     case Token::TK_Scalar:
652       OS << "Scalar: ";
653       break;
654     case Token::TK_BlockScalar:
655       OS << "Block Scalar: ";
656       break;
657     case Token::TK_Alias:
658       OS << "Alias: ";
659       break;
660     case Token::TK_Anchor:
661       OS << "Anchor: ";
662       break;
663     case Token::TK_Tag:
664       OS << "Tag: ";
665       break;
666     case Token::TK_Error:
667       break;
668     }
669     OS << T.Range << "\n";
670     if (T.Kind == Token::TK_StreamEnd)
671       break;
672     else if (T.Kind == Token::TK_Error)
673       return false;
674   }
675   return true;
676 }
677 
scanTokens(StringRef Input)678 bool yaml::scanTokens(StringRef Input) {
679   SourceMgr SM;
680   Scanner scanner(Input, SM);
681   while (true) {
682     Token T = scanner.getNext();
683     if (T.Kind == Token::TK_StreamEnd)
684       break;
685     else if (T.Kind == Token::TK_Error)
686       return false;
687   }
688   return true;
689 }
690 
escape(StringRef Input,bool EscapePrintable)691 std::string yaml::escape(StringRef Input, bool EscapePrintable) {
692   std::string EscapedInput;
693   for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
694     if (*i == '\\')
695       EscapedInput += "\\\\";
696     else if (*i == '"')
697       EscapedInput += "\\\"";
698     else if (*i == 0)
699       EscapedInput += "\\0";
700     else if (*i == 0x07)
701       EscapedInput += "\\a";
702     else if (*i == 0x08)
703       EscapedInput += "\\b";
704     else if (*i == 0x09)
705       EscapedInput += "\\t";
706     else if (*i == 0x0A)
707       EscapedInput += "\\n";
708     else if (*i == 0x0B)
709       EscapedInput += "\\v";
710     else if (*i == 0x0C)
711       EscapedInput += "\\f";
712     else if (*i == 0x0D)
713       EscapedInput += "\\r";
714     else if (*i == 0x1B)
715       EscapedInput += "\\e";
716     else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
717       std::string HexStr = utohexstr(*i);
718       EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
719     } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
720       UTF8Decoded UnicodeScalarValue
721         = decodeUTF8(StringRef(i, Input.end() - i));
722       if (UnicodeScalarValue.second == 0) {
723         // Found invalid char.
724         SmallString<4> Val;
725         encodeUTF8(0xFFFD, Val);
726         EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
727         // FIXME: Error reporting.
728         return EscapedInput;
729       }
730       if (UnicodeScalarValue.first == 0x85)
731         EscapedInput += "\\N";
732       else if (UnicodeScalarValue.first == 0xA0)
733         EscapedInput += "\\_";
734       else if (UnicodeScalarValue.first == 0x2028)
735         EscapedInput += "\\L";
736       else if (UnicodeScalarValue.first == 0x2029)
737         EscapedInput += "\\P";
738       else if (!EscapePrintable &&
739                sys::unicode::isPrintable(UnicodeScalarValue.first))
740         EscapedInput += StringRef(i, UnicodeScalarValue.second);
741       else {
742         std::string HexStr = utohexstr(UnicodeScalarValue.first);
743         if (HexStr.size() <= 2)
744           EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
745         else if (HexStr.size() <= 4)
746           EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
747         else if (HexStr.size() <= 8)
748           EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
749       }
750       i += UnicodeScalarValue.second - 1;
751     } else
752       EscapedInput.push_back(*i);
753   }
754   return EscapedInput;
755 }
756 
Scanner(StringRef Input,SourceMgr & sm,bool ShowColors,std::error_code * EC)757 Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors,
758                  std::error_code *EC)
759     : SM(sm), ShowColors(ShowColors), EC(EC) {
760   init(MemoryBufferRef(Input, "YAML"));
761 }
762 
Scanner(MemoryBufferRef Buffer,SourceMgr & SM_,bool ShowColors,std::error_code * EC)763 Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors,
764                  std::error_code *EC)
765     : SM(SM_), ShowColors(ShowColors), EC(EC) {
766   init(Buffer);
767 }
768 
init(MemoryBufferRef Buffer)769 void Scanner::init(MemoryBufferRef Buffer) {
770   InputBuffer = Buffer;
771   Current = InputBuffer.getBufferStart();
772   End = InputBuffer.getBufferEnd();
773   Indent = -1;
774   Column = 0;
775   Line = 0;
776   FlowLevel = 0;
777   IsStartOfStream = true;
778   IsSimpleKeyAllowed = true;
779   Failed = false;
780   std::unique_ptr<MemoryBuffer> InputBufferOwner =
781       MemoryBuffer::getMemBuffer(Buffer);
782   SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
783 }
784 
peekNext()785 Token &Scanner::peekNext() {
786   // If the current token is a possible simple key, keep parsing until we
787   // can confirm.
788   bool NeedMore = false;
789   while (true) {
790     if (TokenQueue.empty() || NeedMore) {
791       if (!fetchMoreTokens()) {
792         TokenQueue.clear();
793         TokenQueue.push_back(Token());
794         return TokenQueue.front();
795       }
796     }
797     assert(!TokenQueue.empty() &&
798             "fetchMoreTokens lied about getting tokens!");
799 
800     removeStaleSimpleKeyCandidates();
801     SimpleKey SK;
802     SK.Tok = TokenQueue.begin();
803     if (!is_contained(SimpleKeys, SK))
804       break;
805     else
806       NeedMore = true;
807   }
808   return TokenQueue.front();
809 }
810 
getNext()811 Token Scanner::getNext() {
812   Token Ret = peekNext();
813   // TokenQueue can be empty if there was an error getting the next token.
814   if (!TokenQueue.empty())
815     TokenQueue.pop_front();
816 
817   // There cannot be any referenced Token's if the TokenQueue is empty. So do a
818   // quick deallocation of them all.
819   if (TokenQueue.empty())
820     TokenQueue.resetAlloc();
821 
822   return Ret;
823 }
824 
skip_nb_char(StringRef::iterator Position)825 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
826   if (Position == End)
827     return Position;
828   // Check 7 bit c-printable - b-char.
829   if (   *Position == 0x09
830       || (*Position >= 0x20 && *Position <= 0x7E))
831     return Position + 1;
832 
833   // Check for valid UTF-8.
