1 //===- YAMLParser.cpp - Simple YAML parser --------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a YAML parser.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Support/YAMLParser.h"
15 #include "llvm/ADT/AllocatorList.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/SMLoc.h"
28 #include "llvm/Support/SourceMgr.h"
29 #include "llvm/Support/Unicode.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <map>
36 #include <memory>
37 #include <string>
38 #include <system_error>
39 #include <utility>
40
41 using namespace llvm;
42 using namespace yaml;
43
44 enum UnicodeEncodingForm {
45 UEF_UTF32_LE, ///< UTF-32 Little Endian
46 UEF_UTF32_BE, ///< UTF-32 Big Endian
47 UEF_UTF16_LE, ///< UTF-16 Little Endian
48 UEF_UTF16_BE, ///< UTF-16 Big Endian
49 UEF_UTF8, ///< UTF-8 or ascii.
50 UEF_Unknown ///< Not a valid Unicode encoding.
51 };
52
53 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
54 /// it exists. Length is in {0, 2, 3, 4}.
55 using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>;
56
57 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
58 /// encoding form of \a Input.
59 ///
60 /// @param Input A string of length 0 or more.
61 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
62 /// and how long the byte order mark is if one exists.
getUnicodeEncoding(StringRef Input)63 static EncodingInfo getUnicodeEncoding(StringRef Input) {
64 if (Input.empty())
65 return std::make_pair(UEF_Unknown, 0);
66
67 switch (uint8_t(Input[0])) {
68 case 0x00:
69 if (Input.size() >= 4) {
70 if ( Input[1] == 0
71 && uint8_t(Input[2]) == 0xFE
72 && uint8_t(Input[3]) == 0xFF)
73 return std::make_pair(UEF_UTF32_BE, 4);
74 if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
75 return std::make_pair(UEF_UTF32_BE, 0);
76 }
77
78 if (Input.size() >= 2 && Input[1] != 0)
79 return std::make_pair(UEF_UTF16_BE, 0);
80 return std::make_pair(UEF_Unknown, 0);
81 case 0xFF:
82 if ( Input.size() >= 4
83 && uint8_t(Input[1]) == 0xFE
84 && Input[2] == 0
85 && Input[3] == 0)
86 return std::make_pair(UEF_UTF32_LE, 4);
87
88 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
89 return std::make_pair(UEF_UTF16_LE, 2);
90 return std::make_pair(UEF_Unknown, 0);
91 case 0xFE:
92 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
93 return std::make_pair(UEF_UTF16_BE, 2);
94 return std::make_pair(UEF_Unknown, 0);
95 case 0xEF:
96 if ( Input.size() >= 3
97 && uint8_t(Input[1]) == 0xBB
98 && uint8_t(Input[2]) == 0xBF)
99 return std::make_pair(UEF_UTF8, 3);
100 return std::make_pair(UEF_Unknown, 0);
101 }
102
103 // It could still be utf-32 or utf-16.
104 if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
105 return std::make_pair(UEF_UTF32_LE, 0);
106
107 if (Input.size() >= 2 && Input[1] == 0)
108 return std::make_pair(UEF_UTF16_LE, 0);
109
110 return std::make_pair(UEF_UTF8, 0);
111 }
112
113 /// Pin the vtables to this file.
anchor()114 void Node::anchor() {}
anchor()115 void NullNode::anchor() {}
anchor()116 void ScalarNode::anchor() {}
anchor()117 void BlockScalarNode::anchor() {}
anchor()118 void KeyValueNode::anchor() {}
anchor()119 void MappingNode::anchor() {}
anchor()120 void SequenceNode::anchor() {}
anchor()121 void AliasNode::anchor() {}
122
123 namespace llvm {
124 namespace yaml {
125
126 /// Token - A single YAML token.
127 struct Token {
128 enum TokenKind {
129 TK_Error, // Uninitialized token.
130 TK_StreamStart,
131 TK_StreamEnd,
132 TK_VersionDirective,
133 TK_TagDirective,
134 TK_DocumentStart,
135 TK_DocumentEnd,
136 TK_BlockEntry,
137 TK_BlockEnd,
138 TK_BlockSequenceStart,
139 TK_BlockMappingStart,
140 TK_FlowEntry,
141 TK_FlowSequenceStart,
142 TK_FlowSequenceEnd,
143 TK_FlowMappingStart,
144 TK_FlowMappingEnd,
145 TK_Key,
146 TK_Value,
147 TK_Scalar,
148 TK_BlockScalar,
149 TK_Alias,
150 TK_Anchor,
151 TK_Tag
152 } Kind = TK_Error;
153
154 /// A string of length 0 or more whose begin() points to the logical location
155 /// of the token in the input.
156 StringRef Range;
157
158 /// The value of a block scalar node.
159 std::string Value;
160
161 Token() = default;
162 };
163
164 } // end namespace yaml
165 } // end namespace llvm
166
167 using TokenQueueT = BumpPtrList<Token>;
168
169 namespace {
170
171 /// This struct is used to track simple keys.
172 ///
173 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
174 /// which could legally be the start of a simple key. When peekNext is called,
175 /// if the Token To be returned is referenced by a SimpleKey, we continue
176 /// tokenizing until that potential simple key has either been found to not be
177 /// a simple key (we moved on to the next line or went further than 1024 chars).
178 /// Or when we run into a Value, and then insert a Key token (and possibly
179 /// others) before the SimpleKey's Tok.
180 struct SimpleKey {
181 TokenQueueT::iterator Tok;
182 unsigned Column;
183 unsigned Line;
184 unsigned FlowLevel;
185 bool IsRequired;
186
operator ==__anon4fa4dd9f0111::SimpleKey187 bool operator ==(const SimpleKey &Other) {
188 return Tok == Other.Tok;
189 }
190 };
191
192 } // end anonymous namespace
193
194 /// The Unicode scalar value of a UTF-8 minimal well-formed code unit
195 /// subsequence and the subsequence's length in code units (uint8_t).
196 /// A length of 0 represents an error.
197 using UTF8Decoded = std::pair<uint32_t, unsigned>;
198
decodeUTF8(StringRef Range)199 static UTF8Decoded decodeUTF8(StringRef Range) {
200 StringRef::iterator Position= Range.begin();
201 StringRef::iterator End = Range.end();
202 // 1 byte: [0x00, 0x7f]
203 // Bit pattern: 0xxxxxxx
204 if ((*Position & 0x80) == 0) {
205 return std::make_pair(*Position, 1);
206 }
207 // 2 bytes: [0x80, 0x7ff]
208 // Bit pattern: 110xxxxx 10xxxxxx
209 if (Position + 1 != End &&
210 ((*Position & 0xE0) == 0xC0) &&
211 ((*(Position + 1) & 0xC0) == 0x80)) {
212 uint32_t codepoint = ((*Position & 0x1F) << 6) |
213 (*(Position + 1) & 0x3F);
214 if (codepoint >= 0x80)
215 return std::make_pair(codepoint, 2);
216 }
217 // 3 bytes: [0x8000, 0xffff]
218 // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
219 if (Position + 2 != End &&
220 ((*Position & 0xF0) == 0xE0) &&
221 ((*(Position + 1) & 0xC0) == 0x80) &&
222 ((*(Position + 2) & 0xC0) == 0x80)) {
223 uint32_t codepoint = ((*Position & 0x0F) << 12) |
224 ((*(Position + 1) & 0x3F) << 6) |
225 (*(Position + 2) & 0x3F);
226 // Codepoints between 0xD800 and 0xDFFF are invalid, as
227 // they are high / low surrogate halves used by UTF-16.
228 if (codepoint >= 0x800 &&
229 (codepoint < 0xD800 || codepoint > 0xDFFF))
230 return std::make_pair(codepoint, 3);
231 }
232 // 4 bytes: [0x10000, 0x10FFFF]
233 // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
234 if (Position + 3 != End &&
235 ((*Position & 0xF8) == 0xF0) &&
236 ((*(Position + 1) & 0xC0) == 0x80) &&
237 ((*(Position + 2) & 0xC0) == 0x80) &&
238 ((*(Position + 3) & 0xC0) == 0x80)) {
239 uint32_t codepoint = ((*Position & 0x07) << 18) |
240 ((*(Position + 1) & 0x3F) << 12) |
241 ((*(Position + 2) & 0x3F) << 6) |
242 (*(Position + 3) & 0x3F);
243 if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
244 return std::make_pair(codepoint, 4);
245 }
246 return std::make_pair(0, 0);
247 }
248
249 namespace llvm {
250 namespace yaml {
251
252 /// Scans YAML tokens from a MemoryBuffer.
253 class Scanner {
254 public:
255 Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true,
256 std::error_code *EC = nullptr);
257 Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true,
258 std::error_code *EC = nullptr);
259
260 /// Parse the next token and return it without popping it.
261 Token &peekNext();
262
263 /// Parse the next token and pop it from the queue.
264 Token getNext();
265
printError(SMLoc Loc,SourceMgr::DiagKind Kind,const Twine & Message,ArrayRef<SMRange> Ranges=None)266 void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
267 ArrayRef<SMRange> Ranges = None) {
268 SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ None, ShowColors);
269 }
270
setError(const Twine & Message,StringRef::iterator Position)271 void setError(const Twine &Message, StringRef::iterator Position) {
272 if (Current >= End)
273 Current = End - 1;
274
275 // propagate the error if possible
276 if (EC)
277 *EC = make_error_code(std::errc::invalid_argument);
278
279 // Don't print out more errors after the first one we encounter. The rest
280 // are just the result of the first, and have no meaning.
281 if (!Failed)
282 printError(SMLoc::getFromPointer(Current), SourceMgr::DK_Error, Message);
283 Failed = true;
284 }
285
setError(const Twine & Message)286 void setError(const Twine &Message) {
287 setError(Message, Current);
288 }
289
290 /// Returns true if an error occurred while parsing.
failed()291 bool failed() {
292 return Failed;
293 }
294
295 private:
296 void init(MemoryBufferRef Buffer);
297
currentInput()298 StringRef currentInput() {
299 return StringRef(Current, End - Current);
300 }
301
302 /// Decode a UTF-8 minimal well-formed code unit subsequence starting
303 /// at \a Position.
