1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ARMISelLowering.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "ARMPerfectShuffle.h"
22 #include "ARMRegisterInfo.h"
23 #include "ARMSelectionDAGInfo.h"
24 #include "ARMSubtarget.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "MCTargetDesc/ARMBaseInfo.h"
27 #include "Utils/ARMBaseInfo.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ADT/StringSwitch.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/VectorUtils.h"
43 #include "llvm/CodeGen/CallingConvLower.h"
44 #include "llvm/CodeGen/ISDOpcodes.h"
45 #include "llvm/CodeGen/IntrinsicLowering.h"
46 #include "llvm/CodeGen/MachineBasicBlock.h"
47 #include "llvm/CodeGen/MachineConstantPool.h"
48 #include "llvm/CodeGen/MachineFrameInfo.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineInstr.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/RuntimeLibcalls.h"
57 #include "llvm/CodeGen/SelectionDAG.h"
58 #include "llvm/CodeGen/SelectionDAGNodes.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/CallingConv.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InlineAsm.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/IntrinsicInst.h"
81 #include "llvm/IR/Intrinsics.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <cstdlib>
108 #include <iterator>
109 #include <limits>
110 #include <string>
111 #include <tuple>
112 #include <utility>
113 #include <vector>
114
115 using namespace llvm;
116
117 #define DEBUG_TYPE "arm-isel"
118
119 STATISTIC(NumTailCalls, "Number of tail calls");
120 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
121 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
122 STATISTIC(NumConstpoolPromoted,
123 "Number of constants with their storage promoted into constant pools");
124
125 static cl::opt<bool>
126 ARMInterworking("arm-interworking", cl::Hidden,
127 cl::desc("Enable / disable ARM interworking (for debugging only)"),
128 cl::init(true));
129
130 static cl::opt<bool> EnableConstpoolPromotion(
131 "arm-promote-constant", cl::Hidden,
132 cl::desc("Enable / disable promotion of unnamed_addr constants into "
133 "constant pools"),
134 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
135 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
136 "arm-promote-constant-max-size", cl::Hidden,
137 cl::desc("Maximum size of constant to promote into a constant pool"),
138 cl::init(64));
139 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
140 "arm-promote-constant-max-total", cl::Hidden,
141 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
142 cl::init(128));
143
144 // The APCS parameter registers.
145 static const MCPhysReg GPRArgRegs[] = {
146 ARM::R0, ARM::R1, ARM::R2, ARM::R3
147 };
148
addTypeForNEON(MVT VT,MVT PromotedLdStVT,MVT PromotedBitwiseVT)149 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
150 MVT PromotedBitwiseVT) {
151 if (VT != PromotedLdStVT) {
152 setOperationAction(ISD::LOAD, VT, Promote);
153 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
154
155 setOperationAction(ISD::STORE, VT, Promote);
156 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
157 }
158
159 MVT ElemTy = VT.getVectorElementType();
160 if (ElemTy != MVT::f64)
161 setOperationAction(ISD::SETCC, VT, Custom);
162 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
163 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
164 if (ElemTy == MVT::i32) {
165 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
166 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
167 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
168 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
169 } else {
170 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
171 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
172 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
173 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
174 }
175 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
176 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
177 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
178 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
179 setOperationAction(ISD::SELECT, VT, Expand);
180 setOperationAction(ISD::SELECT_CC, VT, Expand);
181 setOperationAction(ISD::VSELECT, VT, Expand);
182 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
183 if (VT.isInteger()) {
184 setOperationAction(ISD::SHL, VT, Custom);
185 setOperationAction(ISD::SRA, VT, Custom);
186 setOperationAction(ISD::SRL, VT, Custom);
187 }
188
189 // Promote all bit-wise operations.
190 if (VT.isInteger() && VT != PromotedBitwiseVT) {
191 setOperationAction(ISD::AND, VT, Promote);
192 AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
193 setOperationAction(ISD::OR, VT, Promote);
194 AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
195 setOperationAction(ISD::XOR, VT, Promote);
196 AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
197 }
198
199 // Neon does not support vector divide/remainder operations.
200 setOperationAction(ISD::SDIV, VT, Expand);
201 setOperationAction(ISD::UDIV, VT, Expand);
202 setOperationAction(ISD::FDIV, VT, Expand);
203 setOperationAction(ISD::SREM, VT, Expand);
204 setOperationAction(ISD::UREM, VT, Expand);
205 setOperationAction(ISD::FREM, VT, Expand);
206
207 if (!VT.isFloatingPoint() &&
208 VT != MVT::v2i64 && VT != MVT::v1i64)
209 for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
210 setOperationAction(Opcode, VT, Legal);
211 }
212
addDRTypeForNEON(MVT VT)213 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
214 addRegisterClass(VT, &ARM::DPRRegClass);
215 addTypeForNEON(VT, MVT::f64, MVT::v2i32);
216 }
217
addQRTypeForNEON(MVT VT)218 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
219 addRegisterClass(VT, &ARM::DPairRegClass);
220 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
221 }
222
ARMTargetLowering(const TargetMachine & TM,const ARMSubtarget & STI)223 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
224 const ARMSubtarget &STI)
225 : TargetLowering(TM), Subtarget(&STI) {
226 RegInfo = Subtarget->getRegisterInfo();
227 Itins = Subtarget->getInstrItineraryData();
228
229 setBooleanContents(ZeroOrOneBooleanContent);
230 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
231
232 if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
233 !Subtarget->isTargetWatchOS()) {
234 bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
235 for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
236 setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
237 IsHFTarget ? CallingConv::ARM_AAPCS_VFP
238 : CallingConv::ARM_AAPCS);
239 }
240
241 if (Subtarget->isTargetMachO()) {
242 // Uses VFP for Thumb libfuncs if available.
243 if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
244 Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
245 static const struct {
246 const RTLIB::Libcall Op;
247 const char * const Name;
248 const ISD::CondCode Cond;
249 } LibraryCalls[] = {
250 // Single-precision floating-point arithmetic.
251 { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
252 { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
253 { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
254 { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
255
256 // Double-precision floating-point arithmetic.
257 { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
258 { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
259 { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
260 { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
261
262 // Single-precision comparisons.
263 { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
264 { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
265 { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
266 { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
267 { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
268 { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
269 { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
270 { RTLIB::O_F32, "__unordsf2vfp", ISD::SETEQ },
271
272 // Double-precision comparisons.
273 { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
274 { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
275 { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
276 { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
277 { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
278 { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
279 { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
280 { RTLIB::O_F64, "__unorddf2vfp", ISD::SETEQ },
281
282 // Floating-point to integer conversions.
283 // i64 conversions are done via library routines even when generating VFP
284 // instructions, so use the same ones.
285 { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
286 { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
287 { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
288 { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
289
290 // Conversions between floating types.
291 { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
292 { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
293
294 // Integer to floating-point conversions.
295 // i64 conversions are done via library routines even when generating VFP
296 // instructions, so use the same ones.
297 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
298 // e.g., __floatunsidf vs. __floatunssidfvfp.
299 { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
300 { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
301 { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
302 { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
303 };
304
305 for (const auto &LC : LibraryCalls) {
306 setLibcallName(LC.Op, LC.Name);
307 if (LC.Cond != ISD::SETCC_INVALID)
308 setCmpLibcallCC(LC.Op, LC.Cond);
309 }
310 }
311 }
312
313 // These libcalls are not available in 32-bit.
314 setLibcallName(RTLIB::SHL_I128, nullptr);
315 setLibcallName(RTLIB::SRL_I128, nullptr);
316 setLibcallName(RTLIB::SRA_I128, nullptr);
317
318 // RTLIB
319 if (Subtarget->isAAPCS_ABI() &&
320 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
321 Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
322 static const struct {
323 const RTLIB::Libcall Op;
324 const char * const Name;
325 const CallingConv::ID CC;
326 const ISD::CondCode Cond;
327 } LibraryCalls[] = {
328 // Double-precision floating-point arithmetic helper functions
329 // RTABI chapter 4.1.2, Table 2
330 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
331 { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
332 { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
333 { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
334
335 // Double-precision floating-point comparison helper functions
336 // RTABI chapter 4.1.2, Table 3
337 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
338 { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
339 { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
340 { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
341 { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
342 { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
343 { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
344 { RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
345
346 // Single-precision floating-point arithmetic helper functions
347 // RTABI chapter 4.1.2, Table 4
348 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
349 { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
350 { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
351 { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
352
353 // Single-precision floating-point comparison helper functions
354 // RTABI chapter 4.1.2, Table 5
355 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
356 { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
357 { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
358 { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
359 { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
360 { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
361 { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
362 { RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
363
364 // Floating-point to integer conversions.
365 // RTABI chapter 4.1.2, Table 6
366 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
367 { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
368 { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
369 { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
370 { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
371 { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
372 { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
373 { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
374
375 // Conversions between floating types.
376 // RTABI chapter 4.1.2, Table 7
377 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
378 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
379 { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
380
381 // Integer to floating-point conversions.
382 // RTABI chapter 4.1.2, Table 8
383 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
384 { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
385 { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
386 { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
387 { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
388 { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
389 { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
390 { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
391
392 // Long long helper functions
393 // RTABI chapter 4.2, Table 9
394 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
395 { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
396 { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
397 { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
398
399 // Integer division functions
400 // RTABI chapter 4.3.1
401 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
402 { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
403 { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
404 { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
405 { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
406 { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
407 { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
408 { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
409 };
410
411 for (const auto &LC : LibraryCalls) {
412 setLibcallName(LC.Op, LC.Name);
413 setLibcallCallingConv(LC.Op, LC.CC);
414 if (LC.Cond != ISD::SETCC_INVALID)
415 setCmpLibcallCC(LC.Op, LC.Cond);
416 }
417
418 // EABI dependent RTLIB
419 if (TM.Options.EABIVersion == EABI::EABI4 ||
420 TM.Options.EABIVersion == EABI::EABI5) {
421 static const struct {
422 const RTLIB::Libcall Op;
423 const char *const Name;
424 const CallingConv::ID CC;
425 const ISD::CondCode Cond;
426 } MemOpsLibraryCalls[] = {
427 // Memory operations
428 // RTABI chapter 4.3.4
429 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
430 { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
431 { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
432 };
433
434 for (const auto &LC : MemOpsLibraryCalls) {
435 setLibcallName(LC.Op, LC.Name);
436 setLibcallCallingConv(LC.Op, LC.CC);
437 if (LC.Cond != ISD::SETCC_INVALID)
438 setCmpLibcallCC(LC.Op, LC.Cond);
439 }
440 }
441 }
442
443 if (Subtarget->isTargetWindows()) {
444 static const struct {
445 const RTLIB::Libcall Op;
446 const char * const Name;
447 const CallingConv::ID CC;
448 } LibraryCalls[] = {
449 { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
450 { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
451 { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
452 { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
453 { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
454 { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
455 { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
456 { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
457 };
458
459 for (const auto &LC : LibraryCalls) {
460 setLibcallName(LC.Op, LC.Name);
461 setLibcallCallingConv(LC.Op, LC.CC);
462 }
463 }
464
465 // Use divmod compiler-rt calls for iOS 5.0 and later.
466 if (Subtarget->isTargetMachO() &&
467 !(Subtarget->isTargetIOS() &&
468 Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
469 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
470 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
471 }
472
473 // The half <-> float conversion functions are always soft-float on
474 // non-watchos platforms, but are needed for some targets which use a
475 // hard-float calling convention by default.
476 if (!Subtarget->isTargetWatchABI()) {
477 if (Subtarget->isAAPCS_ABI()) {
478 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
479 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
480 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
481 } else {
482 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
483 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
484 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
485 }
486 }
487
488 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
489 // a __gnu_ prefix (which is the default).
490 if (Subtarget->isTargetAEABI()) {
491 static const struct {
492 const RTLIB::Libcall Op;
493 const char * const Name;
494 const CallingConv::ID CC;
495 } LibraryCalls[] = {
496 { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
497 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
498 { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
499 };
500
501 for (const auto &LC : LibraryCalls) {
502 setLibcallName(LC.Op, LC.Name);
503 setLibcallCallingConv(LC.Op, LC.CC);
504 }
505 }
506
507 if (Subtarget->isThumb1Only())
508 addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
509 else
510 addRegisterClass(MVT::i32, &ARM::GPRRegClass);
511
512 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
513 !Subtarget->isThumb1Only()) {
514 addRegisterClass(MVT::f32, &ARM::SPRRegClass);
515 addRegisterClass(MVT::f64, &ARM::DPRRegClass);
516 }
517
518 if (Subtarget->hasFullFP16()) {
519 addRegisterClass(MVT::f16, &ARM::HPRRegClass);
520 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
521 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
522 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
523
524 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
525 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
526 }
527
528 for (MVT VT : MVT::vector_valuetypes()) {
529 for (MVT InnerVT : MVT::vector_valuetypes()) {
530 setTruncStoreAction(VT, InnerVT, Expand);
531 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
532 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
533 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
534 }
535
536 setOperationAction(ISD::MULHS, VT, Expand);
537 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
538 setOperationAction(ISD::MULHU, VT, Expand);
539 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
540
541 setOperationAction(ISD::BSWAP, VT, Expand);
542 }
543
544 setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
545 setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
546
547 setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
548 setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
549
550 if (Subtarget->hasNEON()) {
551 addDRTypeForNEON(MVT::v2f32);
552 addDRTypeForNEON(MVT::v8i8);
553 addDRTypeForNEON(MVT::v4i16);
554 addDRTypeForNEON(MVT::v2i32);
555 addDRTypeForNEON(MVT::v1i64);
556
557 addQRTypeForNEON(MVT::v4f32);
558 addQRTypeForNEON(MVT::v2f64);
559 addQRTypeForNEON(MVT::v16i8);
560 addQRTypeForNEON(MVT::v8i16);
561 addQRTypeForNEON(MVT::v4i32);
562 addQRTypeForNEON(MVT::v2i64);
563
564 if (Subtarget->hasFullFP16()) {
565 addQRTypeForNEON(MVT::v8f16);
566 addDRTypeForNEON(MVT::v4f16);
567 }
568
569 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
570 // neither Neon nor VFP support any arithmetic operations on it.
571 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
572 // supported for v4f32.
573 setOperationAction(ISD::FADD, MVT::v2f64, Expand);
574 setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
575 setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
576 // FIXME: Code duplication: FDIV and FREM are expanded always, see
577 // ARMTargetLowering::addTypeForNEON method for details.
578 setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
579 setOperationAction(ISD::FREM, MVT::v2f64, Expand);
580 // FIXME: Create unittest.
581 // In another words, find a way when "copysign" appears in DAG with vector
582 // operands.
583 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
584 // FIXME: Code duplication: SETCC has custom operation action, see
585 // ARMTargetLowering::addTypeForNEON method for details.
586 setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
587 // FIXME: Create unittest for FNEG and for FABS.
588 setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
589 setOperationAction(ISD::FABS, MVT::v2f64, Expand);
590 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
591 setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
592 setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
593 setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
594 setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
595 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
596 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
597 setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
598 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
599 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
600 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
601 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
602 setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
603 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
604 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
605 setOperationAction(ISD::FMA, MVT::v2f64, Expand);
606
607 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
608 setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
609 setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
610 setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
611 setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
612 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
613 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
614 setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
615 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
616 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
617 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
618 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
619 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
620 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
621
622 // Mark v2f32 intrinsics.
623 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
624 setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
625 setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
626 setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
627 setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
628 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
629 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
630 setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
631 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
632 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
633 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
634 setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
635 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
636 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
637
638 // Neon does not support some operations on v1i64 and v2i64 types.