834   if (uint8_t(*Position) & 0x80) {
835     UTF8Decoded u8d = decodeUTF8(Position);
836     if (   u8d.second != 0
837         && u8d.first != 0xFEFF
838         && ( u8d.first == 0x85
839           || ( u8d.first >= 0xA0
840             && u8d.first <= 0xD7FF)
841           || ( u8d.first >= 0xE000
842             && u8d.first <= 0xFFFD)
843           || ( u8d.first >= 0x10000
844             && u8d.first <= 0x10FFFF)))
845       return Position + u8d.second;
846   }
847   return Position;
848 }
849 
skip_b_break(StringRef::iterator Position)850 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
851   if (Position == End)
852     return Position;
853   if (*Position == 0x0D) {
854     if (Position + 1 != End && *(Position + 1) == 0x0A)
855       return Position + 2;
856     return Position + 1;
857   }
858 
859   if (*Position == 0x0A)
860     return Position + 1;
861   return Position;
862 }
863 
skip_s_space(StringRef::iterator Position)864 StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) {
865   if (Position == End)
866     return Position;
867   if (*Position == ' ')
868     return Position + 1;
869   return Position;
870 }
871 
skip_s_white(StringRef::iterator Position)872 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
873   if (Position == End)
874     return Position;
875   if (*Position == ' ' || *Position == '\t')
876     return Position + 1;
877   return Position;
878 }
879 
skip_ns_char(StringRef::iterator Position)880 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
881   if (Position == End)
882     return Position;
883   if (*Position == ' ' || *Position == '\t')
884     return Position;
885   return skip_nb_char(Position);
886 }
887 
skip_while(SkipWhileFunc Func,StringRef::iterator Position)888 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
889                                        , StringRef::iterator Position) {
890   while (true) {
891     StringRef::iterator i = (this->*Func)(Position);
892     if (i == Position)
893       break;
894     Position = i;
895   }
896   return Position;
897 }
898 
advanceWhile(SkipWhileFunc Func)899 void Scanner::advanceWhile(SkipWhileFunc Func) {
900   auto Final = skip_while(Func, Current);
901   Column += Final - Current;
902   Current = Final;
903 }
904 
is_ns_hex_digit(const char C)905 static bool is_ns_hex_digit(const char C) {
906   return    (C >= '0' && C <= '9')
907          || (C >= 'a' && C <= 'z')
908          || (C >= 'A' && C <= 'Z');
909 }
910 
is_ns_word_char(const char C)911 static bool is_ns_word_char(const char C) {
912   return    C == '-'
913          || (C >= 'a' && C <= 'z')
914          || (C >= 'A' && C <= 'Z');
915 }
916 
scan_ns_uri_char()917 void Scanner::scan_ns_uri_char() {
918   while (true) {
919     if (Current == End)
920       break;
921     if ((   *Current == '%'
922           && Current + 2 < End
923           && is_ns_hex_digit(*(Current + 1))
924           && is_ns_hex_digit(*(Current + 2)))
925         || is_ns_word_char(*Current)
926         || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
927           != StringRef::npos) {
928       ++Current;
929       ++Column;
930     } else
931       break;
932   }
933 }
934 
consume(uint32_t Expected)935 bool Scanner::consume(uint32_t Expected) {
936   if (Expected >= 0x80)
937     report_fatal_error("Not dealing with this yet");
938   if (Current == End)
939     return false;
940   if (uint8_t(*Current) >= 0x80)
941     report_fatal_error("Not dealing with this yet");
942   if (uint8_t(*Current) == Expected) {
943     ++Current;
944     ++Column;
945     return true;
946   }
947   return false;
948 }
949 
skip(uint32_t Distance)950 void Scanner::skip(uint32_t Distance) {
951   Current += Distance;
952   Column += Distance;
953   assert(Current <= End && "Skipped past the end");
954 }
955 
isBlankOrBreak(StringRef::iterator Position)956 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
957   if (Position == End)
958     return false;
959   return *Position == ' ' || *Position == '\t' || *Position == '\r' ||
960          *Position == '\n';
961 }
962 
consumeLineBreakIfPresent()963 bool Scanner::consumeLineBreakIfPresent() {
964   auto Next = skip_b_break(Current);
965   if (Next == Current)
966     return false;
967   Column = 0;
968   ++Line;
969   Current = Next;
970   return true;
971 }
972 
saveSimpleKeyCandidate(TokenQueueT::iterator Tok,unsigned AtColumn,bool IsRequired)973 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
974                                     , unsigned AtColumn
975                                     , bool IsRequired) {
976   if (IsSimpleKeyAllowed) {
977     SimpleKey SK;
978     SK.Tok = Tok;
979     SK.Line = Line;
980     SK.Column = AtColumn;
981     SK.IsRequired = IsRequired;
982     SK.FlowLevel = FlowLevel;
983     SimpleKeys.push_back(SK);
984   }
985 }
986 
removeStaleSimpleKeyCandidates()987 void Scanner::removeStaleSimpleKeyCandidates() {
988   for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
989                                             i != SimpleKeys.end();) {
990     if (i->Line != Line || i->Column + 1024 < Column) {
991       if (i->IsRequired)
992         setError( "Could not find expected : for simple key"
993                 , i->Tok->Range.begin());
994       i = SimpleKeys.erase(i);
995     } else
996       ++i;
997   }
998 }
999 
removeSimpleKeyCandidatesOnFlowLevel(unsigned Level)1000 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
1001   if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
1002     SimpleKeys.pop_back();
1003 }
1004 
unrollIndent(int ToColumn)1005 bool Scanner::unrollIndent(int ToColumn) {
1006   Token T;
1007   // Indentation is ignored in flow.
1008   if (FlowLevel != 0)
1009     return true;
1010 
1011   while (Indent > ToColumn) {
1012     T.Kind = Token::TK_BlockEnd;
1013     T.Range = StringRef(Current, 1);
1014     TokenQueue.push_back(T);
1015     Indent = Indents.pop_back_val();
1016   }
1017 
1018   return true;
1019 }
1020 
rollIndent(int ToColumn,Token::TokenKind Kind,TokenQueueT::iterator InsertPoint)1021 bool Scanner::rollIndent( int ToColumn
1022                         , Token::TokenKind Kind
1023                         , TokenQueueT::iterator InsertPoint) {
1024   if (FlowLevel)
1025     return true;
1026   if (Indent < ToColumn) {
1027     Indents.push_back(Indent);
1028     Indent = ToColumn;
1029 
1030     Token T;
1031     T.Kind = Kind;
1032     T.Range = StringRef(Current, 0);
1033     TokenQueue.insert(InsertPoint, T);
1034   }
1035   return true;
1036 }
1037 
skipComment()1038 void Scanner::skipComment() {
1039   if (*Current != '#')
1040     return;
1041   while (true) {
1042     // This may skip more than one byte, thus Column is only incremented
1043     // for code points.
1044     StringRef::iterator I = skip_nb_char(Current);
1045     if (I == Current)
1046       break;
1047     Current = I;
1048     ++Column;
1049   }
1050 }
1051 
scanToNextToken()1052 void Scanner::scanToNextToken() {
1053   while (true) {
1054     while (*Current == ' ' || *Current == '\t') {
1055       skip(1);
1056     }
1057 
1058     skipComment();
1059 
1060     // Skip EOL.
1061     StringRef::iterator i = skip_b_break(Current);
1062     if (i == Current)
1063       break;
1064     Current = i;
1065     ++Line;
1066     Column = 0;
1067     // New lines may start a simple key.
1068     if (!FlowLevel)
1069       IsSimpleKeyAllowed = true;
1070   }
1071 }
1072 
scanStreamStart()1073 bool Scanner::scanStreamStart() {
1074   IsStartOfStream = false;
1075 
1076   EncodingInfo EI = getUnicodeEncoding(currentInput());
1077 
1078   Token T;
1079   T.Kind = Token::TK_StreamStart;
1080   T.Range = StringRef(Current, EI.second);
1081   TokenQueue.push_back(T);
1082   Current += EI.second;
1083   return true;
1084 }
1085 
scanStreamEnd()1086 bool Scanner::scanStreamEnd() {
1087   // Force an ending new line if one isn't present.
1088   if (Column != 0) {
1089     Column = 0;
1090     ++Line;
1091   }
1092 
1093   unrollIndent(-1);
1094   SimpleKeys.clear();
1095   IsSimpleKeyAllowed = false;
1096 
1097   Token T;
1098   T.Kind = Token::TK_StreamEnd;
1099   T.Range = StringRef(Current, 0);
1100   TokenQueue.push_back(T);
1101   return true;
1102 }
1103 
scanDirective()1104 bool Scanner::scanDirective() {
1105   // Reset the indentation level.