304 ///
305 /// If the UTF-8 code units starting at Position do not form a well-formed
306 /// code unit subsequence, then the Unicode scalar value is 0, and the length
307 /// is 0.
decodeUTF8(StringRef::iterator Position)308 UTF8Decoded decodeUTF8(StringRef::iterator Position) {
309 return ::decodeUTF8(StringRef(Position, End - Position));
310 }
311
312 // The following functions are based on the gramar rules in the YAML spec. The
313 // style of the function names it meant to closely match how they are written
314 // in the spec. The number within the [] is the number of the grammar rule in
315 // the spec.
316 //
317 // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
318 //
319 // c-
320 // A production starting and ending with a special character.
321 // b-
322 // A production matching a single line break.
323 // nb-
324 // A production starting and ending with a non-break character.
325 // s-
326 // A production starting and ending with a white space character.
327 // ns-
328 // A production starting and ending with a non-space character.
329 // l-
330 // A production matching complete line(s).
331
332 /// Skip a single nb-char[27] starting at Position.
333 ///
334 /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
335 /// | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
336 ///
337 /// @returns The code unit after the nb-char, or Position if it's not an
338 /// nb-char.
339 StringRef::iterator skip_nb_char(StringRef::iterator Position);
340
341 /// Skip a single b-break[28] starting at Position.
342 ///
343 /// A b-break is 0xD 0xA | 0xD | 0xA
344 ///
345 /// @returns The code unit after the b-break, or Position if it's not a
346 /// b-break.
347 StringRef::iterator skip_b_break(StringRef::iterator Position);
348
349 /// Skip a single s-space[31] starting at Position.
350 ///
351 /// An s-space is 0x20
352 ///
353 /// @returns The code unit after the s-space, or Position if it's not a
354 /// s-space.
355 StringRef::iterator skip_s_space(StringRef::iterator Position);
356
357 /// Skip a single s-white[33] starting at Position.
358 ///
359 /// A s-white is 0x20 | 0x9
360 ///
361 /// @returns The code unit after the s-white, or Position if it's not a
362 /// s-white.
363 StringRef::iterator skip_s_white(StringRef::iterator Position);
364
365 /// Skip a single ns-char[34] starting at Position.
366 ///
367 /// A ns-char is nb-char - s-white
368 ///
369 /// @returns The code unit after the ns-char, or Position if it's not a
370 /// ns-char.
371 StringRef::iterator skip_ns_char(StringRef::iterator Position);
372
373 using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator);
374
375 /// Skip minimal well-formed code unit subsequences until Func
376 /// returns its input.
377 ///
378 /// @returns The code unit after the last minimal well-formed code unit
379 /// subsequence that Func accepted.
380 StringRef::iterator skip_while( SkipWhileFunc Func
381 , StringRef::iterator Position);
382
383 /// Skip minimal well-formed code unit subsequences until Func returns its
384 /// input.
385 void advanceWhile(SkipWhileFunc Func);
386
387 /// Scan ns-uri-char[39]s starting at Cur.
388 ///
389 /// This updates Cur and Column while scanning.
390 void scan_ns_uri_char();
391
392 /// Consume a minimal well-formed code unit subsequence starting at
393 /// \a Cur. Return false if it is not the same Unicode scalar value as
394 /// \a Expected. This updates \a Column.
395 bool consume(uint32_t Expected);
396
397 /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
398 void skip(uint32_t Distance);
399
400 /// Return true if the minimal well-formed code unit subsequence at
401 /// Pos is whitespace or a new line
402 bool isBlankOrBreak(StringRef::iterator Position);
403
404 /// Consume a single b-break[28] if it's present at the current position.
405 ///
406 /// Return false if the code unit at the current position isn't a line break.
407 bool consumeLineBreakIfPresent();
408
409 /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
410 void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
411 , unsigned AtColumn
412 , bool IsRequired);
413
414 /// Remove simple keys that can no longer be valid simple keys.
415 ///
416 /// Invalid simple keys are not on the current line or are further than 1024
417 /// columns back.
418 void removeStaleSimpleKeyCandidates();
419
420 /// Remove all simple keys on FlowLevel \a Level.
421 void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
422
423 /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
424 /// tokens if needed.
425 bool unrollIndent(int ToColumn);
426
427 /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
428 /// if needed.
429 bool rollIndent( int ToColumn
430 , Token::TokenKind Kind
431 , TokenQueueT::iterator InsertPoint);
432
433 /// Skip a single-line comment when the comment starts at the current
434 /// position of the scanner.
435 void skipComment();
436
437 /// Skip whitespace and comments until the start of the next token.
438 void scanToNextToken();
439
440 /// Must be the first token generated.
441 bool scanStreamStart();
442
443 /// Generate tokens needed to close out the stream.
444 bool scanStreamEnd();
445
446 /// Scan a %BLAH directive.
447 bool scanDirective();
448
449 /// Scan a ... or ---.
450 bool scanDocumentIndicator(bool IsStart);
451
452 /// Scan a [ or { and generate the proper flow collection start token.
453 bool scanFlowCollectionStart(bool IsSequence);
454
455 /// Scan a ] or } and generate the proper flow collection end token.
456 bool scanFlowCollectionEnd(bool IsSequence);
457
458 /// Scan the , that separates entries in a flow collection.
459 bool scanFlowEntry();
460
461 /// Scan the - that starts block sequence entries.
462 bool scanBlockEntry();
463
464 /// Scan an explicit ? indicating a key.
465 bool scanKey();
466
467 /// Scan an explicit : indicating a value.
468 bool scanValue();
469
470 /// Scan a quoted scalar.
471 bool scanFlowScalar(bool IsDoubleQuoted);
472
473 /// Scan an unquoted scalar.
474 bool scanPlainScalar();
475
476 /// Scan an Alias or Anchor starting with * or &.
477 bool scanAliasOrAnchor(bool IsAlias);
478
479 /// Scan a block scalar starting with | or >.
480 bool scanBlockScalar(bool IsLiteral);
481
482 /// Scan a chomping indicator in a block scalar header.
483 char scanBlockChompingIndicator();
484
485 /// Scan an indentation indicator in a block scalar header.
486 unsigned scanBlockIndentationIndicator();
487
488 /// Scan a block scalar header.
489 ///
490 /// Return false if an error occurred.
491 bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator,
492 bool &IsDone);
493
494 /// Look for the indentation level of a block scalar.
495 ///
496 /// Return false if an error occurred.
497 bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent,
498 unsigned &LineBreaks, bool &IsDone);
499
500 /// Scan the indentation of a text line in a block scalar.
501 ///
502 /// Return false if an error occurred.
503 bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent,
504 bool &IsDone);
505
506 /// Scan a tag of the form !stuff.
507 bool scanTag();
508
509 /// Dispatch to the next scanning function based on \a *Cur.
510 bool fetchMoreTokens();
511
512 /// The SourceMgr used for diagnostics and buffer management.
513 SourceMgr &SM;
514
515 /// The original input.
516 MemoryBufferRef InputBuffer;
517
518 /// The current position of the scanner.
519 StringRef::iterator Current;
520
521 /// The end of the input (one past the last character).
522 StringRef::iterator End;
523
524 /// Current YAML indentation level in spaces.
525 int Indent;
526
527 /// Current column number in Unicode code points.
528 unsigned Column;
529
530 /// Current line number.
531 unsigned Line;
532
533 /// How deep we are in flow style containers. 0 Means at block level.
534 unsigned FlowLevel;
535
536 /// Are we at the start of the stream?
537 bool IsStartOfStream;
538
539 /// Can the next token be the start of a simple key?
540 bool IsSimpleKeyAllowed;
541
542 /// True if an error has occurred.
543 bool Failed;
544
545 /// Should colors be used when printing out the diagnostic messages?
546 bool ShowColors;
547
548 /// Queue of tokens. This is required to queue up tokens while looking
549 /// for the end of a simple key. And for cases where a single character
550 /// can produce multiple tokens (e.g. BlockEnd).
551 TokenQueueT TokenQueue;
552
553 /// Indentation levels.
554 SmallVector<int, 4> Indents;
555
556 /// Potential simple keys.