639 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
640 // Custom handling for some quad-vector types to detect VMULL.
641 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
642 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
643 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
644 // Custom handling for some vector types to avoid expensive expansions
645 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
646 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
647 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
648 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
649 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
650 // a destination type that is wider than the source, and nor does
651 // it have a FP_TO_[SU]INT instruction with a narrower destination than
652 // source.
653 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
654 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
655 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
656 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
657
658 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
659 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
660
661 // NEON does not have single instruction CTPOP for vectors with element
662 // types wider than 8-bits. However, custom lowering can leverage the
663 // v8i8/v16i8 vcnt instruction.
664 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
665 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
666 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
667 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
668 setOperationAction(ISD::CTPOP, MVT::v1i64, Expand);
669 setOperationAction(ISD::CTPOP, MVT::v2i64, Expand);
670
671 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
672 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
673
674 // NEON does not have single instruction CTTZ for vectors.
675 setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
676 setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
677 setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
678 setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
679
680 setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
681 setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
682 setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
683 setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
684
685 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
686 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
687 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
688 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
689
690 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
691 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
692 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
693 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
694
695 // NEON only has FMA instructions as of VFP4.
696 if (!Subtarget->hasVFP4()) {
697 setOperationAction(ISD::FMA, MVT::v2f32, Expand);
698 setOperationAction(ISD::FMA, MVT::v4f32, Expand);
699 }
700
701 setTargetDAGCombine(ISD::INTRINSIC_VOID);
702 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
703 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
704 setTargetDAGCombine(ISD::SHL);
705 setTargetDAGCombine(ISD::SRL);
706 setTargetDAGCombine(ISD::SRA);
707 setTargetDAGCombine(ISD::SIGN_EXTEND);
708 setTargetDAGCombine(ISD::ZERO_EXTEND);
709 setTargetDAGCombine(ISD::ANY_EXTEND);
710 setTargetDAGCombine(ISD::BUILD_VECTOR);
711 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
712 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
713 setTargetDAGCombine(ISD::STORE);
714 setTargetDAGCombine(ISD::FP_TO_SINT);
715 setTargetDAGCombine(ISD::FP_TO_UINT);
716 setTargetDAGCombine(ISD::FDIV);
717 setTargetDAGCombine(ISD::LOAD);
718
719 // It is legal to extload from v4i8 to v4i16 or v4i32.
720 for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
721 MVT::v2i32}) {
722 for (MVT VT : MVT::integer_vector_valuetypes()) {
723 setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
724 setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
725 setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
726 }
727 }
728 }
729
730 if (Subtarget->isFPOnlySP()) {
731 // When targeting a floating-point unit with only single-precision
732 // operations, f64 is legal for the few double-precision instructions which
733 // are present However, no double-precision operations other than moves,
734 // loads and stores are provided by the hardware.
735 setOperationAction(ISD::FADD, MVT::f64, Expand);
736 setOperationAction(ISD::FSUB, MVT::f64, Expand);
737 setOperationAction(ISD::FMUL, MVT::f64, Expand);
738 setOperationAction(ISD::FMA, MVT::f64, Expand);
739 setOperationAction(ISD::FDIV, MVT::f64, Expand);
740 setOperationAction(ISD::FREM, MVT::f64, Expand);
741 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
742 setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
743 setOperationAction(ISD::FNEG, MVT::f64, Expand);
744 setOperationAction(ISD::FABS, MVT::f64, Expand);
745 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
746 setOperationAction(ISD::FSIN, MVT::f64, Expand);
747 setOperationAction(ISD::FCOS, MVT::f64, Expand);
748 setOperationAction(ISD::FPOW, MVT::f64, Expand);
749 setOperationAction(ISD::FLOG, MVT::f64, Expand);
750 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
751 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
752 setOperationAction(ISD::FEXP, MVT::f64, Expand);
753 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
754 setOperationAction(ISD::FCEIL, MVT::f64, Expand);
755 setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
756 setOperationAction(ISD::FRINT, MVT::f64, Expand);
757 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
758 setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
759 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
760 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
761 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
762 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
763 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
764 setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
765 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
766 setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
767 }
768
769 computeRegisterProperties(Subtarget->getRegisterInfo());
770
771 // ARM does not have floating-point extending loads.
772 for (MVT VT : MVT::fp_valuetypes()) {
773 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
774 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
775 }
776
777 // ... or truncating stores
778 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
779 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
780 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
781
782 // ARM does not have i1 sign extending load.
783 for (MVT VT : MVT::integer_valuetypes())
784 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
785
786 // ARM supports all 4 flavors of integer indexed load / store.
787 if (!Subtarget->isThumb1Only()) {
788 for (unsigned im = (unsigned)ISD::PRE_INC;
789 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
790 setIndexedLoadAction(im, MVT::i1, Legal);
791 setIndexedLoadAction(im, MVT::i8, Legal);
792 setIndexedLoadAction(im, MVT::i16, Legal);
793 setIndexedLoadAction(im, MVT::i32, Legal);
794 setIndexedStoreAction(im, MVT::i1, Legal);
795 setIndexedStoreAction(im, MVT::i8, Legal);
796 setIndexedStoreAction(im, MVT::i16, Legal);
797 setIndexedStoreAction(im, MVT::i32, Legal);
798 }
799 } else {
800 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
801 setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
802 setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
803 }
804
805 setOperationAction(ISD::SADDO, MVT::i32, Custom);
806 setOperationAction(ISD::UADDO, MVT::i32, Custom);
807 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
808 setOperationAction(ISD::USUBO, MVT::i32, Custom);
809
810 setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
811 setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
812
813 // i64 operation support.
814 setOperationAction(ISD::MUL, MVT::i64, Expand);
815 setOperationAction(ISD::MULHU, MVT::i32, Expand);
816 if (Subtarget->isThumb1Only()) {
817 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
818 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
819 }
820 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
821 || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
822 setOperationAction(ISD::MULHS, MVT::i32, Expand);
823
824 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
825 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
826 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
827 setOperationAction(ISD::SRL, MVT::i64, Custom);
828 setOperationAction(ISD::SRA, MVT::i64, Custom);
829 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
830
831 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
832 if (Subtarget->isThumb1Only()) {
833 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
834 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
835 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
836 }
837
838 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
839 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
840
841 // ARM does not have ROTL.
842 setOperationAction(ISD::ROTL, MVT::i32, Expand);
843 for (MVT VT : MVT::vector_valuetypes()) {
844 setOperationAction(ISD::ROTL, VT, Expand);
845 setOperationAction(ISD::ROTR, VT, Expand);
846 }
847 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
848 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
849 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
850 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
851
852 // @llvm.readcyclecounter requires the Performance Monitors extension.
853 // Default to the 0 expansion on unsupported platforms.
854 // FIXME: Technically there are older ARM CPUs that have
855 // implementation-specific ways of obtaining this information.
856 if (Subtarget->hasPerfMon())
857 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
858
859 // Only ARMv6 has BSWAP.
860 if (!Subtarget->hasV6Ops())
861 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
862
863 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
864 : Subtarget->hasDivideInARMMode();
865 if (!hasDivide) {
866 // These are expanded into libcalls if the cpu doesn't have HW divider.
867 setOperationAction(ISD::SDIV, MVT::i32, LibCall);
868 setOperationAction(ISD::UDIV, MVT::i32, LibCall);
869 }
870
871 if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
872 setOperationAction(ISD::SDIV, MVT::i32, Custom);
873 setOperationAction(ISD::UDIV, MVT::i32, Custom);
874
875 setOperationAction(ISD::SDIV, MVT::i64, Custom);
876 setOperationAction(ISD::UDIV, MVT::i64, Custom);
877 }
878
879 setOperationAction(ISD::SREM, MVT::i32, Expand);
880 setOperationAction(ISD::UREM, MVT::i32, Expand);
881
882 // Register based DivRem for AEABI (RTABI 4.2)
883 if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
884 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
885 Subtarget->isTargetWindows()) {
886 setOperationAction(ISD::SREM, MVT::i64, Custom);
887 setOperationAction(ISD::UREM, MVT::i64, Custom);
888 HasStandaloneRem = false;
889
890 if (Subtarget->isTargetWindows()) {
891 const struct {
892 const RTLIB::Libcall Op;
893 const char * const Name;
894 const CallingConv::ID CC;
895 } LibraryCalls[] = {
896 { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
897 { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
898 { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
899 { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
900
901 { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
902 { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
903 { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
904 { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
905 };
906
907 for (const auto &LC : LibraryCalls) {
908 setLibcallName(LC.Op, LC.Name);
909 setLibcallCallingConv(LC.Op, LC.CC);
910 }
911 } else {
912 const struct {
913 const RTLIB::Libcall Op;
914 const char * const Name;
915 const CallingConv::ID CC;
916 } LibraryCalls[] = {
917 { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
918 { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
919 { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
920 { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
921
922 { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
923 { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
924 { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
925 { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
926 };
927
928 for (const auto &LC : LibraryCalls) {
929 setLibcallName(LC.Op, LC.Name);
930 setLibcallCallingConv(LC.Op, LC.CC);
931 }
932 }
933
934 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
935 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
936 setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
937 setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
938 } else {
939 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
940 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
941 }
942
943 if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
944 for (auto &VT : {MVT::f32, MVT::f64})
945 setOperationAction(ISD::FPOWI, VT, Custom);
946
947 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
948 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
949 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
950 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
951
952 setOperationAction(ISD::TRAP, MVT::Other, Legal);
953
954 // Use the default implementation.
955 setOperationAction(ISD::VASTART, MVT::Other, Custom);
956 setOperationAction(ISD::VAARG, MVT::Other, Expand);
957 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
958 setOperationAction(ISD::VAEND, MVT::Other, Expand);
959 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
960 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
961
962 if (Subtarget->isTargetWindows())
963 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
964 else
965 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
966
967 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
968 // the default expansion.
969 InsertFencesForAtomic = false;
970 if (Subtarget->hasAnyDataBarrier() &&
971 (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
972 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
973 // to ldrex/strex loops already.
974 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
975 if (!Subtarget->isThumb() || !Subtarget->isMClass())
976 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
977
978 // On v8, we have particularly efficient implementations of atomic fences
979 // if they can be combined with nearby atomic loads and stores.
980 if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
981 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
982 InsertFencesForAtomic = true;
983 }
984 } else {
985 // If there's anything we can use as a barrier, go through custom lowering
986 // for ATOMIC_FENCE.
987 // If target has DMB in thumb, Fences can be inserted.
988 if (Subtarget->hasDataBarrier())
989 InsertFencesForAtomic = true;
990
991 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
992 Subtarget->hasAnyDataBarrier() ? Custom : Expand);
993
994 // Set them all for expansion, which will force libcalls.
995 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
996 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
997 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
998 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
999 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
1000 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
1001 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
1002 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1003 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1004 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1005 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1006 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1007 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1008 // Unordered/Monotonic case.
1009 if (!InsertFencesForAtomic) {
1010 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1011 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1012 }
1013 }
1014
1015 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1016
1017 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1018 if (!Subtarget->hasV6Ops()) {
1019 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1020 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
1021 }
1022 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1023
1024 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1025 !Subtarget->isThumb1Only()) {
1026 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1027 // iff target supports vfp2.
1028 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1029 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1030 }
1031
1032 // We want to custom lower some of our intrinsics.
1033 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1034 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1035 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1036 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1037 if (Subtarget->useSjLjEH())
1038 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1039
1040 setOperationAction(ISD::SETCC, MVT::i32, Expand);
1041 setOperationAction(ISD::SETCC, MVT::f32, Expand);
1042 setOperationAction(ISD::SETCC, MVT::f64, Expand);
1043 setOperationAction(ISD::SELECT, MVT::i32, Custom);
1044 setOperationAction(ISD::SELECT, MVT::f32, Custom);
1045 setOperationAction(ISD::SELECT, MVT::f64, Custom);
1046 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1047 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1048 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1049 if (Subtarget->hasFullFP16()) {
1050 setOperationAction(ISD::SETCC, MVT::f16, Expand);
1051 setOperationAction(ISD::SELECT, MVT::f16, Custom);
1052 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1053 }
1054
1055 setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1056
1057 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
1058 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1059 if (Subtarget->hasFullFP16())
1060 setOperationAction(ISD::BR_CC, MVT::f16, Custom);
1061 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1062 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1063 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1064
1065 // We don't support sin/cos/fmod/copysign/pow
1066 setOperationAction(ISD::FSIN, MVT::f64, Expand);
1067 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1068 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1069 setOperationAction(ISD::FCOS, MVT::f64, Expand);
1070 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1071 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1072 setOperationAction(ISD::FREM, MVT::f64, Expand);
1073 setOperationAction(ISD::FREM, MVT::f32, Expand);
1074 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1075 !Subtarget->isThumb1Only()) {
1076 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1077 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1078 }
1079 setOperationAction(ISD::FPOW, MVT::f64, Expand);
1080 setOperationAction(ISD::FPOW, MVT::f32, Expand);
1081
1082 if (!Subtarget->hasVFP4()) {
1083 setOperationAction(ISD::FMA, MVT::f64, Expand);
1084 setOperationAction(ISD::FMA, MVT::f32, Expand);
1085 }
1086
1087 // Various VFP goodness
1088 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1089 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1090 if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
1091 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1092 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1093 }
1094
1095 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1096 if (!Subtarget->hasFP16()) {
1097 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1098 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1099 }
1100 }
1101
1102 // Use __sincos_stret if available.
1103 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1104 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1105 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1106 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1107 }
1108
1109 // FP-ARMv8 implements a lot of rounding-like FP operations.
1110 if (Subtarget->hasFPARMv8()) {
1111 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1112 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1113 setOperationAction(ISD::FROUND, MVT::f32, Legal);
1114 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1115 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1116 setOperationAction(ISD::FRINT, MVT::f32, Legal);
1117 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1118 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1119 setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1120 setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1121 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1122 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1123
1124 if (!Subtarget->isFPOnlySP()) {
1125 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1126 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1127 setOperationAction(ISD::FROUND, MVT::f64, Legal);
1128 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1129 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1130 setOperationAction(ISD::FRINT, MVT::f64, Legal);
1131 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1132 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1133 }
1134 }
1135
1136 if (Subtarget->hasNEON()) {
1137 // vmin and vmax aren't available in a scalar form, so we use
1138 // a NEON instruction with an undef lane instead.
1139 setOperationAction(ISD::FMINNAN, MVT::f16, Legal);
1140 setOperationAction(ISD::FMAXNAN, MVT::f16, Legal);
1141 setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
1142 setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
1143 setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
1144 setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
1145 setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
1146 setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
1147 }
1148
1149 // We have target-specific dag combine patterns for the following nodes:
1150 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1151 setTargetDAGCombine(ISD::ADD);
1152 setTargetDAGCombine(ISD::SUB);
1153 setTargetDAGCombine(ISD::MUL);
1154 setTargetDAGCombine(ISD::AND);
1155 setTargetDAGCombine(ISD::OR);
1156 setTargetDAGCombine(ISD::XOR);
1157
1158 if (Subtarget->hasV6Ops())
1159 setTargetDAGCombine(ISD::SRL);
1160
1161 setStackPointerRegisterToSaveRestore(ARM::SP);
1162
1163 if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1164 !Subtarget->hasVFP2())
1165 setSchedulingPreference(Sched::RegPressure);
1166 else
1167 setSchedulingPreference(Sched::Hybrid);
1168
1169 //// temporary - rewrite interface to use type
1170 MaxStoresPerMemset = 8;
1171 MaxStoresPerMemsetOptSize = 4;
1172 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1173 MaxStoresPerMemcpyOptSize = 2;
1174 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1175 MaxStoresPerMemmoveOptSize = 2;
1176
1177 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1178 // are at least 4 bytes aligned.