1106   unrollIndent(-1);
1107   SimpleKeys.clear();
1108   IsSimpleKeyAllowed = false;
1109 
1110   StringRef::iterator Start = Current;
1111   consume('%');
1112   StringRef::iterator NameStart = Current;
1113   Current = skip_while(&Scanner::skip_ns_char, Current);
1114   StringRef Name(NameStart, Current - NameStart);
1115   Current = skip_while(&Scanner::skip_s_white, Current);
1116 
1117   Token T;
1118   if (Name == "YAML") {
1119     Current = skip_while(&Scanner::skip_ns_char, Current);
1120     T.Kind = Token::TK_VersionDirective;
1121     T.Range = StringRef(Start, Current - Start);
1122     TokenQueue.push_back(T);
1123     return true;
1124   } else if(Name == "TAG") {
1125     Current = skip_while(&Scanner::skip_ns_char, Current);
1126     Current = skip_while(&Scanner::skip_s_white, Current);
1127     Current = skip_while(&Scanner::skip_ns_char, Current);
1128     T.Kind = Token::TK_TagDirective;
1129     T.Range = StringRef(Start, Current - Start);
1130     TokenQueue.push_back(T);
1131     return true;
1132   }
1133   return false;
1134 }
1135 
scanDocumentIndicator(bool IsStart)1136 bool Scanner::scanDocumentIndicator(bool IsStart) {
1137   unrollIndent(-1);
1138   SimpleKeys.clear();
1139   IsSimpleKeyAllowed = false;
1140 
1141   Token T;
1142   T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1143   T.Range = StringRef(Current, 3);
1144   skip(3);
1145   TokenQueue.push_back(T);
1146   return true;
1147 }
1148 
scanFlowCollectionStart(bool IsSequence)1149 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1150   Token T;
1151   T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1152                       : Token::TK_FlowMappingStart;
1153   T.Range = StringRef(Current, 1);
1154   skip(1);
1155   TokenQueue.push_back(T);
1156 
1157   // [ and { may begin a simple key.
1158   saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false);
1159 
1160   // And may also be followed by a simple key.
1161   IsSimpleKeyAllowed = true;
1162   ++FlowLevel;
1163   return true;
1164 }
1165 
scanFlowCollectionEnd(bool IsSequence)1166 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1167   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1168   IsSimpleKeyAllowed = false;
1169   Token T;
1170   T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1171                       : Token::TK_FlowMappingEnd;
1172   T.Range = StringRef(Current, 1);
1173   skip(1);
1174   TokenQueue.push_back(T);
1175   if (FlowLevel)
1176     --FlowLevel;
1177   return true;
1178 }
1179 
scanFlowEntry()1180 bool Scanner::scanFlowEntry() {
1181   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1182   IsSimpleKeyAllowed = true;
1183   Token T;
1184   T.Kind = Token::TK_FlowEntry;
1185   T.Range = StringRef(Current, 1);
1186   skip(1);
1187   TokenQueue.push_back(T);
1188   return true;
1189 }
1190 
scanBlockEntry()1191 bool Scanner::scanBlockEntry() {
1192   rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1193   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1194   IsSimpleKeyAllowed = true;
1195   Token T;
1196   T.Kind = Token::TK_BlockEntry;
1197   T.Range = StringRef(Current, 1);
1198   skip(1);
1199   TokenQueue.push_back(T);
1200   return true;
1201 }
1202 
scanKey()1203 bool Scanner::scanKey() {
1204   if (!FlowLevel)
1205     rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1206 
1207   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1208   IsSimpleKeyAllowed = !FlowLevel;
1209 
1210   Token T;
1211   T.Kind = Token::TK_Key;
1212   T.Range = StringRef(Current, 1);
1213   skip(1);
1214   TokenQueue.push_back(T);
1215   return true;
1216 }
1217 
scanValue()1218 bool Scanner::scanValue() {
1219   // If the previous token could have been a simple key, insert the key token
1220   // into the token queue.
1221   if (!SimpleKeys.empty()) {
1222     SimpleKey SK = SimpleKeys.pop_back_val();
1223     Token T;
1224     T.Kind = Token::TK_Key;
1225     T.Range = SK.Tok->Range;
1226     TokenQueueT::iterator i, e;
1227     for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1228       if (i == SK.Tok)
1229         break;
1230     }
1231     assert(i != e && "SimpleKey not in token queue!");
1232     i = TokenQueue.insert(i, T);
1233 
1234     // We may also need to add a Block-Mapping-Start token.
1235     rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1236 
1237     IsSimpleKeyAllowed = false;
1238   } else {
1239     if (!FlowLevel)
1240       rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1241     IsSimpleKeyAllowed = !FlowLevel;
1242   }
1243 
1244   Token T;
1245   T.Kind = Token::TK_Value;
1246   T.Range = StringRef(Current, 1);
1247   skip(1);
1248   TokenQueue.push_back(T);
1249   return true;
1250 }
1251 
1252 // Forbidding inlining improves performance by roughly 20%.
1253 // FIXME: Remove once llvm optimizes this to the faster version without hints.
1254 LLVM_ATTRIBUTE_NOINLINE static bool
1255 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1256 
1257 // Returns whether a character at 'Position' was escaped with a leading '\'.
1258 // 'First' specifies the position of the first character in the string.
wasEscaped(StringRef::iterator First,StringRef::iterator Position)1259 static bool wasEscaped(StringRef::iterator First,
1260                        StringRef::iterator Position) {
1261   assert(Position - 1 >= First);
1262   StringRef::iterator I = Position - 1;
1263   // We calculate the number of consecutive '\'s before the current position
1264   // by iterating backwards through our string.
1265   while (I >= First && *I == '\\') --I;
1266   // (Position - 1 - I) now contains the number of '\'s before the current
1267   // position. If it is odd, the character at 'Position' was escaped.
1268   return (Position - 1 - I) % 2 == 1;
1269 }
1270 
scanFlowScalar(bool IsDoubleQuoted)1271 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1272   StringRef::iterator Start = Current;
1273   unsigned ColStart = Column;
1274   if (IsDoubleQuoted) {
1275     do {
1276       ++Current;
1277       while (Current != End && *Current != '"')
1278         ++Current;
1279       // Repeat until the previous character was not a '\' or was an escaped
1280       // backslash.
1281     } while (   Current != End
1282              && *(Current - 1) == '\\'
1283              && wasEscaped(Start + 1, Current));
1284   } else {
1285     skip(1);
1286     while (true) {
1287       // Skip a ' followed by another '.
1288       if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1289         skip(2);
1290         continue;
1291       } else if (*Current == '\'')
1292         break;
1293       StringRef::iterator i = skip_nb_char(Current);
1294       if (i == Current) {
1295         i = skip_b_break(Current);
1296         if (i == Current)
1297           break;
1298         Current = i;
1299         Column = 0;
1300         ++Line;
1301       } else {
1302         if (i == End)
1303           break;
1304         Current = i;
1305         ++Column;
1306       }
1307     }
1308   }
1309 
1310   if (Current == End) {
1311     setError("Expected quote at end of scalar", Current);
1312     return false;
1313   }
1314 
1315   skip(1); // Skip ending quote.