557 SmallVector<SimpleKey, 4> SimpleKeys;
558
559 std::error_code *EC;
560 };
561
562 } // end namespace yaml
563 } // end namespace llvm
564
565 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
encodeUTF8(uint32_t UnicodeScalarValue,SmallVectorImpl<char> & Result)566 static void encodeUTF8( uint32_t UnicodeScalarValue
567 , SmallVectorImpl<char> &Result) {
568 if (UnicodeScalarValue <= 0x7F) {
569 Result.push_back(UnicodeScalarValue & 0x7F);
570 } else if (UnicodeScalarValue <= 0x7FF) {
571 uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
572 uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
573 Result.push_back(FirstByte);
574 Result.push_back(SecondByte);
575 } else if (UnicodeScalarValue <= 0xFFFF) {
576 uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
577 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
578 uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
579 Result.push_back(FirstByte);
580 Result.push_back(SecondByte);
581 Result.push_back(ThirdByte);
582 } else if (UnicodeScalarValue <= 0x10FFFF) {
583 uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
584 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
585 uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
586 uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
587 Result.push_back(FirstByte);
588 Result.push_back(SecondByte);
589 Result.push_back(ThirdByte);
590 Result.push_back(FourthByte);
591 }
592 }
593
dumpTokens(StringRef Input,raw_ostream & OS)594 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
595 SourceMgr SM;
596 Scanner scanner(Input, SM);
597 while (true) {
598 Token T = scanner.getNext();
599 switch (T.Kind) {
600 case Token::TK_StreamStart:
601 OS << "Stream-Start: ";
602 break;
603 case Token::TK_StreamEnd:
604 OS << "Stream-End: ";
605 break;
606 case Token::TK_VersionDirective:
607 OS << "Version-Directive: ";
608 break;
609 case Token::TK_TagDirective:
610 OS << "Tag-Directive: ";
611 break;
612 case Token::TK_DocumentStart:
613 OS << "Document-Start: ";
614 break;
615 case Token::TK_DocumentEnd:
616 OS << "Document-End: ";
617 break;
618 case Token::TK_BlockEntry:
619 OS << "Block-Entry: ";
620 break;
621 case Token::TK_BlockEnd:
622 OS << "Block-End: ";
623 break;
624 case Token::TK_BlockSequenceStart:
625 OS << "Block-Sequence-Start: ";
626 break;
627 case Token::TK_BlockMappingStart:
628 OS << "Block-Mapping-Start: ";
629 break;
630 case Token::TK_FlowEntry:
631 OS << "Flow-Entry: ";
632 break;
633 case Token::TK_FlowSequenceStart:
634 OS << "Flow-Sequence-Start: ";
635 break;
636 case Token::TK_FlowSequenceEnd:
637 OS << "Flow-Sequence-End: ";
638 break;
639 case Token::TK_FlowMappingStart:
640 OS << "Flow-Mapping-Start: ";
641 break;
642 case Token::TK_FlowMappingEnd:
643 OS << "Flow-Mapping-End: ";
644 break;
645 case Token::TK_Key:
646 OS << "Key: ";
647 break;
648 case Token::TK_Value:
649 OS << "Value: ";
650 break;
651 case Token::TK_Scalar:
652 OS << "Scalar: ";
653 break;
654 case Token::TK_BlockScalar:
655 OS << "Block Scalar: ";
656 break;
657 case Token::TK_Alias:
658 OS << "Alias: ";
659 break;
660 case Token::TK_Anchor:
661 OS << "Anchor: ";
662 break;
663 case Token::TK_Tag:
664 OS << "Tag: ";
665 break;
666 case Token::TK_Error:
667 break;
668 }
669 OS << T.Range << "\n";
670 if (T.Kind == Token::TK_StreamEnd)
671 break;
672 else if (T.Kind == Token::TK_Error)
673 return false;
674 }
675 return true;
676 }
677
scanTokens(StringRef Input)678 bool yaml::scanTokens(StringRef Input) {
679 SourceMgr SM;
680 Scanner scanner(Input, SM);
681 while (true) {
682 Token T = scanner.getNext();
683 if (T.Kind == Token::TK_StreamEnd)
684 break;
685 else if (T.Kind == Token::TK_Error)
686 return false;
687 }
688 return true;
689 }
690
escape(StringRef Input,bool EscapePrintable)691 std::string yaml::escape(StringRef Input, bool EscapePrintable) {
692 std::string EscapedInput;
693 for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
694 if (*i == '\\')
695 EscapedInput += "\\\\";
696 else if (*i == '"')
697 EscapedInput += "\\\"";
698 else if (*i == 0)
699 EscapedInput += "\\0";
700 else if (*i == 0x07)
701 EscapedInput += "\\a";
702 else if (*i == 0x08)
703 EscapedInput += "\\b";
704 else if (*i == 0x09)
705 EscapedInput += "\\t";
706 else if (*i == 0x0A)
707 EscapedInput += "\\n";
708 else if (*i == 0x0B)
709 EscapedInput += "\\v";
710 else if (*i == 0x0C)
711 EscapedInput += "\\f";
712 else if (*i == 0x0D)
713 EscapedInput += "\\r";
714 else if (*i == 0x1B)
715 EscapedInput += "\\e";
716 else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
717 std::string HexStr = utohexstr(*i);
718 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
719 } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
720 UTF8Decoded UnicodeScalarValue
721 = decodeUTF8(StringRef(i, Input.end() - i));
722 if (UnicodeScalarValue.second == 0) {
723 // Found invalid char.
724 SmallString<4> Val;
725 encodeUTF8(0xFFFD, Val);
726 EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
727 // FIXME: Error reporting.
728 return EscapedInput;
729 }
730 if (UnicodeScalarValue.first == 0x85)
731 EscapedInput += "\\N";
732 else if (UnicodeScalarValue.first == 0xA0)
733 EscapedInput += "\\_";
734 else if (UnicodeScalarValue.first == 0x2028)
735 EscapedInput += "\\L";
736 else if (UnicodeScalarValue.first == 0x2029)
737 EscapedInput += "\\P";
738 else if (!EscapePrintable &&
739 sys::unicode::isPrintable(UnicodeScalarValue.first))
740 EscapedInput += StringRef(i, UnicodeScalarValue.second);
741 else {
742 std::string HexStr = utohexstr(UnicodeScalarValue.first);
743 if (HexStr.size() <= 2)
744 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
745 else if (HexStr.size() <= 4)
746 EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
747 else if (HexStr.size() <= 8)
748 EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
749 }
750 i += UnicodeScalarValue.second - 1;
751 } else
752 EscapedInput.push_back(*i);
753 }
754 return EscapedInput;
755 }
756
Scanner(StringRef Input,SourceMgr & sm,bool ShowColors,std::error_code * EC)757 Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors,
758 std::error_code *EC)
759 : SM(sm), ShowColors(ShowColors), EC(EC) {
760 init(MemoryBufferRef(Input, "YAML"));
761 }
762
Scanner(MemoryBufferRef Buffer,SourceMgr & SM_,bool ShowColors,std::error_code * EC)763 Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors,
764 std::error_code *EC)
765 : SM(SM_), ShowColors(ShowColors), EC(EC) {
766 init(Buffer);
767 }
768
init(MemoryBufferRef Buffer)769 void Scanner::init(MemoryBufferRef Buffer) {
770 InputBuffer = Buffer;
771 Current = InputBuffer.getBufferStart();
772 End = InputBuffer.getBufferEnd();
773 Indent = -1;
774 Column = 0;
775 Line = 0;
776 FlowLevel = 0;
777 IsStartOfStream = true;
778 IsSimpleKeyAllowed = true;
779 Failed = false;
780 std::unique_ptr<MemoryBuffer> InputBufferOwner =
781 MemoryBuffer::getMemBuffer(Buffer);
782 SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
783 }
784
peekNext()785 Token &Scanner::peekNext() {
786 // If the current token is a possible simple key, keep parsing until we
787 // can confirm.
788 bool NeedMore = false;
789 while (true) {
790 if (TokenQueue.empty() || NeedMore) {
791 if (!fetchMoreTokens()) {
792 TokenQueue.clear();
793 TokenQueue.push_back(Token());
794 return TokenQueue.front();
795 }
796 }
797 assert(!TokenQueue.empty() &&
798 "fetchMoreTokens lied about getting tokens!");
799
800 removeStaleSimpleKeyCandidates();
801 SimpleKey SK;
802 SK.Tok = TokenQueue.begin();
803 if (!is_contained(SimpleKeys, SK))
804 break;
805 else
806 NeedMore = true;
807 }
808 return TokenQueue.front();
809 }
810
getNext()811 Token Scanner::getNext() {
812 Token Ret = peekNext();
813 // TokenQueue can be empty if there was an error getting the next token.
814 if (!TokenQueue.empty())
815 TokenQueue.pop_front();
816
817 // There cannot be any referenced Token's if the TokenQueue is empty. So do a
818 // quick deallocation of them all.
819 if (TokenQueue.empty())
820 TokenQueue.resetAlloc();
821
822 return Ret;
823 }
824
skip_nb_char(StringRef::iterator Position)825 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
826 if (Position == End)
827 return Position;
828 // Check 7 bit c-printable - b-char.
829 if ( *Position == 0x09
830 || (*Position >= 0x20 && *Position <= 0x7E))
831 return Position + 1;
832
833 // Check for valid UTF-8.
