1 //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the AArch64 target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64TargetMachine.h"
15 #include "MCTargetDesc/AArch64AddressingModes.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/CodeGen/SelectionDAGISel.h"
18 #include "llvm/IR/Function.h" // To access function attributes.
19 #include "llvm/IR/GlobalValue.h"
20 #include "llvm/IR/Intrinsics.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/KnownBits.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 using namespace llvm;
28
29 #define DEBUG_TYPE "aarch64-isel"
30
31 //===--------------------------------------------------------------------===//
32 /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
33 /// instructions for SelectionDAG operations.
34 ///
35 namespace {
36
37 class AArch64DAGToDAGISel : public SelectionDAGISel {
38
39 /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
40 /// make the right decision when generating code for different targets.
41 const AArch64Subtarget *Subtarget;
42
43 bool ForCodeSize;
44
45 public:
AArch64DAGToDAGISel(AArch64TargetMachine & tm,CodeGenOpt::Level OptLevel)46 explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
47 CodeGenOpt::Level OptLevel)
48 : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
49 ForCodeSize(false) {}
50
getPassName() const51 StringRef getPassName() const override {
52 return "AArch64 Instruction Selection";
53 }
54
runOnMachineFunction(MachineFunction & MF)55 bool runOnMachineFunction(MachineFunction &MF) override {
56 ForCodeSize = MF.getFunction().optForSize();
57 Subtarget = &MF.getSubtarget<AArch64Subtarget>();
58 return SelectionDAGISel::runOnMachineFunction(MF);
59 }
60
61 void Select(SDNode *Node) override;
62
63 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
64 /// inline asm expressions.
65 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
66 unsigned ConstraintID,
67 std::vector<SDValue> &OutOps) override;
68
69 bool tryMLAV64LaneV128(SDNode *N);
70 bool tryMULLV64LaneV128(unsigned IntNo, SDNode *N);
71 bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
72 bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
73 bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
SelectArithShiftedRegister(SDValue N,SDValue & Reg,SDValue & Shift)74 bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
75 return SelectShiftedRegister(N, false, Reg, Shift);
76 }
SelectLogicalShiftedRegister(SDValue N,SDValue & Reg,SDValue & Shift)77 bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
78 return SelectShiftedRegister(N, true, Reg, Shift);
79 }
SelectAddrModeIndexed7S8(SDValue N,SDValue & Base,SDValue & OffImm)80 bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
81 return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
82 }
SelectAddrModeIndexed7S16(SDValue N,SDValue & Base,SDValue & OffImm)83 bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
84 return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
85 }
SelectAddrModeIndexed7S32(SDValue N,SDValue & Base,SDValue & OffImm)86 bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
87 return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
88 }
SelectAddrModeIndexed7S64(SDValue N,SDValue & Base,SDValue & OffImm)89 bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
90 return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
91 }
SelectAddrModeIndexed7S128(SDValue N,SDValue & Base,SDValue & OffImm)92 bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
93 return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
94 }
SelectAddrModeIndexed8(SDValue N,SDValue & Base,SDValue & OffImm)95 bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
96 return SelectAddrModeIndexed(N, 1, Base, OffImm);
97 }
SelectAddrModeIndexed16(SDValue N,SDValue & Base,SDValue & OffImm)98 bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
99 return SelectAddrModeIndexed(N, 2, Base, OffImm);
100 }
SelectAddrModeIndexed32(SDValue N,SDValue & Base,SDValue & OffImm)101 bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
102 return SelectAddrModeIndexed(N, 4, Base, OffImm);
103 }
SelectAddrModeIndexed64(SDValue N,SDValue & Base,SDValue & OffImm)104 bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
105 return SelectAddrModeIndexed(N, 8, Base, OffImm);
106 }
SelectAddrModeIndexed128(SDValue N,SDValue & Base,SDValue & OffImm)107 bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
108 return SelectAddrModeIndexed(N, 16, Base, OffImm);
109 }
SelectAddrModeUnscaled8(SDValue N,SDValue & Base,SDValue & OffImm)110 bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
111 return SelectAddrModeUnscaled(N, 1, Base, OffImm);
112 }
SelectAddrModeUnscaled16(SDValue N,SDValue & Base,SDValue & OffImm)113 bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
114 return SelectAddrModeUnscaled(N, 2, Base, OffImm);
115 }
SelectAddrModeUnscaled32(SDValue N,SDValue & Base,SDValue & OffImm)116 bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
117 return SelectAddrModeUnscaled(N, 4, Base, OffImm);
118 }
SelectAddrModeUnscaled64(SDValue N,SDValue & Base,SDValue & OffImm)119 bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
120 return SelectAddrModeUnscaled(N, 8, Base, OffImm);
121 }
SelectAddrModeUnscaled128(SDValue N,SDValue & Base,SDValue & OffImm)122 bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
123 return SelectAddrModeUnscaled(N, 16, Base, OffImm);
124 }
125
126 template<int Width>
SelectAddrModeWRO(SDValue N,SDValue & Base,SDValue & Offset,SDValue & SignExtend,SDValue & DoShift)127 bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
128 SDValue &SignExtend, SDValue &DoShift) {
129 return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
130 }
131
132 template<int Width>
SelectAddrModeXRO(SDValue N,SDValue & Base,SDValue & Offset,SDValue & SignExtend,SDValue & DoShift)133 bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
134 SDValue &SignExtend, SDValue &DoShift) {
135 return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
136 }
137
138
139 /// Form sequences of consecutive 64/128-bit registers for use in NEON
140 /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
141 /// between 1 and 4 elements. If it contains a single element that is returned
142 /// unchanged; otherwise a REG_SEQUENCE value is returned.
143 SDValue createDTuple(ArrayRef<SDValue> Vecs);
144 SDValue createQTuple(ArrayRef<SDValue> Vecs);
145
146 /// Generic helper for the createDTuple/createQTuple
147 /// functions. Those should almost always be called instead.
148 SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
149 const unsigned SubRegs[]);
150
151 void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
152
153 bool tryIndexedLoad(SDNode *N);
154
155 void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
156 unsigned SubRegIdx);
157 void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
158 unsigned SubRegIdx);
159 void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
160 void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
161
162 void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
163 void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
164 void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
165 void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
166
167 bool tryBitfieldExtractOp(SDNode *N);
168 bool tryBitfieldExtractOpFromSExt(SDNode *N);
169 bool tryBitfieldInsertOp(SDNode *N);
170 bool tryBitfieldInsertInZeroOp(SDNode *N);
171 bool tryShiftAmountMod(SDNode *N);
172
173 bool tryReadRegister(SDNode *N);
174 bool tryWriteRegister(SDNode *N);
175
176 // Include the pieces autogenerated from the target description.
177 #include "AArch64GenDAGISel.inc"
178
179 private:
180 bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
181 SDValue &Shift);
182 bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
183 SDValue &OffImm);
184 bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
185 SDValue &OffImm);
186 bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
187 SDValue &OffImm);
188 bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
189 SDValue &Offset, SDValue &SignExtend,
190 SDValue &DoShift);
191 bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
192 SDValue &Offset, SDValue &SignExtend,
193 SDValue &DoShift);
194 bool isWorthFolding(SDValue V) const;
195 bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
196 SDValue &Offset, SDValue &SignExtend);
197
198 template<unsigned RegWidth>
SelectCVTFixedPosOperand(SDValue N,SDValue & FixedPos)199 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
200 return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
201 }
202
203 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
204
205 bool SelectCMP_SWAP(SDNode *N);
206
207 };
208 } // end anonymous namespace
209
210 /// isIntImmediate - This method tests to see if the node is a constant
211 /// operand. If so Imm will receive the 32-bit value.
isIntImmediate(const SDNode * N,uint64_t & Imm)212 static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
213 if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
214 Imm = C->getZExtValue();
215 return true;
216 }
217 return false;
218 }
219
220 // isIntImmediate - This method tests to see if a constant operand.
221 // If so Imm will receive the value.
isIntImmediate(SDValue N,uint64_t & Imm)222 static bool isIntImmediate(SDValue N, uint64_t &Imm) {
223 return isIntImmediate(N.getNode(), Imm);
224 }
225
226 // isOpcWithIntImmediate - This method tests to see if the node is a specific
227 // opcode and that it has a immediate integer right operand.
228 // If so Imm will receive the 32 bit value.
isOpcWithIntImmediate(const SDNode * N,unsigned Opc,uint64_t & Imm)229 static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
230 uint64_t &Imm) {
231 return N->getOpcode() == Opc &&
232 isIntImmediate(N->getOperand(1).getNode(), Imm);
233 }
234
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)235 bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
236 const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
237 switch(ConstraintID) {
238 default:
239 llvm_unreachable("Unexpected asm memory constraint");
240 case InlineAsm::Constraint_i:
241 case InlineAsm::Constraint_m:
242 case InlineAsm::Constraint_Q:
243 // We need to make sure that this one operand does not end up in XZR, thus
244 // require the address to be in a PointerRegClass register.
245 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
246 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF);
247 SDLoc dl(Op);
248 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64);
249 SDValue NewOp =
250 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
251 dl, Op.getValueType(),
252 Op, RC), 0);
253 OutOps.push_back(NewOp);
254 return false;
255 }
256 return true;
257 }
258
259 /// SelectArithImmed - Select an immediate value that can be represented as
260 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
261 /// Val set to the 12-bit value and Shift set to the shifter operand.
SelectArithImmed(SDValue N,SDValue & Val,SDValue & Shift)262 bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
263 SDValue &Shift) {
264 // This function is called from the addsub_shifted_imm ComplexPattern,
265 // which lists [imm] as the list of opcode it's interested in, however
266 // we still need to check whether the operand is actually an immediate
267 // here because the ComplexPattern opcode list is only used in
268 // root-level opcode matching.
269 if (!isa<ConstantSDNode>(N.getNode()))
270 return false;
271
272 uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
273 unsigned ShiftAmt;
274
275 if (Immed >> 12 == 0) {
276 ShiftAmt = 0;
277 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
278 ShiftAmt = 12;
279 Immed = Immed >> 12;
280 } else
281 return false;
282
283 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
284 SDLoc dl(N);
285 Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
286 Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
287 return true;
288 }
289
290 /// SelectNegArithImmed - As above, but negates the value before trying to
291 /// select it.
SelectNegArithImmed(SDValue N,SDValue & Val,SDValue & Shift)292 bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
293 SDValue &Shift) {
294 // This function is called from the addsub_shifted_imm ComplexPattern,
295 // which lists [imm] as the list of opcode it's interested in, however
296 // we still need to check whether the operand is actually an immediate
297 // here because the ComplexPattern opcode list is only used in
298 // root-level opcode matching.
299 if (!isa<ConstantSDNode>(N.getNode()))
300 return false;
301
302 // The immediate operand must be a 24-bit zero-extended immediate.
303 uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
304
305 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
306 // have the opposite effect on the C flag, so this pattern mustn't match under
307 // those circumstances.
308 if (Immed == 0)
309 return false;
310
311 if (N.getValueType() == MVT::i32)
312 Immed = ~((uint32_t)Immed) + 1;
313 else
314 Immed = ~Immed + 1ULL;
315 if (Immed & 0xFFFFFFFFFF000000ULL)
316 return false;
317
318 Immed &= 0xFFFFFFULL;
319 return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
320 Shift);
321 }
322
323 /// getShiftTypeForNode - Translate a shift node to the corresponding
324 /// ShiftType value.
getShiftTypeForNode(SDValue N)325 static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
326 switch (N.getOpcode()) {
327 default:
328 return AArch64_AM::InvalidShiftExtend;
329 case ISD::SHL:
330 return AArch64_AM::LSL;
331 case ISD::SRL:
332 return AArch64_AM::LSR;
333 case ISD::SRA:
334 return AArch64_AM::ASR;
335 case ISD::ROTR:
336 return AArch64_AM::ROR;
337 }
338 }
339
340 /// Determine whether it is worth it to fold SHL into the addressing
341 /// mode.
isWorthFoldingSHL(SDValue V)342 static bool isWorthFoldingSHL(SDValue V) {
343 assert(V.getOpcode() == ISD::SHL && "invalid opcode");
344 // It is worth folding logical shift of up to three places.
345 auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1));
346 if (!CSD)
347 return false;
348 unsigned ShiftVal = CSD->getZExtValue();
349 if (ShiftVal > 3)
350 return false;
351
352 // Check if this particular node is reused in any non-memory related
353 // operation. If yes, do not try to fold this node into the address
354 // computation, since the computation will be kept.
355 const SDNode *Node = V.getNode();
356 for (SDNode *UI : Node->uses())
357 if (!isa<MemSDNode>(*UI))
358 for (SDNode *UII : UI->uses())
359 if (!isa<MemSDNode>(*UII))
360 return false;
361 return true;
362 }
363
364 /// Determine whether it is worth to fold V into an extended register.
isWorthFolding(SDValue V) const365 bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
366 // Trivial if we are optimizing for code size or if there is only
367 // one use of the value.
368 if (ForCodeSize || V.hasOneUse())
369 return true;
370 // If a subtarget has a fastpath LSL we can fold a logical shift into
371 // the addressing mode and save a cycle.
372 if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::SHL &&
373 isWorthFoldingSHL(V))
374 return true;
375 if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::ADD) {
376 const SDValue LHS = V.getOperand(0);
377 const SDValue RHS = V.getOperand(1);
378 if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS))
379 return true;
380 if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS))
381 return true;
382 }
383
384 // It hurts otherwise, since the value will be reused.
385 return false;
386 }
387
388 /// SelectShiftedRegister - Select a "shifted register" operand. If the value
389 /// is not shifted, set the Shift operand to default of "LSL 0". The logical
390 /// instructions allow the shifted register to be rotated, but the arithmetic
391 /// instructions do not. The AllowROR parameter specifies whether ROR is
392 /// supported.
SelectShiftedRegister(SDValue N,bool AllowROR,SDValue & Reg,SDValue & Shift)393 bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
394 SDValue &Reg, SDValue &Shift) {
395 AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
396 if (ShType == AArch64_AM::InvalidShiftExtend)
397 return false;
398 if (!AllowROR && ShType == AArch64_AM::ROR)
399 return false;
400
401 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
402 unsigned BitSize = N.getValueSizeInBits();
403 unsigned Val = RHS->getZExtValue() & (BitSize - 1);
404 unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
405
406 Reg = N.getOperand(0);
407 Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
408 return isWorthFolding(N);
409 }
410
411 return false;
412 }
413
414 /// getExtendTypeForNode - Translate an extend node to the corresponding
415 /// ExtendType value.