1316   Token T;
1317   T.Kind = Token::TK_Scalar;
1318   T.Range = StringRef(Start, Current - Start);
1319   TokenQueue.push_back(T);
1320 
1321   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1322 
1323   IsSimpleKeyAllowed = false;
1324 
1325   return true;
1326 }
1327 
scanPlainScalar()1328 bool Scanner::scanPlainScalar() {
1329   StringRef::iterator Start = Current;
1330   unsigned ColStart = Column;
1331   unsigned LeadingBlanks = 0;
1332   assert(Indent >= -1 && "Indent must be >= -1 !");
1333   unsigned indent = static_cast<unsigned>(Indent + 1);
1334   while (true) {
1335     if (*Current == '#')
1336       break;
1337 
1338     while (!isBlankOrBreak(Current)) {
1339       if (  FlowLevel && *Current == ':'
1340           && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) {
1341         setError("Found unexpected ':' while scanning a plain scalar", Current);
1342         return false;
1343       }
1344 
1345       // Check for the end of the plain scalar.
1346       if (  (*Current == ':' && isBlankOrBreak(Current + 1))
1347           || (  FlowLevel
1348           && (StringRef(Current, 1).find_first_of(",:?[]{}")
1349               != StringRef::npos)))
1350         break;
1351 
1352       StringRef::iterator i = skip_nb_char(Current);
1353       if (i == Current)
1354         break;
1355       Current = i;
1356       ++Column;
1357     }
1358 
1359     // Are we at the end?
1360     if (!isBlankOrBreak(Current))
1361       break;
1362 
1363     // Eat blanks.
1364     StringRef::iterator Tmp = Current;
1365     while (isBlankOrBreak(Tmp)) {
1366       StringRef::iterator i = skip_s_white(Tmp);
1367       if (i != Tmp) {
1368         if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1369           setError("Found invalid tab character in indentation", Tmp);
1370           return false;
1371         }
1372         Tmp = i;
1373         ++Column;
1374       } else {
1375         i = skip_b_break(Tmp);
1376         if (!LeadingBlanks)
1377           LeadingBlanks = 1;
1378         Tmp = i;
1379         Column = 0;
1380         ++Line;
1381       }
1382     }
1383 
1384     if (!FlowLevel && Column < indent)
1385       break;
1386 
1387     Current = Tmp;
1388   }
1389   if (Start == Current) {
1390     setError("Got empty plain scalar", Start);
1391     return false;
1392   }
1393   Token T;
1394   T.Kind = Token::TK_Scalar;
1395   T.Range = StringRef(Start, Current - Start);
1396   TokenQueue.push_back(T);
1397 
1398   // Plain scalars can be simple keys.
1399   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1400 
1401   IsSimpleKeyAllowed = false;
1402 
1403   return true;
1404 }
1405 
scanAliasOrAnchor(bool IsAlias)1406 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1407   StringRef::iterator Start = Current;
1408   unsigned ColStart = Column;
1409   skip(1);
1410   while(true) {
1411     if (   *Current == '[' || *Current == ']'
1412         || *Current == '{' || *Current == '}'
1413         || *Current == ','
1414         || *Current == ':')
1415       break;
1416     StringRef::iterator i = skip_ns_char(Current);
1417     if (i == Current)
1418       break;
1419     Current = i;
1420     ++Column;
1421   }
1422 
1423   if (Start == Current) {
1424     setError("Got empty alias or anchor", Start);
1425     return false;
1426   }
1427 
1428   Token T;
1429   T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1430   T.Range = StringRef(Start, Current - Start);
1431   TokenQueue.push_back(T);
1432 
1433   // Alias and anchors can be simple keys.
1434   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1435 
1436   IsSimpleKeyAllowed = false;
1437 
1438   return true;
1439 }
1440 
scanBlockChompingIndicator()1441 char Scanner::scanBlockChompingIndicator() {
1442   char Indicator = ' ';
1443   if (Current != End && (*Current == '+' || *Current == '-')) {
1444     Indicator = *Current;
1445     skip(1);
1446   }
1447   return Indicator;
1448 }
1449 
1450 /// Get the number of line breaks after chomping.
1451 ///
1452 /// Return the number of trailing line breaks to emit, depending on
1453 /// \p ChompingIndicator.
getChompedLineBreaks(char ChompingIndicator,unsigned LineBreaks,StringRef Str)1454 static unsigned getChompedLineBreaks(char ChompingIndicator,
1455                                      unsigned LineBreaks, StringRef Str) {
1456   if (ChompingIndicator == '-') // Strip all line breaks.
1457     return 0;
1458   if (ChompingIndicator == '+') // Keep all line breaks.
1459     return LineBreaks;
1460   // Clip trailing lines.
1461   return Str.empty() ? 0 : 1;
1462 }
1463 
scanBlockIndentationIndicator()1464 unsigned Scanner::scanBlockIndentationIndicator() {
1465   unsigned Indent = 0;
1466   if (Current != End && (*Current >= '1' && *Current <= '9')) {
1467     Indent = unsigned(*Current - '0');
1468     skip(1);
1469   }
1470   return Indent;
1471 }
1472 
scanBlockScalarHeader(char & ChompingIndicator,unsigned & IndentIndicator,bool & IsDone)1473 bool Scanner::scanBlockScalarHeader(char &ChompingIndicator,
1474                                     unsigned &IndentIndicator, bool &IsDone) {
1475   auto Start = Current;
1476 
1477   ChompingIndicator = scanBlockChompingIndicator();
1478   IndentIndicator = scanBlockIndentationIndicator();
1479   // Check for the chomping indicator once again.
1480   if (ChompingIndicator == ' ')
1481     ChompingIndicator = scanBlockChompingIndicator();
1482   Current = skip_while(&Scanner::skip_s_white, Current);
1483   skipComment();
1484 
1485   if (Current == End) { // EOF, we have an empty scalar.
1486     Token T;
1487     T.Kind = Token::TK_BlockScalar;
1488     T.Range = StringRef(Start, Current - Start);
1489     TokenQueue.push_back(T);
1490     IsDone = true;
1491     return true;
1492   }
1493 
1494   if (!consumeLineBreakIfPresent()) {
1495     setError("Expected a line break after block scalar header", Current);
1496     return false;
1497   }
1498   return true;
1499 }
1500 
findBlockScalarIndent(unsigned & BlockIndent,unsigned BlockExitIndent,unsigned & LineBreaks,bool & IsDone)1501 bool Scanner::findBlockScalarIndent(unsigned &BlockIndent,
1502                                     unsigned BlockExitIndent,
1503                                     unsigned &LineBreaks, bool &IsDone) {
1504   unsigned MaxAllSpaceLineCharacters = 0;
1505   StringRef::iterator LongestAllSpaceLine;
1506 
1507   while (true) {
1508     advanceWhile(&Scanner::skip_s_space);
1509     if (skip_nb_char(Current) != Current) {
1510       // This line isn't empty, so try and find the indentation.
1511       if (Column <= BlockExitIndent) { // End of the block literal.
1512         IsDone = true;
1513         return true;
1514       }
1515       // We found the block's indentation.
1516       BlockIndent = Column;
1517       if (MaxAllSpaceLineCharacters > BlockIndent) {
1518         setError(
1519             "Leading all-spaces line must be smaller than the block indent",
1520             LongestAllSpaceLine);
1521         return false;
1522       }
1523       return true;
1524     }
1525     if (skip_b_break(Current) != Current &&
1526         Column > MaxAllSpaceLineCharacters) {
1527       // Record the longest all-space line in case it's longer than the
1528       // discovered block indent.
1529       MaxAllSpaceLineCharacters = Column;
1530       LongestAllSpaceLine = Current;
1531     }
1532 
1533     // Check for EOF.