834 if (uint8_t(*Position) & 0x80) {
835 UTF8Decoded u8d = decodeUTF8(Position);
836 if ( u8d.second != 0
837 && u8d.first != 0xFEFF
838 && ( u8d.first == 0x85
839 || ( u8d.first >= 0xA0
840 && u8d.first <= 0xD7FF)
841 || ( u8d.first >= 0xE000
842 && u8d.first <= 0xFFFD)
843 || ( u8d.first >= 0x10000
844 && u8d.first <= 0x10FFFF)))
845 return Position + u8d.second;
846 }
847 return Position;
848 }
849
skip_b_break(StringRef::iterator Position)850 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
851 if (Position == End)
852 return Position;
853 if (*Position == 0x0D) {
854 if (Position + 1 != End && *(Position + 1) == 0x0A)
855 return Position + 2;
856 return Position + 1;
857 }
858
859 if (*Position == 0x0A)
860 return Position + 1;
861 return Position;
862 }
863
skip_s_space(StringRef::iterator Position)864 StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) {
865 if (Position == End)
866 return Position;
867 if (*Position == ' ')
868 return Position + 1;
869 return Position;
870 }
871
skip_s_white(StringRef::iterator Position)872 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
873 if (Position == End)
874 return Position;
875 if (*Position == ' ' || *Position == '\t')
876 return Position + 1;
877 return Position;
878 }
879
skip_ns_char(StringRef::iterator Position)880 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
881 if (Position == End)
882 return Position;
883 if (*Position == ' ' || *Position == '\t')
884 return Position;
885 return skip_nb_char(Position);
886 }
887
skip_while(SkipWhileFunc Func,StringRef::iterator Position)888 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
889 , StringRef::iterator Position) {
890 while (true) {
891 StringRef::iterator i = (this->*Func)(Position);
892 if (i == Position)
893 break;
894 Position = i;
895 }
896 return Position;
897 }
898
advanceWhile(SkipWhileFunc Func)899 void Scanner::advanceWhile(SkipWhileFunc Func) {
900 auto Final = skip_while(Func, Current);
901 Column += Final - Current;
902 Current = Final;
903 }
904
is_ns_hex_digit(const char C)905 static bool is_ns_hex_digit(const char C) {
906 return (C >= '0' && C <= '9')
907 || (C >= 'a' && C <= 'z')
908 || (C >= 'A' && C <= 'Z');
909 }
910
is_ns_word_char(const char C)911 static bool is_ns_word_char(const char C) {
912 return C == '-'
913 || (C >= 'a' && C <= 'z')
914 || (C >= 'A' && C <= 'Z');
915 }
916
scan_ns_uri_char()917 void Scanner::scan_ns_uri_char() {
918 while (true) {
919 if (Current == End)
920 break;
921 if (( *Current == '%'
922 && Current + 2 < End
923 && is_ns_hex_digit(*(Current + 1))
924 && is_ns_hex_digit(*(Current + 2)))
925 || is_ns_word_char(*Current)
926 || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
927 != StringRef::npos) {
928 ++Current;
929 ++Column;
930 } else
931 break;
932 }
933 }
934
consume(uint32_t Expected)935 bool Scanner::consume(uint32_t Expected) {
936 if (Expected >= 0x80)
937 report_fatal_error("Not dealing with this yet");
938 if (Current == End)
939 return false;
940 if (uint8_t(*Current) >= 0x80)
941 report_fatal_error("Not dealing with this yet");
942 if (uint8_t(*Current) == Expected) {
943 ++Current;
944 ++Column;
945 return true;
946 }
947 return false;
948 }
949
skip(uint32_t Distance)950 void Scanner::skip(uint32_t Distance) {
951 Current += Distance;
952 Column += Distance;
953 assert(Current <= End && "Skipped past the end");
954 }
955
isBlankOrBreak(StringRef::iterator Position)956 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
957 if (Position == End)
958 return false;
959 return *Position == ' ' || *Position == '\t' || *Position == '\r' ||
960 *Position == '\n';
961 }
962
consumeLineBreakIfPresent()963 bool Scanner::consumeLineBreakIfPresent() {
964 auto Next = skip_b_break(Current);
965 if (Next == Current)
966 return false;
967 Column = 0;
968 ++Line;
969 Current = Next;
970 return true;
971 }
972
saveSimpleKeyCandidate(TokenQueueT::iterator Tok,unsigned AtColumn,bool IsRequired)973 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
974 , unsigned AtColumn
975 , bool IsRequired) {
976 if (IsSimpleKeyAllowed) {
977 SimpleKey SK;
978 SK.Tok = Tok;
979 SK.Line = Line;
980 SK.Column = AtColumn;
981 SK.IsRequired = IsRequired;
982 SK.FlowLevel = FlowLevel;
983 SimpleKeys.push_back(SK);
984 }
985 }
986
removeStaleSimpleKeyCandidates()987 void Scanner::removeStaleSimpleKeyCandidates() {
988 for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
989 i != SimpleKeys.end();) {
990 if (i->Line != Line || i->Column + 1024 < Column) {
991 if (i->IsRequired)
992 setError( "Could not find expected : for simple key"
993 , i->Tok->Range.begin());
994 i = SimpleKeys.erase(i);
995 } else
996 ++i;
997 }
998 }
999
removeSimpleKeyCandidatesOnFlowLevel(unsigned Level)1000 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
1001 if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
1002 SimpleKeys.pop_back();
1003 }
1004
unrollIndent(int ToColumn)1005 bool Scanner::unrollIndent(int ToColumn) {
1006 Token T;
1007 // Indentation is ignored in flow.
1008 if (FlowLevel != 0)
1009 return true;
1010
1011 while (Indent > ToColumn) {
1012 T.Kind = Token::TK_BlockEnd;
1013 T.Range = StringRef(Current, 1);
1014 TokenQueue.push_back(T);
1015 Indent = Indents.pop_back_val();
1016 }
1017
1018 return true;
1019 }
1020
rollIndent(int ToColumn,Token::TokenKind Kind,TokenQueueT::iterator InsertPoint)1021 bool Scanner::rollIndent( int ToColumn
1022 , Token::TokenKind Kind
1023 , TokenQueueT::iterator InsertPoint) {
1024 if (FlowLevel)
1025 return true;
1026 if (Indent < ToColumn) {
1027 Indents.push_back(Indent);
1028 Indent = ToColumn;
1029
1030 Token T;
1031 T.Kind = Kind;
1032 T.Range = StringRef(Current, 0);
1033 TokenQueue.insert(InsertPoint, T);
1034 }
1035 return true;
1036 }
1037
skipComment()1038 void Scanner::skipComment() {
1039 if (*Current != '#')
1040 return;
1041 while (true) {
1042 // This may skip more than one byte, thus Column is only incremented
1043 // for code points.
1044 StringRef::iterator I = skip_nb_char(Current);
1045 if (I == Current)
1046 break;
1047 Current = I;
1048 ++Column;
1049 }
1050 }
1051
scanToNextToken()1052 void Scanner::scanToNextToken() {
1053 while (true) {
1054 while (*Current == ' ' || *Current == '\t') {
1055 skip(1);
1056 }
1057
1058 skipComment();
1059
1060 // Skip EOL.
1061 StringRef::iterator i = skip_b_break(Current);
1062 if (i == Current)
1063 break;
1064 Current = i;
1065 ++Line;
1066 Column = 0;
1067 // New lines may start a simple key.
1068 if (!FlowLevel)
1069 IsSimpleKeyAllowed = true;
1070 }
1071 }
1072
scanStreamStart()1073 bool Scanner::scanStreamStart() {
1074 IsStartOfStream = false;
1075
1076 EncodingInfo EI = getUnicodeEncoding(currentInput());
1077
1078 Token T;
1079 T.Kind = Token::TK_StreamStart;
1080 T.Range = StringRef(Current, EI.second);
1081 TokenQueue.push_back(T);
1082 Current += EI.second;
1083 return true;
1084 }
1085
scanStreamEnd()1086 bool Scanner::scanStreamEnd() {
1087 // Force an ending new line if one isn't present.
1088 if (Column != 0) {
1089 Column = 0;
1090 ++Line;
1091 }
1092
1093 unrollIndent(-1);
1094 SimpleKeys.clear();
1095 IsSimpleKeyAllowed = false;
1096
1097 Token T;
1098 T.Kind = Token::TK_StreamEnd;
1099 T.Range = StringRef(Current, 0);
1100 TokenQueue.push_back(T);
1101 return true;
1102 }
1103
scanDirective()1104 bool Scanner::scanDirective() {
1105 // Reset the indentation level.
1106 unrollIndent(-1);
1107 SimpleKeys.clear();
1108 IsSimpleKeyAllowed = false;
1109
1110 StringRef::iterator Start = Current;
1111 consume('%');
1112 StringRef::iterator NameStart = Current;
1113 Current = skip_while(&Scanner::skip_ns_char, Current);
1114 StringRef Name(NameStart, Current - NameStart);
1115 Current = skip_while(&Scanner::skip_s_white, Current);
1116
1117 Token T;
1118 if (Name == "YAML") {
1119 Current = skip_while(&Scanner::skip_ns_char, Current);
1120 T.Kind = Token::TK_VersionDirective;
1121 T.Range = StringRef(Start, Current - Start);
1122 TokenQueue.push_back(T);
1123 return true;
1124 } else if(Name == "TAG") {
1125 Current = skip_while(&Scanner::skip_ns_char, Current);
1126 Current = skip_while(&Scanner::skip_s_white, Current);
1127 Current = skip_while(&Scanner::skip_ns_char, Current);
1128 T.Kind = Token::TK_TagDirective;
1129 T.Range = StringRef(Start, Current - Start);
1130 TokenQueue.push_back(T);
1131 return true;
1132 }
1133 return false;
1134 }
1135
scanDocumentIndicator(bool IsStart)1136 bool Scanner::scanDocumentIndicator(bool IsStart) {
1137 unrollIndent(-1);
1138 SimpleKeys.clear();
1139 IsSimpleKeyAllowed = false;
1140
1141 Token T;
1142 T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1143 T.Range = StringRef(Current, 3);
1144 skip(3);
1145 TokenQueue.push_back(T);
1146 return true;
1147 }
1148
scanFlowCollectionStart(bool IsSequence)1149 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1150 Token T;
1151 T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1152 : Token::TK_FlowMappingStart;
1153 T.Range = StringRef(Current, 1);
1154 skip(1);
1155 TokenQueue.push_back(T);
1156
1157 // [ and { may begin a simple key.
1158 saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false);
1159
1160 // And may also be followed by a simple key.
1161 IsSimpleKeyAllowed = true;
1162 ++FlowLevel;
1163 return true;
1164 }
1165
scanFlowCollectionEnd(bool IsSequence)1166 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1167 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1168 IsSimpleKeyAllowed = false;
1169 Token T;
1170 T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1171 : Token::TK_FlowMappingEnd;
1172 T.Range = StringRef(Current, 1);
1173 skip(1);
1174 TokenQueue.push_back(T);
1175 if (FlowLevel)
1176 --FlowLevel;
1177 return true;
1178 }
1179
scanFlowEntry()1180 bool Scanner::scanFlowEntry() {
1181 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1182 IsSimpleKeyAllowed = true;
1183 Token T;
1184 T.Kind = Token::TK_FlowEntry;
1185 T.Range = StringRef(Current, 1);
1186 skip(1);
1187 TokenQueue.push_back(T);
1188 return true;
1189 }
1190
scanBlockEntry()1191 bool Scanner::scanBlockEntry() {
1192 rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1193 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1194 IsSimpleKeyAllowed = true;
1195 Token T;
1196 T.Kind = Token::TK_BlockEntry;
1197 T.Range = StringRef(Current, 1);
1198 skip(1);
1199 TokenQueue.push_back(T);
1200 return true;
1201 }
1202
scanKey()1203 bool Scanner::scanKey() {
1204 if (!FlowLevel)
1205 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1206
1207 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1208 IsSimpleKeyAllowed = !FlowLevel;
1209
1210 Token T;
1211 T.Kind = Token::TK_Key;
1212 T.Range = StringRef(Current, 1);
1213 skip(1);
1214 TokenQueue.push_back(T);
1215 return true;
1216 }
1217
scanValue()1218 bool Scanner::scanValue() {
1219 // If the previous token could have been a simple key, insert the key token
1220 // into the token queue.
1221 if (!SimpleKeys.empty()) {
1222 SimpleKey SK = SimpleKeys.pop_back_val();
1223 Token T;
1224 T.Kind = Token::TK_Key;
1225 T.Range = SK.Tok->Range;
1226 TokenQueueT::iterator i, e;
1227 for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1228 if (i == SK.Tok)
1229 break;
1230 }
1231 assert(i != e && "SimpleKey not in token queue!");
1232 i = TokenQueue.insert(i, T);
1233
1234 // We may also need to add a Block-Mapping-Start token.