416 static AArch64_AM::ShiftExtendType
getExtendTypeForNode(SDValue N,bool IsLoadStore=false)417 getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
418 if (N.getOpcode() == ISD::SIGN_EXTEND ||
419 N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
420 EVT SrcVT;
421 if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
422 SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
423 else
424 SrcVT = N.getOperand(0).getValueType();
425
426 if (!IsLoadStore && SrcVT == MVT::i8)
427 return AArch64_AM::SXTB;
428 else if (!IsLoadStore && SrcVT == MVT::i16)
429 return AArch64_AM::SXTH;
430 else if (SrcVT == MVT::i32)
431 return AArch64_AM::SXTW;
432 assert(SrcVT != MVT::i64 && "extend from 64-bits?");
433
434 return AArch64_AM::InvalidShiftExtend;
435 } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
436 N.getOpcode() == ISD::ANY_EXTEND) {
437 EVT SrcVT = N.getOperand(0).getValueType();
438 if (!IsLoadStore && SrcVT == MVT::i8)
439 return AArch64_AM::UXTB;
440 else if (!IsLoadStore && SrcVT == MVT::i16)
441 return AArch64_AM::UXTH;
442 else if (SrcVT == MVT::i32)
443 return AArch64_AM::UXTW;
444 assert(SrcVT != MVT::i64 && "extend from 64-bits?");
445
446 return AArch64_AM::InvalidShiftExtend;
447 } else if (N.getOpcode() == ISD::AND) {
448 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
449 if (!CSD)
450 return AArch64_AM::InvalidShiftExtend;
451 uint64_t AndMask = CSD->getZExtValue();
452
453 switch (AndMask) {
454 default:
455 return AArch64_AM::InvalidShiftExtend;
456 case 0xFF:
457 return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
458 case 0xFFFF:
459 return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
460 case 0xFFFFFFFF:
461 return AArch64_AM::UXTW;
462 }
463 }
464
465 return AArch64_AM::InvalidShiftExtend;
466 }
467
468 // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
checkHighLaneIndex(SDNode * DL,SDValue & LaneOp,int & LaneIdx)469 static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
470 if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
471 DL->getOpcode() != AArch64ISD::DUPLANE32)
472 return false;
473
474 SDValue SV = DL->getOperand(0);
475 if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
476 return false;
477
478 SDValue EV = SV.getOperand(1);
479 if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
480 return false;
481
482 ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
483 ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
484 LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
485 LaneOp = EV.getOperand(0);
486
487 return true;
488 }
489
490 // Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
491 // high lane extract.
checkV64LaneV128(SDValue Op0,SDValue Op1,SDValue & StdOp,SDValue & LaneOp,int & LaneIdx)492 static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
493 SDValue &LaneOp, int &LaneIdx) {
494
495 if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
496 std::swap(Op0, Op1);
497 if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
498 return false;
499 }
500 StdOp = Op1;
501 return true;
502 }
503
504 /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
505 /// is a lane in the upper half of a 128-bit vector. Recognize and select this
506 /// so that we don't emit unnecessary lane extracts.
tryMLAV64LaneV128(SDNode * N)507 bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode *N) {
508 SDLoc dl(N);
509 SDValue Op0 = N->getOperand(0);
510 SDValue Op1 = N->getOperand(1);
511 SDValue MLAOp1; // Will hold ordinary multiplicand for MLA.
512 SDValue MLAOp2; // Will hold lane-accessed multiplicand for MLA.
513 int LaneIdx = -1; // Will hold the lane index.
514
515 if (Op1.getOpcode() != ISD::MUL ||
516 !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
517 LaneIdx)) {
518 std::swap(Op0, Op1);
519 if (Op1.getOpcode() != ISD::MUL ||
520 !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
521 LaneIdx))
522 return false;
523 }
524
525 SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
526
527 SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
528
529 unsigned MLAOpc = ~0U;
530
531 switch (N->getSimpleValueType(0).SimpleTy) {
532 default:
533 llvm_unreachable("Unrecognized MLA.");
534 case MVT::v4i16:
535 MLAOpc = AArch64::MLAv4i16_indexed;
536 break;
537 case MVT::v8i16:
538 MLAOpc = AArch64::MLAv8i16_indexed;
539 break;
540 case MVT::v2i32:
541 MLAOpc = AArch64::MLAv2i32_indexed;
542 break;
543 case MVT::v4i32:
544 MLAOpc = AArch64::MLAv4i32_indexed;
545 break;
546 }
547
548 ReplaceNode(N, CurDAG->getMachineNode(MLAOpc, dl, N->getValueType(0), Ops));
549 return true;
550 }
551
tryMULLV64LaneV128(unsigned IntNo,SDNode * N)552 bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo, SDNode *N) {
553 SDLoc dl(N);
554 SDValue SMULLOp0;
555 SDValue SMULLOp1;
556 int LaneIdx;
557
558 if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
559 LaneIdx))
560 return false;
561
562 SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
563
564 SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
565
566 unsigned SMULLOpc = ~0U;
567
568 if (IntNo == Intrinsic::aarch64_neon_smull) {
569 switch (N->getSimpleValueType(0).SimpleTy) {
570 default:
571 llvm_unreachable("Unrecognized SMULL.");
572 case MVT::v4i32:
573 SMULLOpc = AArch64::SMULLv4i16_indexed;
574 break;
575 case MVT::v2i64:
576 SMULLOpc = AArch64::SMULLv2i32_indexed;
577 break;
578 }
579 } else if (IntNo == Intrinsic::aarch64_neon_umull) {
580 switch (N->getSimpleValueType(0).SimpleTy) {
581 default:
582 llvm_unreachable("Unrecognized SMULL.");
583 case MVT::v4i32:
584 SMULLOpc = AArch64::UMULLv4i16_indexed;
585 break;
586 case MVT::v2i64:
587 SMULLOpc = AArch64::UMULLv2i32_indexed;
588 break;
589 }
590 } else
591 llvm_unreachable("Unrecognized intrinsic.");
592
593 ReplaceNode(N, CurDAG->getMachineNode(SMULLOpc, dl, N->getValueType(0), Ops));
594 return true;
595 }
596
597 /// Instructions that accept extend modifiers like UXTW expect the register
598 /// being extended to be a GPR32, but the incoming DAG might be acting on a
599 /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
600 /// this is the case.
narrowIfNeeded(SelectionDAG * CurDAG,SDValue N)601 static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
602 if (N.getValueType() == MVT::i32)
603 return N;
604
605 SDLoc dl(N);
606 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
607 MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
608 dl, MVT::i32, N, SubReg);
609 return SDValue(Node, 0);
610 }
611
612
613 /// SelectArithExtendedRegister - Select a "extended register" operand. This
614 /// operand folds in an extend followed by an optional left shift.
SelectArithExtendedRegister(SDValue N,SDValue & Reg,SDValue & Shift)615 bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
616 SDValue &Shift) {
617 unsigned ShiftVal = 0;
618 AArch64_AM::ShiftExtendType Ext;
619
620 if (N.getOpcode() == ISD::SHL) {
621 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
622 if (!CSD)
623 return false;
624 ShiftVal = CSD->getZExtValue();
625 if (ShiftVal > 4)
626 return false;
627
628 Ext = getExtendTypeForNode(N.getOperand(0));
629 if (Ext == AArch64_AM::InvalidShiftExtend)
630 return false;
631
632 Reg = N.getOperand(0).getOperand(0);
633 } else {
634 Ext = getExtendTypeForNode(N);
635 if (Ext == AArch64_AM::InvalidShiftExtend)
636 return false;
637
638 Reg = N.getOperand(0);
639
640 // Don't match if free 32-bit -> 64-bit zext can be used instead.
641 if (Ext == AArch64_AM::UXTW &&
642 Reg->getValueType(0).getSizeInBits() == 32 && isDef32(*Reg.getNode()))
643 return false;
644 }
645
646 // AArch64 mandates that the RHS of the operation must use the smallest
647 // register class that could contain the size being extended from. Thus,
648 // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
649 // there might not be an actual 32-bit value in the program. We can
650 // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
651 assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
652 Reg = narrowIfNeeded(CurDAG, Reg);
653 Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
654 MVT::i32);
655 return isWorthFolding(N);
656 }
657
658 /// If there's a use of this ADDlow that's not itself a load/store then we'll
659 /// need to create a real ADD instruction from it anyway and there's no point in
660 /// folding it into the mem op. Theoretically, it shouldn't matter, but there's
661 /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
662 /// leads to duplicated ADRP instructions.
isWorthFoldingADDlow(SDValue N)663 static bool isWorthFoldingADDlow(SDValue N) {
664 for (auto Use : N->uses()) {
665 if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
666 Use->getOpcode() != ISD::ATOMIC_LOAD &&
667 Use->getOpcode() != ISD::ATOMIC_STORE)
668 return false;
669
670 // ldar and stlr have much more restrictive addressing modes (just a
671 // register).
672 if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getOrdering()))
673 return false;
674 }
675
676 return true;
677 }
678
679 /// SelectAddrModeIndexed7S - Select a "register plus scaled signed 7-bit
680 /// immediate" address. The "Size" argument is the size in bytes of the memory
681 /// reference, which determines the scale.
SelectAddrModeIndexed7S(SDValue N,unsigned Size,SDValue & Base,SDValue & OffImm)682 bool AArch64DAGToDAGISel::SelectAddrModeIndexed7S(SDValue N, unsigned Size,
683 SDValue &Base,
684 SDValue &OffImm) {
685 SDLoc dl(N);
686 const DataLayout &DL = CurDAG->getDataLayout();
687 const TargetLowering *TLI = getTargetLowering();
688 if (N.getOpcode() == ISD::FrameIndex) {
689 int FI = cast<FrameIndexSDNode>(N)->getIndex();
690 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
691 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
692 return true;
693 }
694
695 // As opposed to the (12-bit) Indexed addressing mode below, the 7-bit signed
696 // selected here doesn't support labels/immediates, only base+offset.
697
698 if (CurDAG->isBaseWithConstantOffset(N)) {
699 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
700 int64_t RHSC = RHS->getSExtValue();
701 unsigned Scale = Log2_32(Size);
702 if ((RHSC & (Size - 1)) == 0 && RHSC >= -(0x40 << Scale) &&
703 RHSC < (0x40 << Scale)) {
704 Base = N.getOperand(0);
705 if (Base.getOpcode() == ISD::FrameIndex) {
706 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
707 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
708 }
709 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
710 return true;
711 }
712 }
713 }
714
715 // Base only. The address will be materialized into a register before
716 // the memory is accessed.
717 // add x0, Xbase, #offset
718 // stp x1, x2, [x0]
719 Base = N;
720 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
721 return true;
722 }
723
724 /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
725 /// immediate" address. The "Size" argument is the size in bytes of the memory
726 /// reference, which determines the scale.
SelectAddrModeIndexed(SDValue N,unsigned Size,SDValue & Base,SDValue & OffImm)727 bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
728 SDValue &Base, SDValue &OffImm) {
729 SDLoc dl(N);
730 const DataLayout &DL = CurDAG->getDataLayout();
731 const TargetLowering *TLI = getTargetLowering();
732 if (N.getOpcode() == ISD::FrameIndex) {
733 int FI = cast<FrameIndexSDNode>(N)->getIndex();
734 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
735 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
736 return true;
737 }
738
739 if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
740 GlobalAddressSDNode *GAN =
741 dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
742 Base = N.getOperand(0);
743 OffImm = N.getOperand(1);
744 if (!GAN)
745 return true;
746
747 if (GAN->getOffset() % Size == 0) {
748 const GlobalValue *GV = GAN->getGlobal();
749 unsigned Alignment = GV->getAlignment();
750 Type *Ty = GV->getValueType();
751 if (Alignment == 0 && Ty->isSized())
752 Alignment = DL.getABITypeAlignment(Ty);
753
754 if (Alignment >= Size)
755 return true;
756 }
757 }
758
759 if (CurDAG->isBaseWithConstantOffset(N)) {
760 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
761 int64_t RHSC = (int64_t)RHS->getZExtValue();
762 unsigned Scale = Log2_32(Size);
763 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
764 Base = N.getOperand(0);
765 if (Base.getOpcode() == ISD::FrameIndex) {
766 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
767 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
768 }
769 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
770 return true;
771 }
772 }
773 }
774
775 // Before falling back to our general case, check if the unscaled
776 // instructions can handle this. If so, that's preferable.
777 if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
778 return false;
779
780 // Base only. The address will be materialized into a register before
781 // the memory is accessed.
782 // add x0, Xbase, #offset
783 // ldr x0, [x0]
784 Base = N;
785 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
786 return true;
787 }
788
789 /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
790 /// immediate" address. This should only match when there is an offset that
791 /// is not valid for a scaled immediate addressing mode. The "Size" argument
792 /// is the size in bytes of the memory reference, which is needed here to know
793 /// what is valid for a scaled immediate.
SelectAddrModeUnscaled(SDValue N,unsigned Size,SDValue & Base,SDValue & OffImm)794 bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
795 SDValue &Base,
796 SDValue &OffImm) {
797 if (!CurDAG->isBaseWithConstantOffset(N))
798 return false;
799 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
800 int64_t RHSC = RHS->getSExtValue();
801 // If the offset is valid as a scaled immediate, don't match here.
802 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
803 RHSC < (0x1000 << Log2_32(Size)))
804 return false;
805 if (RHSC >= -256 && RHSC < 256) {
806 Base = N.getOperand(0);
807 if (Base.getOpcode() == ISD::FrameIndex) {
808 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
809 const TargetLowering *TLI = getTargetLowering();
810 Base = CurDAG->getTargetFrameIndex(
811 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
812 }
813 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
814 return true;
815 }
816 }
817 return false;
818 }
819
Widen(SelectionDAG * CurDAG,SDValue N)820 static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
821 SDLoc dl(N);
822 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
823 SDValue ImpDef = SDValue(
824 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
825 MachineSDNode *Node = CurDAG->getMachineNode(
826 TargetOpcode::INSERT_SUBREG, dl, MVT::i64, ImpDef, N, SubReg);
827 return SDValue(Node, 0);
828 }
829
830 /// Check if the given SHL node (\p N), can be used to form an
831 /// extended register for an addressing mode.
SelectExtendedSHL(SDValue N,unsigned Size,bool WantExtend,SDValue & Offset,SDValue & SignExtend)832 bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
833 bool WantExtend, SDValue &Offset,
834 SDValue &SignExtend) {
835 assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
836 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
837 if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
838 return false;
839
840 SDLoc dl(N);
841 if (WantExtend) {
842 AArch64_AM::ShiftExtendType Ext =
843 getExtendTypeForNode(N.getOperand(0), true);
844 if (Ext == AArch64_AM::InvalidShiftExtend)
845 return false;
846
847 Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
848 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
849 MVT::i32);
850 } else {
851 Offset = N.getOperand(0);
852 SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
853 }
854
855 unsigned LegalShiftVal = Log2_32(Size);
856 unsigned ShiftVal = CSD->getZExtValue();
857
858 if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
859 return false;
860
861 return isWorthFolding(N);
862 }
863
SelectAddrModeWRO(SDValue N,unsigned Size,SDValue & Base,SDValue & Offset,SDValue & SignExtend,SDValue & DoShift)864 bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
865 SDValue &Base, SDValue &Offset,
866 SDValue &SignExtend,
867 SDValue &DoShift) {
868 if (N.getOpcode() != ISD::ADD)
869 return false;
870 SDValue LHS = N.getOperand(0);
871 SDValue RHS = N.getOperand(1);
872 SDLoc dl(N);
873
874 // We don't want to match immediate adds here, because they are better lowered
875 // to the register-immediate addressing modes.
876 if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
877 return false;
878
879 // Check if this particular node is reused in any non-memory related
880 // operation. If yes, do not try to fold this node into the address
881 // computation, since the computation will be kept.
882 const SDNode *Node = N.getNode();
883 for (SDNode *UI : Node->uses()) {
884 if (!isa<MemSDNode>(*UI))
885 return false;
886 }
887
888 // Remember if it is worth folding N when it produces extended register.
889 bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
890
891 // Try to match a shifted extend on the RHS.
892 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
893 SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
894 Base = LHS;
895 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
896 return true;
897 }
898
899 // Try to match a shifted extend on the LHS.
900 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
901 SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
902 Base = RHS;
903 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
904 return true;
905 }
906
907 // There was no shift, whatever else we find.
908 DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
909
910 AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
911 // Try to match an unshifted extend on the LHS.
912 if (IsExtendedRegisterWorthFolding &&
913 (Ext = getExtendTypeForNode(LHS, true)) !=
914 AArch64_AM::InvalidShiftExtend) {
915 Base = RHS;
916 Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
917 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
918 MVT::i32);
919 if (isWorthFolding(LHS))
920 return true;
921 }
922
923 // Try to match an unshifted extend on the RHS.
924 if (IsExtendedRegisterWorthFolding &&
925 (Ext = getExtendTypeForNode(RHS, true)) !=
926 AArch64_AM::InvalidShiftExtend) {
927 Base = LHS;
928 Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
929 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
930 MVT::i32);
931 if (isWorthFolding(RHS))
932 return true;
933 }
934
935 return false;
936 }
937
938 // Check if the given immediate is preferred by ADD. If an immediate can be
939 // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
940 // encoded by one MOVZ, return true.
isPreferredADD(int64_t ImmOff)941 static bool isPreferredADD(int64_t ImmOff) {
942 // Constant in [0x0, 0xfff] can be encoded in ADD.
943 if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
944 return true;
945 // Check if it can be encoded in an "ADD LSL #12".