1534     if (Current == End) {
1535       IsDone = true;
1536       return true;
1537     }
1538 
1539     if (!consumeLineBreakIfPresent()) {
1540       IsDone = true;
1541       return true;
1542     }
1543     ++LineBreaks;
1544   }
1545   return true;
1546 }
1547 
scanBlockScalarIndent(unsigned BlockIndent,unsigned BlockExitIndent,bool & IsDone)1548 bool Scanner::scanBlockScalarIndent(unsigned BlockIndent,
1549                                     unsigned BlockExitIndent, bool &IsDone) {
1550   // Skip the indentation.
1551   while (Column < BlockIndent) {
1552     auto I = skip_s_space(Current);
1553     if (I == Current)
1554       break;
1555     Current = I;
1556     ++Column;
1557   }
1558 
1559   if (skip_nb_char(Current) == Current)
1560     return true;
1561 
1562   if (Column <= BlockExitIndent) { // End of the block literal.
1563     IsDone = true;
1564     return true;
1565   }
1566 
1567   if (Column < BlockIndent) {
1568     if (Current != End && *Current == '#') { // Trailing comment.
1569       IsDone = true;
1570       return true;
1571     }
1572     setError("A text line is less indented than the block scalar", Current);
1573     return false;
1574   }
1575   return true; // A normal text line.
1576 }
1577 
scanBlockScalar(bool IsLiteral)1578 bool Scanner::scanBlockScalar(bool IsLiteral) {
1579   // Eat '|' or '>'
1580   assert(*Current == '|' || *Current == '>');
1581   skip(1);
1582 
1583   char ChompingIndicator;
1584   unsigned BlockIndent;
1585   bool IsDone = false;
1586   if (!scanBlockScalarHeader(ChompingIndicator, BlockIndent, IsDone))
1587     return false;
1588   if (IsDone)
1589     return true;
1590 
1591   auto Start = Current;
1592   unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent;
1593   unsigned LineBreaks = 0;
1594   if (BlockIndent == 0) {
1595     if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks,
1596                                IsDone))
1597       return false;
1598   }
1599 
1600   // Scan the block's scalars body.
1601   SmallString<256> Str;
1602   while (!IsDone) {
1603     if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone))
1604       return false;
1605     if (IsDone)
1606       break;
1607 
1608     // Parse the current line.
1609     auto LineStart = Current;
1610     advanceWhile(&Scanner::skip_nb_char);
1611     if (LineStart != Current) {
1612       Str.append(LineBreaks, '\n');
1613       Str.append(StringRef(LineStart, Current - LineStart));
1614       LineBreaks = 0;
1615     }
1616 
1617     // Check for EOF.
1618     if (Current == End)
1619       break;
1620 
1621     if (!consumeLineBreakIfPresent())
1622       break;
1623     ++LineBreaks;
1624   }
1625 
1626   if (Current == End && !LineBreaks)
1627     // Ensure that there is at least one line break before the end of file.
1628     LineBreaks = 1;
1629   Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n');
1630 
1631   // New lines may start a simple key.
1632   if (!FlowLevel)
1633     IsSimpleKeyAllowed = true;
1634 
1635   Token T;
1636   T.Kind = Token::TK_BlockScalar;
1637   T.Range = StringRef(Start, Current - Start);
1638   T.Value = Str.str().str();
1639   TokenQueue.push_back(T);
1640   return true;
1641 }
1642 
scanTag()1643 bool Scanner::scanTag() {
1644   StringRef::iterator Start = Current;
1645   unsigned ColStart = Column;
1646   skip(1); // Eat !.
1647   if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1648   else if (*Current == '<') {
1649     skip(1);
1650     scan_ns_uri_char();
1651     if (!consume('>'))
1652       return false;
1653   } else {
1654     // FIXME: Actually parse the c-ns-shorthand-tag rule.
1655     Current = skip_while(&Scanner::skip_ns_char, Current);
1656   }
1657 
1658   Token T;
1659   T.Kind = Token::TK_Tag;
1660   T.Range = StringRef(Start, Current - Start);
1661   TokenQueue.push_back(T);
1662 
1663   // Tags can be simple keys.
1664   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1665 
1666   IsSimpleKeyAllowed = false;
1667 
1668   return true;
1669 }
1670 
fetchMoreTokens()1671 bool Scanner::fetchMoreTokens() {
1672   if (IsStartOfStream)
1673     return scanStreamStart();
1674 
1675   scanToNextToken();
1676 
1677   if (Current == End)
1678     return scanStreamEnd();
1679 
1680   removeStaleSimpleKeyCandidates();
1681 
1682   unrollIndent(Column);
1683 
1684   if (Column == 0 && *Current == '%')
1685     return scanDirective();
1686 
1687   if (Column == 0 && Current + 4 <= End
1688       && *Current == '-'
1689       && *(Current + 1) == '-'
1690       && *(Current + 2) == '-'
1691       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1692     return scanDocumentIndicator(true);
1693 
1694   if (Column == 0 && Current + 4 <= End
1695       && *Current == '.'
1696       && *(Current + 1) == '.'
1697       && *(Current + 2) == '.'
1698       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1699     return scanDocumentIndicator(false);
1700 
1701   if (*Current == '[')
1702     return scanFlowCollectionStart(true);
1703 
1704   if (*Current == '{')
1705     return scanFlowCollectionStart(false);
1706 
1707   if (*Current == ']')
1708     return scanFlowCollectionEnd(true);
1709 
1710   if (*Current == '}')
1711     return scanFlowCollectionEnd(false);
1712 
1713   if (*Current == ',')
1714     return scanFlowEntry();
1715 
1716   if (*Current == '-' && isBlankOrBreak(Current + 1))
1717     return scanBlockEntry();
1718 
1719   if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1720     return scanKey();
1721 
1722   if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1723     return scanValue();
1724 
1725   if (*Current == '*')
1726     return scanAliasOrAnchor(true);
1727 
1728   if (*Current == '&')
1729     return scanAliasOrAnchor(false);
1730 
1731   if (*Current == '!')
1732     return scanTag();
1733 
1734   if (*Current == '|' && !FlowLevel)
1735     return scanBlockScalar(true);
1736 
1737   if (*Current == '>' && !FlowLevel)
1738     return scanBlockScalar(false);
1739 
1740   if (*Current == '\'')
1741     return scanFlowScalar(false);
1742 
1743   if (*Current == '"')
1744     return scanFlowScalar(true);
1745 
1746   // Get a plain scalar.
1747   StringRef FirstChar(Current, 1);
1748   if (!(isBlankOrBreak(Current)
1749         || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1750       || (*Current == '-' && !isBlankOrBreak(Current + 1))
1751       || (!FlowLevel && (*Current == '?' || *Current == ':')
1752           && isBlankOrBreak(Current + 1))
1753       || (!FlowLevel && *Current == ':'
1754                       && Current + 2 < End
1755                       && *(Current + 1) == ':'
1756                       && !isBlankOrBreak(Current + 2)))
1757     return scanPlainScalar();
1758 
1759   setError("Unrecognized character while tokenizing.");
1760   return false;
1761 }
1762 
Stream(StringRef Input,SourceMgr & SM,bool ShowColors,std::error_code * EC)1763 Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors,
1764                std::error_code *EC)
1765     : scanner(new Scanner(Input, SM, ShowColors, EC)), CurrentDoc() {}
1766 
Stream(MemoryBufferRef InputBuffer,SourceMgr & SM,bool ShowColors,std::error_code * EC)1767 Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors,
1768                std::error_code *EC)
1769     : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)), CurrentDoc() {}
1770 
1771 Stream::~Stream() = default;
1772 
failed()1773 bool Stream::failed() { return scanner->failed(); }
1774 
printError(Node * N,const Twine & Msg)1775 void Stream::printError(Node *N, const Twine &Msg) {
1776   scanner->printError( N->getSourceRange().Start
1777                      , SourceMgr::DK_Error
1778                      , Msg
1779                      , N->getSourceRange());
1780 }
1781 
begin()1782 document_iterator Stream::begin() {
1783   if (CurrentDoc)
1784     report_fatal_error("Can only iterate over the stream once");
1785 
1786   // Skip Stream-Start.