1235 rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1236
1237 IsSimpleKeyAllowed = false;
1238 } else {
1239 if (!FlowLevel)
1240 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1241 IsSimpleKeyAllowed = !FlowLevel;
1242 }
1243
1244 Token T;
1245 T.Kind = Token::TK_Value;
1246 T.Range = StringRef(Current, 1);
1247 skip(1);
1248 TokenQueue.push_back(T);
1249 return true;
1250 }
1251
1252 // Forbidding inlining improves performance by roughly 20%.
1253 // FIXME: Remove once llvm optimizes this to the faster version without hints.
1254 LLVM_ATTRIBUTE_NOINLINE static bool
1255 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1256
1257 // Returns whether a character at 'Position' was escaped with a leading '\'.
1258 // 'First' specifies the position of the first character in the string.
wasEscaped(StringRef::iterator First,StringRef::iterator Position)1259 static bool wasEscaped(StringRef::iterator First,
1260 StringRef::iterator Position) {
1261 assert(Position - 1 >= First);
1262 StringRef::iterator I = Position - 1;
1263 // We calculate the number of consecutive '\'s before the current position
1264 // by iterating backwards through our string.
1265 while (I >= First && *I == '\\') --I;
1266 // (Position - 1 - I) now contains the number of '\'s before the current
1267 // position. If it is odd, the character at 'Position' was escaped.
1268 return (Position - 1 - I) % 2 == 1;
1269 }
1270
scanFlowScalar(bool IsDoubleQuoted)1271 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1272 StringRef::iterator Start = Current;
1273 unsigned ColStart = Column;
1274 if (IsDoubleQuoted) {
1275 do {
1276 ++Current;
1277 while (Current != End && *Current != '"')
1278 ++Current;
1279 // Repeat until the previous character was not a '\' or was an escaped
1280 // backslash.
1281 } while ( Current != End
1282 && *(Current - 1) == '\\'
1283 && wasEscaped(Start + 1, Current));
1284 } else {
1285 skip(1);
1286 while (true) {
1287 // Skip a ' followed by another '.
1288 if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1289 skip(2);
1290 continue;
1291 } else if (*Current == '\'')
1292 break;
1293 StringRef::iterator i = skip_nb_char(Current);
1294 if (i == Current) {
1295 i = skip_b_break(Current);
1296 if (i == Current)
1297 break;
1298 Current = i;
1299 Column = 0;
1300 ++Line;
1301 } else {
1302 if (i == End)
1303 break;
1304 Current = i;
1305 ++Column;
1306 }
1307 }
1308 }
1309
1310 if (Current == End) {
1311 setError("Expected quote at end of scalar", Current);
1312 return false;
1313 }
1314
1315 skip(1); // Skip ending quote.
1316 Token T;
1317 T.Kind = Token::TK_Scalar;
1318 T.Range = StringRef(Start, Current - Start);
1319 TokenQueue.push_back(T);
1320
1321 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1322
1323 IsSimpleKeyAllowed = false;
1324
1325 return true;
1326 }
1327
scanPlainScalar()1328 bool Scanner::scanPlainScalar() {
1329 StringRef::iterator Start = Current;
1330 unsigned ColStart = Column;
1331 unsigned LeadingBlanks = 0;
1332 assert(Indent >= -1 && "Indent must be >= -1 !");
1333 unsigned indent = static_cast<unsigned>(Indent + 1);
1334 while (true) {
1335 if (*Current == '#')
1336 break;
1337
1338 while (!isBlankOrBreak(Current)) {
1339 if ( FlowLevel && *Current == ':'
1340 && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) {
1341 setError("Found unexpected ':' while scanning a plain scalar", Current);
1342 return false;
1343 }
1344
1345 // Check for the end of the plain scalar.
1346 if ( (*Current == ':' && isBlankOrBreak(Current + 1))
1347 || ( FlowLevel
1348 && (StringRef(Current, 1).find_first_of(",:?[]{}")
1349 != StringRef::npos)))
1350 break;
1351
1352 StringRef::iterator i = skip_nb_char(Current);
1353 if (i == Current)
1354 break;
1355 Current = i;
1356 ++Column;
1357 }
1358
1359 // Are we at the end?
1360 if (!isBlankOrBreak(Current))
1361 break;
1362
1363 // Eat blanks.
1364 StringRef::iterator Tmp = Current;
1365 while (isBlankOrBreak(Tmp)) {
1366 StringRef::iterator i = skip_s_white(Tmp);
1367 if (i != Tmp) {
1368 if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1369 setError("Found invalid tab character in indentation", Tmp);
1370 return false;
1371 }
1372 Tmp = i;
1373 ++Column;
1374 } else {
1375 i = skip_b_break(Tmp);
1376 if (!LeadingBlanks)
1377 LeadingBlanks = 1;
1378 Tmp = i;
1379 Column = 0;
1380 ++Line;
1381 }
1382 }
1383
1384 if (!FlowLevel && Column < indent)
1385 break;
1386
1387 Current = Tmp;
1388 }
1389 if (Start == Current) {
1390 setError("Got empty plain scalar", Start);
1391 return false;
1392 }
1393 Token T;
1394 T.Kind = Token::TK_Scalar;
1395 T.Range = StringRef(Start, Current - Start);
1396 TokenQueue.push_back(T);
1397
1398 // Plain scalars can be simple keys.
1399 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1400
1401 IsSimpleKeyAllowed = false;
1402
1403 return true;
1404 }
1405
scanAliasOrAnchor(bool IsAlias)1406 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1407 StringRef::iterator Start = Current;
1408 unsigned ColStart = Column;
1409 skip(1);
1410 while(true) {
1411 if ( *Current == '[' || *Current == ']'
1412 || *Current == '{' || *Current == '}'
1413 || *Current == ','
1414 || *Current == ':')
1415 break;
1416 StringRef::iterator i = skip_ns_char(Current);
1417 if (i == Current)
1418 break;
1419 Current = i;
1420 ++Column;
1421 }
1422
1423 if (Start == Current) {
1424 setError("Got empty alias or anchor", Start);
1425 return false;
1426 }
1427
1428 Token T;
1429 T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1430 T.Range = StringRef(Start, Current - Start);
1431 TokenQueue.push_back(T);
1432
1433 // Alias and anchors can be simple keys.
1434 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1435
1436 IsSimpleKeyAllowed = false;
1437
1438 return true;
1439 }
1440
scanBlockChompingIndicator()1441 char Scanner::scanBlockChompingIndicator() {
1442 char Indicator = ' ';
1443 if (Current != End && (*Current == '+' || *Current == '-')) {
1444 Indicator = *Current;
1445 skip(1);
1446 }
1447 return Indicator;
1448 }
1449
1450 /// Get the number of line breaks after chomping.
1451 ///
1452 /// Return the number of trailing line breaks to emit, depending on
1453 /// \p ChompingIndicator.
getChompedLineBreaks(char ChompingIndicator,unsigned LineBreaks,StringRef Str)1454 static unsigned getChompedLineBreaks(char ChompingIndicator,
1455 unsigned LineBreaks, StringRef Str) {
1456 if (ChompingIndicator == '-') // Strip all line breaks.
1457 return 0;
1458 if (ChompingIndicator == '+') // Keep all line breaks.
1459 return LineBreaks;
1460 // Clip trailing lines.
1461 return Str.empty() ? 0 : 1;
1462 }
1463
scanBlockIndentationIndicator()1464 unsigned Scanner::scanBlockIndentationIndicator() {
1465 unsigned Indent = 0;
1466 if (Current != End && (*Current >= '1' && *Current <= '9')) {
1467 Indent = unsigned(*Current - '0');
1468 skip(1);
1469 }
1470 return Indent;
1471 }
1472
scanBlockScalarHeader(char & ChompingIndicator,unsigned & IndentIndicator,bool & IsDone)1473 bool Scanner::scanBlockScalarHeader(char &ChompingIndicator,
1474 unsigned &IndentIndicator, bool &IsDone) {
1475 auto Start = Current;
1476
1477 ChompingIndicator = scanBlockChompingIndicator();
1478 IndentIndicator = scanBlockIndentationIndicator();
1479 // Check for the chomping indicator once again.
1480 if (ChompingIndicator == ' ')
1481 ChompingIndicator = scanBlockChompingIndicator();
1482 Current = skip_while(&Scanner::skip_s_white, Current);
1483 skipComment();
1484
1485 if (Current == End) { // EOF, we have an empty scalar.
1486 Token T;
1487 T.Kind = Token::TK_BlockScalar;
1488 T.Range = StringRef(Start, Current - Start);
1489 TokenQueue.push_back(T);
1490 IsDone = true;
1491 return true;
1492 }
1493
1494 if (!consumeLineBreakIfPresent()) {
1495 setError("Expected a line break after block scalar header", Current);
1496 return false;
1497 }
1498 return true;
1499 }
1500
findBlockScalarIndent(unsigned & BlockIndent,unsigned BlockExitIndent,unsigned & LineBreaks,bool & IsDone)1501 bool Scanner::findBlockScalarIndent(unsigned &BlockIndent,
1502 unsigned BlockExitIndent,
1503 unsigned &LineBreaks, bool &IsDone) {
1504 unsigned MaxAllSpaceLineCharacters = 0;
1505 StringRef::iterator LongestAllSpaceLine;
1506
1507 while (true) {
1508 advanceWhile(&Scanner::skip_s_space);
1509 if (skip_nb_char(Current) != Current) {
1510 // This line isn't empty, so try and find the indentation.
1511 if (Column <= BlockExitIndent) { // End of the block literal.
1512 IsDone = true;
1513 return true;
1514 }
1515 // We found the block's indentation.
1516 BlockIndent = Column;
1517 if (MaxAllSpaceLineCharacters > BlockIndent) {
1518 setError(
1519 "Leading all-spaces line must be smaller than the block indent",
1520 LongestAllSpaceLine);
1521 return false;
1522 }
1523 return true;
1524 }
1525 if (skip_b_break(Current) != Current &&
1526 Column > MaxAllSpaceLineCharacters) {
1527 // Record the longest all-space line in case it's longer than the
1528 // discovered block indent.