946 if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
947 // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
948 return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
949 (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
950 return false;
951 }
952
SelectAddrModeXRO(SDValue N,unsigned Size,SDValue & Base,SDValue & Offset,SDValue & SignExtend,SDValue & DoShift)953 bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
954 SDValue &Base, SDValue &Offset,
955 SDValue &SignExtend,
956 SDValue &DoShift) {
957 if (N.getOpcode() != ISD::ADD)
958 return false;
959 SDValue LHS = N.getOperand(0);
960 SDValue RHS = N.getOperand(1);
961 SDLoc DL(N);
962
963 // Check if this particular node is reused in any non-memory related
964 // operation. If yes, do not try to fold this node into the address
965 // computation, since the computation will be kept.
966 const SDNode *Node = N.getNode();
967 for (SDNode *UI : Node->uses()) {
968 if (!isa<MemSDNode>(*UI))
969 return false;
970 }
971
972 // Watch out if RHS is a wide immediate, it can not be selected into
973 // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
974 // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
975 // instructions like:
976 // MOV X0, WideImmediate
977 // ADD X1, BaseReg, X0
978 // LDR X2, [X1, 0]
979 // For such situation, using [BaseReg, XReg] addressing mode can save one
980 // ADD/SUB:
981 // MOV X0, WideImmediate
982 // LDR X2, [BaseReg, X0]
983 if (isa<ConstantSDNode>(RHS)) {
984 int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue();
985 unsigned Scale = Log2_32(Size);
986 // Skip the immediate can be selected by load/store addressing mode.
987 // Also skip the immediate can be encoded by a single ADD (SUB is also
988 // checked by using -ImmOff).
989 if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
990 isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
991 return false;
992
993 SDValue Ops[] = { RHS };
994 SDNode *MOVI =
995 CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
996 SDValue MOVIV = SDValue(MOVI, 0);
997 // This ADD of two X register will be selected into [Reg+Reg] mode.
998 N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
999 }
1000
1001 // Remember if it is worth folding N when it produces extended register.
1002 bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
1003
1004 // Try to match a shifted extend on the RHS.
1005 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
1006 SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
1007 Base = LHS;
1008 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1009 return true;
1010 }
1011
1012 // Try to match a shifted extend on the LHS.
1013 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
1014 SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
1015 Base = RHS;
1016 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1017 return true;
1018 }
1019
1020 // Match any non-shifted, non-extend, non-immediate add expression.
1021 Base = LHS;
1022 Offset = RHS;
1023 SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
1024 DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
1025 // Reg1 + Reg2 is free: no check needed.
1026 return true;
1027 }
1028
createDTuple(ArrayRef<SDValue> Regs)1029 SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
1030 static const unsigned RegClassIDs[] = {
1031 AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
1032 static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
1033 AArch64::dsub2, AArch64::dsub3};
1034
1035 return createTuple(Regs, RegClassIDs, SubRegs);
1036 }
1037
createQTuple(ArrayRef<SDValue> Regs)1038 SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
1039 static const unsigned RegClassIDs[] = {
1040 AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
1041 static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
1042 AArch64::qsub2, AArch64::qsub3};
1043
1044 return createTuple(Regs, RegClassIDs, SubRegs);
1045 }
1046
createTuple(ArrayRef<SDValue> Regs,const unsigned RegClassIDs[],const unsigned SubRegs[])1047 SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
1048 const unsigned RegClassIDs[],
1049 const unsigned SubRegs[]) {
1050 // There's no special register-class for a vector-list of 1 element: it's just
1051 // a vector.
1052 if (Regs.size() == 1)
1053 return Regs[0];
1054
1055 assert(Regs.size() >= 2 && Regs.size() <= 4);
1056
1057 SDLoc DL(Regs[0]);
1058
1059 SmallVector<SDValue, 4> Ops;
1060
1061 // First operand of REG_SEQUENCE is the desired RegClass.
1062 Ops.push_back(
1063 CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
1064
1065 // Then we get pairs of source & subregister-position for the components.
1066 for (unsigned i = 0; i < Regs.size(); ++i) {
1067 Ops.push_back(Regs[i]);
1068 Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
1069 }
1070
1071 SDNode *N =
1072 CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
1073 return SDValue(N, 0);
1074 }
1075
SelectTable(SDNode * N,unsigned NumVecs,unsigned Opc,bool isExt)1076 void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc,
1077 bool isExt) {
1078 SDLoc dl(N);
1079 EVT VT = N->getValueType(0);
1080
1081 unsigned ExtOff = isExt;
1082
1083 // Form a REG_SEQUENCE to force register allocation.
1084 unsigned Vec0Off = ExtOff + 1;
1085 SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
1086 N->op_begin() + Vec0Off + NumVecs);
1087 SDValue RegSeq = createQTuple(Regs);
1088
1089 SmallVector<SDValue, 6> Ops;
1090 if (isExt)
1091 Ops.push_back(N->getOperand(1));
1092 Ops.push_back(RegSeq);
1093 Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
1094 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
1095 }
1096
tryIndexedLoad(SDNode * N)1097 bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) {
1098 LoadSDNode *LD = cast<LoadSDNode>(N);
1099 if (LD->isUnindexed())
1100 return false;
1101 EVT VT = LD->getMemoryVT();
1102 EVT DstVT = N->getValueType(0);
1103 ISD::MemIndexedMode AM = LD->getAddressingMode();
1104 bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
1105
1106 // We're not doing validity checking here. That was done when checking
1107 // if we should mark the load as indexed or not. We're just selecting
1108 // the right instruction.
1109 unsigned Opcode = 0;
1110
1111 ISD::LoadExtType ExtType = LD->getExtensionType();
1112 bool InsertTo64 = false;
1113 if (VT == MVT::i64)
1114 Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
1115 else if (VT == MVT::i32) {
1116 if (ExtType == ISD::NON_EXTLOAD)
1117 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1118 else if (ExtType == ISD::SEXTLOAD)
1119 Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
1120 else {
1121 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1122 InsertTo64 = true;
1123 // The result of the load is only i32. It's the subreg_to_reg that makes
1124 // it into an i64.
1125 DstVT = MVT::i32;
1126 }
1127 } else if (VT == MVT::i16) {
1128 if (ExtType == ISD::SEXTLOAD) {
1129 if (DstVT == MVT::i64)
1130 Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
1131 else
1132 Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
1133 } else {
1134 Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
1135 InsertTo64 = DstVT == MVT::i64;
1136 // The result of the load is only i32. It's the subreg_to_reg that makes
1137 // it into an i64.
1138 DstVT = MVT::i32;
1139 }
1140 } else if (VT == MVT::i8) {
1141 if (ExtType == ISD::SEXTLOAD) {
1142 if (DstVT == MVT::i64)
1143 Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
1144 else
1145 Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
1146 } else {
1147 Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
1148 InsertTo64 = DstVT == MVT::i64;
1149 // The result of the load is only i32. It's the subreg_to_reg that makes
1150 // it into an i64.
1151 DstVT = MVT::i32;
1152 }
1153 } else if (VT == MVT::f16) {
1154 Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
1155 } else if (VT == MVT::f32) {
1156 Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
1157 } else if (VT == MVT::f64 || VT.is64BitVector()) {
1158 Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
1159 } else if (VT.is128BitVector()) {
1160 Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
1161 } else
1162 return false;
1163 SDValue Chain = LD->getChain();
1164 SDValue Base = LD->getBasePtr();
1165 ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
1166 int OffsetVal = (int)OffsetOp->getZExtValue();
1167 SDLoc dl(N);
1168 SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
1169 SDValue Ops[] = { Base, Offset, Chain };
1170 SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
1171 MVT::Other, Ops);
1172 // Either way, we're replacing the node, so tell the caller that.
1173 SDValue LoadedVal = SDValue(Res, 1);
1174 if (InsertTo64) {
1175 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1176 LoadedVal =
1177 SDValue(CurDAG->getMachineNode(
1178 AArch64::SUBREG_TO_REG, dl, MVT::i64,
1179 CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
1180 SubReg),
1181 0);
1182 }
1183
1184 ReplaceUses(SDValue(N, 0), LoadedVal);
1185 ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
1186 ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
1187 CurDAG->RemoveDeadNode(N);
1188 return true;
1189 }
1190
SelectLoad(SDNode * N,unsigned NumVecs,unsigned Opc,unsigned SubRegIdx)1191 void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
1192 unsigned SubRegIdx) {
1193 SDLoc dl(N);
1194 EVT VT = N->getValueType(0);
1195 SDValue Chain = N->getOperand(0);
1196
1197 SDValue Ops[] = {N->getOperand(2), // Mem operand;
1198 Chain};
1199
1200 const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1201
1202 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1203 SDValue SuperReg = SDValue(Ld, 0);
1204 for (unsigned i = 0; i < NumVecs; ++i)
1205 ReplaceUses(SDValue(N, i),
1206 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1207
1208 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1209
1210 // Transfer memoperands.
1211 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1212 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1213 cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
1214
1215 CurDAG->RemoveDeadNode(N);
1216 }
1217
SelectPostLoad(SDNode * N,unsigned NumVecs,unsigned Opc,unsigned SubRegIdx)1218 void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
1219 unsigned Opc, unsigned SubRegIdx) {
1220 SDLoc dl(N);
1221 EVT VT = N->getValueType(0);
1222 SDValue Chain = N->getOperand(0);
1223
1224 SDValue Ops[] = {N->getOperand(1), // Mem operand
1225 N->getOperand(2), // Incremental
1226 Chain};
1227
1228 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1229 MVT::Untyped, MVT::Other};
1230
1231 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1232
1233 // Update uses of write back register
1234 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1235
1236 // Update uses of vector list
1237 SDValue SuperReg = SDValue(Ld, 1);
1238 if (NumVecs == 1)
1239 ReplaceUses(SDValue(N, 0), SuperReg);
1240 else
1241 for (unsigned i = 0; i < NumVecs; ++i)
1242 ReplaceUses(SDValue(N, i),
1243 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1244
1245 // Update the chain
1246 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1247 CurDAG->RemoveDeadNode(N);
1248 }
1249
SelectStore(SDNode * N,unsigned NumVecs,unsigned Opc)1250 void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
1251 unsigned Opc) {
1252 SDLoc dl(N);
1253 EVT VT = N->getOperand(2)->getValueType(0);
1254
1255 // Form a REG_SEQUENCE to force register allocation.
1256 bool Is128Bit = VT.getSizeInBits() == 128;
1257 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1258 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
1259
1260 SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
1261 SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
1262
1263 // Transfer memoperands.
1264 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1265 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1266 cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
1267
1268 ReplaceNode(N, St);
1269 }
1270
SelectPostStore(SDNode * N,unsigned NumVecs,unsigned Opc)1271 void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
1272 unsigned Opc) {
1273 SDLoc dl(N);
1274 EVT VT = N->getOperand(2)->getValueType(0);
1275 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1276 MVT::Other}; // Type for the Chain
1277
1278 // Form a REG_SEQUENCE to force register allocation.
1279 bool Is128Bit = VT.getSizeInBits() == 128;
1280 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1281 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
1282
1283 SDValue Ops[] = {RegSeq,
1284 N->getOperand(NumVecs + 1), // base register
1285 N->getOperand(NumVecs + 2), // Incremental
1286 N->getOperand(0)}; // Chain
1287 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1288
1289 ReplaceNode(N, St);
1290 }
1291
1292 namespace {
1293 /// WidenVector - Given a value in the V64 register class, produce the
1294 /// equivalent value in the V128 register class.
1295 class WidenVector {
1296 SelectionDAG &DAG;
1297
1298 public:
WidenVector(SelectionDAG & DAG)1299 WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
1300
operator ()(SDValue V64Reg)1301 SDValue operator()(SDValue V64Reg) {
1302 EVT VT = V64Reg.getValueType();
1303 unsigned NarrowSize = VT.getVectorNumElements();
1304 MVT EltTy = VT.getVectorElementType().getSimpleVT();
1305 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
1306 SDLoc DL(V64Reg);
1307
1308 SDValue Undef =
1309 SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
1310 return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
1311 }
1312 };
1313 } // namespace
1314
1315 /// NarrowVector - Given a value in the V128 register class, produce the
1316 /// equivalent value in the V64 register class.
NarrowVector(SDValue V128Reg,SelectionDAG & DAG)1317 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
1318 EVT VT = V128Reg.getValueType();
1319 unsigned WideSize = VT.getVectorNumElements();
1320 MVT EltTy = VT.getVectorElementType().getSimpleVT();
1321 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
1322
1323 return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
1324 V128Reg);
1325 }
1326
SelectLoadLane(SDNode * N,unsigned NumVecs,unsigned Opc)1327 void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
1328 unsigned Opc) {
1329 SDLoc dl(N);
1330 EVT VT = N->getValueType(0);
1331 bool Narrow = VT.getSizeInBits() == 64;
1332
1333 // Form a REG_SEQUENCE to force register allocation.
1334 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1335
1336 if (Narrow)
1337 transform(Regs, Regs.begin(),
1338 WidenVector(*CurDAG));
1339
1340 SDValue RegSeq = createQTuple(Regs);
1341
1342 const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1343
1344 unsigned LaneNo =
1345 cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
1346
1347 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1348 N->getOperand(NumVecs + 3), N->getOperand(0)};
1349 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1350 SDValue SuperReg = SDValue(Ld, 0);
1351
1352 EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
1353 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
1354 AArch64::qsub2, AArch64::qsub3 };
1355 for (unsigned i = 0; i < NumVecs; ++i) {
1356 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
1357 if (Narrow)
1358 NV = NarrowVector(NV, *CurDAG);
1359 ReplaceUses(SDValue(N, i), NV);
1360 }
1361
1362 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1363 CurDAG->RemoveDeadNode(N);
1364 }
1365
SelectPostLoadLane(SDNode * N,unsigned NumVecs,unsigned Opc)1366 void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
1367 unsigned Opc) {
1368 SDLoc dl(N);
1369 EVT VT = N->getValueType(0);
1370 bool Narrow = VT.getSizeInBits() == 64;
1371
1372 // Form a REG_SEQUENCE to force register allocation.
1373 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1374
1375 if (Narrow)
1376 transform(Regs, Regs.begin(),
1377 WidenVector(*CurDAG));
1378
1379 SDValue RegSeq = createQTuple(Regs);
1380
1381 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1382 RegSeq->getValueType(0), MVT::Other};
1383
1384 unsigned LaneNo =
1385 cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
1386
1387 SDValue Ops[] = {RegSeq,
1388 CurDAG->getTargetConstant(LaneNo, dl,
1389 MVT::i64), // Lane Number
1390 N->getOperand(NumVecs + 2), // Base register
1391 N->getOperand(NumVecs + 3), // Incremental
1392 N->getOperand(0)};
1393 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1394
1395 // Update uses of the write back register
1396 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1397
1398 // Update uses of the vector list
1399 SDValue SuperReg = SDValue(Ld, 1);
1400 if (NumVecs == 1) {
1401 ReplaceUses(SDValue(N, 0),
1402 Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
1403 } else {
1404 EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
1405 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
1406 AArch64::qsub2, AArch64::qsub3 };
1407 for (unsigned i = 0; i < NumVecs; ++i) {
1408 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
1409 SuperReg);
1410 if (Narrow)
1411 NV = NarrowVector(NV, *CurDAG);
1412 ReplaceUses(SDValue(N, i), NV);
1413 }
1414 }
1415
1416 // Update the Chain
1417 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1418 CurDAG->RemoveDeadNode(N);
1419 }
1420
SelectStoreLane(SDNode * N,unsigned NumVecs,unsigned Opc)1421 void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
1422 unsigned Opc) {
1423 SDLoc dl(N);
1424 EVT VT = N->getOperand(2)->getValueType(0);
1425 bool Narrow = VT.getSizeInBits() == 64;
1426
1427 // Form a REG_SEQUENCE to force register allocation.
1428 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
1429
1430 if (Narrow)
1431 transform(Regs, Regs.begin(),
1432 WidenVector(*CurDAG));
1433
1434 SDValue RegSeq = createQTuple(Regs);
1435
1436 unsigned LaneNo =
1437 cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
1438
1439 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1440 N->getOperand(NumVecs + 3), N->getOperand(0)};
1441 SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
1442
1443 // Transfer memoperands.
1444 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1445 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1446 cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
1447
1448 ReplaceNode(N, St);
1449 }
1450
SelectPostStoreLane(SDNode * N,unsigned NumVecs,unsigned Opc)1451 void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
1452 unsigned Opc) {
1453 SDLoc dl(N);
1454 EVT VT = N->getOperand(2)->getValueType(0);
1455 bool Narrow = VT.getSizeInBits() == 64;
1456
1457 // Form a REG_SEQUENCE to force register allocation.