1787   scanner->getNext();
1788 
1789   CurrentDoc.reset(new Document(*this));
1790   return document_iterator(CurrentDoc);
1791 }
1792 
end()1793 document_iterator Stream::end() {
1794   return document_iterator();
1795 }
1796 
skip()1797 void Stream::skip() {
1798   for (document_iterator i = begin(), e = end(); i != e; ++i)
1799     i->skip();
1800 }
1801 
Node(unsigned int Type,std::unique_ptr<Document> & D,StringRef A,StringRef T)1802 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1803            StringRef T)
1804     : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1805   SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1806   SourceRange = SMRange(Start, Start);
1807 }
1808 
getVerbatimTag() const1809 std::string Node::getVerbatimTag() const {
1810   StringRef Raw = getRawTag();
1811   if (!Raw.empty() && Raw != "!") {
1812     std::string Ret;
1813     if (Raw.find_last_of('!') == 0) {
1814       Ret = Doc->getTagMap().find("!")->second;
1815       Ret += Raw.substr(1);
1816       return Ret;
1817     } else if (Raw.startswith("!!")) {
1818       Ret = Doc->getTagMap().find("!!")->second;
1819       Ret += Raw.substr(2);
1820       return Ret;
1821     } else {
1822       StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1823       std::map<StringRef, StringRef>::const_iterator It =
1824           Doc->getTagMap().find(TagHandle);
1825       if (It != Doc->getTagMap().end())
1826         Ret = It->second;
1827       else {
1828         Token T;
1829         T.Kind = Token::TK_Tag;
1830         T.Range = TagHandle;
1831         setError(Twine("Unknown tag handle ") + TagHandle, T);
1832       }
1833       Ret += Raw.substr(Raw.find_last_of('!') + 1);
1834       return Ret;
1835     }
1836   }
1837 
1838   switch (getType()) {
1839   case NK_Null:
1840     return "tag:yaml.org,2002:null";
1841   case NK_Scalar:
1842   case NK_BlockScalar:
1843     // TODO: Tag resolution.
1844     return "tag:yaml.org,2002:str";
1845   case NK_Mapping:
1846     return "tag:yaml.org,2002:map";
1847   case NK_Sequence:
1848     return "tag:yaml.org,2002:seq";
1849   }
1850 
1851   return "";
1852 }
1853 
peekNext()1854 Token &Node::peekNext() {
1855   return Doc->peekNext();
1856 }
1857 
getNext()1858 Token Node::getNext() {
1859   return Doc->getNext();
1860 }
1861 
parseBlockNode()1862 Node *Node::parseBlockNode() {
1863   return Doc->parseBlockNode();
1864 }
1865 
getAllocator()1866 BumpPtrAllocator &Node::getAllocator() {
1867   return Doc->NodeAllocator;
1868 }
1869 
setError(const Twine & Msg,Token & Tok) const1870 void Node::setError(const Twine &Msg, Token &Tok) const {
1871   Doc->setError(Msg, Tok);
1872 }
1873 
failed() const1874 bool Node::failed() const {
1875   return Doc->failed();
1876 }
1877 
getValue(SmallVectorImpl<char> & Storage) const1878 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
1879   // TODO: Handle newlines properly. We need to remove leading whitespace.
1880   if (Value[0] == '"') { // Double quoted.
1881     // Pull off the leading and trailing "s.
1882     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1883     // Search for characters that would require unescaping the value.
1884     StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
1885     if (i != StringRef::npos)
1886       return unescapeDoubleQuoted(UnquotedValue, i, Storage);
1887     return UnquotedValue;
1888   } else if (Value[0] == '\'') { // Single quoted.
1889     // Pull off the leading and trailing 's.
1890     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1891     StringRef::size_type i = UnquotedValue.find('\'');
1892     if (i != StringRef::npos) {
1893       // We're going to need Storage.
1894       Storage.clear();
1895       Storage.reserve(UnquotedValue.size());
1896       for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
1897         StringRef Valid(UnquotedValue.begin(), i);
1898         Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1899         Storage.push_back('\'');
1900         UnquotedValue = UnquotedValue.substr(i + 2);
1901       }
1902       Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1903       return StringRef(Storage.begin(), Storage.size());
1904     }
1905     return UnquotedValue;
1906   }
1907   // Plain or block.
1908   return Value.rtrim(' ');
1909 }
1910 
unescapeDoubleQuoted(StringRef UnquotedValue,StringRef::size_type i,SmallVectorImpl<char> & Storage) const1911 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
1912                                           , StringRef::size_type i
1913                                           , SmallVectorImpl<char> &Storage)
1914                                           const {
1915   // Use Storage to build proper value.
1916   Storage.clear();
1917   Storage.reserve(UnquotedValue.size());
1918   for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
1919     // Insert all previous chars into Storage.
1920     StringRef Valid(UnquotedValue.begin(), i);
1921     Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1922     // Chop off inserted chars.
1923     UnquotedValue = UnquotedValue.substr(i);
1924 
1925     assert(!UnquotedValue.empty() && "Can't be empty!");
1926 
1927     // Parse escape or line break.
1928     switch (UnquotedValue[0]) {
1929     case '\r':
1930     case '\n':
1931       Storage.push_back('\n');
1932       if (   UnquotedValue.size() > 1
1933           && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1934         UnquotedValue = UnquotedValue.substr(1);
1935       UnquotedValue = UnquotedValue.substr(1);
1936       break;
1937     default:
1938       if (UnquotedValue.size() == 1)
1939         // TODO: Report error.
1940         break;
1941       UnquotedValue = UnquotedValue.substr(1);
1942       switch (UnquotedValue[0]) {
1943       default: {
1944           Token T;
1945           T.Range = StringRef(UnquotedValue.begin(), 1);
1946           setError("Unrecognized escape code!", T);
1947           return "";
1948         }
1949       case '\r':
1950       case '\n':
1951         // Remove the new line.
1952         if (   UnquotedValue.size() > 1
1953             && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1954           UnquotedValue = UnquotedValue.substr(1);
1955         // If this was just a single byte newline, it will get skipped
1956         // below.
1957         break;
1958       case '0':
1959         Storage.push_back(0x00);
1960         break;
1961       case 'a':
1962         Storage.push_back(0x07);
1963         break;
1964       case 'b':
1965         Storage.push_back(0x08);
1966         break;
1967       case 't':
1968       case 0x09:
1969         Storage.push_back(0x09);
1970         break;
1971       case 'n':
1972         Storage.push_back(0x0A);
1973         break;
1974       case 'v':
1975         Storage.push_back(0x0B);
1976         break;
1977       case 'f':
1978         Storage.push_back(0x0C);
1979         break;
1980       case 'r':
1981         Storage.push_back(0x0D);
1982         break;
1983       case 'e':
1984         Storage.push_back(0x1B);
1985         break;
1986       case ' ':
1987         Storage.push_back(0x20);
1988         break;
1989       case '"':
1990         Storage.push_back(0x22);
1991         break;
1992       case '/':
1993         Storage.push_back(0x2F);
1994         break;
1995       case '\\':
1996         Storage.push_back(0x5C);
1997         break;
1998       case 'N':
1999         encodeUTF8(0x85, Storage);
2000         break;
2001       case '_':
2002         encodeUTF8(0xA0, Storage);
2003         break;
2004       case 'L':
2005         encodeUTF8(0x2028, Storage);
2006         break;
2007       case 'P':
2008         encodeUTF8(0x2029, Storage);
2009         break;
2010       case 'x': {
2011           if (UnquotedValue.size() < 3)
2012             // TODO: Report error.