1529 MaxAllSpaceLineCharacters = Column;
1530 LongestAllSpaceLine = Current;
1531 }
1532
1533 // Check for EOF.
1534 if (Current == End) {
1535 IsDone = true;
1536 return true;
1537 }
1538
1539 if (!consumeLineBreakIfPresent()) {
1540 IsDone = true;
1541 return true;
1542 }
1543 ++LineBreaks;
1544 }
1545 return true;
1546 }
1547
scanBlockScalarIndent(unsigned BlockIndent,unsigned BlockExitIndent,bool & IsDone)1548 bool Scanner::scanBlockScalarIndent(unsigned BlockIndent,
1549 unsigned BlockExitIndent, bool &IsDone) {
1550 // Skip the indentation.
1551 while (Column < BlockIndent) {
1552 auto I = skip_s_space(Current);
1553 if (I == Current)
1554 break;
1555 Current = I;
1556 ++Column;
1557 }
1558
1559 if (skip_nb_char(Current) == Current)
1560 return true;
1561
1562 if (Column <= BlockExitIndent) { // End of the block literal.
1563 IsDone = true;
1564 return true;
1565 }
1566
1567 if (Column < BlockIndent) {
1568 if (Current != End && *Current == '#') { // Trailing comment.
1569 IsDone = true;
1570 return true;
1571 }
1572 setError("A text line is less indented than the block scalar", Current);
1573 return false;
1574 }
1575 return true; // A normal text line.
1576 }
1577
scanBlockScalar(bool IsLiteral)1578 bool Scanner::scanBlockScalar(bool IsLiteral) {
1579 // Eat '|' or '>'
1580 assert(*Current == '|' || *Current == '>');
1581 skip(1);
1582
1583 char ChompingIndicator;
1584 unsigned BlockIndent;
1585 bool IsDone = false;
1586 if (!scanBlockScalarHeader(ChompingIndicator, BlockIndent, IsDone))
1587 return false;
1588 if (IsDone)
1589 return true;
1590
1591 auto Start = Current;
1592 unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent;
1593 unsigned LineBreaks = 0;
1594 if (BlockIndent == 0) {
1595 if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks,
1596 IsDone))
1597 return false;
1598 }
1599
1600 // Scan the block's scalars body.
1601 SmallString<256> Str;
1602 while (!IsDone) {
1603 if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone))
1604 return false;
1605 if (IsDone)
1606 break;
1607
1608 // Parse the current line.
1609 auto LineStart = Current;
1610 advanceWhile(&Scanner::skip_nb_char);
1611 if (LineStart != Current) {
1612 Str.append(LineBreaks, '\n');
1613 Str.append(StringRef(LineStart, Current - LineStart));
1614 LineBreaks = 0;
1615 }
1616
1617 // Check for EOF.
1618 if (Current == End)
1619 break;
1620
1621 if (!consumeLineBreakIfPresent())
1622 break;
1623 ++LineBreaks;
1624 }
1625
1626 if (Current == End && !LineBreaks)
1627 // Ensure that there is at least one line break before the end of file.
1628 LineBreaks = 1;
1629 Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n');
1630
1631 // New lines may start a simple key.
1632 if (!FlowLevel)
1633 IsSimpleKeyAllowed = true;
1634
1635 Token T;
1636 T.Kind = Token::TK_BlockScalar;
1637 T.Range = StringRef(Start, Current - Start);
1638 T.Value = Str.str().str();
1639 TokenQueue.push_back(T);
1640 return true;
1641 }
1642
scanTag()1643 bool Scanner::scanTag() {
1644 StringRef::iterator Start = Current;
1645 unsigned ColStart = Column;
1646 skip(1); // Eat !.
1647 if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1648 else if (*Current == '<') {
1649 skip(1);
1650 scan_ns_uri_char();
1651 if (!consume('>'))
1652 return false;
1653 } else {
1654 // FIXME: Actually parse the c-ns-shorthand-tag rule.
1655 Current = skip_while(&Scanner::skip_ns_char, Current);
1656 }
1657
1658 Token T;
1659 T.Kind = Token::TK_Tag;
1660 T.Range = StringRef(Start, Current - Start);
1661 TokenQueue.push_back(T);
1662
1663 // Tags can be simple keys.
1664 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1665
1666 IsSimpleKeyAllowed = false;
1667
1668 return true;
1669 }
1670
fetchMoreTokens()1671 bool Scanner::fetchMoreTokens() {
1672 if (IsStartOfStream)
1673 return scanStreamStart();
1674
1675 scanToNextToken();
1676
1677 if (Current == End)
1678 return scanStreamEnd();
1679
1680 removeStaleSimpleKeyCandidates();
1681
1682 unrollIndent(Column);
1683
1684 if (Column == 0 && *Current == '%')
1685 return scanDirective();
1686
1687 if (Column == 0 && Current + 4 <= End
1688 && *Current == '-'
1689 && *(Current + 1) == '-'
1690 && *(Current + 2) == '-'
1691 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1692 return scanDocumentIndicator(true);
1693
1694 if (Column == 0 && Current + 4 <= End
1695 && *Current == '.'
1696 && *(Current + 1) == '.'
1697 && *(Current + 2) == '.'
1698 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1699 return scanDocumentIndicator(false);
1700
1701 if (*Current == '[')
1702 return scanFlowCollectionStart(true);
1703
1704 if (*Current == '{')
1705 return scanFlowCollectionStart(false);
1706
1707 if (*Current == ']')
1708 return scanFlowCollectionEnd(true);
1709
1710 if (*Current == '}')
1711 return scanFlowCollectionEnd(false);
1712
1713 if (*Current == ',')
1714 return scanFlowEntry();
1715
1716 if (*Current == '-' && isBlankOrBreak(Current + 1))
1717 return scanBlockEntry();
1718
1719 if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1720 return scanKey();
1721
1722 if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1723 return scanValue();
1724
1725 if (*Current == '*')
1726 return scanAliasOrAnchor(true);
1727
1728 if (*Current == '&')
1729 return scanAliasOrAnchor(false);
1730
1731 if (*Current == '!')
1732 return scanTag();
1733
1734 if (*Current == '|' && !FlowLevel)
1735 return scanBlockScalar(true);
1736
1737 if (*Current == '>' && !FlowLevel)
1738 return scanBlockScalar(false);
1739
1740 if (*Current == '\'')
1741 return scanFlowScalar(false);
1742
1743 if (*Current == '"')
1744 return scanFlowScalar(true);
1745
1746 // Get a plain scalar.
1747 StringRef FirstChar(Current, 1);
1748 if (!(isBlankOrBreak(Current)
1749 || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1750 || (*Current == '-' && !isBlankOrBreak(Current + 1))
1751 || (!FlowLevel && (*Current == '?' || *Current == ':')
1752 && isBlankOrBreak(Current + 1))
1753 || (!FlowLevel && *Current == ':'
1754 && Current + 2 < End
1755 && *(Current + 1) == ':'
1756 && !isBlankOrBreak(Current + 2)))
1757 return scanPlainScalar();
1758
1759 setError("Unrecognized character while tokenizing.");
1760 return false;
1761 }
1762
Stream(StringRef Input,SourceMgr & SM,bool ShowColors,std::error_code * EC)1763 Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors,
1764 std::error_code *EC)
1765 : scanner(new Scanner(Input, SM, ShowColors, EC)), CurrentDoc() {}
1766
Stream(MemoryBufferRef InputBuffer,SourceMgr & SM,bool ShowColors,std::error_code * EC)1767 Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors,
1768 std::error_code *EC)
1769 : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)), CurrentDoc() {}
1770
1771 Stream::~Stream() = default;
1772
failed()1773 bool Stream::failed() { return scanner->failed(); }
1774
printError(Node * N,const Twine & Msg)1775 void Stream::printError(Node *N, const Twine &Msg) {
1776 scanner->printError( N->getSourceRange().Start
1777 , SourceMgr::DK_Error
1778 , Msg
1779 , N->getSourceRange());
1780 }
1781
begin()1782 document_iterator Stream::begin() {
1783 if (CurrentDoc)
1784 report_fatal_error("Can only iterate over the stream once");
1785
1786 // Skip Stream-Start.
1787 scanner->getNext();
1788
1789 CurrentDoc.reset(new Document(*this));
1790 return document_iterator(CurrentDoc);
1791 }
1792
end()1793 document_iterator Stream::end() {
1794 return document_iterator();
1795 }
1796
skip()1797 void Stream::skip() {
1798 for (document_iterator i = begin(), e = end(); i != e; ++i)
1799 i->skip();
1800 }
1801
Node(unsigned int Type,std::unique_ptr<Document> & D,StringRef A,StringRef T)1802 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1803 StringRef T)
1804 : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1805 SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1806 SourceRange = SMRange(Start, Start);
1807 }
1808
getVerbatimTag() const1809 std::string Node::getVerbatimTag() const {
1810 StringRef Raw = getRawTag();
1811 if (!Raw.empty() && Raw != "!") {
1812 std::string Ret;
1813 if (Raw.find_last_of('!') == 0) {
1814 Ret = Doc->getTagMap().find("!")->second;
1815 Ret += Raw.substr(1);
1816 return Ret;
1817 } else if (Raw.startswith("!!")) {
1818 Ret = Doc->getTagMap().find("!!")->second;
1819 Ret += Raw.substr(2);
1820 return Ret;
1821 } else {
1822 StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1823 std::map<StringRef, StringRef>::const_iterator It =
1824 Doc->getTagMap().find(TagHandle);
1825 if (It != Doc->getTagMap().end())
1826 Ret = It->second;
1827 else {
1828 Token T;
1829 T.Kind = Token::TK_Tag;
1830 T.Range = TagHandle;
1831 setError(Twine("Unknown tag handle ") + TagHandle, T);
1832 }
1833 Ret += Raw.substr(Raw.find_last_of('!') + 1);
1834 return Ret;
1835 }
1836 }
1837
1838 switch (getType()) {
1839 case NK_Null:
1840 return "tag:yaml.org,2002:null";
1841 case NK_Scalar:
1842 case NK_BlockScalar:
1843 // TODO: Tag resolution.