1458 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1459
1460 if (Narrow)
1461 transform(Regs, Regs.begin(),
1462 WidenVector(*CurDAG));
1463
1464 SDValue RegSeq = createQTuple(Regs);
1465
1466 const EVT ResTys[] = {MVT::i64, // Type of the write back register
1467 MVT::Other};
1468
1469 unsigned LaneNo =
1470 cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
1471
1472 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
1473 N->getOperand(NumVecs + 2), // Base Register
1474 N->getOperand(NumVecs + 3), // Incremental
1475 N->getOperand(0)};
1476 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1477
1478 // Transfer memoperands.
1479 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1480 MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1481 cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
1482
1483 ReplaceNode(N, St);
1484 }
1485
isBitfieldExtractOpFromAnd(SelectionDAG * CurDAG,SDNode * N,unsigned & Opc,SDValue & Opd0,unsigned & LSB,unsigned & MSB,unsigned NumberOfIgnoredLowBits,bool BiggerPattern)1486 static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
1487 unsigned &Opc, SDValue &Opd0,
1488 unsigned &LSB, unsigned &MSB,
1489 unsigned NumberOfIgnoredLowBits,
1490 bool BiggerPattern) {
1491 assert(N->getOpcode() == ISD::AND &&
1492 "N must be a AND operation to call this function");
1493
1494 EVT VT = N->getValueType(0);
1495
1496 // Here we can test the type of VT and return false when the type does not
1497 // match, but since it is done prior to that call in the current context
1498 // we turned that into an assert to avoid redundant code.
1499 assert((VT == MVT::i32 || VT == MVT::i64) &&
1500 "Type checking must have been done before calling this function");
1501
1502 // FIXME: simplify-demanded-bits in DAGCombine will probably have
1503 // changed the AND node to a 32-bit mask operation. We'll have to
1504 // undo that as part of the transform here if we want to catch all
1505 // the opportunities.
1506 // Currently the NumberOfIgnoredLowBits argument helps to recover
1507 // form these situations when matching bigger pattern (bitfield insert).
1508
1509 // For unsigned extracts, check for a shift right and mask
1510 uint64_t AndImm = 0;
1511 if (!isOpcWithIntImmediate(N, ISD::AND, AndImm))
1512 return false;
1513
1514 const SDNode *Op0 = N->getOperand(0).getNode();
1515
1516 // Because of simplify-demanded-bits in DAGCombine, the mask may have been
1517 // simplified. Try to undo that
1518 AndImm |= maskTrailingOnes<uint64_t>(NumberOfIgnoredLowBits);
1519
1520 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1521 if (AndImm & (AndImm + 1))
1522 return false;
1523
1524 bool ClampMSB = false;
1525 uint64_t SrlImm = 0;
1526 // Handle the SRL + ANY_EXTEND case.
1527 if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
1528 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) {
1529 // Extend the incoming operand of the SRL to 64-bit.
1530 Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
1531 // Make sure to clamp the MSB so that we preserve the semantics of the
1532 // original operations.
1533 ClampMSB = true;
1534 } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
1535 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
1536 SrlImm)) {
1537 // If the shift result was truncated, we can still combine them.
1538 Opd0 = Op0->getOperand(0).getOperand(0);
1539
1540 // Use the type of SRL node.
1541 VT = Opd0->getValueType(0);
1542 } else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) {
1543 Opd0 = Op0->getOperand(0);
1544 } else if (BiggerPattern) {
1545 // Let's pretend a 0 shift right has been performed.
1546 // The resulting code will be at least as good as the original one
1547 // plus it may expose more opportunities for bitfield insert pattern.
1548 // FIXME: Currently we limit this to the bigger pattern, because
1549 // some optimizations expect AND and not UBFM.
1550 Opd0 = N->getOperand(0);
1551 } else
1552 return false;
1553
1554 // Bail out on large immediates. This happens when no proper
1555 // combining/constant folding was performed.
1556 if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) {
1557 LLVM_DEBUG(
1558 (dbgs() << N
1559 << ": Found large shift immediate, this should not happen\n"));
1560 return false;
1561 }
1562
1563 LSB = SrlImm;
1564 MSB = SrlImm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(AndImm)
1565 : countTrailingOnes<uint64_t>(AndImm)) -
1566 1;
1567 if (ClampMSB)
1568 // Since we're moving the extend before the right shift operation, we need
1569 // to clamp the MSB to make sure we don't shift in undefined bits instead of
1570 // the zeros which would get shifted in with the original right shift
1571 // operation.
1572 MSB = MSB > 31 ? 31 : MSB;
1573
1574 Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
1575 return true;
1576 }
1577
isBitfieldExtractOpFromSExtInReg(SDNode * N,unsigned & Opc,SDValue & Opd0,unsigned & Immr,unsigned & Imms)1578 static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc,
1579 SDValue &Opd0, unsigned &Immr,
1580 unsigned &Imms) {
1581 assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
1582
1583 EVT VT = N->getValueType(0);
1584 unsigned BitWidth = VT.getSizeInBits();
1585 assert((VT == MVT::i32 || VT == MVT::i64) &&
1586 "Type checking must have been done before calling this function");
1587
1588 SDValue Op = N->getOperand(0);
1589 if (Op->getOpcode() == ISD::TRUNCATE) {
1590 Op = Op->getOperand(0);
1591 VT = Op->getValueType(0);
1592 BitWidth = VT.getSizeInBits();
1593 }
1594
1595 uint64_t ShiftImm;
1596 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) &&
1597 !isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
1598 return false;
1599
1600 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
1601 if (ShiftImm + Width > BitWidth)
1602 return false;
1603
1604 Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri;
1605 Opd0 = Op.getOperand(0);
1606 Immr = ShiftImm;
1607 Imms = ShiftImm + Width - 1;
1608 return true;
1609 }
1610
isSeveralBitsExtractOpFromShr(SDNode * N,unsigned & Opc,SDValue & Opd0,unsigned & LSB,unsigned & MSB)1611 static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
1612 SDValue &Opd0, unsigned &LSB,
1613 unsigned &MSB) {
1614 // We are looking for the following pattern which basically extracts several
1615 // continuous bits from the source value and places it from the LSB of the
1616 // destination value, all other bits of the destination value or set to zero:
1617 //
1618 // Value2 = AND Value, MaskImm
1619 // SRL Value2, ShiftImm
1620 //
1621 // with MaskImm >> ShiftImm to search for the bit width.
1622 //
1623 // This gets selected into a single UBFM:
1624 //
1625 // UBFM Value, ShiftImm, BitWide + SrlImm -1
1626 //
1627
1628 if (N->getOpcode() != ISD::SRL)
1629 return false;
1630
1631 uint64_t AndMask = 0;
1632 if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask))
1633 return false;
1634
1635 Opd0 = N->getOperand(0).getOperand(0);
1636
1637 uint64_t SrlImm = 0;
1638 if (!isIntImmediate(N->getOperand(1), SrlImm))
1639 return false;
1640
1641 // Check whether we really have several bits extract here.
1642 unsigned BitWide = 64 - countLeadingOnes(~(AndMask >> SrlImm));
1643 if (BitWide && isMask_64(AndMask >> SrlImm)) {
1644 if (N->getValueType(0) == MVT::i32)
1645 Opc = AArch64::UBFMWri;
1646 else
1647 Opc = AArch64::UBFMXri;
1648
1649 LSB = SrlImm;
1650 MSB = BitWide + SrlImm - 1;
1651 return true;
1652 }
1653
1654 return false;
1655 }
1656
isBitfieldExtractOpFromShr(SDNode * N,unsigned & Opc,SDValue & Opd0,unsigned & Immr,unsigned & Imms,bool BiggerPattern)1657 static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
1658 unsigned &Immr, unsigned &Imms,
1659 bool BiggerPattern) {
1660 assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
1661 "N must be a SHR/SRA operation to call this function");
1662
1663 EVT VT = N->getValueType(0);
1664
1665 // Here we can test the type of VT and return false when the type does not
1666 // match, but since it is done prior to that call in the current context
1667 // we turned that into an assert to avoid redundant code.
1668 assert((VT == MVT::i32 || VT == MVT::i64) &&
1669 "Type checking must have been done before calling this function");
1670
1671 // Check for AND + SRL doing several bits extract.
1672 if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
1673 return true;
1674
1675 // We're looking for a shift of a shift.
1676 uint64_t ShlImm = 0;
1677 uint64_t TruncBits = 0;
1678 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) {
1679 Opd0 = N->getOperand(0).getOperand(0);
1680 } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
1681 N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
1682 // We are looking for a shift of truncate. Truncate from i64 to i32 could
1683 // be considered as setting high 32 bits as zero. Our strategy here is to
1684 // always generate 64bit UBFM. This consistency will help the CSE pass
1685 // later find more redundancy.
1686 Opd0 = N->getOperand(0).getOperand(0);
1687 TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
1688 VT = Opd0.getValueType();
1689 assert(VT == MVT::i64 && "the promoted type should be i64");
1690 } else if (BiggerPattern) {
1691 // Let's pretend a 0 shift left has been performed.
1692 // FIXME: Currently we limit this to the bigger pattern case,
1693 // because some optimizations expect AND and not UBFM
1694 Opd0 = N->getOperand(0);
1695 } else
1696 return false;
1697
1698 // Missing combines/constant folding may have left us with strange
1699 // constants.
1700 if (ShlImm >= VT.getSizeInBits()) {
1701 LLVM_DEBUG(
1702 (dbgs() << N
1703 << ": Found large shift immediate, this should not happen\n"));
1704 return false;
1705 }
1706
1707 uint64_t SrlImm = 0;
1708 if (!isIntImmediate(N->getOperand(1), SrlImm))
1709 return false;
1710
1711 assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() &&
1712 "bad amount in shift node!");
1713 int immr = SrlImm - ShlImm;
1714 Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
1715 Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1;
1716 // SRA requires a signed extraction
1717 if (VT == MVT::i32)
1718 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
1719 else
1720 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
1721 return true;
1722 }
1723
tryBitfieldExtractOpFromSExt(SDNode * N)1724 bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) {
1725 assert(N->getOpcode() == ISD::SIGN_EXTEND);
1726
1727 EVT VT = N->getValueType(0);
1728 EVT NarrowVT = N->getOperand(0)->getValueType(0);
1729 if (VT != MVT::i64 || NarrowVT != MVT::i32)
1730 return false;
1731
1732 uint64_t ShiftImm;
1733 SDValue Op = N->getOperand(0);
1734 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
1735 return false;
1736
1737 SDLoc dl(N);
1738 // Extend the incoming operand of the shift to 64-bits.
1739 SDValue Opd0 = Widen(CurDAG, Op.getOperand(0));
1740 unsigned Immr = ShiftImm;
1741 unsigned Imms = NarrowVT.getSizeInBits() - 1;
1742 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
1743 CurDAG->getTargetConstant(Imms, dl, VT)};
1744 CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops);
1745 return true;
1746 }
1747
isBitfieldExtractOp(SelectionDAG * CurDAG,SDNode * N,unsigned & Opc,SDValue & Opd0,unsigned & Immr,unsigned & Imms,unsigned NumberOfIgnoredLowBits=0,bool BiggerPattern=false)1748 static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
1749 SDValue &Opd0, unsigned &Immr, unsigned &Imms,
1750 unsigned NumberOfIgnoredLowBits = 0,
1751 bool BiggerPattern = false) {
1752 if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
1753 return false;
1754
1755 switch (N->getOpcode()) {
1756 default:
1757 if (!N->isMachineOpcode())
1758 return false;
1759 break;
1760 case ISD::AND:
1761 return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
1762 NumberOfIgnoredLowBits, BiggerPattern);
1763 case ISD::SRL:
1764 case ISD::SRA:
1765 return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
1766
1767 case ISD::SIGN_EXTEND_INREG:
1768 return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms);
1769 }
1770
1771 unsigned NOpc = N->getMachineOpcode();
1772 switch (NOpc) {
1773 default:
1774 return false;
1775 case AArch64::SBFMWri:
1776 case AArch64::UBFMWri:
1777 case AArch64::SBFMXri:
1778 case AArch64::UBFMXri:
1779 Opc = NOpc;
1780 Opd0 = N->getOperand(0);
1781 Immr = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
1782 Imms = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
1783 return true;
1784 }
1785 // Unreachable
1786 return false;
1787 }
1788
tryBitfieldExtractOp(SDNode * N)1789 bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) {
1790 unsigned Opc, Immr, Imms;
1791 SDValue Opd0;
1792 if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
1793 return false;
1794
1795 EVT VT = N->getValueType(0);
1796 SDLoc dl(N);
1797
1798 // If the bit extract operation is 64bit but the original type is 32bit, we
1799 // need to add one EXTRACT_SUBREG.
1800 if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
1801 SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
1802 CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
1803
1804 SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
1805 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1806 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
1807 MVT::i32, SDValue(BFM, 0), SubReg));
1808 return true;
1809 }
1810
1811 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
1812 CurDAG->getTargetConstant(Imms, dl, VT)};
1813 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
1814 return true;
1815 }
1816
1817 /// Does DstMask form a complementary pair with the mask provided by
1818 /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
1819 /// this asks whether DstMask zeroes precisely those bits that will be set by
1820 /// the other half.
isBitfieldDstMask(uint64_t DstMask,const APInt & BitsToBeInserted,unsigned NumberOfIgnoredHighBits,EVT VT)1821 static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted,
1822 unsigned NumberOfIgnoredHighBits, EVT VT) {
1823 assert((VT == MVT::i32 || VT == MVT::i64) &&
1824 "i32 or i64 mask type expected!");
1825 unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
1826
1827 APInt SignificantDstMask = APInt(BitWidth, DstMask);
1828 APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
1829
1830 return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
1831 (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
1832 }
1833
1834 // Look for bits that will be useful for later uses.
1835 // A bit is consider useless as soon as it is dropped and never used
1836 // before it as been dropped.
1837 // E.g., looking for useful bit of x
1838 // 1. y = x & 0x7
1839 // 2. z = y >> 2
1840 // After #1, x useful bits are 0x7, then the useful bits of x, live through
1841 // y.
1842 // After #2, the useful bits of x are 0x4.
1843 // However, if x is used on an unpredicatable instruction, then all its bits
1844 // are useful.
1845 // E.g.