1179 setMinStackArgumentAlignment(4);
1180
1181 // Prefer likely predicted branches to selects on out-of-order cores.
1182 PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1183
1184 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1185 }
1186
useSoftFloat() const1187 bool ARMTargetLowering::useSoftFloat() const {
1188 return Subtarget->useSoftFloat();
1189 }
1190
1191 // FIXME: It might make sense to define the representative register class as the
1192 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1193 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1194 // SPR's representative would be DPR_VFP2. This should work well if register
1195 // pressure tracking were modified such that a register use would increment the
1196 // pressure of the register class's representative and all of it's super
1197 // classes' representatives transitively. We have not implemented this because
1198 // of the difficulty prior to coalescing of modeling operand register classes
1199 // due to the common occurrence of cross class copies and subregister insertions
1200 // and extractions.
1201 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1202 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1203 MVT VT) const {
1204 const TargetRegisterClass *RRC = nullptr;
1205 uint8_t Cost = 1;
1206 switch (VT.SimpleTy) {
1207 default:
1208 return TargetLowering::findRepresentativeClass(TRI, VT);
1209 // Use DPR as representative register class for all floating point
1210 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1211 // the cost is 1 for both f32 and f64.
1212 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1213 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1214 RRC = &ARM::DPRRegClass;
1215 // When NEON is used for SP, only half of the register file is available
1216 // because operations that define both SP and DP results will be constrained
1217 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1218 // coalescing by double-counting the SP regs. See the FIXME above.
1219 if (Subtarget->useNEONForSinglePrecisionFP())
1220 Cost = 2;
1221 break;
1222 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1223 case MVT::v4f32: case MVT::v2f64:
1224 RRC = &ARM::DPRRegClass;
1225 Cost = 2;
1226 break;
1227 case MVT::v4i64:
1228 RRC = &ARM::DPRRegClass;
1229 Cost = 4;
1230 break;
1231 case MVT::v8i64:
1232 RRC = &ARM::DPRRegClass;
1233 Cost = 8;
1234 break;
1235 }
1236 return std::make_pair(RRC, Cost);
1237 }
1238
getTargetNodeName(unsigned Opcode) const1239 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1240 switch ((ARMISD::NodeType)Opcode) {
1241 case ARMISD::FIRST_NUMBER: break;
1242 case ARMISD::Wrapper: return "ARMISD::Wrapper";
1243 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
1244 case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
1245 case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1246 case ARMISD::CALL: return "ARMISD::CALL";
1247 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
1248 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
1249 case ARMISD::BRCOND: return "ARMISD::BRCOND";
1250 case ARMISD::BR_JT: return "ARMISD::BR_JT";
1251 case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
1252 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
1253 case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
1254 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
1255 case ARMISD::CMP: return "ARMISD::CMP";
1256 case ARMISD::CMN: return "ARMISD::CMN";
1257 case ARMISD::CMPZ: return "ARMISD::CMPZ";
1258 case ARMISD::CMPFP: return "ARMISD::CMPFP";
1259 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
1260 case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
1261 case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
1262
1263 case ARMISD::CMOV: return "ARMISD::CMOV";
1264
1265 case ARMISD::SSAT: return "ARMISD::SSAT";
1266 case ARMISD::USAT: return "ARMISD::USAT";
1267
1268 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
1269 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
1270 case ARMISD::RRX: return "ARMISD::RRX";
1271
1272 case ARMISD::ADDC: return "ARMISD::ADDC";
1273 case ARMISD::ADDE: return "ARMISD::ADDE";
1274 case ARMISD::SUBC: return "ARMISD::SUBC";
1275 case ARMISD::SUBE: return "ARMISD::SUBE";
1276
1277 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
1278 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
1279 case ARMISD::VMOVhr: return "ARMISD::VMOVhr";
1280 case ARMISD::VMOVrh: return "ARMISD::VMOVrh";
1281 case ARMISD::VMOVSR: return "ARMISD::VMOVSR";
1282
1283 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1284 case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1285 case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1286
1287 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
1288
1289 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1290
1291 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
1292
1293 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1294
1295 case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
1296
1297 case ARMISD::WIN__CHKSTK: return "ARMISD::WIN__CHKSTK";
1298 case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK";
1299
1300 case ARMISD::VCEQ: return "ARMISD::VCEQ";
1301 case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
1302 case ARMISD::VCGE: return "ARMISD::VCGE";
1303 case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
1304 case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
1305 case ARMISD::VCGEU: return "ARMISD::VCGEU";
1306 case ARMISD::VCGT: return "ARMISD::VCGT";
1307 case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
1308 case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
1309 case ARMISD::VCGTU: return "ARMISD::VCGTU";
1310 case ARMISD::VTST: return "ARMISD::VTST";
1311
1312 case ARMISD::VSHL: return "ARMISD::VSHL";
1313 case ARMISD::VSHRs: return "ARMISD::VSHRs";
1314 case ARMISD::VSHRu: return "ARMISD::VSHRu";
1315 case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
1316 case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
1317 case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
1318 case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
1319 case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
1320 case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
1321 case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
1322 case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
1323 case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
1324 case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
1325 case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
1326 case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
1327 case ARMISD::VSLI: return "ARMISD::VSLI";
1328 case ARMISD::VSRI: return "ARMISD::VSRI";
1329 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
1330 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
1331 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
1332 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
1333 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
1334 case ARMISD::VDUP: return "ARMISD::VDUP";
1335 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
1336 case ARMISD::VEXT: return "ARMISD::VEXT";
1337 case ARMISD::VREV64: return "ARMISD::VREV64";
1338 case ARMISD::VREV32: return "ARMISD::VREV32";
1339 case ARMISD::VREV16: return "ARMISD::VREV16";
1340 case ARMISD::VZIP: return "ARMISD::VZIP";
1341 case ARMISD::VUZP: return "ARMISD::VUZP";
1342 case ARMISD::VTRN: return "ARMISD::VTRN";
1343 case ARMISD::VTBL1: return "ARMISD::VTBL1";
1344 case ARMISD::VTBL2: return "ARMISD::VTBL2";
1345 case ARMISD::VMULLs: return "ARMISD::VMULLs";
1346 case ARMISD::VMULLu: return "ARMISD::VMULLu";
1347 case ARMISD::UMAAL: return "ARMISD::UMAAL";
1348 case ARMISD::UMLAL: return "ARMISD::UMLAL";
1349 case ARMISD::SMLAL: return "ARMISD::SMLAL";
1350 case ARMISD::SMLALBB: return "ARMISD::SMLALBB";
1351 case ARMISD::SMLALBT: return "ARMISD::SMLALBT";
1352 case ARMISD::SMLALTB: return "ARMISD::SMLALTB";
1353 case ARMISD::SMLALTT: return "ARMISD::SMLALTT";
1354 case ARMISD::SMULWB: return "ARMISD::SMULWB";
1355 case ARMISD::SMULWT: return "ARMISD::SMULWT";
1356 case ARMISD::SMLALD: return "ARMISD::SMLALD";
1357 case ARMISD::SMLALDX: return "ARMISD::SMLALDX";
1358 case ARMISD::SMLSLD: return "ARMISD::SMLSLD";
1359 case ARMISD::SMLSLDX: return "ARMISD::SMLSLDX";
1360 case ARMISD::SMMLAR: return "ARMISD::SMMLAR";
1361 case ARMISD::SMMLSR: return "ARMISD::SMMLSR";
1362 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
1363 case ARMISD::BFI: return "ARMISD::BFI";
1364 case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
1365 case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
1366 case ARMISD::VBSL: return "ARMISD::VBSL";
1367 case ARMISD::MEMCPY: return "ARMISD::MEMCPY";
1368 case ARMISD::VLD1DUP: return "ARMISD::VLD1DUP";
1369 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
1370 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
1371 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
1372 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
1373 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
1374 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
1375 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
1376 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
1377 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
1378 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
1379 case ARMISD::VLD1DUP_UPD: return "ARMISD::VLD1DUP_UPD";
1380 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
1381 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
1382 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
1383 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
1384 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
1385 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
1386 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
1387 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
1388 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
1389 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
1390 }
1391 return nullptr;
1392 }
1393
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1394 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1395 EVT VT) const {
1396 if (!VT.isVector())
1397 return getPointerTy(DL);
1398 return VT.changeVectorElementTypeToInteger();
1399 }
1400
1401 /// getRegClassFor - Return the register class that should be used for the
1402 /// specified value type.
getRegClassFor(MVT VT) const1403 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1404 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1405 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1406 // load / store 4 to 8 consecutive D registers.
1407 if (Subtarget->hasNEON()) {
1408 if (VT == MVT::v4i64)
1409 return &ARM::QQPRRegClass;
1410 if (VT == MVT::v8i64)
1411 return &ARM::QQQQPRRegClass;
1412 }
1413 return TargetLowering::getRegClassFor(VT);
1414 }
1415
1416 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1417 // source/dest is aligned and the copy size is large enough. We therefore want
1418 // to align such objects passed to memory intrinsics.
shouldAlignPointerArgs(CallInst * CI,unsigned & MinSize,unsigned & PrefAlign) const1419 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1420 unsigned &PrefAlign) const {
1421 if (!isa<MemIntrinsic>(CI))
1422 return false;
1423 MinSize = 8;
1424 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1425 // cycle faster than 4-byte aligned LDM.
1426 PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1427 return true;
1428 }
1429
1430 // Create a fast isel object.
1431 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1432 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1433 const TargetLibraryInfo *libInfo) const {
1434 return ARM::createFastISel(funcInfo, libInfo);
1435 }
1436
getSchedulingPreference(SDNode * N) const1437 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1438 unsigned NumVals = N->getNumValues();
1439 if (!NumVals)
1440 return Sched::RegPressure;
1441
1442 for (unsigned i = 0; i != NumVals; ++i) {
1443 EVT VT = N->getValueType(i);
1444 if (VT == MVT::Glue || VT == MVT::Other)
1445 continue;
1446 if (VT.isFloatingPoint() || VT.isVector())
1447 return Sched::ILP;
1448 }
1449
1450 if (!N->isMachineOpcode())
1451 return Sched::RegPressure;
1452
1453 // Load are scheduled for latency even if there instruction itinerary
1454 // is not available.
1455 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1456 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1457
1458 if (MCID.getNumDefs() == 0)
1459 return Sched::RegPressure;
1460 if (!Itins->isEmpty() &&
1461 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1462 return Sched::ILP;
1463
1464 return Sched::RegPressure;
1465 }
1466
1467 //===----------------------------------------------------------------------===//
1468 // Lowering Code
1469 //===----------------------------------------------------------------------===//
1470
isSRL16(const SDValue & Op)1471 static bool isSRL16(const SDValue &Op) {
1472 if (Op.getOpcode() != ISD::SRL)
1473 return false;
1474 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1475 return Const->getZExtValue() == 16;
1476 return false;
1477 }
1478
isSRA16(const SDValue & Op)1479 static bool isSRA16(const SDValue &Op) {
1480 if (Op.getOpcode() != ISD::SRA)
1481 return false;
1482 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1483 return Const->getZExtValue() == 16;
1484 return false;
1485 }
1486
isSHL16(const SDValue & Op)1487 static bool isSHL16(const SDValue &Op) {
1488 if (Op.getOpcode() != ISD::SHL)
1489 return false;
1490 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1491 return Const->getZExtValue() == 16;
1492 return false;
1493 }
1494
1495 // Check for a signed 16-bit value. We special case SRA because it makes it
1496 // more simple when also looking for SRAs that aren't sign extending a
1497 // smaller value. Without the check, we'd need to take extra care with
1498 // checking order for some operations.
isS16(const SDValue & Op,SelectionDAG & DAG)1499 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1500 if (isSRA16(Op))
1501 return isSHL16(Op.getOperand(0));
1502 return DAG.ComputeNumSignBits(Op) == 17;
1503 }
1504
1505 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
IntCCToARMCC(ISD::CondCode CC)1506 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1507 switch (CC) {
1508 default: llvm_unreachable("Unknown condition code!");
1509 case ISD::SETNE: return ARMCC::NE;
1510 case ISD::SETEQ: return ARMCC::EQ;
1511 case ISD::SETGT: return ARMCC::GT;
1512 case ISD::SETGE: return ARMCC::GE;
1513 case ISD::SETLT: return ARMCC::LT;
1514 case ISD::SETLE: return ARMCC::LE;
1515 case ISD::SETUGT: return ARMCC::HI;
1516 case ISD::SETUGE: return ARMCC::HS;
1517 case ISD::SETULT: return ARMCC::LO;
1518 case ISD::SETULE: return ARMCC::LS;
1519 }
1520 }
1521
1522 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
FPCCToARMCC(ISD::CondCode CC,ARMCC::CondCodes & CondCode,ARMCC::CondCodes & CondCode2,bool & InvalidOnQNaN)1523 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1524 ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
1525 CondCode2 = ARMCC::AL;
1526 InvalidOnQNaN = true;
1527 switch (CC) {
1528 default: llvm_unreachable("Unknown FP condition!");
1529 case ISD::SETEQ:
1530 case ISD::SETOEQ:
1531 CondCode = ARMCC::EQ;
1532 InvalidOnQNaN = false;
1533 break;
1534 case ISD::SETGT:
1535 case ISD::SETOGT: CondCode = ARMCC::GT; break;
1536 case ISD::SETGE:
1537 case ISD::SETOGE: CondCode = ARMCC::GE; break;
1538 case ISD::SETOLT: CondCode = ARMCC::MI; break;
1539 case ISD::SETOLE: CondCode = ARMCC::LS; break;
1540 case ISD::SETONE:
1541 CondCode = ARMCC::MI;
1542 CondCode2 = ARMCC::GT;
1543 InvalidOnQNaN = false;
1544 break;
1545 case ISD::SETO: CondCode = ARMCC::VC; break;
1546 case ISD::SETUO: CondCode = ARMCC::VS; break;
1547 case ISD::SETUEQ:
1548 CondCode = ARMCC::EQ;
1549 CondCode2 = ARMCC::VS;
1550 InvalidOnQNaN = false;
1551 break;
1552 case ISD::SETUGT: CondCode = ARMCC::HI; break;
1553 case ISD::SETUGE: CondCode = ARMCC::PL; break;
1554 case ISD::SETLT:
1555 case ISD::SETULT: CondCode = ARMCC::LT; break;
1556 case ISD::SETLE:
1557 case ISD::SETULE: CondCode = ARMCC::LE; break;
1558 case ISD::SETNE:
1559 case ISD::SETUNE:
1560 CondCode = ARMCC::NE;
1561 InvalidOnQNaN = false;
1562 break;
1563 }
1564 }
1565
1566 //===----------------------------------------------------------------------===//
1567 // Calling Convention Implementation
1568 //===----------------------------------------------------------------------===//
1569
1570 #include "ARMGenCallingConv.inc"
1571
1572 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1573 /// account presence of floating point hardware and calling convention
1574 /// limitations, such as support for variadic functions.