2013             break;
2014           unsigned int UnicodeScalarValue;
2015           if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
2016             // TODO: Report error.
2017             UnicodeScalarValue = 0xFFFD;
2018           encodeUTF8(UnicodeScalarValue, Storage);
2019           UnquotedValue = UnquotedValue.substr(2);
2020           break;
2021         }
2022       case 'u': {
2023           if (UnquotedValue.size() < 5)
2024             // TODO: Report error.
2025             break;
2026           unsigned int UnicodeScalarValue;
2027           if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
2028             // TODO: Report error.
2029             UnicodeScalarValue = 0xFFFD;
2030           encodeUTF8(UnicodeScalarValue, Storage);
2031           UnquotedValue = UnquotedValue.substr(4);
2032           break;
2033         }
2034       case 'U': {
2035           if (UnquotedValue.size() < 9)
2036             // TODO: Report error.
2037             break;
2038           unsigned int UnicodeScalarValue;
2039           if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
2040             // TODO: Report error.
2041             UnicodeScalarValue = 0xFFFD;
2042           encodeUTF8(UnicodeScalarValue, Storage);
2043           UnquotedValue = UnquotedValue.substr(8);
2044           break;
2045         }
2046       }
2047       UnquotedValue = UnquotedValue.substr(1);
2048     }
2049   }
2050   Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
2051   return StringRef(Storage.begin(), Storage.size());
2052 }
2053 
getKey()2054 Node *KeyValueNode::getKey() {
2055   if (Key)
2056     return Key;
2057   // Handle implicit null keys.
2058   {
2059     Token &t = peekNext();
2060     if (   t.Kind == Token::TK_BlockEnd
2061         || t.Kind == Token::TK_Value
2062         || t.Kind == Token::TK_Error) {
2063       return Key = new (getAllocator()) NullNode(Doc);
2064     }
2065     if (t.Kind == Token::TK_Key)
2066       getNext(); // skip TK_Key.
2067   }
2068 
2069   // Handle explicit null keys.
2070   Token &t = peekNext();
2071   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
2072     return Key = new (getAllocator()) NullNode(Doc);
2073   }
2074 
2075   // We've got a normal key.
2076   return Key = parseBlockNode();
2077 }
2078 
getValue()2079 Node *KeyValueNode::getValue() {
2080   if (Value)
2081     return Value;
2082   getKey()->skip();
2083   if (failed())
2084     return Value = new (getAllocator()) NullNode(Doc);
2085 
2086   // Handle implicit null values.
2087   {
2088     Token &t = peekNext();
2089     if (   t.Kind == Token::TK_BlockEnd
2090         || t.Kind == Token::TK_FlowMappingEnd
2091         || t.Kind == Token::TK_Key
2092         || t.Kind == Token::TK_FlowEntry
2093         || t.Kind == Token::TK_Error) {
2094       return Value = new (getAllocator()) NullNode(Doc);
2095     }
2096 
2097     if (t.Kind != Token::TK_Value) {
2098       setError("Unexpected token in Key Value.", t);
2099       return Value = new (getAllocator()) NullNode(Doc);
2100     }
2101     getNext(); // skip TK_Value.
2102   }
2103 
2104   // Handle explicit null values.
2105   Token &t = peekNext();
2106   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
2107     return Value = new (getAllocator()) NullNode(Doc);
2108   }
2109 
2110   // We got a normal value.
2111   return Value = parseBlockNode();
2112 }
2113 
increment()2114 void MappingNode::increment() {
2115   if (failed()) {
2116     IsAtEnd = true;
2117     CurrentEntry = nullptr;
2118     return;
2119   }
2120   if (CurrentEntry) {
2121     CurrentEntry->skip();
2122     if (Type == MT_Inline) {
2123       IsAtEnd = true;
2124       CurrentEntry = nullptr;
2125       return;
2126     }
2127   }
2128   Token T = peekNext();
2129   if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
2130     // KeyValueNode eats the TK_Key. That way it can detect null keys.
2131     CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
2132   } else if (Type == MT_Block) {
2133     switch (T.Kind) {
2134     case Token::TK_BlockEnd:
2135       getNext();
2136       IsAtEnd = true;
2137       CurrentEntry = nullptr;
2138       break;
2139     default:
2140       setError("Unexpected token. Expected Key or Block End", T);
2141       LLVM_FALLTHROUGH;
2142     case Token::TK_Error:
2143       IsAtEnd = true;
2144       CurrentEntry = nullptr;
2145     }
2146   } else {
2147     switch (T.Kind) {
2148     case Token::TK_FlowEntry:
2149       // Eat the flow entry and recurse.
2150       getNext();
2151       return increment();
2152     case Token::TK_FlowMappingEnd:
2153       getNext();
2154       LLVM_FALLTHROUGH;
2155     case Token::TK_Error:
2156       // Set this to end iterator.
2157       IsAtEnd = true;
2158       CurrentEntry = nullptr;
2159       break;
2160     default:
2161       setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
2162                 "Mapping End."
2163               , T);
2164       IsAtEnd = true;
2165       CurrentEntry = nullptr;
2166     }
2167   }
2168 }
2169 
increment()2170 void SequenceNode::increment() {
2171   if (failed()) {
2172     IsAtEnd = true;
2173     CurrentEntry = nullptr;
2174     return;
2175   }
2176   if (CurrentEntry)
2177     CurrentEntry->skip();
2178   Token T = peekNext();
2179   if (SeqType == ST_Block) {
2180     switch (T.Kind) {
2181     case Token::TK_BlockEntry:
2182       getNext();
2183       CurrentEntry = parseBlockNode();
2184       if (!CurrentEntry) { // An error occurred.
2185         IsAtEnd = true;
2186         CurrentEntry = nullptr;
2187       }
2188       break;
2189     case Token::TK_BlockEnd:
2190       getNext();
2191       IsAtEnd = true;
2192       CurrentEntry = nullptr;
2193       break;
2194     default:
2195       setError( "Unexpected token. Expected Block Entry or Block End."
2196               , T);
2197       LLVM_FALLTHROUGH;
2198     case Token::TK_Error:
2199       IsAtEnd = true;
2200       CurrentEntry = nullptr;
2201     }
2202   } else if (SeqType == ST_Indentless) {
2203     switch (T.Kind) {
2204     case Token::TK_BlockEntry:
2205       getNext();
2206       CurrentEntry = parseBlockNode();
2207       if (!CurrentEntry) { // An error occurred.
2208         IsAtEnd = true;
2209         CurrentEntry = nullptr;
2210       }
2211       break;
2212     default:
2213     case Token::TK_Error:
2214       IsAtEnd = true;
2215       CurrentEntry = nullptr;
2216     }
2217   } else if (SeqType == ST_Flow) {
2218     switch (T.Kind) {
2219     case Token::TK_FlowEntry:
2220       // Eat the flow entry and recurse.
2221       getNext();
2222       WasPreviousTokenFlowEntry = true;
2223       return increment();
2224     case Token::TK_FlowSequenceEnd:
2225       getNext();
2226       LLVM_FALLTHROUGH;
2227     case Token::TK_Error:
2228       // Set this to end iterator.