1844 return "tag:yaml.org,2002:str";
1845 case NK_Mapping:
1846 return "tag:yaml.org,2002:map";
1847 case NK_Sequence:
1848 return "tag:yaml.org,2002:seq";
1849 }
1850
1851 return "";
1852 }
1853
peekNext()1854 Token &Node::peekNext() {
1855 return Doc->peekNext();
1856 }
1857
getNext()1858 Token Node::getNext() {
1859 return Doc->getNext();
1860 }
1861
parseBlockNode()1862 Node *Node::parseBlockNode() {
1863 return Doc->parseBlockNode();
1864 }
1865
getAllocator()1866 BumpPtrAllocator &Node::getAllocator() {
1867 return Doc->NodeAllocator;
1868 }
1869
setError(const Twine & Msg,Token & Tok) const1870 void Node::setError(const Twine &Msg, Token &Tok) const {
1871 Doc->setError(Msg, Tok);
1872 }
1873
failed() const1874 bool Node::failed() const {
1875 return Doc->failed();
1876 }
1877
getValue(SmallVectorImpl<char> & Storage) const1878 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
1879 // TODO: Handle newlines properly. We need to remove leading whitespace.
1880 if (Value[0] == '"') { // Double quoted.
1881 // Pull off the leading and trailing "s.
1882 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1883 // Search for characters that would require unescaping the value.
1884 StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
1885 if (i != StringRef::npos)
1886 return unescapeDoubleQuoted(UnquotedValue, i, Storage);
1887 return UnquotedValue;
1888 } else if (Value[0] == '\'') { // Single quoted.
1889 // Pull off the leading and trailing 's.
1890 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1891 StringRef::size_type i = UnquotedValue.find('\'');
1892 if (i != StringRef::npos) {
1893 // We're going to need Storage.
1894 Storage.clear();
1895 Storage.reserve(UnquotedValue.size());
1896 for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
1897 StringRef Valid(UnquotedValue.begin(), i);
1898 Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1899 Storage.push_back('\'');
1900 UnquotedValue = UnquotedValue.substr(i + 2);
1901 }
1902 Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1903 return StringRef(Storage.begin(), Storage.size());
1904 }
1905 return UnquotedValue;
1906 }
1907 // Plain or block.
1908 return Value.rtrim(' ');
1909 }
1910
unescapeDoubleQuoted(StringRef UnquotedValue,StringRef::size_type i,SmallVectorImpl<char> & Storage) const1911 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
1912 , StringRef::size_type i
1913 , SmallVectorImpl<char> &Storage)
1914 const {
1915 // Use Storage to build proper value.
1916 Storage.clear();
1917 Storage.reserve(UnquotedValue.size());
1918 for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
1919 // Insert all previous chars into Storage.
1920 StringRef Valid(UnquotedValue.begin(), i);
1921 Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1922 // Chop off inserted chars.
1923 UnquotedValue = UnquotedValue.substr(i);
1924
1925 assert(!UnquotedValue.empty() && "Can't be empty!");
1926
1927 // Parse escape or line break.
1928 switch (UnquotedValue[0]) {
1929 case '\r':
1930 case '\n':
1931 Storage.push_back('\n');
1932 if ( UnquotedValue.size() > 1
1933 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1934 UnquotedValue = UnquotedValue.substr(1);
1935 UnquotedValue = UnquotedValue.substr(1);
1936 break;
1937 default:
1938 if (UnquotedValue.size() == 1)
1939 // TODO: Report error.
1940 break;
1941 UnquotedValue = UnquotedValue.substr(1);
1942 switch (UnquotedValue[0]) {
1943 default: {
1944 Token T;
1945 T.Range = StringRef(UnquotedValue.begin(), 1);
1946 setError("Unrecognized escape code!", T);
1947 return "";
1948 }
1949 case '\r':
1950 case '\n':
1951 // Remove the new line.
1952 if ( UnquotedValue.size() > 1
1953 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1954 UnquotedValue = UnquotedValue.substr(1);
1955 // If this was just a single byte newline, it will get skipped
1956 // below.
1957 break;
1958 case '0':
1959 Storage.push_back(0x00);
1960 break;
1961 case 'a':
1962 Storage.push_back(0x07);
1963 break;
1964 case 'b':
1965 Storage.push_back(0x08);
1966 break;
1967 case 't':
1968 case 0x09:
1969 Storage.push_back(0x09);
1970 break;
1971 case 'n':
1972 Storage.push_back(0x0A);
1973 break;
1974 case 'v':
1975 Storage.push_back(0x0B);
1976 break;
1977 case 'f':
1978 Storage.push_back(0x0C);
1979 break;
1980 case 'r':
1981 Storage.push_back(0x0D);
1982 break;
1983 case 'e':
1984 Storage.push_back(0x1B);
1985 break;
1986 case ' ':
1987 Storage.push_back(0x20);
1988 break;
1989 case '"':
1990 Storage.push_back(0x22);
1991 break;
1992 case '/':
1993 Storage.push_back(0x2F);
1994 break;
1995 case '\\':
1996 Storage.push_back(0x5C);
1997 break;
1998 case 'N':
1999 encodeUTF8(0x85, Storage);
2000 break;
2001 case '_':
2002 encodeUTF8(0xA0, Storage);
2003 break;
2004 case 'L':
2005 encodeUTF8(0x2028, Storage);
2006 break;
2007 case 'P':
2008 encodeUTF8(0x2029, Storage);
2009 break;
2010 case 'x': {
2011 if (UnquotedValue.size() < 3)
2012 // TODO: Report error.
2013 break;
2014 unsigned int UnicodeScalarValue;
2015 if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
2016 // TODO: Report error.
2017 UnicodeScalarValue = 0xFFFD;
2018 encodeUTF8(UnicodeScalarValue, Storage);
2019 UnquotedValue = UnquotedValue.substr(2);
2020 break;
2021 }
2022 case 'u': {
2023 if (UnquotedValue.size() < 5)
2024 // TODO: Report error.
2025 break;
2026 unsigned int UnicodeScalarValue;
2027 if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
2028 // TODO: Report error.
2029 UnicodeScalarValue = 0xFFFD;
2030 encodeUTF8(UnicodeScalarValue, Storage);
2031 UnquotedValue = UnquotedValue.substr(4);
2032 break;
2033 }
2034 case 'U': {
2035 if (UnquotedValue.size() < 9)
2036 // TODO: Report error.
2037 break;
2038 unsigned int UnicodeScalarValue;
2039 if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
2040 // TODO: Report error.
2041 UnicodeScalarValue = 0xFFFD;
2042 encodeUTF8(UnicodeScalarValue, Storage);
2043 UnquotedValue = UnquotedValue.substr(8);
2044 break;
2045 }
2046 }
2047 UnquotedValue = UnquotedValue.substr(1);
2048 }
2049 }
2050 Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
2051 return StringRef(Storage.begin(), Storage.size());
2052 }
2053
getKey()2054 Node *KeyValueNode::getKey() {
2055 if (Key)
2056 return Key;
2057 // Handle implicit null keys.
2058 {
2059 Token &t = peekNext();
2060 if ( t.Kind == Token::TK_BlockEnd
2061 || t.Kind == Token::TK_Value
2062 || t.Kind == Token::TK_Error) {
2063 return Key = new (getAllocator()) NullNode(Doc);
2064 }
2065 if (t.Kind == Token::TK_Key)
2066 getNext(); // skip TK_Key.
2067 }
2068
2069 // Handle explicit null keys.
2070 Token &t = peekNext();
2071 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
2072 return Key = new (getAllocator()) NullNode(Doc);
2073 }
2074
2075 // We've got a normal key.
2076 return Key = parseBlockNode();
2077 }
2078
getValue()2079 Node *KeyValueNode::getValue() {
2080 if (Value)
2081 return Value;
2082 getKey()->skip();
2083 if (failed())
2084 return Value = new (getAllocator()) NullNode(Doc);
2085
2086 // Handle implicit null values.
2087 {
2088 Token &t = peekNext();
2089 if ( t.Kind == Token::TK_BlockEnd
2090 || t.Kind == Token::TK_FlowMappingEnd
2091 || t.Kind == Token::TK_Key
2092 || t.Kind == Token::TK_FlowEntry
2093 || t.Kind == Token::TK_Error) {
2094 return Value = new (getAllocator()) NullNode(Doc);
2095 }
2096
2097 if (t.Kind != Token::TK_Value) {
2098 setError("Unexpected token in Key Value.", t);
2099 return Value = new (getAllocator()) NullNode(Doc);
2100 }
2101 getNext(); // skip TK_Value.
2102 }
2103
2104 // Handle explicit null values.
2105 Token &t = peekNext();
2106 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
2107 return Value = new (getAllocator()) NullNode(Doc);
2108 }
2109
2110 // We got a normal value.
2111 return Value = parseBlockNode();
2112 }
2113
increment()2114 void MappingNode::increment() {
2115 if (failed()) {
2116 IsAtEnd = true;
2117 CurrentEntry = nullptr;
2118 return;
2119 }
2120 if (CurrentEntry) {
2121 CurrentEntry->skip();
2122 if (Type == MT_Inline) {
2123 IsAtEnd = true;
2124 CurrentEntry = nullptr;
2125 return;
2126 }
2127 }
2128 Token T = peekNext();
2129 if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
2130 // KeyValueNode eats the TK_Key. That way it can detect null keys.
2131 CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
2132 } else if (Type == MT_Block) {
2133 switch (T.Kind) {
2134 case Token::TK_BlockEnd:
2135 getNext();
2136 IsAtEnd = true;
2137 CurrentEntry = nullptr;
2138 break;
2139 default:
2140 setError("Unexpected token. Expected Key or Block End", T);
2141 LLVM_FALLTHROUGH;
2142 case Token::TK_Error:
2143 IsAtEnd = true;
2144 CurrentEntry = nullptr;
2145 }
2146 } else {
2147 switch (T.Kind) {
2148 case Token::TK_FlowEntry:
2149 // Eat the flow entry and recurse.