1575 CallingConv::ID
getEffectiveCallingConv(CallingConv::ID CC,bool isVarArg) const1576 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1577 bool isVarArg) const {
1578 switch (CC) {
1579 default:
1580 report_fatal_error("Unsupported calling convention");
1581 case CallingConv::ARM_AAPCS:
1582 case CallingConv::ARM_APCS:
1583 case CallingConv::GHC:
1584 return CC;
1585 case CallingConv::PreserveMost:
1586 return CallingConv::PreserveMost;
1587 case CallingConv::ARM_AAPCS_VFP:
1588 case CallingConv::Swift:
1589 return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1590 case CallingConv::C:
1591 if (!Subtarget->isAAPCS_ABI())
1592 return CallingConv::ARM_APCS;
1593 else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1594 getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1595 !isVarArg)
1596 return CallingConv::ARM_AAPCS_VFP;
1597 else
1598 return CallingConv::ARM_AAPCS;
1599 case CallingConv::Fast:
1600 case CallingConv::CXX_FAST_TLS:
1601 if (!Subtarget->isAAPCS_ABI()) {
1602 if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1603 return CallingConv::Fast;
1604 return CallingConv::ARM_APCS;
1605 } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1606 return CallingConv::ARM_AAPCS_VFP;
1607 else
1608 return CallingConv::ARM_AAPCS;
1609 }
1610 }
1611
CCAssignFnForCall(CallingConv::ID CC,bool isVarArg) const1612 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1613 bool isVarArg) const {
1614 return CCAssignFnForNode(CC, false, isVarArg);
1615 }
1616
CCAssignFnForReturn(CallingConv::ID CC,bool isVarArg) const1617 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1618 bool isVarArg) const {
1619 return CCAssignFnForNode(CC, true, isVarArg);
1620 }
1621
1622 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1623 /// CallingConvention.
CCAssignFnForNode(CallingConv::ID CC,bool Return,bool isVarArg) const1624 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1625 bool Return,
1626 bool isVarArg) const {
1627 switch (getEffectiveCallingConv(CC, isVarArg)) {
1628 default:
1629 report_fatal_error("Unsupported calling convention");
1630 case CallingConv::ARM_APCS:
1631 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1632 case CallingConv::ARM_AAPCS:
1633 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1634 case CallingConv::ARM_AAPCS_VFP:
1635 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1636 case CallingConv::Fast:
1637 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1638 case CallingConv::GHC:
1639 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1640 case CallingConv::PreserveMost:
1641 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1642 }
1643 }
1644
1645 /// LowerCallResult - Lower the result values of a call into the
1646 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const1647 SDValue ARMTargetLowering::LowerCallResult(
1648 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1649 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1650 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1651 SDValue ThisVal) const {
1652 // Assign locations to each value returned by this call.
1653 SmallVector<CCValAssign, 16> RVLocs;
1654 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1655 *DAG.getContext());
1656 CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1657
1658 // Copy all of the result registers out of their specified physreg.
1659 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1660 CCValAssign VA = RVLocs[i];
1661
1662 // Pass 'this' value directly from the argument to return value, to avoid
1663 // reg unit interference
1664 if (i == 0 && isThisReturn) {
1665 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1666 "unexpected return calling convention register assignment");
1667 InVals.push_back(ThisVal);
1668 continue;
1669 }
1670
1671 SDValue Val;
1672 if (VA.needsCustom()) {
1673 // Handle f64 or half of a v2f64.
1674 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1675 InFlag);
1676 Chain = Lo.getValue(1);
1677 InFlag = Lo.getValue(2);
1678 VA = RVLocs[++i]; // skip ahead to next loc
1679 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1680 InFlag);
1681 Chain = Hi.getValue(1);
1682 InFlag = Hi.getValue(2);
1683 if (!Subtarget->isLittle())
1684 std::swap (Lo, Hi);
1685 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1686
1687 if (VA.getLocVT() == MVT::v2f64) {
1688 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1689 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1690 DAG.getConstant(0, dl, MVT::i32));
1691
1692 VA = RVLocs[++i]; // skip ahead to next loc
1693 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1694 Chain = Lo.getValue(1);
1695 InFlag = Lo.getValue(2);
1696 VA = RVLocs[++i]; // skip ahead to next loc
1697 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1698 Chain = Hi.getValue(1);
1699 InFlag = Hi.getValue(2);
1700 if (!Subtarget->isLittle())
1701 std::swap (Lo, Hi);
1702 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1703 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1704 DAG.getConstant(1, dl, MVT::i32));
1705 }
1706 } else {
1707 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1708 InFlag);
1709 Chain = Val.getValue(1);
1710 InFlag = Val.getValue(2);
1711 }
1712
1713 switch (VA.getLocInfo()) {
1714 default: llvm_unreachable("Unknown loc info!");
1715 case CCValAssign::Full: break;
1716 case CCValAssign::BCvt:
1717 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1718 break;
1719 }
1720
1721 InVals.push_back(Val);
1722 }
1723
1724 return Chain;
1725 }
1726
1727 /// LowerMemOpCallTo - Store the argument to the stack.
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,const SDLoc & dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1728 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1729 SDValue Arg, const SDLoc &dl,
1730 SelectionDAG &DAG,
1731 const CCValAssign &VA,
1732 ISD::ArgFlagsTy Flags) const {
1733 unsigned LocMemOffset = VA.getLocMemOffset();
1734 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1735 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1736 StackPtr, PtrOff);
1737 return DAG.getStore(
1738 Chain, dl, Arg, PtrOff,
1739 MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
1740 }
1741
PassF64ArgInRegs(const SDLoc & dl,SelectionDAG & DAG,SDValue Chain,SDValue & Arg,RegsToPassVector & RegsToPass,CCValAssign & VA,CCValAssign & NextVA,SDValue & StackPtr,SmallVectorImpl<SDValue> & MemOpChains,ISD::ArgFlagsTy Flags) const1742 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1743 SDValue Chain, SDValue &Arg,
1744 RegsToPassVector &RegsToPass,
1745 CCValAssign &VA, CCValAssign &NextVA,
1746 SDValue &StackPtr,
1747 SmallVectorImpl<SDValue> &MemOpChains,
1748 ISD::ArgFlagsTy Flags) const {
1749 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1750 DAG.getVTList(MVT::i32, MVT::i32), Arg);
1751 unsigned id = Subtarget->isLittle() ? 0 : 1;
1752 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1753
1754 if (NextVA.isRegLoc())
1755 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1756 else {
1757 assert(NextVA.isMemLoc());
1758 if (!StackPtr.getNode())
1759 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1760 getPointerTy(DAG.getDataLayout()));
1761
1762 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1763 dl, DAG, NextVA,
1764 Flags));
1765 }
1766 }
1767
1768 /// LowerCall - Lowering a call into a callseq_start <-
1769 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1770 /// nodes.
1771 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1772 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1773 SmallVectorImpl<SDValue> &InVals) const {
1774 SelectionDAG &DAG = CLI.DAG;
1775 SDLoc &dl = CLI.DL;
1776 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1777 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1778 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1779 SDValue Chain = CLI.Chain;
1780 SDValue Callee = CLI.Callee;
1781 bool &isTailCall = CLI.IsTailCall;
1782 CallingConv::ID CallConv = CLI.CallConv;
1783 bool doesNotRet = CLI.DoesNotReturn;
1784 bool isVarArg = CLI.IsVarArg;
1785
1786 MachineFunction &MF = DAG.getMachineFunction();
1787 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1788 bool isThisReturn = false;
1789 bool isSibCall = false;
1790 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
1791
1792 // Disable tail calls if they're not supported.
1793 if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1794 isTailCall = false;
1795
1796 if (isTailCall) {
1797 // Check if it's really possible to do a tail call.
1798 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1799 isVarArg, isStructRet, MF.getFunction().hasStructRetAttr(),
1800 Outs, OutVals, Ins, DAG);
1801 if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
1802 report_fatal_error("failed to perform tail call elimination on a call "
1803 "site marked musttail");
1804 // We don't support GuaranteedTailCallOpt for ARM, only automatically
1805 // detected sibcalls.
1806 if (isTailCall) {
1807 ++NumTailCalls;
1808 isSibCall = true;
1809 }
1810 }
1811
1812 // Analyze operands of the call, assigning locations to each operand.
1813 SmallVector<CCValAssign, 16> ArgLocs;
1814 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1815 *DAG.getContext());
1816 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
1817
1818 // Get a count of how many bytes are to be pushed on the stack.
1819 unsigned NumBytes = CCInfo.getNextStackOffset();
1820
1821 // For tail calls, memory operands are available in our caller's stack.
1822 if (isSibCall)
1823 NumBytes = 0;
1824
1825 // Adjust the stack pointer for the new arguments...
1826 // These operations are automatically eliminated by the prolog/epilog pass
1827 if (!isSibCall)
1828 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1829
1830 SDValue StackPtr =
1831 DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
1832
1833 RegsToPassVector RegsToPass;
1834 SmallVector<SDValue, 8> MemOpChains;
1835
1836 // Walk the register/memloc assignments, inserting copies/loads. In the case
1837 // of tail call optimization, arguments are handled later.
1838 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1839 i != e;
1840 ++i, ++realArgIdx) {
1841 CCValAssign &VA = ArgLocs[i];
1842 SDValue Arg = OutVals[realArgIdx];
1843 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1844 bool isByVal = Flags.isByVal();
1845
1846 // Promote the value if needed.
1847 switch (VA.getLocInfo()) {
1848 default: llvm_unreachable("Unknown loc info!");
1849 case CCValAssign::Full: break;
1850 case CCValAssign::SExt:
1851 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1852 break;
1853 case CCValAssign::ZExt:
1854 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1855 break;
1856 case CCValAssign::AExt:
1857 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1858 break;
1859 case CCValAssign::BCvt:
1860 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1861 break;
1862 }
1863
1864 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1865 if (VA.needsCustom()) {
1866 if (VA.getLocVT() == MVT::v2f64) {
1867 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1868 DAG.getConstant(0, dl, MVT::i32));
1869 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1870 DAG.getConstant(1, dl, MVT::i32));
1871
1872 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1873 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1874
1875 VA = ArgLocs[++i]; // skip ahead to next loc
1876 if (VA.isRegLoc()) {
1877 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1878 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1879 } else {
1880 assert(VA.isMemLoc());
1881
1882 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1883 dl, DAG, VA, Flags));
1884 }
1885 } else {
1886 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1887 StackPtr, MemOpChains, Flags);
1888 }
1889 } else if (VA.isRegLoc()) {
1890 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
1891 Outs[0].VT == MVT::i32) {
1892 assert(VA.getLocVT() == MVT::i32 &&
1893 "unexpected calling convention register assignment");
1894 assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1895 "unexpected use of 'returned'");
1896 isThisReturn = true;
1897 }
1898 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1899 } else if (isByVal) {
1900 assert(VA.isMemLoc());
1901 unsigned offset = 0;
1902
1903 // True if this byval aggregate will be split between registers
1904 // and memory.
1905 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1906 unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1907
1908 if (CurByValIdx < ByValArgsCount) {
1909
1910 unsigned RegBegin, RegEnd;
1911 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1912
1913 EVT PtrVT =
1914 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1915 unsigned int i, j;
1916 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1917 SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
1918 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1919 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1920 MachinePointerInfo(),
1921 DAG.InferPtrAlignment(AddArg));
1922 MemOpChains.push_back(Load.getValue(1));
1923 RegsToPass.push_back(std::make_pair(j, Load));
1924 }
1925
1926 // If parameter size outsides register area, "offset" value
1927 // helps us to calculate stack slot for remained part properly.
1928 offset = RegEnd - RegBegin;
1929
1930 CCInfo.nextInRegsParam();
1931 }
1932
1933 if (Flags.getByValSize() > 4*offset) {
1934 auto PtrVT = getPointerTy(DAG.getDataLayout());
1935 unsigned LocMemOffset = VA.getLocMemOffset();
1936 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1937 SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
1938 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
1939 SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
1940 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
1941 MVT::i32);
1942 SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
1943 MVT::i32);
1944
1945 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1946 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1947 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1948 Ops));
1949 }
1950 } else if (!isSibCall) {
1951 assert(VA.isMemLoc());
1952
1953 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1954 dl, DAG, VA, Flags));
1955 }
1956 }
1957
1958 if (!MemOpChains.empty())
1959 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1960
1961 // Build a sequence of copy-to-reg nodes chained together with token chain
1962 // and flag operands which copy the outgoing args into the appropriate regs.
1963 SDValue InFlag;
1964 // Tail call byval lowering might overwrite argument registers so in case of
1965 // tail call optimization the copies to registers are lowered later.
1966 if (!isTailCall)
1967 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1968 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1969 RegsToPass[i].second, InFlag);
1970 InFlag = Chain.getValue(1);
1971 }
1972
1973 // For tail calls lower the arguments to the 'real' stack slot.
1974 if (isTailCall) {
1975 // Force all the incoming stack arguments to be loaded from the stack
1976 // before any new outgoing arguments are stored to the stack, because the
1977 // outgoing stack slots may alias the incoming argument stack slots, and
1978 // the alias isn't otherwise explicit. This is slightly more conservative
1979 // than necessary, because it means that each store effectively depends
1980 // on every argument instead of just those arguments it would clobber.
1981
1982 // Do not flag preceding copytoreg stuff together with the following stuff.
1983 InFlag = SDValue();
1984 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1985 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1986 RegsToPass[i].second, InFlag);
1987 InFlag = Chain.getValue(1);
1988 }
1989 InFlag = SDValue();
1990 }
1991
1992 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1993 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1994 // node so that legalize doesn't hack it.
1995 bool isDirect = false;
1996
1997 const TargetMachine &TM = getTargetMachine();
1998 const Module *Mod = MF.getFunction().getParent();
1999 const GlobalValue *GV = nullptr;
2000 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2001 GV = G->getGlobal();
2002 bool isStub =
2003 !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2004
2005 bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2006 bool isLocalARMFunc = false;
2007 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2008 auto PtrVt = getPointerTy(DAG.getDataLayout());
2009
2010 if (Subtarget->genLongCalls()) {
2011 assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2012 "long-calls codegen is not position independent!");
2013 // Handle a global address or an external symbol. If it's not one of
2014 // those, the target's already in a register, so we don't need to do
2015 // anything extra.
2016 if (isa<GlobalAddressSDNode>(Callee)) {
2017 // Create a constant pool entry for the callee address
2018 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2019 ARMConstantPoolValue *CPV =
2020 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2021
2022 // Get the address of the callee into a register
2023 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2024 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2025 Callee = DAG.getLoad(
2026 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2027 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2028 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2029 const char *Sym = S->getSymbol();
2030
2031 // Create a constant pool entry for the callee address
2032 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2033 ARMConstantPoolValue *CPV =
2034 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2035 ARMPCLabelIndex, 0);
2036 // Get the address of the callee into a register
2037 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2038 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2039 Callee = DAG.getLoad(
2040 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2041 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2042 }
2043 } else if (isa<GlobalAddressSDNode>(Callee)) {
2044 // If we're optimizing for minimum size and the function is called three or
2045 // more times in this block, we can improve codesize by calling indirectly
2046 // as BLXr has a 16-bit encoding.
2047 auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2048 auto *BB = CLI.CS.getParent();
2049 bool PreferIndirect =
2050 Subtarget->isThumb() && MF.getFunction().optForMinSize() &&
2051 count_if(GV->users(), [&BB](const User *U) {
2052 return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
2053 }) > 2;
2054
2055 if (!PreferIndirect) {
2056 isDirect = true;
2057 bool isDef = GV->isStrongDefinitionForLinker();
2058
2059 // ARM call to a local ARM function is predicable.
2060 isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2061 // tBX takes a register source operand.