1846 // 1. y = x & 0x7
1847 // 2. z = y >> 2
1848 // 3. str x, [@x]
1849 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
1850
getUsefulBitsFromAndWithImmediate(SDValue Op,APInt & UsefulBits,unsigned Depth)1851 static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
1852 unsigned Depth) {
1853 uint64_t Imm =
1854 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
1855 Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
1856 UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
1857 getUsefulBits(Op, UsefulBits, Depth + 1);
1858 }
1859
getUsefulBitsFromBitfieldMoveOpd(SDValue Op,APInt & UsefulBits,uint64_t Imm,uint64_t MSB,unsigned Depth)1860 static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
1861 uint64_t Imm, uint64_t MSB,
1862 unsigned Depth) {
1863 // inherit the bitwidth value
1864 APInt OpUsefulBits(UsefulBits);
1865 OpUsefulBits = 1;
1866
1867 if (MSB >= Imm) {
1868 OpUsefulBits <<= MSB - Imm + 1;
1869 --OpUsefulBits;
1870 // The interesting part will be in the lower part of the result
1871 getUsefulBits(Op, OpUsefulBits, Depth + 1);
1872 // The interesting part was starting at Imm in the argument
1873 OpUsefulBits <<= Imm;
1874 } else {
1875 OpUsefulBits <<= MSB + 1;
1876 --OpUsefulBits;
1877 // The interesting part will be shifted in the result
1878 OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm;
1879 getUsefulBits(Op, OpUsefulBits, Depth + 1);
1880 // The interesting part was at zero in the argument
1881 OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm);
1882 }
1883
1884 UsefulBits &= OpUsefulBits;
1885 }
1886
getUsefulBitsFromUBFM(SDValue Op,APInt & UsefulBits,unsigned Depth)1887 static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
1888 unsigned Depth) {
1889 uint64_t Imm =
1890 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
1891 uint64_t MSB =
1892 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1893
1894 getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
1895 }
1896
getUsefulBitsFromOrWithShiftedReg(SDValue Op,APInt & UsefulBits,unsigned Depth)1897 static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
1898 unsigned Depth) {
1899 uint64_t ShiftTypeAndValue =
1900 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1901 APInt Mask(UsefulBits);
1902 Mask.clearAllBits();
1903 Mask.flipAllBits();
1904
1905 if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
1906 // Shift Left
1907 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
1908 Mask <<= ShiftAmt;
1909 getUsefulBits(Op, Mask, Depth + 1);
1910 Mask.lshrInPlace(ShiftAmt);
1911 } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
1912 // Shift Right
1913 // We do not handle AArch64_AM::ASR, because the sign will change the
1914 // number of useful bits
1915 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
1916 Mask.lshrInPlace(ShiftAmt);
1917 getUsefulBits(Op, Mask, Depth + 1);
1918 Mask <<= ShiftAmt;
1919 } else
1920 return;
1921
1922 UsefulBits &= Mask;
1923 }
1924
getUsefulBitsFromBFM(SDValue Op,SDValue Orig,APInt & UsefulBits,unsigned Depth)1925 static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
1926 unsigned Depth) {
1927 uint64_t Imm =
1928 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1929 uint64_t MSB =
1930 cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
1931
1932 APInt OpUsefulBits(UsefulBits);
1933 OpUsefulBits = 1;
1934
1935 APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0);
1936 ResultUsefulBits.flipAllBits();
1937 APInt Mask(UsefulBits.getBitWidth(), 0);
1938
1939 getUsefulBits(Op, ResultUsefulBits, Depth + 1);
1940
1941 if (MSB >= Imm) {
1942 // The instruction is a BFXIL.
1943 uint64_t Width = MSB - Imm + 1;
1944 uint64_t LSB = Imm;
1945
1946 OpUsefulBits <<= Width;
1947 --OpUsefulBits;
1948
1949 if (Op.getOperand(1) == Orig) {
1950 // Copy the low bits from the result to bits starting from LSB.
1951 Mask = ResultUsefulBits & OpUsefulBits;
1952 Mask <<= LSB;
1953 }
1954
1955 if (Op.getOperand(0) == Orig)
1956 // Bits starting from LSB in the input contribute to the result.
1957 Mask |= (ResultUsefulBits & ~OpUsefulBits);
1958 } else {
1959 // The instruction is a BFI.
1960 uint64_t Width = MSB + 1;
1961 uint64_t LSB = UsefulBits.getBitWidth() - Imm;
1962
1963 OpUsefulBits <<= Width;
1964 --OpUsefulBits;
1965 OpUsefulBits <<= LSB;
1966
1967 if (Op.getOperand(1) == Orig) {
1968 // Copy the bits from the result to the zero bits.
1969 Mask = ResultUsefulBits & OpUsefulBits;
1970 Mask.lshrInPlace(LSB);
1971 }
1972
1973 if (Op.getOperand(0) == Orig)
1974 Mask |= (ResultUsefulBits & ~OpUsefulBits);
1975 }
1976
1977 UsefulBits &= Mask;
1978 }
1979
getUsefulBitsForUse(SDNode * UserNode,APInt & UsefulBits,SDValue Orig,unsigned Depth)1980 static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
1981 SDValue Orig, unsigned Depth) {
1982
1983 // Users of this node should have already been instruction selected
1984 // FIXME: Can we turn that into an assert?
1985 if (!UserNode->isMachineOpcode())
1986 return;
1987
1988 switch (UserNode->getMachineOpcode()) {
1989 default:
1990 return;
1991 case AArch64::ANDSWri:
1992 case AArch64::ANDSXri:
1993 case AArch64::ANDWri:
1994 case AArch64::ANDXri:
1995 // We increment Depth only when we call the getUsefulBits
1996 return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
1997 Depth);
1998 case AArch64::UBFMWri:
1999 case AArch64::UBFMXri:
2000 return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
2001
2002 case AArch64::ORRWrs:
2003 case AArch64::ORRXrs:
2004 if (UserNode->getOperand(1) != Orig)
2005 return;
2006 return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
2007 Depth);
2008 case AArch64::BFMWri:
2009 case AArch64::BFMXri:
2010 return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
2011
2012 case AArch64::STRBBui:
2013 case AArch64::STURBBi:
2014 if (UserNode->getOperand(0) != Orig)
2015 return;
2016 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff);
2017 return;
2018
2019 case AArch64::STRHHui:
2020 case AArch64::STURHHi:
2021 if (UserNode->getOperand(0) != Orig)
2022 return;
2023 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff);
2024 return;
2025 }
2026 }
2027
getUsefulBits(SDValue Op,APInt & UsefulBits,unsigned Depth)2028 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
2029 if (Depth >= 6)
2030 return;
2031 // Initialize UsefulBits
2032 if (!Depth) {
2033 unsigned Bitwidth = Op.getScalarValueSizeInBits();
2034 // At the beginning, assume every produced bits is useful
2035 UsefulBits = APInt(Bitwidth, 0);
2036 UsefulBits.flipAllBits();
2037 }
2038 APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
2039
2040 for (SDNode *Node : Op.getNode()->uses()) {
2041 // A use cannot produce useful bits
2042 APInt UsefulBitsForUse = APInt(UsefulBits);
2043 getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
2044 UsersUsefulBits |= UsefulBitsForUse;
2045 }
2046 // UsefulBits contains the produced bits that are meaningful for the
2047 // current definition, thus a user cannot make a bit meaningful at
2048 // this point
2049 UsefulBits &= UsersUsefulBits;
2050 }
2051
2052 /// Create a machine node performing a notional SHL of Op by ShlAmount. If
2053 /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
2054 /// 0, return Op unchanged.
getLeftShift(SelectionDAG * CurDAG,SDValue Op,int ShlAmount)2055 static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
2056 if (ShlAmount == 0)
2057 return Op;
2058
2059 EVT VT = Op.getValueType();
2060 SDLoc dl(Op);
2061 unsigned BitWidth = VT.getSizeInBits();
2062 unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
2063
2064 SDNode *ShiftNode;
2065 if (ShlAmount > 0) {
2066 // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
2067 ShiftNode = CurDAG->getMachineNode(
2068 UBFMOpc, dl, VT, Op,
2069 CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
2070 CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
2071 } else {
2072 // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
2073 assert(ShlAmount < 0 && "expected right shift");
2074 int ShrAmount = -ShlAmount;
2075 ShiftNode = CurDAG->getMachineNode(
2076 UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
2077 CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
2078 }
2079
2080 return SDValue(ShiftNode, 0);
2081 }
2082
2083 /// Does this tree qualify as an attempt to move a bitfield into position,
2084 /// essentially "(and (shl VAL, N), Mask)".
isBitfieldPositioningOp(SelectionDAG * CurDAG,SDValue Op,bool BiggerPattern,SDValue & Src,int & ShiftAmount,int & MaskWidth)2085 static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
2086 bool BiggerPattern,
2087 SDValue &Src, int &ShiftAmount,
2088 int &MaskWidth) {
2089 EVT VT = Op.getValueType();
2090 unsigned BitWidth = VT.getSizeInBits();
2091 (void)BitWidth;
2092 assert(BitWidth == 32 || BitWidth == 64);
2093
2094 KnownBits Known;
2095 CurDAG->computeKnownBits(Op, Known);
2096
2097 // Non-zero in the sense that they're not provably zero, which is the key
2098 // point if we want to use this value
2099 uint64_t NonZeroBits = (~Known.Zero).getZExtValue();
2100
2101 // Discard a constant AND mask if present. It's safe because the node will
2102 // already have been factored into the computeKnownBits calculation above.
2103 uint64_t AndImm;
2104 if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
2105 assert((~APInt(BitWidth, AndImm) & ~Known.Zero) == 0);
2106 Op = Op.getOperand(0);
2107 }
2108
2109 // Don't match if the SHL has more than one use, since then we'll end up
2110 // generating SHL+UBFIZ instead of just keeping SHL+AND.
2111 if (!BiggerPattern && !Op.hasOneUse())
2112 return false;
2113
2114 uint64_t ShlImm;
2115 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
2116 return false;
2117 Op = Op.getOperand(0);
2118
2119 if (!isShiftedMask_64(NonZeroBits))
2120 return false;
2121
2122 ShiftAmount = countTrailingZeros(NonZeroBits);
2123 MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount);
2124
2125 // BFI encompasses sufficiently many nodes that it's worth inserting an extra
2126 // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
2127 // amount. BiggerPattern is true when this pattern is being matched for BFI,
2128 // BiggerPattern is false when this pattern is being matched for UBFIZ, in
2129 // which case it is not profitable to insert an extra shift.
2130 if (ShlImm - ShiftAmount != 0 && !BiggerPattern)
2131 return false;
2132 Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
2133
2134 return true;
2135 }
2136
isShiftedMask(uint64_t Mask,EVT VT)2137 static bool isShiftedMask(uint64_t Mask, EVT VT) {
2138 assert(VT == MVT::i32 || VT == MVT::i64);
2139 if (VT == MVT::i32)
2140 return isShiftedMask_32(Mask);
2141 return isShiftedMask_64(Mask);
2142 }
2143
2144 // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
2145 // inserted only sets known zero bits.
tryBitfieldInsertOpFromOrAndImm(SDNode * N,SelectionDAG * CurDAG)2146 static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) {
2147 assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
2148
2149 EVT VT = N->getValueType(0);
2150 if (VT != MVT::i32 && VT != MVT::i64)
2151 return false;
2152
2153 unsigned BitWidth = VT.getSizeInBits();
2154
2155 uint64_t OrImm;
2156 if (!isOpcWithIntImmediate(N, ISD::OR, OrImm))
2157 return false;
2158
2159 // Skip this transformation if the ORR immediate can be encoded in the ORR.
2160 // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
2161 // performance neutral.
2162 if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth))
2163 return false;
2164
2165 uint64_t MaskImm;
2166 SDValue And = N->getOperand(0);
2167 // Must be a single use AND with an immediate operand.
2168 if (!And.hasOneUse() ||
2169 !isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm))
2170 return false;
2171
2172 // Compute the Known Zero for the AND as this allows us to catch more general
2173 // cases than just looking for AND with imm.
2174 KnownBits Known;
2175 CurDAG->computeKnownBits(And, Known);
2176
2177 // Non-zero in the sense that they're not provably zero, which is the key
2178 // point if we want to use this value.
2179 uint64_t NotKnownZero = (~Known.Zero).getZExtValue();
2180
2181 // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
2182 if (!isShiftedMask(Known.Zero.getZExtValue(), VT))
2183 return false;
2184
2185 // The bits being inserted must only set those bits that are known to be zero.
2186 if ((OrImm & NotKnownZero) != 0) {
2187 // FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
2188 // currently handle this case.
2189 return false;
2190 }
2191
2192 // BFI/BFXIL dst, src, #lsb, #width.
2193 int LSB = countTrailingOnes(NotKnownZero);
2194 int Width = BitWidth - APInt(BitWidth, NotKnownZero).countPopulation();
2195
2196 // BFI/BFXIL is an alias of BFM, so translate to BFM operands.
2197 unsigned ImmR = (BitWidth - LSB) % BitWidth;
2198 unsigned ImmS = Width - 1;
2199
2200 // If we're creating a BFI instruction avoid cases where we need more
2201 // instructions to materialize the BFI constant as compared to the original
2202 // ORR. A BFXIL will use the same constant as the original ORR, so the code
2203 // should be no worse in this case.
2204 bool IsBFI = LSB != 0;
2205 uint64_t BFIImm = OrImm >> LSB;
2206 if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) {
2207 // We have a BFI instruction and we know the constant can't be materialized
2208 // with a ORR-immediate with the zero register.
2209 unsigned OrChunks = 0, BFIChunks = 0;
2210 for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) {
2211 if (((OrImm >> Shift) & 0xFFFF) != 0)
2212 ++OrChunks;
2213 if (((BFIImm >> Shift) & 0xFFFF) != 0)
2214 ++BFIChunks;
2215 }
2216 if (BFIChunks > OrChunks)
2217 return false;
2218 }
2219
2220 // Materialize the constant to be inserted.
2221 SDLoc DL(N);
2222 unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm;
2223 SDNode *MOVI = CurDAG->getMachineNode(
2224 MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT));
2225
2226 // Create the BFI/BFXIL instruction.
2227 SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0),
2228 CurDAG->getTargetConstant(ImmR, DL, VT),
2229 CurDAG->getTargetConstant(ImmS, DL, VT)};
2230 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2231 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2232 return true;
2233 }
2234
tryBitfieldInsertOpFromOr(SDNode * N,const APInt & UsefulBits,SelectionDAG * CurDAG)2235 static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits,
2236 SelectionDAG *CurDAG) {
2237 assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
2238
2239 EVT VT = N->getValueType(0);
2240 if (VT != MVT::i32 && VT != MVT::i64)
2241 return false;
2242
2243 unsigned BitWidth = VT.getSizeInBits();
2244
2245 // Because of simplify-demanded-bits in DAGCombine, involved masks may not
2246 // have the expected shape. Try to undo that.
2247
2248 unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
2249 unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
2250
2251 // Given a OR operation, check if we have the following pattern
2252 // ubfm c, b, imm, imm2 (or something that does the same jobs, see
2253 // isBitfieldExtractOp)
2254 // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
2255 // countTrailingZeros(mask2) == imm2 - imm + 1
2256 // f = d | c
2257 // if yes, replace the OR instruction with:
2258 // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
2259
2260 // OR is commutative, check all combinations of operand order and values of
2261 // BiggerPattern, i.e.
2262 // Opd0, Opd1, BiggerPattern=false
2263 // Opd1, Opd0, BiggerPattern=false
2264 // Opd0, Opd1, BiggerPattern=true
2265 // Opd1, Opd0, BiggerPattern=true
2266 // Several of these combinations may match, so check with BiggerPattern=false
2267 // first since that will produce better results by matching more instructions
2268 // and/or inserting fewer extra instructions.
2269 for (int I = 0; I < 4; ++I) {
2270
2271 SDValue Dst, Src;
2272 unsigned ImmR, ImmS;
2273 bool BiggerPattern = I / 2;
2274 SDValue OrOpd0Val = N->getOperand(I % 2);
2275 SDNode *OrOpd0 = OrOpd0Val.getNode();
2276 SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
2277 SDNode *OrOpd1 = OrOpd1Val.getNode();
2278
2279 unsigned BFXOpc;
2280 int DstLSB, Width;
2281 if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
2282 NumberOfIgnoredLowBits, BiggerPattern)) {
2283 // Check that the returned opcode is compatible with the pattern,
2284 // i.e., same type and zero extended (U and not S)
2285 if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
2286 (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
2287 continue;
2288
2289 // Compute the width of the bitfield insertion
2290 DstLSB = 0;
2291 Width = ImmS - ImmR + 1;
2292 // FIXME: This constraint is to catch bitfield insertion we may
2293 // want to widen the pattern if we want to grab general bitfied
2294 // move case
2295 if (Width <= 0)
2296 continue;
2297
2298 // If the mask on the insertee is correct, we have a BFXIL operation. We
2299 // can share the ImmR and ImmS values from the already-computed UBFM.
2300 } else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val,
2301 BiggerPattern,
2302 Src, DstLSB, Width)) {
2303 ImmR = (BitWidth - DstLSB) % BitWidth;
2304 ImmS = Width - 1;
2305 } else
2306 continue;
2307
2308 // Check the second part of the pattern
2309 EVT VT = OrOpd1Val.getValueType();
2310 assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
2311
2312 // Compute the Known Zero for the candidate of the first operand.
2313 // This allows to catch more general case than just looking for
2314 // AND with imm. Indeed, simplify-demanded-bits may have removed
2315 // the AND instruction because it proves it was useless.