2150 getNext();
2151 return increment();
2152 case Token::TK_FlowMappingEnd:
2153 getNext();
2154 LLVM_FALLTHROUGH;
2155 case Token::TK_Error:
2156 // Set this to end iterator.
2157 IsAtEnd = true;
2158 CurrentEntry = nullptr;
2159 break;
2160 default:
2161 setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
2162 "Mapping End."
2163 , T);
2164 IsAtEnd = true;
2165 CurrentEntry = nullptr;
2166 }
2167 }
2168 }
2169
increment()2170 void SequenceNode::increment() {
2171 if (failed()) {
2172 IsAtEnd = true;
2173 CurrentEntry = nullptr;
2174 return;
2175 }
2176 if (CurrentEntry)
2177 CurrentEntry->skip();
2178 Token T = peekNext();
2179 if (SeqType == ST_Block) {
2180 switch (T.Kind) {
2181 case Token::TK_BlockEntry:
2182 getNext();
2183 CurrentEntry = parseBlockNode();
2184 if (!CurrentEntry) { // An error occurred.
2185 IsAtEnd = true;
2186 CurrentEntry = nullptr;
2187 }
2188 break;
2189 case Token::TK_BlockEnd:
2190 getNext();
2191 IsAtEnd = true;
2192 CurrentEntry = nullptr;
2193 break;
2194 default:
2195 setError( "Unexpected token. Expected Block Entry or Block End."
2196 , T);
2197 LLVM_FALLTHROUGH;
2198 case Token::TK_Error:
2199 IsAtEnd = true;
2200 CurrentEntry = nullptr;
2201 }
2202 } else if (SeqType == ST_Indentless) {
2203 switch (T.Kind) {
2204 case Token::TK_BlockEntry:
2205 getNext();
2206 CurrentEntry = parseBlockNode();
2207 if (!CurrentEntry) { // An error occurred.
2208 IsAtEnd = true;
2209 CurrentEntry = nullptr;
2210 }
2211 break;
2212 default:
2213 case Token::TK_Error:
2214 IsAtEnd = true;
2215 CurrentEntry = nullptr;
2216 }
2217 } else if (SeqType == ST_Flow) {
2218 switch (T.Kind) {
2219 case Token::TK_FlowEntry:
2220 // Eat the flow entry and recurse.
2221 getNext();
2222 WasPreviousTokenFlowEntry = true;
2223 return increment();
2224 case Token::TK_FlowSequenceEnd:
2225 getNext();
2226 LLVM_FALLTHROUGH;
2227 case Token::TK_Error:
2228 // Set this to end iterator.
2229 IsAtEnd = true;
2230 CurrentEntry = nullptr;
2231 break;
2232 case Token::TK_StreamEnd:
2233 case Token::TK_DocumentEnd:
2234 case Token::TK_DocumentStart:
2235 setError("Could not find closing ]!", T);
2236 // Set this to end iterator.
2237 IsAtEnd = true;
2238 CurrentEntry = nullptr;
2239 break;
2240 default:
2241 if (!WasPreviousTokenFlowEntry) {
2242 setError("Expected , between entries!", T);
2243 IsAtEnd = true;
2244 CurrentEntry = nullptr;
2245 break;
2246 }
2247 // Otherwise it must be a flow entry.
2248 CurrentEntry = parseBlockNode();
2249 if (!CurrentEntry) {
2250 IsAtEnd = true;
2251 }
2252 WasPreviousTokenFlowEntry = false;
2253 break;
2254 }
2255 }
2256 }
2257
Document(Stream & S)2258 Document::Document(Stream &S) : stream(S), Root(nullptr) {
2259 // Tag maps starts with two default mappings.
2260 TagMap["!"] = "!";
2261 TagMap["!!"] = "tag:yaml.org,2002:";
2262
2263 if (parseDirectives())
2264 expectToken(Token::TK_DocumentStart);
2265 Token &T = peekNext();
2266 if (T.Kind == Token::TK_DocumentStart)
2267 getNext();
2268 }
2269
skip()2270 bool Document::skip() {
2271 if (stream.scanner->failed())
2272 return false;
2273 if (!Root)
2274 getRoot();
2275 Root->skip();
2276 Token &T = peekNext();
2277 if (T.Kind == Token::TK_StreamEnd)
2278 return false;
2279 if (T.Kind == Token::TK_DocumentEnd) {
2280 getNext();
2281 return skip();
2282 }
2283 return true;
2284 }
2285
peekNext()2286 Token &Document::peekNext() {
2287 return stream.scanner->peekNext();
2288 }
2289
getNext()2290 Token Document::getNext() {
2291 return stream.scanner->getNext();
2292 }
2293
setError(const Twine & Message,Token & Location) const2294 void Document::setError(const Twine &Message, Token &Location) const {
2295 stream.scanner->setError(Message, Location.Range.begin());
2296 }
2297
failed() const2298 bool Document::failed() const {
2299 return stream.scanner->failed();
2300 }
2301
parseBlockNode()2302 Node *Document::parseBlockNode() {
2303 Token T = peekNext();
2304 // Handle properties.
2305 Token AnchorInfo;
2306 Token TagInfo;
2307 parse_property:
2308 switch (T.Kind) {
2309 case Token::TK_Alias:
2310 getNext();
2311 return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2312 case Token::TK_Anchor:
2313 if (AnchorInfo.Kind == Token::TK_Anchor) {
2314 setError("Already encountered an anchor for this node!", T);
2315 return nullptr;
2316 }
2317 AnchorInfo = getNext(); // Consume TK_Anchor.
2318 T = peekNext();
2319 goto parse_property;
2320 case Token::TK_Tag:
2321 if (TagInfo.Kind == Token::TK_Tag) {
2322 setError("Already encountered a tag for this node!", T);
2323 return nullptr;
2324 }
2325 TagInfo = getNext(); // Consume TK_Tag.
2326 T = peekNext();
2327 goto parse_property;
2328 default:
2329 break;
2330 }
2331
2332 switch (T.Kind) {
2333 case Token::TK_BlockEntry:
2334 // We got an unindented BlockEntry sequence. This is not terminated with
2335 // a BlockEnd.
2336 // Don't eat the TK_BlockEntry, SequenceNode needs it.
2337 return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2338 , AnchorInfo.Range.substr(1)
2339 , TagInfo.Range
2340 , SequenceNode::ST_Indentless);
2341 case Token::TK_BlockSequenceStart:
2342 getNext();
2343 return new (NodeAllocator)
2344 SequenceNode( stream.CurrentDoc
2345 , AnchorInfo.Range.substr(1)
2346 , TagInfo.Range
2347 , SequenceNode::ST_Block);
2348 case Token::TK_BlockMappingStart:
2349 getNext();
2350 return new (NodeAllocator)
2351 MappingNode( stream.CurrentDoc
2352 , AnchorInfo.Range.substr(1)
2353 , TagInfo.Range
2354 , MappingNode::MT_Block);
2355 case Token::TK_FlowSequenceStart:
2356 getNext();
2357 return new (NodeAllocator)
2358 SequenceNode( stream.CurrentDoc
2359 , AnchorInfo.Range.substr(1)
2360 , TagInfo.Range
2361 , SequenceNode::ST_Flow);
2362 case Token::TK_FlowMappingStart:
2363 getNext();
2364 return new (NodeAllocator)
2365 MappingNode( stream.CurrentDoc
2366 , AnchorInfo.Range.substr(1)
2367 , TagInfo.Range
2368 , MappingNode::MT_Flow);
2369 case Token::TK_Scalar:
2370 getNext();
2371 return new (NodeAllocator)
2372 ScalarNode( stream.CurrentDoc
2373 , AnchorInfo.Range.substr(1)
2374 , TagInfo.Range
2375 , T.Range);
2376 case Token::TK_BlockScalar: {
2377 getNext();
2378 StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1);
2379 StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back();
2380 return new (NodeAllocator)
2381 BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1),
2382 TagInfo.Range, StrCopy, T.Range);
2383 }
2384 case Token::TK_Key:
2385 // Don't eat the TK_Key, KeyValueNode expects it.
2386 return new (NodeAllocator)
2387 MappingNode( stream.CurrentDoc
2388 , AnchorInfo.Range.substr(1)
2389 , TagInfo.Range
2390 , MappingNode::MT_Inline);
2391 case Token::TK_DocumentStart:
2392 case Token::TK_DocumentEnd:
2393 case Token::TK_StreamEnd:
2394 default:
2395 // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2396 // !!null null.
2397 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2398 case Token::TK_Error:
2399 return nullptr;
2400 }
2401 llvm_unreachable("Control flow shouldn't reach here.");
2402 return nullptr;
2403 }
2404
parseDirectives()2405 bool Document::parseDirectives() {
2406 bool isDirective = false;
2407 while (true) {
2408 Token T = peekNext();
2409 if (T.Kind == Token::TK_TagDirective) {
2410 parseTAGDirective();
2411 isDirective = true;
2412 } else if (T.Kind == Token::TK_VersionDirective) {
2413 parseYAMLDirective();
2414 isDirective = true;
2415 } else
2416 break;
2417 }
2418 return isDirective;
2419 }
2420
parseYAMLDirective()2421 void Document::parseYAMLDirective() {
2422 getNext(); // Eat %YAML <version>
2423 }
2424
parseTAGDirective()2425 void Document::parseTAGDirective() {
2426 Token Tag = getNext(); // %TAG <handle> <prefix>
2427 StringRef T = Tag.Range;
2428 // Strip %TAG
2429 T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2430 std::size_t HandleEnd = T.find_first_of(" \t");
2431 StringRef TagHandle = T.substr(0, HandleEnd);
2432 StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2433 TagMap[TagHandle] = TagPrefix;
2434 }
2435
expectToken(int TK)2436 bool Document::expectToken(int TK) {
2437 Token T = getNext();
2438 if (T.Kind != TK) {
2439 setError("Unexpected token", T);
2440 return false;
2441 }
2442 return true;
2443 }
2444