2062 if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2063 assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2064 Callee = DAG.getNode(
2065 ARMISD::WrapperPIC, dl, PtrVt,
2066 DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2067 Callee = DAG.getLoad(
2068 PtrVt, dl, DAG.getEntryNode(), Callee,
2069 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2070 /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2071 MachineMemOperand::MOInvariant);
2072 } else if (Subtarget->isTargetCOFF()) {
2073 assert(Subtarget->isTargetWindows() &&
2074 "Windows is the only supported COFF target");
2075 unsigned TargetFlags = GV->hasDLLImportStorageClass()
2076 ? ARMII::MO_DLLIMPORT
2077 : ARMII::MO_NO_FLAG;
2078 Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
2079 TargetFlags);
2080 if (GV->hasDLLImportStorageClass())
2081 Callee =
2082 DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2083 DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2084 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2085 } else {
2086 Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2087 }
2088 }
2089 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2090 isDirect = true;
2091 // tBX takes a register source operand.
2092 const char *Sym = S->getSymbol();
2093 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2094 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2095 ARMConstantPoolValue *CPV =
2096 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2097 ARMPCLabelIndex, 4);
2098 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2099 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2100 Callee = DAG.getLoad(
2101 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2102 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2103 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2104 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2105 } else {
2106 Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2107 }
2108 }
2109
2110 // FIXME: handle tail calls differently.
2111 unsigned CallOpc;
2112 if (Subtarget->isThumb()) {
2113 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2114 CallOpc = ARMISD::CALL_NOLINK;
2115 else
2116 CallOpc = ARMISD::CALL;
2117 } else {
2118 if (!isDirect && !Subtarget->hasV5TOps())
2119 CallOpc = ARMISD::CALL_NOLINK;
2120 else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2121 // Emit regular call when code size is the priority
2122 !MF.getFunction().optForMinSize())
2123 // "mov lr, pc; b _foo" to avoid confusing the RSP
2124 CallOpc = ARMISD::CALL_NOLINK;
2125 else
2126 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2127 }
2128
2129 std::vector<SDValue> Ops;
2130 Ops.push_back(Chain);
2131 Ops.push_back(Callee);
2132
2133 // Add argument registers to the end of the list so that they are known live
2134 // into the call.
2135 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2136 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2137 RegsToPass[i].second.getValueType()));
2138
2139 // Add a register mask operand representing the call-preserved registers.
2140 if (!isTailCall) {
2141 const uint32_t *Mask;
2142 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2143 if (isThisReturn) {
2144 // For 'this' returns, use the R0-preserving mask if applicable
2145 Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2146 if (!Mask) {
2147 // Set isThisReturn to false if the calling convention is not one that
2148 // allows 'returned' to be modeled in this way, so LowerCallResult does
2149 // not try to pass 'this' straight through
2150 isThisReturn = false;
2151 Mask = ARI->getCallPreservedMask(MF, CallConv);
2152 }
2153 } else
2154 Mask = ARI->getCallPreservedMask(MF, CallConv);
2155
2156 assert(Mask && "Missing call preserved mask for calling convention");
2157 Ops.push_back(DAG.getRegisterMask(Mask));
2158 }
2159
2160 if (InFlag.getNode())
2161 Ops.push_back(InFlag);
2162
2163 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2164 if (isTailCall) {
2165 MF.getFrameInfo().setHasTailCall();
2166 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2167 }
2168
2169 // Returns a chain and a flag for retval copy to use.
2170 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2171 InFlag = Chain.getValue(1);
2172
2173 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2174 DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2175 if (!Ins.empty())
2176 InFlag = Chain.getValue(1);
2177
2178 // Handle result values, copying them out of physregs into vregs that we
2179 // return.
2180 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2181 InVals, isThisReturn,
2182 isThisReturn ? OutVals[0] : SDValue());
2183 }
2184
2185 /// HandleByVal - Every parameter *after* a byval parameter is passed
2186 /// on the stack. Remember the next parameter register to allocate,
2187 /// and then confiscate the rest of the parameter registers to insure
2188 /// this.
HandleByVal(CCState * State,unsigned & Size,unsigned Align) const2189 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2190 unsigned Align) const {
2191 // Byval (as with any stack) slots are always at least 4 byte aligned.
2192 Align = std::max(Align, 4U);
2193
2194 unsigned Reg = State->AllocateReg(GPRArgRegs);
2195 if (!Reg)
2196 return;
2197
2198 unsigned AlignInRegs = Align / 4;
2199 unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2200 for (unsigned i = 0; i < Waste; ++i)
2201 Reg = State->AllocateReg(GPRArgRegs);
2202
2203 if (!Reg)
2204 return;
2205
2206 unsigned Excess = 4 * (ARM::R4 - Reg);
2207
2208 // Special case when NSAA != SP and parameter size greater than size of
2209 // all remained GPR regs. In that case we can't split parameter, we must
2210 // send it to stack. We also must set NCRN to R4, so waste all
2211 // remained registers.
2212 const unsigned NSAAOffset = State->getNextStackOffset();
2213 if (NSAAOffset != 0 && Size > Excess) {
2214 while (State->AllocateReg(GPRArgRegs))
2215 ;
2216 return;
2217 }
2218
2219 // First register for byval parameter is the first register that wasn't
2220 // allocated before this method call, so it would be "reg".
2221 // If parameter is small enough to be saved in range [reg, r4), then
2222 // the end (first after last) register would be reg + param-size-in-regs,
2223 // else parameter would be splitted between registers and stack,
2224 // end register would be r4 in this case.
2225 unsigned ByValRegBegin = Reg;
2226 unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2227 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2228 // Note, first register is allocated in the beginning of function already,
2229 // allocate remained amount of registers we need.
2230 for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2231 State->AllocateReg(GPRArgRegs);
2232 // A byval parameter that is split between registers and memory needs its
2233 // size truncated here.
2234 // In the case where the entire structure fits in registers, we set the
2235 // size in memory to zero.
2236 Size = std::max<int>(Size - Excess, 0);
2237 }
2238
2239 /// MatchingStackOffset - Return true if the given stack call argument is
2240 /// already available in the same position (relatively) of the caller's
2241 /// incoming argument stack.
2242 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo & MFI,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)2243 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2244 MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2245 const TargetInstrInfo *TII) {
2246 unsigned Bytes = Arg.getValueSizeInBits() / 8;
2247 int FI = std::numeric_limits<int>::max();
2248 if (Arg.getOpcode() == ISD::CopyFromReg) {
2249 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2250 if (!TargetRegisterInfo::isVirtualRegister(VR))
2251 return false;
2252 MachineInstr *Def = MRI->getVRegDef(VR);
2253 if (!Def)
2254 return false;
2255 if (!Flags.isByVal()) {
2256 if (!TII->isLoadFromStackSlot(*Def, FI))
2257 return false;
2258 } else {
2259 return false;
2260 }
2261 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2262 if (Flags.isByVal())
2263 // ByVal argument is passed in as a pointer but it's now being
2264 // dereferenced. e.g.
2265 // define @foo(%struct.X* %A) {
2266 // tail call @bar(%struct.X* byval %A)
2267 // }
2268 return false;
2269 SDValue Ptr = Ld->getBasePtr();
2270 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2271 if (!FINode)
2272 return false;
2273 FI = FINode->getIndex();
2274 } else
2275 return false;
2276
2277 assert(FI != std::numeric_limits<int>::max());
2278 if (!MFI.isFixedObjectIndex(FI))
2279 return false;
2280 return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2281 }
2282
2283 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2284 /// for tail call optimization. Targets which want to do tail call
2285 /// optimization should implement this function.
2286 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2287 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2288 CallingConv::ID CalleeCC,
2289 bool isVarArg,
2290 bool isCalleeStructRet,
2291 bool isCallerStructRet,
2292 const SmallVectorImpl<ISD::OutputArg> &Outs,
2293 const SmallVectorImpl<SDValue> &OutVals,
2294 const SmallVectorImpl<ISD::InputArg> &Ins,
2295 SelectionDAG& DAG) const {
2296 MachineFunction &MF = DAG.getMachineFunction();
2297 const Function &CallerF = MF.getFunction();
2298 CallingConv::ID CallerCC = CallerF.getCallingConv();
2299
2300 assert(Subtarget->supportsTailCall());
2301
2302 // Tail calls to function pointers cannot be optimized for Thumb1 if the args
2303 // to the call take up r0-r3. The reason is that there are no legal registers
2304 // left to hold the pointer to the function to be called.
2305 if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2306 !isa<GlobalAddressSDNode>(Callee.getNode()))
2307 return false;
2308
2309 // Look for obvious safe cases to perform tail call optimization that do not
2310 // require ABI changes. This is what gcc calls sibcall.
2311
2312 // Exception-handling functions need a special set of instructions to indicate
2313 // a return to the hardware. Tail-calling another function would probably
2314 // break this.
2315 if (CallerF.hasFnAttribute("interrupt"))
2316 return false;
2317
2318 // Also avoid sibcall optimization if either caller or callee uses struct
2319 // return semantics.
2320 if (isCalleeStructRet || isCallerStructRet)
2321 return false;
2322
2323 // Externally-defined functions with weak linkage should not be
2324 // tail-called on ARM when the OS does not support dynamic
2325 // pre-emption of symbols, as the AAELF spec requires normal calls
2326 // to undefined weak functions to be replaced with a NOP or jump to the
2327 // next instruction. The behaviour of branch instructions in this
2328 // situation (as used for tail calls) is implementation-defined, so we
2329 // cannot rely on the linker replacing the tail call with a return.
2330 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2331 const GlobalValue *GV = G->getGlobal();
2332 const Triple &TT = getTargetMachine().getTargetTriple();
2333 if (GV->hasExternalWeakLinkage() &&
2334 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2335 return false;
2336 }
2337
2338 // Check that the call results are passed in the same way.
2339 LLVMContext &C = *DAG.getContext();
2340 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2341 CCAssignFnForReturn(CalleeCC, isVarArg),
2342 CCAssignFnForReturn(CallerCC, isVarArg)))
2343 return false;
2344 // The callee has to preserve all registers the caller needs to preserve.
2345 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2346 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2347 if (CalleeCC != CallerCC) {
2348 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2349 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2350 return false;
2351 }
2352
2353 // If Caller's vararg or byval argument has been split between registers and
2354 // stack, do not perform tail call, since part of the argument is in caller's
2355 // local frame.
2356 const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2357 if (AFI_Caller->getArgRegsSaveSize())
2358 return false;
2359
2360 // If the callee takes no arguments then go on to check the results of the
2361 // call.
2362 if (!Outs.empty()) {
2363 // Check if stack adjustment is needed. For now, do not do this if any
2364 // argument is passed on the stack.
2365 SmallVector<CCValAssign, 16> ArgLocs;
2366 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2367 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2368 if (CCInfo.getNextStackOffset()) {
2369 // Check if the arguments are already laid out in the right way as
2370 // the caller's fixed stack objects.
2371 MachineFrameInfo &MFI = MF.getFrameInfo();
2372 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2373 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2374 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2375 i != e;
2376 ++i, ++realArgIdx) {
2377 CCValAssign &VA = ArgLocs[i];
2378 EVT RegVT = VA.getLocVT();
2379 SDValue Arg = OutVals[realArgIdx];
2380 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2381 if (VA.getLocInfo() == CCValAssign::Indirect)
2382 return false;
2383 if (VA.needsCustom()) {
2384 // f64 and vector types are split into multiple registers or
2385 // register/stack-slot combinations. The types will not match
2386 // the registers; give up on memory f64 refs until we figure
2387 // out what to do about this.
2388 if (!VA.isRegLoc())
2389 return false;
2390 if (!ArgLocs[++i].isRegLoc())
2391 return false;
2392 if (RegVT == MVT::v2f64) {
2393 if (!ArgLocs[++i].isRegLoc())
2394 return false;
2395 if (!ArgLocs[++i].isRegLoc())
2396 return false;
2397 }
2398 } else if (!VA.isRegLoc()) {
2399 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2400 MFI, MRI, TII))
2401 return false;
2402 }
2403 }
2404 }
2405
2406 const MachineRegisterInfo &MRI = MF.getRegInfo();
2407 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2408 return false;
2409 }
2410
2411 return true;
2412 }
2413
2414 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const2415 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2416 MachineFunction &MF, bool isVarArg,
2417 const SmallVectorImpl<ISD::OutputArg> &Outs,
2418 LLVMContext &Context) const {
2419 SmallVector<CCValAssign, 16> RVLocs;
2420 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2421 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2422 }
2423
LowerInterruptReturn(SmallVectorImpl<SDValue> & RetOps,const SDLoc & DL,SelectionDAG & DAG)2424 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2425 const SDLoc &DL, SelectionDAG &DAG) {
2426 const MachineFunction &MF = DAG.getMachineFunction();
2427 const Function &F = MF.getFunction();
2428
2429 StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2430
2431 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2432 // version of the "preferred return address". These offsets affect the return
2433 // instruction if this is a return from PL1 without hypervisor extensions.
2434 // IRQ/FIQ: +4 "subs pc, lr, #4"
2435 // SWI: 0 "subs pc, lr, #0"
2436 // ABORT: +4 "subs pc, lr, #4"
2437 // UNDEF: +4/+2 "subs pc, lr, #0"
2438 // UNDEF varies depending on where the exception came from ARM or Thumb
2439 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2440
2441 int64_t LROffset;
2442 if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2443 IntKind == "ABORT")
2444 LROffset = 4;
2445 else if (IntKind == "SWI" || IntKind == "UNDEF")
2446 LROffset = 0;
2447 else
2448 report_fatal_error("Unsupported interrupt attribute. If present, value "
2449 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2450
2451 RetOps.insert(RetOps.begin() + 1,
2452 DAG.getConstant(LROffset, DL, MVT::i32, false));
2453
2454 return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2455 }
2456
2457 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const2458 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2459 bool isVarArg,
2460 const SmallVectorImpl<ISD::OutputArg> &Outs,
2461 const SmallVectorImpl<SDValue> &OutVals,
2462 const SDLoc &dl, SelectionDAG &DAG) const {
2463 // CCValAssign - represent the assignment of the return value to a location.
2464 SmallVector<CCValAssign, 16> RVLocs;
2465
2466 // CCState - Info about the registers and stack slots.
2467 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2468 *DAG.getContext());
2469
2470 // Analyze outgoing return values.
2471 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2472
2473 SDValue Flag;
2474 SmallVector<SDValue, 4> RetOps;
2475 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2476 bool isLittleEndian = Subtarget->isLittle();
2477
2478 MachineFunction &MF = DAG.getMachineFunction();
2479 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2480 AFI->setReturnRegsCount(RVLocs.size());
2481
2482 // Copy the result values into the output registers.
2483 for (unsigned i = 0, realRVLocIdx = 0;
2484 i != RVLocs.size();
2485 ++i, ++realRVLocIdx) {
2486 CCValAssign &VA = RVLocs[i];
2487 assert(VA.isRegLoc() && "Can only return in registers!");
2488
2489 SDValue Arg = OutVals[realRVLocIdx];
2490 bool ReturnF16 = false;
2491
2492 if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2493 // Half-precision return values can be returned like this:
2494 //
2495 // t11 f16 = fadd ...
2496 // t12: i16 = bitcast t11
2497 // t13: i32 = zero_extend t12
2498 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2499 //
2500 // to avoid code generation for bitcasts, we simply set Arg to the node
2501 // that produces the f16 value, t11 in this case.