2229       IsAtEnd = true;
2230       CurrentEntry = nullptr;
2231       break;
2232     case Token::TK_StreamEnd:
2233     case Token::TK_DocumentEnd:
2234     case Token::TK_DocumentStart:
2235       setError("Could not find closing ]!", T);
2236       // Set this to end iterator.
2237       IsAtEnd = true;
2238       CurrentEntry = nullptr;
2239       break;
2240     default:
2241       if (!WasPreviousTokenFlowEntry) {
2242         setError("Expected , between entries!", T);
2243         IsAtEnd = true;
2244         CurrentEntry = nullptr;
2245         break;
2246       }
2247       // Otherwise it must be a flow entry.
2248       CurrentEntry = parseBlockNode();
2249       if (!CurrentEntry) {
2250         IsAtEnd = true;
2251       }
2252       WasPreviousTokenFlowEntry = false;
2253       break;
2254     }
2255   }
2256 }
2257 
Document(Stream & S)2258 Document::Document(Stream &S) : stream(S), Root(nullptr) {
2259   // Tag maps starts with two default mappings.
2260   TagMap["!"] = "!";
2261   TagMap["!!"] = "tag:yaml.org,2002:";
2262 
2263   if (parseDirectives())
2264     expectToken(Token::TK_DocumentStart);
2265   Token &T = peekNext();
2266   if (T.Kind == Token::TK_DocumentStart)
2267     getNext();
2268 }
2269 
skip()2270 bool Document::skip()  {
2271   if (stream.scanner->failed())
2272     return false;
2273   if (!Root)
2274     getRoot();
2275   Root->skip();
2276   Token &T = peekNext();
2277   if (T.Kind == Token::TK_StreamEnd)
2278     return false;
2279   if (T.Kind == Token::TK_DocumentEnd) {
2280     getNext();
2281     return skip();
2282   }
2283   return true;
2284 }
2285 
peekNext()2286 Token &Document::peekNext() {
2287   return stream.scanner->peekNext();
2288 }
2289 
getNext()2290 Token Document::getNext() {
2291   return stream.scanner->getNext();
2292 }
2293 
setError(const Twine & Message,Token & Location) const2294 void Document::setError(const Twine &Message, Token &Location) const {
2295   stream.scanner->setError(Message, Location.Range.begin());
2296 }
2297 
failed() const2298 bool Document::failed() const {
2299   return stream.scanner->failed();
2300 }
2301 
parseBlockNode()2302 Node *Document::parseBlockNode() {
2303   Token T = peekNext();
2304   // Handle properties.
2305   Token AnchorInfo;
2306   Token TagInfo;
2307 parse_property:
2308   switch (T.Kind) {
2309   case Token::TK_Alias:
2310     getNext();
2311     return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2312   case Token::TK_Anchor:
2313     if (AnchorInfo.Kind == Token::TK_Anchor) {
2314       setError("Already encountered an anchor for this node!", T);
2315       return nullptr;
2316     }
2317     AnchorInfo = getNext(); // Consume TK_Anchor.
2318     T = peekNext();
2319     goto parse_property;
2320   case Token::TK_Tag:
2321     if (TagInfo.Kind == Token::TK_Tag) {
2322       setError("Already encountered a tag for this node!", T);
2323       return nullptr;
2324     }
2325     TagInfo = getNext(); // Consume TK_Tag.
2326     T = peekNext();
2327     goto parse_property;
2328   default:
2329     break;
2330   }
2331 
2332   switch (T.Kind) {
2333   case Token::TK_BlockEntry:
2334     // We got an unindented BlockEntry sequence. This is not terminated with
2335     // a BlockEnd.
2336     // Don't eat the TK_BlockEntry, SequenceNode needs it.
2337     return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2338                                            , AnchorInfo.Range.substr(1)
2339                                            , TagInfo.Range
2340                                            , SequenceNode::ST_Indentless);
2341   case Token::TK_BlockSequenceStart:
2342     getNext();
2343     return new (NodeAllocator)
2344       SequenceNode( stream.CurrentDoc
2345                   , AnchorInfo.Range.substr(1)
2346                   , TagInfo.Range
2347                   , SequenceNode::ST_Block);
2348   case Token::TK_BlockMappingStart:
2349     getNext();
2350     return new (NodeAllocator)
2351       MappingNode( stream.CurrentDoc
2352                  , AnchorInfo.Range.substr(1)
2353                  , TagInfo.Range
2354                  , MappingNode::MT_Block);
2355   case Token::TK_FlowSequenceStart:
2356     getNext();
2357     return new (NodeAllocator)
2358       SequenceNode( stream.CurrentDoc
2359                   , AnchorInfo.Range.substr(1)
2360                   , TagInfo.Range
2361                   , SequenceNode::ST_Flow);
2362   case Token::TK_FlowMappingStart:
2363     getNext();
2364     return new (NodeAllocator)
2365       MappingNode( stream.CurrentDoc
2366                  , AnchorInfo.Range.substr(1)
2367                  , TagInfo.Range
2368                  , MappingNode::MT_Flow);
2369   case Token::TK_Scalar:
2370     getNext();
2371     return new (NodeAllocator)
2372       ScalarNode( stream.CurrentDoc
2373                 , AnchorInfo.Range.substr(1)
2374                 , TagInfo.Range
2375                 , T.Range);
2376   case Token::TK_BlockScalar: {
2377     getNext();
2378     StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1);
2379     StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back();
2380     return new (NodeAllocator)
2381         BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1),
2382                         TagInfo.Range, StrCopy, T.Range);
2383   }
2384   case Token::TK_Key:
2385     // Don't eat the TK_Key, KeyValueNode expects it.
2386     return new (NodeAllocator)
2387       MappingNode( stream.CurrentDoc
2388                  , AnchorInfo.Range.substr(1)
2389                  , TagInfo.Range
2390                  , MappingNode::MT_Inline);
2391   case Token::TK_DocumentStart:
2392   case Token::TK_DocumentEnd:
2393   case Token::TK_StreamEnd:
2394   default:
2395     // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2396     //       !!null null.
2397     return new (NodeAllocator) NullNode(stream.CurrentDoc);
2398   case Token::TK_Error:
2399     return nullptr;
2400   }
2401   llvm_unreachable("Control flow shouldn't reach here.");
2402   return nullptr;
2403 }
2404 
parseDirectives()2405 bool Document::parseDirectives() {
2406   bool isDirective = false;
2407   while (true) {
2408     Token T = peekNext();
2409     if (T.Kind == Token::TK_TagDirective) {
2410       parseTAGDirective();
2411       isDirective = true;
2412     } else if (T.Kind == Token::TK_VersionDirective) {
2413       parseYAMLDirective();
2414       isDirective = true;
2415     } else
2416       break;
2417   }
2418   return isDirective;
2419 }
2420 
parseYAMLDirective()2421 void Document::parseYAMLDirective() {
2422   getNext(); // Eat %YAML <version>
2423 }
2424 
parseTAGDirective()2425 void Document::parseTAGDirective() {
2426   Token Tag = getNext(); // %TAG <handle> <prefix>
2427   StringRef T = Tag.Range;
2428   // Strip %TAG
2429   T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2430   std::size_t HandleEnd = T.find_first_of(" \t");
2431   StringRef TagHandle = T.substr(0, HandleEnd);
2432   StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2433   TagMap[TagHandle] = TagPrefix;
2434 }
2435 
expectToken(int TK)2436 bool Document::expectToken(int TK) {
2437   Token T = getNext();
2438   if (T.Kind != TK) {
2439     setError("Unexpected token", T);
2440     return false;
2441   }
2442   return true;
2443 }
2444