2316 KnownBits Known;
2317 CurDAG->computeKnownBits(OrOpd1Val, Known);
2318
2319 // Check if there is enough room for the second operand to appear
2320 // in the first one
2321 APInt BitsToBeInserted =
2322 APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width);
2323
2324 if ((BitsToBeInserted & ~Known.Zero) != 0)
2325 continue;
2326
2327 // Set the first operand
2328 uint64_t Imm;
2329 if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
2330 isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
2331 // In that case, we can eliminate the AND
2332 Dst = OrOpd1->getOperand(0);
2333 else
2334 // Maybe the AND has been removed by simplify-demanded-bits
2335 // or is useful because it discards more bits
2336 Dst = OrOpd1Val;
2337
2338 // both parts match
2339 SDLoc DL(N);
2340 SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT),
2341 CurDAG->getTargetConstant(ImmS, DL, VT)};
2342 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2343 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2344 return true;
2345 }
2346
2347 // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
2348 // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
2349 // mask (e.g., 0x000ffff0).
2350 uint64_t Mask0Imm, Mask1Imm;
2351 SDValue And0 = N->getOperand(0);
2352 SDValue And1 = N->getOperand(1);
2353 if (And0.hasOneUse() && And1.hasOneUse() &&
2354 isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) &&
2355 isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) &&
2356 APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) &&
2357 (isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) {
2358
2359 // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
2360 // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
2361 // bits to be inserted.
2362 if (isShiftedMask(Mask0Imm, VT)) {
2363 std::swap(And0, And1);
2364 std::swap(Mask0Imm, Mask1Imm);
2365 }
2366
2367 SDValue Src = And1->getOperand(0);
2368 SDValue Dst = And0->getOperand(0);
2369 unsigned LSB = countTrailingZeros(Mask1Imm);
2370 int Width = BitWidth - APInt(BitWidth, Mask0Imm).countPopulation();
2371
2372 // The BFXIL inserts the low-order bits from a source register, so right
2373 // shift the needed bits into place.
2374 SDLoc DL(N);
2375 unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
2376 SDNode *LSR = CurDAG->getMachineNode(
2377 ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LSB, DL, VT),
2378 CurDAG->getTargetConstant(BitWidth - 1, DL, VT));
2379
2380 // BFXIL is an alias of BFM, so translate to BFM operands.
2381 unsigned ImmR = (BitWidth - LSB) % BitWidth;
2382 unsigned ImmS = Width - 1;
2383
2384 // Create the BFXIL instruction.
2385 SDValue Ops[] = {Dst, SDValue(LSR, 0),
2386 CurDAG->getTargetConstant(ImmR, DL, VT),
2387 CurDAG->getTargetConstant(ImmS, DL, VT)};
2388 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
2389 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2390 return true;
2391 }
2392
2393 return false;
2394 }
2395
tryBitfieldInsertOp(SDNode * N)2396 bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) {
2397 if (N->getOpcode() != ISD::OR)
2398 return false;
2399
2400 APInt NUsefulBits;
2401 getUsefulBits(SDValue(N, 0), NUsefulBits);
2402
2403 // If all bits are not useful, just return UNDEF.
2404 if (!NUsefulBits) {
2405 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2406 return true;
2407 }
2408
2409 if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG))
2410 return true;
2411
2412 return tryBitfieldInsertOpFromOrAndImm(N, CurDAG);
2413 }
2414
2415 /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
2416 /// equivalent of a left shift by a constant amount followed by an and masking
2417 /// out a contiguous set of bits.
tryBitfieldInsertInZeroOp(SDNode * N)2418 bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) {
2419 if (N->getOpcode() != ISD::AND)
2420 return false;
2421
2422 EVT VT = N->getValueType(0);
2423 if (VT != MVT::i32 && VT != MVT::i64)
2424 return false;
2425
2426 SDValue Op0;
2427 int DstLSB, Width;
2428 if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
2429 Op0, DstLSB, Width))
2430 return false;
2431
2432 // ImmR is the rotate right amount.
2433 unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
2434 // ImmS is the most significant bit of the source to be moved.
2435 unsigned ImmS = Width - 1;
2436
2437 SDLoc DL(N);
2438 SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
2439 CurDAG->getTargetConstant(ImmS, DL, VT)};
2440 unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
2441 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2442 return true;
2443 }
2444
2445 /// tryShiftAmountMod - Take advantage of built-in mod of shift amount in
2446 /// variable shift/rotate instructions.
tryShiftAmountMod(SDNode * N)2447 bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
2448 EVT VT = N->getValueType(0);
2449
2450 unsigned Opc;
2451 switch (N->getOpcode()) {
2452 case ISD::ROTR:
2453 Opc = (VT == MVT::i32) ? AArch64::RORVWr : AArch64::RORVXr;
2454 break;
2455 case ISD::SHL:
2456 Opc = (VT == MVT::i32) ? AArch64::LSLVWr : AArch64::LSLVXr;
2457 break;
2458 case ISD::SRL:
2459 Opc = (VT == MVT::i32) ? AArch64::LSRVWr : AArch64::LSRVXr;
2460 break;
2461 case ISD::SRA:
2462 Opc = (VT == MVT::i32) ? AArch64::ASRVWr : AArch64::ASRVXr;
2463 break;
2464 default:
2465 return false;
2466 }
2467
2468 uint64_t Size;
2469 uint64_t Bits;
2470 if (VT == MVT::i32) {
2471 Bits = 5;
2472 Size = 32;
2473 } else if (VT == MVT::i64) {
2474 Bits = 6;
2475 Size = 64;
2476 } else
2477 return false;
2478
2479 SDValue ShiftAmt = N->getOperand(1);
2480 SDLoc DL(N);
2481 SDValue NewShiftAmt;
2482
2483 // Skip over an extend of the shift amount.
2484 if (ShiftAmt->getOpcode() == ISD::ZERO_EXTEND ||
2485 ShiftAmt->getOpcode() == ISD::ANY_EXTEND)
2486 ShiftAmt = ShiftAmt->getOperand(0);
2487
2488 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
2489 SDValue Add0 = ShiftAmt->getOperand(0);
2490 SDValue Add1 = ShiftAmt->getOperand(1);
2491 uint64_t Add0Imm;
2492 uint64_t Add1Imm;
2493 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
2494 // to avoid the ADD/SUB.
2495 if (isIntImmediate(Add1, Add1Imm) && (Add1Imm % Size == 0))
2496 NewShiftAmt = Add0;
2497 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
2498 // generate a NEG instead of a SUB of a constant.
2499 else if (ShiftAmt->getOpcode() == ISD::SUB &&
2500 isIntImmediate(Add0, Add0Imm) && Add0Imm != 0 &&
2501 (Add0Imm % Size == 0)) {
2502 unsigned NegOpc;
2503 unsigned ZeroReg;
2504 EVT SubVT = ShiftAmt->getValueType(0);
2505 if (SubVT == MVT::i32) {
2506 NegOpc = AArch64::SUBWrr;
2507 ZeroReg = AArch64::WZR;
2508 } else {
2509 assert(SubVT == MVT::i64);
2510 NegOpc = AArch64::SUBXrr;
2511 ZeroReg = AArch64::XZR;
2512 }
2513 SDValue Zero =
2514 CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT);
2515 MachineSDNode *Neg =
2516 CurDAG->getMachineNode(NegOpc, DL, SubVT, Zero, Add1);
2517 NewShiftAmt = SDValue(Neg, 0);
2518 } else
2519 return false;
2520 } else {
2521 // If the shift amount is masked with an AND, check that the mask covers the
2522 // bits that are implicitly ANDed off by the above opcodes and if so, skip
2523 // the AND.
2524 uint64_t MaskImm;
2525 if (!isOpcWithIntImmediate(ShiftAmt.getNode(), ISD::AND, MaskImm))
2526 return false;
2527
2528 if (countTrailingOnes(MaskImm) < Bits)
2529 return false;
2530
2531 NewShiftAmt = ShiftAmt->getOperand(0);
2532 }
2533
2534 // Narrow/widen the shift amount to match the size of the shift operation.
2535 if (VT == MVT::i32)
2536 NewShiftAmt = narrowIfNeeded(CurDAG, NewShiftAmt);
2537 else if (VT == MVT::i64 && NewShiftAmt->getValueType(0) == MVT::i32) {
2538 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, DL, MVT::i32);
2539 MachineSDNode *Ext = CurDAG->getMachineNode(
2540 AArch64::SUBREG_TO_REG, DL, VT,
2541 CurDAG->getTargetConstant(0, DL, MVT::i64), NewShiftAmt, SubReg);
2542 NewShiftAmt = SDValue(Ext, 0);
2543 }
2544
2545 SDValue Ops[] = {N->getOperand(0), NewShiftAmt};
2546 CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2547 return true;
2548 }
2549
2550 bool
SelectCVTFixedPosOperand(SDValue N,SDValue & FixedPos,unsigned RegWidth)2551 AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
2552 unsigned RegWidth) {
2553 APFloat FVal(0.0);
2554 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
2555 FVal = CN->getValueAPF();
2556 else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
2557 // Some otherwise illegal constants are allowed in this case.
2558 if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
2559 !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
2560 return false;
2561
2562 ConstantPoolSDNode *CN =
2563 dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
2564 FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
2565 } else
2566 return false;
2567
2568 // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
2569 // is between 1 and 32 for a destination w-register, or 1 and 64 for an
2570 // x-register.
2571 //
2572 // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
2573 // want THIS_NODE to be 2^fbits. This is much easier to deal with using
2574 // integers.
2575 bool IsExact;
2576
2577 // fbits is between 1 and 64 in the worst-case, which means the fmul
2578 // could have 2^64 as an actual operand. Need 65 bits of precision.
2579 APSInt IntVal(65, true);
2580 FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
2581
2582 // N.b. isPowerOf2 also checks for > 0.
2583 if (!IsExact || !IntVal.isPowerOf2()) return false;
2584 unsigned FBits = IntVal.logBase2();
2585
2586 // Checks above should have guaranteed that we haven't lost information in
2587 // finding FBits, but it must still be in range.
2588 if (FBits == 0 || FBits > RegWidth) return false;
2589
2590 FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
2591 return true;
2592 }
2593
2594 // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
2595 // of the string and obtains the integer values from them and combines these
2596 // into a single value to be used in the MRS/MSR instruction.
getIntOperandFromRegisterString(StringRef RegString)2597 static int getIntOperandFromRegisterString(StringRef RegString) {
2598 SmallVector<StringRef, 5> Fields;
2599 RegString.split(Fields, ':');
2600
2601 if (Fields.size() == 1)
2602 return -1;
2603
2604 assert(Fields.size() == 5
2605 && "Invalid number of fields in read register string");
2606
2607 SmallVector<int, 5> Ops;
2608 bool AllIntFields = true;
2609
2610 for (StringRef Field : Fields) {
2611 unsigned IntField;
2612 AllIntFields &= !Field.getAsInteger(10, IntField);
2613 Ops.push_back(IntField);
2614 }
2615
2616 assert(AllIntFields &&
2617 "Unexpected non-integer value in special register string.");
2618
2619 // Need to combine the integer fields of the string into a single value
2620 // based on the bit encoding of MRS/MSR instruction.
2621 return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
2622 (Ops[3] << 3) | (Ops[4]);
2623 }
2624
2625 // Lower the read_register intrinsic to an MRS instruction node if the special
2626 // register string argument is either of the form detailed in the ALCE (the
2627 // form described in getIntOperandsFromRegsterString) or is a named register
2628 // known by the MRS SysReg mapper.
tryReadRegister(SDNode * N)2629 bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) {
2630 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
2631 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2632 SDLoc DL(N);
2633
2634 int Reg = getIntOperandFromRegisterString(RegString->getString());
2635 if (Reg != -1) {
2636 ReplaceNode(N, CurDAG->getMachineNode(
2637 AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
2638 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2639 N->getOperand(0)));
2640 return true;
2641 }
2642
2643 // Use the sysreg mapper to map the remaining possible strings to the
2644 // value for the register to be used for the instruction operand.
2645 auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
2646 if (TheReg && TheReg->Readable &&
2647 TheReg->haveFeatures(Subtarget->getFeatureBits()))
2648 Reg = TheReg->Encoding;
2649 else
2650 Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
2651
2652 if (Reg != -1) {
2653 ReplaceNode(N, CurDAG->getMachineNode(
2654 AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
2655 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2656 N->getOperand(0)));
2657 return true;
2658 }
2659
2660 return false;
2661 }
2662
2663 // Lower the write_register intrinsic to an MSR instruction node if the special
2664 // register string argument is either of the form detailed in the ALCE (the
2665 // form described in getIntOperandsFromRegsterString) or is a named register
2666 // known by the MSR SysReg mapper.
tryWriteRegister(SDNode * N)2667 bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) {
2668 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
2669 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2670 SDLoc DL(N);
2671
2672 int Reg = getIntOperandFromRegisterString(RegString->getString());
2673 if (Reg != -1) {
2674 ReplaceNode(
2675 N, CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
2676 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2677 N->getOperand(2), N->getOperand(0)));
2678 return true;
2679 }
2680
2681 // Check if the register was one of those allowed as the pstatefield value in
2682 // the MSR (immediate) instruction. To accept the values allowed in the
2683 // pstatefield for the MSR (immediate) instruction, we also require that an
2684 // immediate value has been provided as an argument, we know that this is
2685 // the case as it has been ensured by semantic checking.
2686 auto PMapper = AArch64PState::lookupPStateByName(RegString->getString());
2687 if (PMapper) {
2688 assert (isa<ConstantSDNode>(N->getOperand(2))
2689 && "Expected a constant integer expression.");
2690 unsigned Reg = PMapper->Encoding;
2691 uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
2692 unsigned State;
2693 if (Reg == AArch64PState::PAN || Reg == AArch64PState::UAO) {
2694 assert(Immed < 2 && "Bad imm");
2695 State = AArch64::MSRpstateImm1;
2696 } else {
2697 assert(Immed < 16 && "Bad imm");
2698 State = AArch64::MSRpstateImm4;
2699 }
2700 ReplaceNode(N, CurDAG->getMachineNode(
2701 State, DL, MVT::Other,
2702 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2703 CurDAG->getTargetConstant(Immed, DL, MVT::i16),
2704 N->getOperand(0)));
2705 return true;
2706 }
2707
2708 // Use the sysreg mapper to attempt to map the remaining possible strings
2709 // to the value for the register to be used for the MSR (register)
2710 // instruction operand.
2711 auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
2712 if (TheReg && TheReg->Writeable &&
2713 TheReg->haveFeatures(Subtarget->getFeatureBits()))
2714 Reg = TheReg->Encoding;
2715 else
2716 Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
2717 if (Reg != -1) {
2718 ReplaceNode(N, CurDAG->getMachineNode(
2719 AArch64::MSR, DL, MVT::Other,
2720 CurDAG->getTargetConstant(Reg, DL, MVT::i32),
2721 N->getOperand(2), N->getOperand(0)));
2722 return true;
2723 }
2724
2725 return false;
2726 }
2727
2728 /// We've got special pseudo-instructions for these
SelectCMP_SWAP(SDNode * N)2729 bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
2730 unsigned Opcode;
2731 EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
2732
2733 // Leave IR for LSE if subtarget supports it.
2734 if (Subtarget->hasLSE()) return false;
2735
2736 if (MemTy == MVT::i8)
2737 Opcode = AArch64::CMP_SWAP_8;
2738 else if (MemTy == MVT::i16)
2739 Opcode = AArch64::CMP_SWAP_16;
2740 else if (MemTy == MVT::i32)
2741 Opcode = AArch64::CMP_SWAP_32;
2742 else if (MemTy == MVT::i64)
2743 Opcode = AArch64::CMP_SWAP_64;
2744 else
2745 llvm_unreachable("Unknown AtomicCmpSwap type");
2746
2747 MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32;
2748 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
2749 N->getOperand(0)};
2750 SDNode *CmpSwap = CurDAG->getMachineNode(
2751 Opcode, SDLoc(N),
2752 CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops);
2753
2754 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2755 MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2756 cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
2757
2758 ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
2759 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
2760 CurDAG->RemoveDeadNode(N);
2761
2762 return true;
2763 }
2764
Select(SDNode * Node)2765 void AArch64DAGToDAGISel::Select(SDNode *Node) {
2766 // If we have a custom node, we already have selected!
2767 if (Node->isMachineOpcode()) {
2768 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
2769 Node->setNodeId(-1);
2770 return;
2771 }
2772
2773 // Few custom selection stuff.