2502 //
2503 if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
2504 SDValue ZE = Arg.getOperand(0);
2505 if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
2506 SDValue BC = ZE.getOperand(0);
2507 if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
2508 Arg = BC.getOperand(0);
2509 ReturnF16 = true;
2510 }
2511 }
2512 }
2513 }
2514
2515 switch (VA.getLocInfo()) {
2516 default: llvm_unreachable("Unknown loc info!");
2517 case CCValAssign::Full: break;
2518 case CCValAssign::BCvt:
2519 if (!ReturnF16)
2520 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2521 break;
2522 }
2523
2524 if (VA.needsCustom()) {
2525 if (VA.getLocVT() == MVT::v2f64) {
2526 // Extract the first half and return it in two registers.
2527 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2528 DAG.getConstant(0, dl, MVT::i32));
2529 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2530 DAG.getVTList(MVT::i32, MVT::i32), Half);
2531
2532 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2533 HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2534 Flag);
2535 Flag = Chain.getValue(1);
2536 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2537 VA = RVLocs[++i]; // skip ahead to next loc
2538 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2539 HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2540 Flag);
2541 Flag = Chain.getValue(1);
2542 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2543 VA = RVLocs[++i]; // skip ahead to next loc
2544
2545 // Extract the 2nd half and fall through to handle it as an f64 value.
2546 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2547 DAG.getConstant(1, dl, MVT::i32));
2548 }
2549 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2550 // available.
2551 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2552 DAG.getVTList(MVT::i32, MVT::i32), Arg);
2553 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2554 fmrrd.getValue(isLittleEndian ? 0 : 1),
2555 Flag);
2556 Flag = Chain.getValue(1);
2557 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2558 VA = RVLocs[++i]; // skip ahead to next loc
2559 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2560 fmrrd.getValue(isLittleEndian ? 1 : 0),
2561 Flag);
2562 } else
2563 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2564
2565 // Guarantee that all emitted copies are
2566 // stuck together, avoiding something bad.
2567 Flag = Chain.getValue(1);
2568 RetOps.push_back(DAG.getRegister(VA.getLocReg(),
2569 ReturnF16 ? MVT::f16 : VA.getLocVT()));
2570 }
2571 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2572 const MCPhysReg *I =
2573 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2574 if (I) {
2575 for (; *I; ++I) {
2576 if (ARM::GPRRegClass.contains(*I))
2577 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2578 else if (ARM::DPRRegClass.contains(*I))
2579 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2580 else
2581 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2582 }
2583 }
2584
2585 // Update chain and glue.
2586 RetOps[0] = Chain;
2587 if (Flag.getNode())
2588 RetOps.push_back(Flag);
2589
2590 // CPUs which aren't M-class use a special sequence to return from
2591 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2592 // though we use "subs pc, lr, #N").
2593 //
2594 // M-class CPUs actually use a normal return sequence with a special
2595 // (hardware-provided) value in LR, so the normal code path works.
2596 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2597 !Subtarget->isMClass()) {
2598 if (Subtarget->isThumb1Only())
2599 report_fatal_error("interrupt attribute is not supported in Thumb1");
2600 return LowerInterruptReturn(RetOps, dl, DAG);
2601 }
2602
2603 return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2604 }
2605
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const2606 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2607 if (N->getNumValues() != 1)
2608 return false;
2609 if (!N->hasNUsesOfValue(1, 0))
2610 return false;
2611
2612 SDValue TCChain = Chain;
2613 SDNode *Copy = *N->use_begin();
2614 if (Copy->getOpcode() == ISD::CopyToReg) {
2615 // If the copy has a glue operand, we conservatively assume it isn't safe to
2616 // perform a tail call.
2617 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2618 return false;
2619 TCChain = Copy->getOperand(0);
2620 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2621 SDNode *VMov = Copy;
2622 // f64 returned in a pair of GPRs.
2623 SmallPtrSet<SDNode*, 2> Copies;
2624 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2625 UI != UE; ++UI) {
2626 if (UI->getOpcode() != ISD::CopyToReg)
2627 return false;
2628 Copies.insert(*UI);
2629 }
2630 if (Copies.size() > 2)
2631 return false;
2632
2633 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2634 UI != UE; ++UI) {
2635 SDValue UseChain = UI->getOperand(0);
2636 if (Copies.count(UseChain.getNode()))
2637 // Second CopyToReg
2638 Copy = *UI;
2639 else {
2640 // We are at the top of this chain.
2641 // If the copy has a glue operand, we conservatively assume it
2642 // isn't safe to perform a tail call.
2643 if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2644 return false;
2645 // First CopyToReg
2646 TCChain = UseChain;
2647 }
2648 }
2649 } else if (Copy->getOpcode() == ISD::BITCAST) {
2650 // f32 returned in a single GPR.
2651 if (!Copy->hasOneUse())
2652 return false;
2653 Copy = *Copy->use_begin();
2654 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2655 return false;
2656 // If the copy has a glue operand, we conservatively assume it isn't safe to
2657 // perform a tail call.
2658 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2659 return false;
2660 TCChain = Copy->getOperand(0);
2661 } else {
2662 return false;
2663 }
2664
2665 bool HasRet = false;
2666 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2667 UI != UE; ++UI) {
2668 if (UI->getOpcode() != ARMISD::RET_FLAG &&
2669 UI->getOpcode() != ARMISD::INTRET_FLAG)
2670 return false;
2671 HasRet = true;
2672 }
2673
2674 if (!HasRet)
2675 return false;
2676
2677 Chain = TCChain;
2678 return true;
2679 }
2680
mayBeEmittedAsTailCall(const CallInst * CI) const2681 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2682 if (!Subtarget->supportsTailCall())
2683 return false;
2684
2685 auto Attr =
2686 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2687 if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2688 return false;
2689
2690 return true;
2691 }
2692
2693 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2694 // and pass the lower and high parts through.
LowerWRITE_REGISTER(SDValue Op,SelectionDAG & DAG)2695 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2696 SDLoc DL(Op);
2697 SDValue WriteValue = Op->getOperand(2);
2698
2699 // This function is only supposed to be called for i64 type argument.
2700 assert(WriteValue.getValueType() == MVT::i64
2701 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2702
2703 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2704 DAG.getConstant(0, DL, MVT::i32));
2705 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2706 DAG.getConstant(1, DL, MVT::i32));
2707 SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2708 return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2709 }
2710
2711 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2712 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2713 // one of the above mentioned nodes. It has to be wrapped because otherwise
2714 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2715 // be used to form addressing mode. These wrapped nodes will be selected
2716 // into MOVi.
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const2717 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
2718 SelectionDAG &DAG) const {
2719 EVT PtrVT = Op.getValueType();
2720 // FIXME there is no actual debug info here
2721 SDLoc dl(Op);
2722 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2723 SDValue Res;
2724
2725 // When generating execute-only code Constant Pools must be promoted to the
2726 // global data section. It's a bit ugly that we can't share them across basic
2727 // blocks, but this way we guarantee that execute-only behaves correct with
2728 // position-independent addressing modes.
2729 if (Subtarget->genExecuteOnly()) {
2730 auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2731 auto T = const_cast<Type*>(CP->getType());
2732 auto C = const_cast<Constant*>(CP->getConstVal());
2733 auto M = const_cast<Module*>(DAG.getMachineFunction().
2734 getFunction().getParent());
2735 auto GV = new GlobalVariable(
2736 *M, T, /*isConst=*/true, GlobalVariable::InternalLinkage, C,
2737 Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2738 Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
2739 Twine(AFI->createPICLabelUId())
2740 );
2741 SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
2742 dl, PtrVT);
2743 return LowerGlobalAddress(GA, DAG);
2744 }
2745
2746 if (CP->isMachineConstantPoolEntry())
2747 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2748 CP->getAlignment());
2749 else
2750 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2751 CP->getAlignment());
2752 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2753 }
2754
getJumpTableEncoding() const2755 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2756 return MachineJumpTableInfo::EK_Inline;
2757 }
2758
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2759 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2760 SelectionDAG &DAG) const {
2761 MachineFunction &MF = DAG.getMachineFunction();
2762 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2763 unsigned ARMPCLabelIndex = 0;
2764 SDLoc DL(Op);
2765 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2766 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2767 SDValue CPAddr;
2768 bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
2769 if (!IsPositionIndependent) {
2770 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2771 } else {
2772 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2773 ARMPCLabelIndex = AFI->createPICLabelUId();
2774 ARMConstantPoolValue *CPV =
2775 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2776 ARMCP::CPBlockAddress, PCAdj);
2777 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2778 }
2779 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2780 SDValue Result = DAG.getLoad(
2781 PtrVT, DL, DAG.getEntryNode(), CPAddr,
2782 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2783 if (!IsPositionIndependent)
2784 return Result;
2785 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2786 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2787 }
2788
2789 /// Convert a TLS address reference into the correct sequence of loads
2790 /// and calls to compute the variable's address for Darwin, and return an
2791 /// SDValue containing the final node.
2792
2793 /// Darwin only has one TLS scheme which must be capable of dealing with the
2794 /// fully general situation, in the worst case. This means:
2795 /// + "extern __thread" declaration.
2796 /// + Defined in a possibly unknown dynamic library.
2797 ///
2798 /// The general system is that each __thread variable has a [3 x i32] descriptor
2799 /// which contains information used by the runtime to calculate the address. The
2800 /// only part of this the compiler needs to know about is the first word, which
2801 /// contains a function pointer that must be called with the address of the
2802 /// entire descriptor in "r0".
2803 ///
2804 /// Since this descriptor may be in a different unit, in general access must
2805 /// proceed along the usual ARM rules. A common sequence to produce is:
2806 ///
2807 /// movw rT1, :lower16:_var$non_lazy_ptr
2808 /// movt rT1, :upper16:_var$non_lazy_ptr
2809 /// ldr r0, [rT1]
2810 /// ldr rT2, [r0]
2811 /// blx rT2
2812 /// [...address now in r0...]
2813 SDValue
LowerGlobalTLSAddressDarwin(SDValue Op,SelectionDAG & DAG) const2814 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2815 SelectionDAG &DAG) const {
2816 assert(Subtarget->isTargetDarwin() &&
2817 "This function expects a Darwin target");
2818 SDLoc DL(Op);
2819
2820 // First step is to get the address of the actua global symbol. This is where
2821 // the TLS descriptor lives.
2822 SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2823
2824 // The first entry in the descriptor is a function pointer that we must call
2825 // to obtain the address of the variable.
2826 SDValue Chain = DAG.getEntryNode();
2827 SDValue FuncTLVGet = DAG.getLoad(
2828 MVT::i32, DL, Chain, DescAddr,
2829 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2830 /* Alignment = */ 4,
2831 MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
2832 MachineMemOperand::MOInvariant);
2833 Chain = FuncTLVGet.getValue(1);
2834
2835 MachineFunction &F = DAG.getMachineFunction();
2836 MachineFrameInfo &MFI = F.getFrameInfo();
2837 MFI.setAdjustsStack(true);
2838
2839 // TLS calls preserve all registers except those that absolutely must be
2840 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2841 // silly).
2842 auto TRI =
2843 getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
2844 auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2845 const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2846
2847 // Finally, we can make the call. This is just a degenerate version of a
2848 // normal AArch64 call node: r0 takes the address of the descriptor, and
2849 // returns the address of the variable in this thread.
2850 Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2851 Chain =
2852 DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2853 Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
2854 DAG.getRegisterMask(Mask), Chain.getValue(1));
2855 return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
2856 }
2857
2858 SDValue
LowerGlobalTLSAddressWindows(SDValue Op,SelectionDAG & DAG) const2859 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
2860 SelectionDAG &DAG) const {
2861 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
2862
2863 SDValue Chain = DAG.getEntryNode();
2864 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2865 SDLoc DL(Op);
2866
2867 // Load the current TEB (thread environment block)
2868 SDValue Ops[] = {Chain,
2869 DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
2870 DAG.getConstant(15, DL, MVT::i32),
2871 DAG.getConstant(0, DL, MVT::i32),
2872 DAG.getConstant(13, DL, MVT::i32),
2873 DAG.getConstant(0, DL, MVT::i32),
2874 DAG.getConstant(2, DL, MVT::i32)};
2875 SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
2876 DAG.getVTList(MVT::i32, MVT::Other), Ops);
2877
2878 SDValue TEB = CurrentTEB.getValue(0);
2879 Chain = CurrentTEB.getValue(1);
2880
2881 // Load the ThreadLocalStoragePointer from the TEB
2882 // A pointer to the TLS array is located at offset 0x2c from the TEB.
2883 SDValue TLSArray =
2884 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
2885 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
2886
2887 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
2888 // offset into the TLSArray.
2889
2890 // Load the TLS index from the C runtime
2891 SDValue TLSIndex =
2892 DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
2893 TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
2894 TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
2895
2896 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
2897 DAG.getConstant(2, DL, MVT::i32));
2898 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
2899 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
2900 MachinePointerInfo());
2901
2902 // Get the offset of the start of the .tls section (section base)
2903 const auto *GA = cast<GlobalAddressSDNode>(Op);
2904 auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
2905 SDValue Offset = DAG.getLoad(
2906 PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
2907 DAG.getTargetConstantPool(CPV, PtrVT, 4)),
2908 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2909
2910 return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
2911 }
2912
2913 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2914 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const2915 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2916 SelectionDAG &DAG) const {
2917 SDLoc dl(GA);
2918 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2919 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2920 MachineFunction &MF = DAG.getMachineFunction();
2921 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2922 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2923 ARMConstantPoolValue *CPV =
2924 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2925 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2926 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2927 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2928 Argument = DAG.getLoad(
2929 PtrVT, dl, DAG.getEntryNode(), Argument,
2930 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2931 SDValue Chain = Argument.getValue(1);
2932
2933 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2934 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2935
2936 // call __tls_get_addr.
2937 ArgListTy Args;
2938 ArgListEntry Entry;
2939 Entry.Node = Argument;
2940 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2941 Args.push_back(Entry);
2942
2943 // FIXME: is there useful debug info available here?
2944 TargetLowering::CallLoweringInfo CLI(DAG);
2945 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
2946 CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2947 DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
2948
2949 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2950 return CallResult.first;
2951 }
2952
2953 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2954 // "local exec" model.
2955 SDValue
LowerToTLSExecModels(GlobalAddressSDNode * GA,SelectionDAG & DAG,TLSModel::Model model) const2956 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2957 SelectionDAG &DAG,
2958 TLSModel::Model model) const {
2959 const GlobalValue *GV = GA->getGlobal();
2960 SDLoc dl(GA);
2961 SDValue Offset;
2962 SDValue Chain = DAG.getEntryNode();
2963 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2964 // Get the Thread Pointer
2965 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2966
2967 if (model == TLSModel::InitialExec) {
2968 MachineFunction &MF = DAG.getMachineFunction();
2969 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2970 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2971 // Initial exec model.
2972 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2973 ARMConstantPoolValue *CPV =
2974 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2975 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2976 true);
2977 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2978 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2979 Offset = DAG.getLoad(
2980 PtrVT, dl, Chain, Offset,
2981 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2982 Chain = Offset.getValue(1);
2983
2984 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2985 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2986
2987 Offset = DAG.getLoad(
2988 PtrVT, dl, Chain, Offset,
2989 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2990 } else {
2991 // local exec model
2992 assert(model == TLSModel::LocalExec);
2993 ARMConstantPoolValue *CPV =
2994 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2995 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2996 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2997 Offset = DAG.getLoad(
2998 PtrVT, dl, Chain, Offset,
2999 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3000 }
3001
3002 // The address of the thread local variable is the add of the thread
3003 // pointer with the offset of the variable.
3004 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3005 }
3006
3007 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3008 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3009 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3010 if (DAG.getTarget().useEmulatedTLS())
3011 return LowerToTLSEmulatedModel(GA, DAG);
3012
3013 if (Subtarget->isTargetDarwin())
3014 return LowerGlobalTLSAddressDarwin(Op, DAG);
3015
3016 if (Subtarget->isTargetWindows())
3017 return LowerGlobalTLSAddressWindows(Op, DAG);
3018
3019 // TODO: implement the "local dynamic" model
3020 assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3021 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3022
3023 switch (model) {
3024 case TLSModel::GeneralDynamic:
3025 case TLSModel::LocalDynamic:
3026 return LowerToTLSGeneralDynamicModel(GA, DAG);
3027 case TLSModel::InitialExec:
3028 case TLSModel::LocalExec:
3029 return LowerToTLSExecModels(GA, DAG, model);
3030 }
3031 llvm_unreachable("bogus TLS model");
3032 }
3033
3034 /// Return true if all users of V are within function F, looking through
3035 /// ConstantExprs.
allUsersAreInFunction(const Value * V,const Function * F)3036 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3037 SmallVector<const User*,4> Worklist;
3038 for (auto *U : V->users())
3039 Worklist.push_back(U);
3040 while (!Worklist.empty()) {
3041 auto *U = Worklist.pop_back_val();
3042 if (isa<ConstantExpr>(U)) {
3043 for (auto *UU : U->users())
3044 Worklist.push_back(UU);
3045 continue;
3046 }
3047
3048 auto *I = dyn_cast<Instruction>(U);
3049 if (!I || I->getParent()->getParent() != F)
3050 return false;
3051 }
3052 return true;
3053 }
3054
3055 /// Return true if all users of V are within some (any) function, looking through
3056 /// ConstantExprs. In other words, are there any global constant users?
allUsersAreInFunctions(const Value * V)3057 static bool allUsersAreInFunctions(const Value *V) {
3058 SmallVector<const User*,4> Worklist;
3059 for (auto *U : V->users())
3060 Worklist.push_back(U);
3061 while (!Worklist.empty()) {
3062 auto *U = Worklist.pop_back_val();
3063 if (isa<ConstantExpr>(U)) {
3064 for (auto *UU : U->users())
3065 Worklist.push_back(UU);
3066 continue;
3067 }
3068
3069 if (!isa<Instruction>(U))
3070 return false;
3071 }
3072 return true;
3073 }
3074
3075 // Return true if T is an integer, float or an array/vector of either.
isSimpleType(Type * T)3076 static bool isSimpleType(Type *T) {
3077 if (T->isIntegerTy() || T->isFloatingPointTy())
3078 return true;
3079 Type *SubT = nullptr;
3080 if (T->isArrayTy())
3081 SubT = T->getArrayElementType();
3082 else if (T->isVectorTy())
3083 SubT = T->getVectorElementType();
3084 else
3085 return false;
3086 return SubT->isIntegerTy() || SubT->isFloatingPointTy();
3087 }
3088
promoteToConstantPool(const GlobalValue * GV,SelectionDAG & DAG,EVT PtrVT,const SDLoc & dl)3089 static SDValue promoteToConstantPool(const GlobalValue *GV, SelectionDAG &DAG,
3090 EVT PtrVT, const SDLoc &dl) {
3091 // If we're creating a pool entry for a constant global with unnamed address,
3092 // and the global is small enough, we can emit it inline into the constant pool
3093 // to save ourselves an indirection.
3094 //
3095 // This is a win if the constant is only used in one function (so it doesn't
3096 // need to be duplicated) or duplicating the constant wouldn't increase code
3097 // size (implying the constant is no larger than 4 bytes).
3098 const Function &F = DAG.getMachineFunction().getFunction();
3099
3100 // We rely on this decision to inline being idemopotent and unrelated to the
3101 // use-site. We know that if we inline a variable at one use site, we'll
3102 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3103 // doesn't know about this optimization, so bail out if it's enabled else
3104 // we could decide to inline here (and thus never emit the GV) but require
3105 // the GV from fast-isel generated code.
3106 if (!EnableConstpoolPromotion ||
3107 DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3108 return SDValue();
3109
3110 auto *GVar = dyn_cast<GlobalVariable>(GV);
3111 if (!GVar || !GVar->hasInitializer() ||
3112 !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3113 !GVar->hasLocalLinkage())
3114 return SDValue();
3115
3116 // Ensure that we don't try and inline any type that contains pointers. If
3117 // we inline a value that contains relocations, we move the relocations from
3118 // .data to .text which is not ideal.
3119 auto *Init = GVar->getInitializer();
3120 if (!isSimpleType(Init->getType()))
3121 return SDValue();
3122
3123 // The constant islands pass can only really deal with alignment requests
3124 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3125 // any type wanting greater alignment requirements than 4 bytes. We also
3126 // can only promote constants that are multiples of 4 bytes in size or
3127 // are paddable to a multiple of 4. Currently we only try and pad constants
3128 // that are strings for simplicity.
3129 auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3130 unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3131 unsigned Align = GVar->getAlignment();
3132 unsigned RequiredPadding = 4 - (Size % 4);
3133 bool PaddingPossible =
3134 RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3135 if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
3136 Size == 0)
3137 return SDValue();
3138
3139 unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3140 MachineFunction &MF = DAG.getMachineFunction();
3141 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3142
3143 // We can't bloat the constant pool too much, else the ConstantIslands pass
3144 // may fail to converge. If we haven't promoted this global yet (it may have
3145 // multiple uses), and promoting it would increase the constant pool size (Sz
3146 // > 4), ensure we have space to do so up to MaxTotal.
3147 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3148 if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3149 ConstpoolPromotionMaxTotal)
3150 return SDValue();
3151
3152 // This is only valid if all users are in a single function OR it has users
3153 // in multiple functions but it no larger than a pointer. We also check if
3154 // GVar has constant (non-ConstantExpr) users. If so, it essentially has its
3155 // address taken.
3156 if (!allUsersAreInFunction(GVar, &F) &&
3157 !(Size <= 4 && allUsersAreInFunctions(GVar)))
3158 return SDValue();
3159
3160 // We're going to inline this global. Pad it out if needed.
3161 if (RequiredPadding != 4) {
3162 StringRef S = CDAInit->getAsString();
3163
3164 SmallVector<uint8_t,16> V(S.size());
3165 std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3166 while (RequiredPadding--)
3167 V.push_back(0);
3168 Init = ConstantDataArray::get(*DAG.getContext(), V);
3169 }
3170
3171 auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3172 SDValue CPAddr =
3173 DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3174 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3175 AFI->markGlobalAsPromotedToConstantPool(GVar);
3176 AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3177 PaddedSize - 4);
3178 }
3179 ++NumConstpoolPromoted;
3180 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3181 }
3182
isReadOnly(const GlobalValue * GV) const3183 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3184 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3185 GV = GA->getBaseObject();
3186 return (isa<GlobalVariable>(GV) && cast<GlobalVariable>(GV)->isConstant()) ||
3187 isa<Function>(GV);
3188 }
3189
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3190 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3191 SelectionDAG &DAG) const {
3192 switch (Subtarget->getTargetTriple().getObjectFormat()) {
3193 default: llvm_unreachable("unknown object format");
3194 case Triple::COFF:
3195 return LowerGlobalAddressWindows(Op, DAG);
3196 case Triple::ELF:
3197 return LowerGlobalAddressELF(Op, DAG);
3198 case Triple::MachO:
3199 return LowerGlobalAddressDarwin(Op, DAG);
3200 }
3201 }
3202
LowerGlobalAddressELF(SDValue Op,SelectionDAG & DAG) const3203 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3204 SelectionDAG &DAG) const {
3205 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3206 SDLoc dl(Op);
3207 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3208 const TargetMachine &TM = getTargetMachine();
3209 bool IsRO = isReadOnly(GV);
3210
3211 // promoteToConstantPool only if not generating XO text section
3212 if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3213 if (SDValue V = promoteToConstantPool(GV, DAG, PtrVT, dl))
3214 return V;
3215
3216 if (isPositionIndependent()) {
3217 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3218 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3219 UseGOT_PREL ? ARMII::MO_GOT : 0);
3220 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3221 if (UseGOT_PREL)
3222 Result =
3223 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3224 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3225 return Result;
3226 } else if (Subtarget->isROPI() && IsRO) {
3227 // PC-relative.
3228 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3229 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3230 return Result;
3231 } else if (Subtarget->isRWPI() && !IsRO) {
3232 // SB-relative.
3233 SDValue RelAddr;
3234 if (Subtarget->useMovt(DAG.getMachineFunction())) {
3235 ++NumMovwMovt;
3236 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3237 RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3238 } else { // use literal pool for address constant
3239 ARMConstantPoolValue *CPV =
3240 ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3241 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3242 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3243 RelAddr = DAG.getLoad(
3244 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3245 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3246 }
3247 SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3248 SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3249 return Result;
3250 }
3251
3252 // If we have T2 ops, we can materialize the address directly via movt/movw
3253 // pair. This is always cheaper.
3254 if (Subtarget->useMovt(DAG.getMachineFunction())) {
3255 ++NumMovwMovt;
3256 // FIXME: Once remat is capable of dealing with instructions with register
3257 // operands, expand this into two nodes.
3258 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3259 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3260 } else {
3261 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3262 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3263 return DAG.getLoad(
3264 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3265 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3266 }
3267 }
3268
LowerGlobalAddressDarwin(SDValue Op,SelectionDAG & DAG) const3269 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3270 SelectionDAG &DAG) const {
3271 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3272 "ROPI/RWPI not currently supported for Darwin");
3273 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3274 SDLoc dl(Op);
3275 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3276
3277 if (Subtarget->useMovt(DAG.getMachineFunction()))
3278 ++NumMovwMovt;
3279
3280 // FIXME: Once remat is capable of dealing with instructions with register
3281 // operands, expand this into multiple nodes
3282 unsigned Wrapper =
3283 isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3284
3285 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3286 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3287
3288 if (Subtarget->isGVIndirectSymbol(GV))
3289 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3290 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3291 return Result;
3292 }
3293
LowerGlobalAddressWindows(SDValue Op,SelectionDAG & DAG) const3294 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3295 SelectionDAG &DAG) const {
3296 assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3297 assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
3298 "Windows on ARM expects to use movw/movt");
3299 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3300 "ROPI/RWPI not currently supported for Windows");
3301
3302 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3303 const ARMII::TOF TargetFlags =
3304 (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
3305 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3306 SDValue Result;
3307 SDLoc DL(Op);
3308
3309 ++NumMovwMovt;
3310
3311 // FIXME: Once remat is capable of dealing with instructions with register
3312 // operands, expand this into two nodes.
3313 Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3314 DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
3315 TargetFlags));
3316 if (GV->hasDLLImportStorageClass())
3317 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3318 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3319 return Result;
3320 }
3321
3322 SDValue
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const3323 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3324 SDLoc dl(Op);
3325 SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3326 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3327 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3328 Op.getOperand(1), Val);
3329 }
3330
3331 SDValue
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const3332 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3333 SDLoc dl(Op);
3334 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3335 Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3336 }
3337
LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,SelectionDAG & DAG) const3338 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3339 SelectionDAG &DAG) const {
3340 SDLoc dl(Op);
3341 return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3342 Op.getOperand(0));
3343 }
3344
3345 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const3346 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3347 const ARMSubtarget *Subtarget) const {
3348 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3349 SDLoc dl(Op);
3350 switch (IntNo) {
3351 default: return SDValue(); // Don't custom lower most intrinsics.
3352 case Intrinsic::thread_pointer: {
3353 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3354 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3355 }
3356 case Intrinsic::eh_sjlj_lsda: {
3357 MachineFunction &MF = DAG.getMachineFunction();
3358 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3359 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3360 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3361 SDValue CPAddr;
3362 bool IsPositionIndependent = isPositionIndependent();
3363 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3364 ARMConstantPoolValue *CPV =
3365 ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3366 ARMCP::CPLSDA, PCAdj);
3367 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3368 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3369 SDValue Result = DAG.getLoad(
3370 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3371 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3372
3373 if (IsPositionIndependent) {
3374 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3375 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3376 }
3377 return Result;
3378 }
3379 case Intrinsic::arm_neon_vabs:
3380 return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3381 Op.getOperand(1));
3382 case Intrinsic::arm_neon_vmulls:
3383 case Intrinsic::arm_neon_vmullu: {
3384 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3385 ? ARMISD::VMULLs : ARMISD::VMULLu;
3386 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3387 Op.getOperand(1), Op.getOperand(2));
3388 }
3389 case Intrinsic::arm_neon_vminnm:
3390 case Intrinsic::arm_neon_vmaxnm: {
3391 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3392 ? ISD::FMINNUM : ISD::FMAXNUM;
3393 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3394 Op.getOperand(1), Op.getOperand(2));
3395 }
3396 case Intrinsic::arm_neon_vminu:
3397 case Intrinsic::arm_neon_vmaxu: {
3398 if (Op.getValueType().isFloatingPoint())
3399 return SDValue();
3400 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3401 ? ISD::UMIN : ISD::UMAX;
3402 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3403 Op.getOperand(1), Op.getOperand(2));
3404 }
3405 case Intrinsic::arm_neon_vmins:
3406 case Intrinsic::arm_neon_vmaxs: {
3407 // v{min,max}s is overloaded between signed integers and floats.
3408 if (!Op.getValueType().isFloatingPoint()) {
3409 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3410 ? ISD::SMIN : ISD::SMAX;
3411 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3412 Op.getOperand(1), Op.getOperand(2));
3413 }
3414 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3415 ? ISD::FMINNAN : ISD::FMAXNAN;
3416 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3417 Op.getOperand(1), Op.getOperand(2));
3418 }
3419 case Intrinsic::arm_neon_vtbl1:
3420 return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3421 Op.getOperand(1), Op.getOperand(2));
3422 case Intrinsic::arm_neon_vtbl2:
3423 return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3424 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3425 }
3426 }
3427
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)3428 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3429 const ARMSubtarget *Subtarget) {
3430 SDLoc dl(Op);
3431 ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
3432 auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
3433 if (SSID == SyncScope::SingleThread)
3434 return Op;
3435
3436 if (!Subtarget->hasDataBarrier()) {
3437 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3438 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3439 // here.
3440 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3441 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3442 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3443 DAG.getConstant(0, dl, MVT::i32));
3444 }
3445
3446 ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3447 AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3448 ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3449 if (Subtarget->isMClass()) {
3450 // Only a full system barrier exists in the M-class architectures.
3451 Domain = ARM_MB::SY;
3452 } else if (Subtarget->preferISHSTBarriers() &&
3453 Ord == AtomicOrdering::Release) {
3454 // Swift happens to implement ISHST barriers in a way that's compatible with
3455 // Release semantics but weaker than ISH so we'd be fools not to use
3456 // it. Beware: other processors probably don't!
3457 Domain = ARM_MB::ISHST;
3458 }
3459
3460 return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3461 DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3462 DAG.getConstant(Domain, dl, MVT::i32));
3463 }
3464
LowerPREFETCH(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)3465 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3466 const ARMSubtarget *Subtarget) {
3467 // ARM pre v5TE and Thumb1 does not have preload instructions.
3468 if (!(Subtarget->isThumb2() ||
3469 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3470 // Just preserve the chain.