2774 EVT VT = Node->getValueType(0);
2775
2776 switch (Node->getOpcode()) {
2777 default:
2778 break;
2779
2780 case ISD::ATOMIC_CMP_SWAP:
2781 if (SelectCMP_SWAP(Node))
2782 return;
2783 break;
2784
2785 case ISD::READ_REGISTER:
2786 if (tryReadRegister(Node))
2787 return;
2788 break;
2789
2790 case ISD::WRITE_REGISTER:
2791 if (tryWriteRegister(Node))
2792 return;
2793 break;
2794
2795 case ISD::ADD:
2796 if (tryMLAV64LaneV128(Node))
2797 return;
2798 break;
2799
2800 case ISD::LOAD: {
2801 // Try to select as an indexed load. Fall through to normal processing
2802 // if we can't.
2803 if (tryIndexedLoad(Node))
2804 return;
2805 break;
2806 }
2807
2808 case ISD::SRL:
2809 case ISD::AND:
2810 case ISD::SRA:
2811 case ISD::SIGN_EXTEND_INREG:
2812 if (tryBitfieldExtractOp(Node))
2813 return;
2814 if (tryBitfieldInsertInZeroOp(Node))
2815 return;
2816 LLVM_FALLTHROUGH;
2817 case ISD::ROTR:
2818 case ISD::SHL:
2819 if (tryShiftAmountMod(Node))
2820 return;
2821 break;
2822
2823 case ISD::SIGN_EXTEND:
2824 if (tryBitfieldExtractOpFromSExt(Node))
2825 return;
2826 break;
2827
2828 case ISD::OR:
2829 if (tryBitfieldInsertOp(Node))
2830 return;
2831 break;
2832
2833 case ISD::EXTRACT_VECTOR_ELT: {
2834 // Extracting lane zero is a special case where we can just use a plain
2835 // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
2836 // the rest of the compiler, especially the register allocator and copyi
2837 // propagation, to reason about, so is preferred when it's possible to
2838 // use it.
2839 ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
2840 // Bail and use the default Select() for non-zero lanes.
2841 if (LaneNode->getZExtValue() != 0)
2842 break;
2843 // If the element type is not the same as the result type, likewise
2844 // bail and use the default Select(), as there's more to do than just
2845 // a cross-class COPY. This catches extracts of i8 and i16 elements
2846 // since they will need an explicit zext.
2847 if (VT != Node->getOperand(0).getValueType().getVectorElementType())
2848 break;
2849 unsigned SubReg;
2850 switch (Node->getOperand(0)
2851 .getValueType()
2852 .getVectorElementType()
2853 .getSizeInBits()) {
2854 default:
2855 llvm_unreachable("Unexpected vector element type!");
2856 case 64:
2857 SubReg = AArch64::dsub;
2858 break;
2859 case 32:
2860 SubReg = AArch64::ssub;
2861 break;
2862 case 16:
2863 SubReg = AArch64::hsub;
2864 break;
2865 case 8:
2866 llvm_unreachable("unexpected zext-requiring extract element!");
2867 }
2868 SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
2869 Node->getOperand(0));
2870 LLVM_DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
2871 LLVM_DEBUG(Extract->dumpr(CurDAG));
2872 LLVM_DEBUG(dbgs() << "\n");
2873 ReplaceNode(Node, Extract.getNode());
2874 return;
2875 }
2876 case ISD::Constant: {
2877 // Materialize zero constants as copies from WZR/XZR. This allows
2878 // the coalescer to propagate these into other instructions.
2879 ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
2880 if (ConstNode->isNullValue()) {
2881 if (VT == MVT::i32) {
2882 SDValue New = CurDAG->getCopyFromReg(
2883 CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32);
2884 ReplaceNode(Node, New.getNode());
2885 return;
2886 } else if (VT == MVT::i64) {
2887 SDValue New = CurDAG->getCopyFromReg(
2888 CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64);
2889 ReplaceNode(Node, New.getNode());
2890 return;
2891 }
2892 }
2893 break;
2894 }
2895
2896 case ISD::FrameIndex: {
2897 // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
2898 int FI = cast<FrameIndexSDNode>(Node)->getIndex();
2899 unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
2900 const TargetLowering *TLI = getTargetLowering();
2901 SDValue TFI = CurDAG->getTargetFrameIndex(
2902 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
2903 SDLoc DL(Node);
2904 SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
2905 CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
2906 CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
2907 return;
2908 }
2909 case ISD::INTRINSIC_W_CHAIN: {
2910 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2911 switch (IntNo) {
2912 default:
2913 break;
2914 case Intrinsic::aarch64_ldaxp:
2915 case Intrinsic::aarch64_ldxp: {
2916 unsigned Op =
2917 IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
2918 SDValue MemAddr = Node->getOperand(2);
2919 SDLoc DL(Node);
2920 SDValue Chain = Node->getOperand(0);
2921
2922 SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
2923 MVT::Other, MemAddr, Chain);
2924
2925 // Transfer memoperands.
2926 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2927 MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
2928 cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
2929 ReplaceNode(Node, Ld);
2930 return;
2931 }
2932 case Intrinsic::aarch64_stlxp:
2933 case Intrinsic::aarch64_stxp: {
2934 unsigned Op =
2935 IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
2936 SDLoc DL(Node);
2937 SDValue Chain = Node->getOperand(0);
2938 SDValue ValLo = Node->getOperand(2);
2939 SDValue ValHi = Node->getOperand(3);
2940 SDValue MemAddr = Node->getOperand(4);
2941
2942 // Place arguments in the right order.
2943 SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
2944
2945 SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
2946 // Transfer memoperands.
2947 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2948 MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
2949 cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
2950
2951 ReplaceNode(Node, St);
2952 return;
2953 }
2954 case Intrinsic::aarch64_neon_ld1x2:
2955 if (VT == MVT::v8i8) {
2956 SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
2957 return;
2958 } else if (VT == MVT::v16i8) {
2959 SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
2960 return;
2961 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
2962 SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
2963 return;
2964 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
2965 SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
2966 return;
2967 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
2968 SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
2969 return;
2970 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
2971 SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
2972 return;
2973 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
2974 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
2975 return;
2976 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
2977 SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
2978 return;
2979 }
2980 break;
2981 case Intrinsic::aarch64_neon_ld1x3:
2982 if (VT == MVT::v8i8) {
2983 SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
2984 return;
2985 } else if (VT == MVT::v16i8) {
2986 SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
2987 return;
2988 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
2989 SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
2990 return;
2991 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
2992 SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
2993 return;
2994 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
2995 SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
2996 return;
2997 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
2998 SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
2999 return;
3000 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3001 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
3002 return;
3003 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3004 SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
3005 return;
3006 }
3007 break;
3008 case Intrinsic::aarch64_neon_ld1x4:
3009 if (VT == MVT::v8i8) {
3010 SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
3011 return;
3012 } else if (VT == MVT::v16i8) {
3013 SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
3014 return;
3015 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3016 SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
3017 return;
3018 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3019 SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
3020 return;
3021 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3022 SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
3023 return;
3024 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3025 SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
3026 return;
3027 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3028 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
3029 return;
3030 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3031 SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
3032 return;
3033 }
3034 break;
3035 case Intrinsic::aarch64_neon_ld2:
3036 if (VT == MVT::v8i8) {
3037 SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
3038 return;
3039 } else if (VT == MVT::v16i8) {
3040 SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
3041 return;
3042 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3043 SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
3044 return;
3045 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3046 SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
3047 return;
3048 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3049 SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
3050 return;
3051 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3052 SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
3053 return;
3054 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3055 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
3056 return;
3057 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3058 SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
3059 return;
3060 }
3061 break;
3062 case Intrinsic::aarch64_neon_ld3:
3063 if (VT == MVT::v8i8) {
3064 SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
3065 return;
3066 } else if (VT == MVT::v16i8) {
3067 SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
3068 return;
3069 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3070 SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
3071 return;
3072 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3073 SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
3074 return;
3075 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3076 SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
3077 return;
3078 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3079 SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
3080 return;
3081 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3082 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
3083 return;
3084 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3085 SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
3086 return;
3087 }
3088 break;
3089 case Intrinsic::aarch64_neon_ld4:
3090 if (VT == MVT::v8i8) {
3091 SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
3092 return;
3093 } else if (VT == MVT::v16i8) {
3094 SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
3095 return;
3096 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3097 SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
3098 return;
3099 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3100 SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
3101 return;
3102 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3103 SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
3104 return;
3105 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3106 SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
3107 return;
3108 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3109 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
3110 return;
3111 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3112 SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
3113 return;
3114 }
3115 break;
3116 case Intrinsic::aarch64_neon_ld2r:
3117 if (VT == MVT::v8i8) {
3118 SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
3119 return;
3120 } else if (VT == MVT::v16i8) {
3121 SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
3122 return;
3123 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3124 SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
3125 return;
3126 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3127 SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
3128 return;
3129 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3130 SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
3131 return;
3132 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3133 SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
3134 return;
3135 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3136 SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
3137 return;
3138 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3139 SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
3140 return;
3141 }
3142 break;
3143 case Intrinsic::aarch64_neon_ld3r:
3144 if (VT == MVT::v8i8) {
3145 SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
3146 return;
3147 } else if (VT == MVT::v16i8) {
3148 SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
3149 return;
3150 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3151 SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
3152 return;
3153 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3154 SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
3155 return;
3156 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3157 SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
3158 return;
3159 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3160 SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
3161 return;
3162 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3163 SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
3164 return;
3165 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3166 SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
3167 return;
3168 }
3169 break;
3170 case Intrinsic::aarch64_neon_ld4r:
3171 if (VT == MVT::v8i8) {
3172 SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
3173 return;
3174 } else if (VT == MVT::v16i8) {
3175 SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
3176 return;
3177 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3178 SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
3179 return;
3180 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3181 SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
3182 return;
3183 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3184 SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
3185 return;
3186 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3187 SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
3188 return;
3189 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3190 SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
3191 return;
3192 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3193 SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
3194 return;
3195 }
3196 break;
3197 case Intrinsic::aarch64_neon_ld2lane:
3198 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3199 SelectLoadLane(Node, 2, AArch64::LD2i8);
3200 return;
3201 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3202 VT == MVT::v8f16) {
3203 SelectLoadLane(Node, 2, AArch64::LD2i16);
3204 return;
3205 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3206 VT == MVT::v2f32) {
3207 SelectLoadLane(Node, 2, AArch64::LD2i32);
3208 return;
3209 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3210 VT == MVT::v1f64) {
3211 SelectLoadLane(Node, 2, AArch64::LD2i64);
3212 return;
3213 }
3214 break;
3215 case Intrinsic::aarch64_neon_ld3lane:
3216 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3217 SelectLoadLane(Node, 3, AArch64::LD3i8);
3218 return;
3219 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3220 VT == MVT::v8f16) {
3221 SelectLoadLane(Node, 3, AArch64::LD3i16);
3222 return;
3223 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3224 VT == MVT::v2f32) {
3225 SelectLoadLane(Node, 3, AArch64::LD3i32);
3226 return;
3227 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3228 VT == MVT::v1f64) {
3229 SelectLoadLane(Node, 3, AArch64::LD3i64);
3230 return;
3231 }
3232 break;
3233 case Intrinsic::aarch64_neon_ld4lane:
3234 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3235 SelectLoadLane(Node, 4, AArch64::LD4i8);
3236 return;
3237 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3238 VT == MVT::v8f16) {
3239 SelectLoadLane(Node, 4, AArch64::LD4i16);
3240 return;
3241 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3242 VT == MVT::v2f32) {
3243 SelectLoadLane(Node, 4, AArch64::LD4i32);
3244 return;
3245 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3246 VT == MVT::v1f64) {
3247 SelectLoadLane(Node, 4, AArch64::LD4i64);
3248 return;
3249 }
3250 break;
3251 }
3252 } break;
3253 case ISD::INTRINSIC_WO_CHAIN: {
3254 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
3255 switch (IntNo) {
3256 default:
3257 break;
3258 case Intrinsic::aarch64_neon_tbl2:
3259 SelectTable(Node, 2,
3260 VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two,
3261 false);
3262 return;
3263 case Intrinsic::aarch64_neon_tbl3:
3264 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
3265 : AArch64::TBLv16i8Three,
3266 false);
3267 return;
3268 case Intrinsic::aarch64_neon_tbl4:
3269 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
3270 : AArch64::TBLv16i8Four,
3271 false);
3272 return;
3273 case Intrinsic::aarch64_neon_tbx2:
3274 SelectTable(Node, 2,
3275 VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two,
3276 true);
3277 return;
3278 case Intrinsic::aarch64_neon_tbx3:
3279 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
3280 : AArch64::TBXv16i8Three,
3281 true);
3282 return;
3283 case Intrinsic::aarch64_neon_tbx4:
3284 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
3285 : AArch64::TBXv16i8Four,
3286 true);
3287 return;
3288 case Intrinsic::aarch64_neon_smull:
3289 case Intrinsic::aarch64_neon_umull:
3290 if (tryMULLV64LaneV128(IntNo, Node))
3291 return;
3292 break;
3293 }
3294 break;
3295 }
3296 case ISD::INTRINSIC_VOID: {
3297 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
3298 if (Node->getNumOperands() >= 3)
3299 VT = Node->getOperand(2)->getValueType(0);
3300 switch (IntNo) {
3301 default:
3302 break;
3303 case Intrinsic::aarch64_neon_st1x2: {
3304 if (VT == MVT::v8i8) {
3305 SelectStore(Node, 2, AArch64::ST1Twov8b);
3306 return;
3307 } else if (VT == MVT::v16i8) {
3308 SelectStore(Node, 2, AArch64::ST1Twov16b);
3309 return;
3310 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3311 SelectStore(Node, 2, AArch64::ST1Twov4h);
3312 return;
3313 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3314 SelectStore(Node, 2, AArch64::ST1Twov8h);
3315 return;
3316 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3317 SelectStore(Node, 2, AArch64::ST1Twov2s);
3318 return;
3319 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3320 SelectStore(Node, 2, AArch64::ST1Twov4s);
3321 return;
3322 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3323 SelectStore(Node, 2, AArch64::ST1Twov2d);
3324 return;
3325 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3326 SelectStore(Node, 2, AArch64::ST1Twov1d);
3327 return;
3328 }
3329 break;
3330 }
3331 case Intrinsic::aarch64_neon_st1x3: {
3332 if (VT == MVT::v8i8) {
3333 SelectStore(Node, 3, AArch64::ST1Threev8b);
3334 return;
3335 } else if (VT == MVT::v16i8) {
3336 SelectStore(Node, 3, AArch64::ST1Threev16b);
3337 return;
3338 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3339 SelectStore(Node, 3, AArch64::ST1Threev4h);
3340 return;
3341 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3342 SelectStore(Node, 3, AArch64::ST1Threev8h);
3343 return;
3344 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3345 SelectStore(Node, 3, AArch64::ST1Threev2s);
3346 return;
3347 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3348 SelectStore(Node, 3, AArch64::ST1Threev4s);
3349 return;
3350 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3351 SelectStore(Node, 3, AArch64::ST1Threev2d);
3352 return;
3353 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3354 SelectStore(Node, 3, AArch64::ST1Threev1d);
3355 return;
3356 }
3357 break;
3358 }
3359 case Intrinsic::aarch64_neon_st1x4: {
3360 if (VT == MVT::v8i8) {
3361 SelectStore(Node, 4, AArch64::ST1Fourv8b);
3362 return;
3363 } else if (VT == MVT::v16i8) {
3364 SelectStore(Node, 4, AArch64::ST1Fourv16b);
3365 return;
3366 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3367 SelectStore(Node, 4, AArch64::ST1Fourv4h);
3368 return;
3369 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3370 SelectStore(Node, 4, AArch64::ST1Fourv8h);
3371 return;
3372 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3373 SelectStore(Node, 4, AArch64::ST1Fourv2s);
3374 return;
3375 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3376 SelectStore(Node, 4, AArch64::ST1Fourv4s);
3377 return;
3378 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3379 SelectStore(Node, 4, AArch64::ST1Fourv2d);
3380 return;
3381 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3382 SelectStore(Node, 4, AArch64::ST1Fourv1d);
3383 return;
3384 }
3385 break;
3386 }
3387 case Intrinsic::aarch64_neon_st2: {
3388 if (VT == MVT::v8i8) {
3389 SelectStore(Node, 2, AArch64::ST2Twov8b);
3390 return;
3391 } else if (VT == MVT::v16i8) {
3392 SelectStore(Node, 2, AArch64::ST2Twov16b);
3393 return;
3394 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3395 SelectStore(Node, 2, AArch64::ST2Twov4h);
3396 return;
3397 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3398 SelectStore(Node, 2, AArch64::ST2Twov8h);
3399 return;
3400 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3401 SelectStore(Node, 2, AArch64::ST2Twov2s);
3402 return;
3403 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3404 SelectStore(Node, 2, AArch64::ST2Twov4s);
3405 return;
3406 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3407 SelectStore(Node, 2, AArch64::ST2Twov2d);
3408 return;
3409 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3410 SelectStore(Node, 2, AArch64::ST1Twov1d);
3411 return;
3412 }
3413 break;
3414 }
3415 case Intrinsic::aarch64_neon_st3: {
3416 if (VT == MVT::v8i8) {
3417 SelectStore(Node, 3, AArch64::ST3Threev8b);
3418 return;
3419 } else if (VT == MVT::v16i8) {
3420 SelectStore(Node, 3, AArch64::ST3Threev16b);
3421 return;
3422 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3423 SelectStore(Node, 3, AArch64::ST3Threev4h);
3424 return;
3425 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3426 SelectStore(Node, 3, AArch64::ST3Threev8h);
3427 return;
3428 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3429 SelectStore(Node, 3, AArch64::ST3Threev2s);
3430 return;
3431 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3432 SelectStore(Node, 3, AArch64::ST3Threev4s);
3433 return;
3434 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3435 SelectStore(Node, 3, AArch64::ST3Threev2d);
3436 return;
3437 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3438 SelectStore(Node, 3, AArch64::ST1Threev1d);
3439 return;
3440 }
3441 break;
3442 }
3443 case Intrinsic::aarch64_neon_st4: {
3444 if (VT == MVT::v8i8) {
3445 SelectStore(Node, 4, AArch64::ST4Fourv8b);
3446 return;
3447 } else if (VT == MVT::v16i8) {
3448 SelectStore(Node, 4, AArch64::ST4Fourv16b);
3449 return;
3450 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3451 SelectStore(Node, 4, AArch64::ST4Fourv4h);
3452 return;
3453 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3454 SelectStore(Node, 4, AArch64::ST4Fourv8h);
3455 return;
3456 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3457 SelectStore(Node, 4, AArch64::ST4Fourv2s);
3458 return;
3459 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3460 SelectStore(Node, 4, AArch64::ST4Fourv4s);
3461 return;
3462 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3463 SelectStore(Node, 4, AArch64::ST4Fourv2d);
3464 return;
3465 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3466 SelectStore(Node, 4, AArch64::ST1Fourv1d);
3467 return;
3468 }
3469 break;
3470 }
3471 case Intrinsic::aarch64_neon_st2lane: {
3472 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3473 SelectStoreLane(Node, 2, AArch64::ST2i8);
3474 return;
3475 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3476 VT == MVT::v8f16) {
3477 SelectStoreLane(Node, 2, AArch64::ST2i16);
3478 return;
3479 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3480 VT == MVT::v2f32) {
3481 SelectStoreLane(Node, 2, AArch64::ST2i32);
3482 return;
3483 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3484 VT == MVT::v1f64) {
3485 SelectStoreLane(Node, 2, AArch64::ST2i64);
3486 return;
3487 }
3488 break;
3489 }
3490 case Intrinsic::aarch64_neon_st3lane: {
3491 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3492 SelectStoreLane(Node, 3, AArch64::ST3i8);
3493 return;
3494 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3495 VT == MVT::v8f16) {
3496 SelectStoreLane(Node, 3, AArch64::ST3i16);
3497 return;
3498 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3499 VT == MVT::v2f32) {
3500 SelectStoreLane(Node, 3, AArch64::ST3i32);
3501 return;
3502 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3503 VT == MVT::v1f64) {
3504 SelectStoreLane(Node, 3, AArch64::ST3i64);
3505 return;
3506 }
3507 break;
3508 }
3509 case Intrinsic::aarch64_neon_st4lane: {
3510 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3511 SelectStoreLane(Node, 4, AArch64::ST4i8);
3512 return;
3513 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3514 VT == MVT::v8f16) {
3515 SelectStoreLane(Node, 4, AArch64::ST4i16);
3516 return;
3517 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3518 VT == MVT::v2f32) {
3519 SelectStoreLane(Node, 4, AArch64::ST4i32);
3520 return;
3521 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3522 VT == MVT::v1f64) {
3523 SelectStoreLane(Node, 4, AArch64::ST4i64);
3524 return;
3525 }
3526 break;
3527 }
3528 }
3529 break;
3530 }
3531 case AArch64ISD::LD2post: {
3532 if (VT == MVT::v8i8) {
3533 SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
3534 return;
3535 } else if (VT == MVT::v16i8) {
3536 SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
3537 return;
3538 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3539 SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
3540 return;
3541 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3542 SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
3543 return;
3544 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3545 SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
3546 return;
3547 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3548 SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
3549 return;
3550 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3551 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
3552 return;
3553 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3554 SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
3555 return;
3556 }
3557 break;
3558 }
3559 case AArch64ISD::LD3post: {
3560 if (VT == MVT::v8i8) {
3561 SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
3562 return;
3563 } else if (VT == MVT::v16i8) {
3564 SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
3565 return;
3566 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3567 SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
3568 return;
3569 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3570 SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
3571 return;
3572 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3573 SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
3574 return;
3575 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3576 SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
3577 return;
3578 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3579 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
3580 return;
3581 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3582 SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
3583 return;
3584 }
3585 break;
3586 }
3587 case AArch64ISD::LD4post: {
3588 if (VT == MVT::v8i8) {
3589 SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
3590 return;
3591 } else if (VT == MVT::v16i8) {
3592 SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
3593 return;
3594 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3595 SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
3596 return;
3597 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3598 SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
3599 return;
3600 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3601 SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
3602 return;
3603 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3604 SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
3605 return;
3606 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3607 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
3608 return;
3609 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3610 SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
3611 return;
3612 }
3613 break;
3614 }
3615 case AArch64ISD::LD1x2post: {
3616 if (VT == MVT::v8i8) {
3617 SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
3618 return;
3619 } else if (VT == MVT::v16i8) {
3620 SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
3621 return;
3622 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3623 SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
3624 return;
3625 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3626 SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
3627 return;
3628 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3629 SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
3630 return;
3631 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3632 SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
3633 return;
3634 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3635 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
3636 return;
3637 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3638 SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
3639 return;
3640 }
3641 break;
3642 }
3643 case AArch64ISD::LD1x3post: {
3644 if (VT == MVT::v8i8) {
3645 SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
3646 return;
3647 } else if (VT == MVT::v16i8) {
3648 SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
3649 return;
3650 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3651 SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
3652 return;
3653 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3654 SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
3655 return;
3656 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3657 SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
3658 return;
3659 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3660 SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
3661 return;
3662 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3663 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
3664 return;
3665 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3666 SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
3667 return;
3668 }
3669 break;
3670 }
3671 case AArch64ISD::LD1x4post: {
3672 if (VT == MVT::v8i8) {
3673 SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
3674 return;
3675 } else if (VT == MVT::v16i8) {
3676 SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
3677 return;
3678 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3679 SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
3680 return;
3681 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3682 SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
3683 return;
3684 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3685 SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
3686 return;
3687 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3688 SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
3689 return;
3690 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3691 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
3692 return;
3693 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3694 SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
3695 return;
3696 }
3697 break;
3698 }
3699 case AArch64ISD::LD1DUPpost: {
3700 if (VT == MVT::v8i8) {
3701 SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
3702 return;
3703 } else if (VT == MVT::v16i8) {
3704 SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
3705 return;
3706 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3707 SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
3708 return;
3709 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3710 SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
3711 return;
3712 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3713 SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
3714 return;
3715 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3716 SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
3717 return;
3718 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3719 SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
3720 return;
3721 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3722 SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
3723 return;
3724 }
3725 break;
3726 }
3727 case AArch64ISD::LD2DUPpost: {
3728 if (VT == MVT::v8i8) {
3729 SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
3730 return;
3731 } else if (VT == MVT::v16i8) {
3732 SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
3733 return;
3734 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3735 SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
3736 return;
3737 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3738 SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
3739 return;
3740 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3741 SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
3742 return;
3743 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3744 SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
3745 return;
3746 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3747 SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
3748 return;
3749 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3750 SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
3751 return;
3752 }
3753 break;
3754 }
3755 case AArch64ISD::LD3DUPpost: {
3756 if (VT == MVT::v8i8) {
3757 SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
3758 return;
3759 } else if (VT == MVT::v16i8) {
3760 SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
3761 return;
3762 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3763 SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
3764 return;
3765 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3766 SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
3767 return;
3768 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3769 SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
3770 return;
3771 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3772 SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
3773 return;
3774 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3775 SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
3776 return;
3777 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3778 SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
3779 return;
3780 }
3781 break;
3782 }
3783 case AArch64ISD::LD4DUPpost: {
3784 if (VT == MVT::v8i8) {
3785 SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
3786 return;
3787 } else if (VT == MVT::v16i8) {
3788 SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
3789 return;
3790 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3791 SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
3792 return;
3793 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3794 SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
3795 return;
3796 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3797 SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
3798 return;
3799 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3800 SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
3801 return;
3802 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3803 SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
3804 return;
3805 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3806 SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
3807 return;
3808 }
3809 break;
3810 }
3811 case AArch64ISD::LD1LANEpost: {
3812 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3813 SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
3814 return;
3815 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3816 VT == MVT::v8f16) {
3817 SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
3818 return;
3819 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3820 VT == MVT::v2f32) {
3821 SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
3822 return;
3823 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3824 VT == MVT::v1f64) {
3825 SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
3826 return;
3827 }
3828 break;
3829 }
3830 case AArch64ISD::LD2LANEpost: {
3831 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3832 SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
3833 return;
3834 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3835 VT == MVT::v8f16) {
3836 SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
3837 return;
3838 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3839 VT == MVT::v2f32) {
3840 SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
3841 return;
3842 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3843 VT == MVT::v1f64) {
3844 SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
3845 return;
3846 }
3847 break;
3848 }
3849 case AArch64ISD::LD3LANEpost: {
3850 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3851 SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
3852 return;
3853 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3854 VT == MVT::v8f16) {
3855 SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
3856 return;
3857 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3858 VT == MVT::v2f32) {
3859 SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
3860 return;
3861 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3862 VT == MVT::v1f64) {
3863 SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
3864 return;
3865 }
3866 break;
3867 }
3868 case AArch64ISD::LD4LANEpost: {
3869 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
3870 SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
3871 return;
3872 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
3873 VT == MVT::v8f16) {
3874 SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
3875 return;
3876 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
3877 VT == MVT::v2f32) {
3878 SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
3879 return;
3880 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
3881 VT == MVT::v1f64) {
3882 SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
3883 return;
3884 }
3885 break;
3886 }
3887 case AArch64ISD::ST2post: {
3888 VT = Node->getOperand(1).getValueType();
3889 if (VT == MVT::v8i8) {
3890 SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
3891 return;
3892 } else if (VT == MVT::v16i8) {
3893 SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
3894 return;
3895 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3896 SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
3897 return;
3898 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3899 SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
3900 return;
3901 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3902 SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
3903 return;
3904 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3905 SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
3906 return;
3907 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3908 SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
3909 return;
3910 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3911 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
3912 return;
3913 }
3914 break;
3915 }
3916 case AArch64ISD::ST3post: {
3917 VT = Node->getOperand(1).getValueType();
3918 if (VT == MVT::v8i8) {
3919 SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
3920 return;
3921 } else if (VT == MVT::v16i8) {
3922 SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
3923 return;
3924 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3925 SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
3926 return;
3927 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3928 SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
3929 return;
3930 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3931 SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
3932 return;
3933 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3934 SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
3935 return;
3936 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3937 SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
3938 return;
3939 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3940 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
3941 return;
3942 }
3943 break;
3944 }
3945 case AArch64ISD::ST4post: {
3946 VT = Node->getOperand(1).getValueType();
3947 if (VT == MVT::v8i8) {
3948 SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
3949 return;
3950 } else if (VT == MVT::v16i8) {
3951 SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
3952 return;
3953 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3954 SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
3955 return;
3956 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3957 SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
3958 return;
3959 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3960 SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
3961 return;
3962 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3963 SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
3964 return;
3965 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3966 SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
3967 return;
3968 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3969 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
3970 return;
3971 }
3972 break;
3973 }
3974 case AArch64ISD::ST1x2post: {
3975 VT = Node->getOperand(1).getValueType();
3976 if (VT == MVT::v8i8) {
3977 SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
3978 return;
3979 } else if (VT == MVT::v16i8) {
3980 SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
3981 return;
3982 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
3983 SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
3984 return;
3985 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
3986 SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
3987 return;
3988 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
3989 SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
3990 return;
3991 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
3992 SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
3993 return;
3994 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
3995 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
3996 return;
3997 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
3998 SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
3999 return;
4000 }
4001 break;
4002 }
4003 case AArch64ISD::ST1x3post: {
4004 VT = Node->getOperand(1).getValueType();
4005 if (VT == MVT::v8i8) {
4006 SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
4007 return;
4008 } else if (VT == MVT::v16i8) {
4009 SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
4010 return;
4011 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4012 SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
4013 return;
4014 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4015 SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
4016 return;
4017 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4018 SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
4019 return;
4020 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4021 SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
4022 return;
4023 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4024 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
4025 return;
4026 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4027 SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
4028 return;
4029 }
4030 break;
4031 }
4032 case AArch64ISD::ST1x4post: {
4033 VT = Node->getOperand(1).getValueType();
4034 if (VT == MVT::v8i8) {
4035 SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
4036 return;
4037 } else if (VT == MVT::v16i8) {
4038 SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
4039 return;
4040 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4041 SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
4042 return;
4043 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
4044 SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
4045 return;
4046 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4047 SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
4048 return;
4049 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4050 SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
4051 return;
4052 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4053 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
4054 return;
4055 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4056 SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
4057 return;
4058 }
4059 break;
4060 }
4061 case AArch64ISD::ST2LANEpost: {
4062 VT = Node->getOperand(1).getValueType();
4063 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4064 SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
4065 return;
4066 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4067 VT == MVT::v8f16) {
4068 SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
4069 return;
4070 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4071 VT == MVT::v2f32) {
4072 SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
4073 return;
4074 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4075 VT == MVT::v1f64) {
4076 SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
4077 return;
4078 }
4079 break;
4080 }
4081 case AArch64ISD::ST3LANEpost: {
4082 VT = Node->getOperand(1).getValueType();
4083 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4084 SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
4085 return;
4086 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4087 VT == MVT::v8f16) {
4088 SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
4089 return;
4090 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4091 VT == MVT::v2f32) {
4092 SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
4093 return;
4094 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4095 VT == MVT::v1f64) {
4096 SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
4097 return;
4098 }
4099 break;
4100 }
4101 case AArch64ISD::ST4LANEpost: {
4102 VT = Node->getOperand(1).getValueType();
4103 if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4104 SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
4105 return;
4106 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4107 VT == MVT::v8f16) {
4108 SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
4109 return;
4110 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4111 VT == MVT::v2f32) {
4112 SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
4113 return;
4114 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4115 VT == MVT::v1f64) {
4116 SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
4117 return;
4118 }
4119 break;
4120 }
4121 }
4122
4123 // Select the default instruction
4124 SelectCode(Node);
4125 }
4126
4127 /// createAArch64ISelDag - This pass converts a legalized DAG into a
4128 /// AArch64-specific DAG, ready for instruction scheduling.
createAArch64ISelDag(AArch64TargetMachine & TM,CodeGenOpt::Level OptLevel)4129 FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
4130 CodeGenOpt::Level OptLevel) {
4131 return new AArch64DAGToDAGISel(TM, OptLevel);
4132 }
4133