3471 return Op.getOperand(0);
3472
3473 SDLoc dl(Op);
3474 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3475 if (!isRead &&
3476 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3477 // ARMv7 with MP extension has PLDW.
3478 return Op.getOperand(0);
3479
3480 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3481 if (Subtarget->isThumb()) {
3482 // Invert the bits.
3483 isRead = ~isRead & 1;
3484 isData = ~isData & 1;
3485 }
3486
3487 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3488 Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3489 DAG.getConstant(isData, dl, MVT::i32));
3490 }
3491
LowerVASTART(SDValue Op,SelectionDAG & DAG)3492 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3493 MachineFunction &MF = DAG.getMachineFunction();
3494 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3495
3496 // vastart just stores the address of the VarArgsFrameIndex slot into the
3497 // memory location argument.
3498 SDLoc dl(Op);
3499 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3500 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3501 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3502 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3503 MachinePointerInfo(SV));
3504 }
3505
GetF64FormalArgument(CCValAssign & VA,CCValAssign & NextVA,SDValue & Root,SelectionDAG & DAG,const SDLoc & dl) const3506 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3507 CCValAssign &NextVA,
3508 SDValue &Root,
3509 SelectionDAG &DAG,
3510 const SDLoc &dl) const {
3511 MachineFunction &MF = DAG.getMachineFunction();
3512 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3513
3514 const TargetRegisterClass *RC;
3515 if (AFI->isThumb1OnlyFunction())
3516 RC = &ARM::tGPRRegClass;
3517 else
3518 RC = &ARM::GPRRegClass;
3519
3520 // Transform the arguments stored in physical registers into virtual ones.
3521 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3522 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3523
3524 SDValue ArgValue2;
3525 if (NextVA.isMemLoc()) {
3526 MachineFrameInfo &MFI = MF.getFrameInfo();
3527 int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3528
3529 // Create load node to retrieve arguments from the stack.
3530 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3531 ArgValue2 = DAG.getLoad(
3532 MVT::i32, dl, Root, FIN,
3533 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3534 } else {
3535 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3536 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3537 }
3538 if (!Subtarget->isLittle())
3539 std::swap (ArgValue, ArgValue2);
3540 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3541 }
3542
3543 // The remaining GPRs hold either the beginning of variable-argument
3544 // data, or the beginning of an aggregate passed by value (usually
3545 // byval). Either way, we allocate stack slots adjacent to the data
3546 // provided by our caller, and store the unallocated registers there.
3547 // If this is a variadic function, the va_list pointer will begin with
3548 // these values; otherwise, this reassembles a (byval) structure that
3549 // was split between registers and memory.
3550 // Return: The frame index registers were stored into.
StoreByValRegs(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,const Value * OrigArg,unsigned InRegsParamRecordIdx,int ArgOffset,unsigned ArgSize) const3551 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3552 const SDLoc &dl, SDValue &Chain,
3553 const Value *OrigArg,
3554 unsigned InRegsParamRecordIdx,
3555 int ArgOffset, unsigned ArgSize) const {
3556 // Currently, two use-cases possible:
3557 // Case #1. Non-var-args function, and we meet first byval parameter.
3558 // Setup first unallocated register as first byval register;
3559 // eat all remained registers
3560 // (these two actions are performed by HandleByVal method).
3561 // Then, here, we initialize stack frame with
3562 // "store-reg" instructions.
3563 // Case #2. Var-args function, that doesn't contain byval parameters.
3564 // The same: eat all remained unallocated registers,
3565 // initialize stack frame.
3566
3567 MachineFunction &MF = DAG.getMachineFunction();
3568 MachineFrameInfo &MFI = MF.getFrameInfo();
3569 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3570 unsigned RBegin, REnd;
3571 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3572 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3573 } else {
3574 unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3575 RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3576 REnd = ARM::R4;
3577 }
3578
3579 if (REnd != RBegin)
3580 ArgOffset = -4 * (ARM::R4 - RBegin);
3581
3582 auto PtrVT = getPointerTy(DAG.getDataLayout());
3583 int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3584 SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3585
3586 SmallVector<SDValue, 4> MemOps;
3587 const TargetRegisterClass *RC =
3588 AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3589
3590 for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3591 unsigned VReg = MF.addLiveIn(Reg, RC);
3592 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3593 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3594 MachinePointerInfo(OrigArg, 4 * i));
3595 MemOps.push_back(Store);
3596 FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3597 }
3598
3599 if (!MemOps.empty())
3600 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3601 return FrameIndex;
3602 }
3603
3604 // Setup stack frame, the va_list pointer will start from.
VarArgStyleRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,unsigned ArgOffset,unsigned TotalArgRegsSaveSize,bool ForceMutable) const3605 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3606 const SDLoc &dl, SDValue &Chain,
3607 unsigned ArgOffset,
3608 unsigned TotalArgRegsSaveSize,
3609 bool ForceMutable) const {
3610 MachineFunction &MF = DAG.getMachineFunction();
3611 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3612
3613 // Try to store any remaining integer argument regs
3614 // to their spots on the stack so that they may be loaded by dereferencing
3615 // the result of va_next.
3616 // If there is no regs to be stored, just point address after last
3617 // argument passed via stack.
3618 int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3619 CCInfo.getInRegsParamsCount(),
3620 CCInfo.getNextStackOffset(), 4);
3621 AFI->setVarArgsFrameIndex(FrameIndex);
3622 }
3623
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3624 SDValue ARMTargetLowering::LowerFormalArguments(
3625 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3626 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3627 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3628 MachineFunction &MF = DAG.getMachineFunction();
3629 MachineFrameInfo &MFI = MF.getFrameInfo();
3630
3631 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3632
3633 // Assign locations to all of the incoming arguments.
3634 SmallVector<CCValAssign, 16> ArgLocs;
3635 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3636 *DAG.getContext());
3637 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3638
3639 SmallVector<SDValue, 16> ArgValues;
3640 SDValue ArgValue;
3641 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3642 unsigned CurArgIdx = 0;
3643
3644 // Initially ArgRegsSaveSize is zero.
3645 // Then we increase this value each time we meet byval parameter.
3646 // We also increase this value in case of varargs function.
3647 AFI->setArgRegsSaveSize(0);
3648
3649 // Calculate the amount of stack space that we need to allocate to store
3650 // byval and variadic arguments that are passed in registers.
3651 // We need to know this before we allocate the first byval or variadic
3652 // argument, as they will be allocated a stack slot below the CFA (Canonical
3653 // Frame Address, the stack pointer at entry to the function).
3654 unsigned ArgRegBegin = ARM::R4;
3655 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3656 if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3657 break;
3658
3659 CCValAssign &VA = ArgLocs[i];
3660 unsigned Index = VA.getValNo();
3661 ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3662 if (!Flags.isByVal())
3663 continue;
3664
3665 assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3666 unsigned RBegin, REnd;
3667 CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3668 ArgRegBegin = std::min(ArgRegBegin, RBegin);
3669
3670 CCInfo.nextInRegsParam();
3671 }
3672 CCInfo.rewindByValRegsInfo();
3673
3674 int lastInsIndex = -1;
3675 if (isVarArg && MFI.hasVAStart()) {
3676 unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3677 if (RegIdx != array_lengthof(GPRArgRegs))
3678 ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3679 }
3680
3681 unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3682 AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3683 auto PtrVT = getPointerTy(DAG.getDataLayout());
3684
3685 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3686 CCValAssign &VA = ArgLocs[i];
3687 if (Ins[VA.getValNo()].isOrigArg()) {
3688 std::advance(CurOrigArg,
3689 Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3690 CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3691 }
3692 // Arguments stored in registers.
3693 if (VA.isRegLoc()) {
3694 EVT RegVT = VA.getLocVT();
3695
3696 if (VA.needsCustom()) {
3697 // f64 and vector types are split up into multiple registers or
3698 // combinations of registers and stack slots.
3699 if (VA.getLocVT() == MVT::v2f64) {
3700 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3701 Chain, DAG, dl);
3702 VA = ArgLocs[++i]; // skip ahead to next loc
3703 SDValue ArgValue2;
3704 if (VA.isMemLoc()) {
3705 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
3706 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3707 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3708 MachinePointerInfo::getFixedStack(
3709 DAG.getMachineFunction(), FI));
3710 } else {
3711 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3712 Chain, DAG, dl);
3713 }
3714 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3715 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3716 ArgValue, ArgValue1,
3717 DAG.getIntPtrConstant(0, dl));
3718 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3719 ArgValue, ArgValue2,
3720 DAG.getIntPtrConstant(1, dl));
3721 } else
3722 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3723 } else {
3724 const TargetRegisterClass *RC;
3725
3726
3727 if (RegVT == MVT::f16)
3728 RC = &ARM::HPRRegClass;
3729 else if (RegVT == MVT::f32)
3730 RC = &ARM::SPRRegClass;
3731 else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
3732 RC = &ARM::DPRRegClass;
3733 else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
3734 RC = &ARM::QPRRegClass;
3735 else if (RegVT == MVT::i32)
3736 RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3737 : &ARM::GPRRegClass;
3738 else
3739 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3740
3741 // Transform the arguments in physical registers into virtual ones.
3742 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3743 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3744 }
3745
3746 // If this is an 8 or 16-bit value, it is really passed promoted
3747 // to 32 bits. Insert an assert[sz]ext to capture this, then
3748 // truncate to the right size.
3749 switch (VA.getLocInfo()) {
3750 default: llvm_unreachable("Unknown loc info!");
3751 case CCValAssign::Full: break;
3752 case CCValAssign::BCvt:
3753 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3754 break;
3755 case CCValAssign::SExt:
3756 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3757 DAG.getValueType(VA.getValVT()));
3758 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3759 break;
3760 case CCValAssign::ZExt:
3761 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3762 DAG.getValueType(VA.getValVT()));
3763 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3764 break;
3765 }
3766
3767 InVals.push_back(ArgValue);
3768 } else { // VA.isRegLoc()
3769 // sanity check
3770 assert(VA.isMemLoc());
3771 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3772
3773 int index = VA.getValNo();
3774
3775 // Some Ins[] entries become multiple ArgLoc[] entries.
3776 // Process them only once.
3777 if (index != lastInsIndex)
3778 {
3779 ISD::ArgFlagsTy Flags = Ins[index].Flags;
3780 // FIXME: For now, all byval parameter objects are marked mutable.
3781 // This can be changed with more analysis.
3782 // In case of tail call optimization mark all arguments mutable.
3783 // Since they could be overwritten by lowering of arguments in case of
3784 // a tail call.
3785 if (Flags.isByVal()) {
3786 assert(Ins[index].isOrigArg() &&
3787 "Byval arguments cannot be implicit");
3788 unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3789
3790 int FrameIndex = StoreByValRegs(
3791 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3792 VA.getLocMemOffset(), Flags.getByValSize());
3793 InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3794 CCInfo.nextInRegsParam();
3795 } else {
3796 unsigned FIOffset = VA.getLocMemOffset();
3797 int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3798 FIOffset, true);
3799
3800 // Create load nodes to retrieve arguments from the stack.
3801 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3802 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3803 MachinePointerInfo::getFixedStack(
3804 DAG.getMachineFunction(), FI)));
3805 }
3806 lastInsIndex = index;
3807 }
3808 }
3809 }
3810
3811 // varargs
3812 if (isVarArg && MFI.hasVAStart())
3813 VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3814 CCInfo.getNextStackOffset(),
3815 TotalArgRegsSaveSize);
3816
3817 AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3818
3819 return Chain;
3820 }
3821
3822 /// isFloatingPointZero - Return true if this is +0.0.
isFloatingPointZero(SDValue Op)3823 static bool isFloatingPointZero(SDValue Op) {
3824 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3825 return CFP->getValueAPF().isPosZero();
3826 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3827 // Maybe this has already been legalized into the constant pool?
3828 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3829 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3830 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3831 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3832 return CFP->getValueAPF().isPosZero();
3833 }
3834 } else if (Op->getOpcode() == ISD::BITCAST &&
3835 Op->getValueType(0) == MVT::f64) {
3836 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3837 // created by LowerConstantFP().
3838 SDValue BitcastOp = Op->getOperand(0);
3839 if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3840 isNullConstant(BitcastOp->getOperand(0)))
3841 return true;
3842 }
3843 return false;
3844 }
3845
3846 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3847 /// the given operands.
getARMCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & ARMcc,SelectionDAG & DAG,const SDLoc & dl) const3848 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3849 SDValue &ARMcc, SelectionDAG &DAG,
3850 const SDLoc &dl) const {
3851 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3852 unsigned C = RHSC->getZExtValue();
3853 if (!isLegalICmpImmediate((int32_t)C)) {
3854 // Constant does not fit, try adjusting it by one.
3855 switch (CC) {
3856 default: break;
3857 case ISD::SETLT:
3858 case ISD::SETGE:
3859 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3860 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3861 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3862 }
3863 break;
3864 case ISD::SETULT:
3865 case ISD::SETUGE:
3866 if (C != 0 && isLegalICmpImmediate(C-1)) {
3867 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3868 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3869 }
3870 break;
3871 case ISD::SETLE:
3872 case ISD::SETGT:
3873 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3874 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3875 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3876 }
3877 break;
3878 case ISD::SETULE:
3879 case ISD::SETUGT:
3880 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3881 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3882 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3883 }
3884 break;
3885 }
3886 }
3887 } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
3888 (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
3889 // In ARM and Thumb-2, the compare instructions can shift their second
3890 // operand.
3891 CC = ISD::getSetCCSwappedOperands(CC);
3892 std::swap(LHS, RHS);
3893 }
3894
3895 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3896 ARMISD::NodeType CompareType;
3897 switch (CondCode) {
3898 default:
3899 CompareType = ARMISD::CMP;
3900 break;
3901 case ARMCC::EQ:
3902 case ARMCC::NE:
3903 // Uses only Z Flag
3904 CompareType = ARMISD::CMPZ;
3905 break;
3906 }
3907 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3908 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3909 }
3910
3911 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
getVFPCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,bool InvalidOnQNaN) const3912 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
3913 SelectionDAG &DAG, const SDLoc &dl,
3914 bool InvalidOnQNaN) const {
3915 assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
3916 SDValue Cmp;
3917 SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
3918 if (!isFloatingPointZero(RHS))
3919 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
3920 else
3921 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
3922 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3923 }
3924
3925 /// duplicateCmp - Glue values can have only one use, so this function
3926 /// duplicates a comparison node.
3927 SDValue
duplicateCmp(SDValue Cmp,SelectionDAG & DAG) const3928 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3929 unsigned Opc = Cmp.getOpcode();
3930 SDLoc DL(Cmp);
3931 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3932 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3933
3934 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3935 Cmp = Cmp.getOperand(0);
3936 Opc = Cmp.getOpcode();
3937 if (Opc == ARMISD::CMPFP)
3938 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3939 Cmp.getOperand(1), Cmp.getOperand(2));
3940 else {
3941 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3942 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3943 Cmp.getOperand(1));
3944 }
3945 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3946 }
3947
3948 // This function returns three things: the arithmetic computation itself
3949 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
3950 // comparison and the condition code define the case in which the arithmetic
3951 // computation *does not* overflow.
3952 std::pair<SDValue, SDValue>
getARMXALUOOp(SDValue Op,SelectionDAG & DAG,SDValue & ARMcc) const3953 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3954 SDValue &ARMcc) const {
3955 assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
3956
3957 SDValue Value, OverflowCmp;
3958 SDValue LHS = Op.getOperand(0);
3959 SDValue RHS = Op.getOperand(1);
3960 SDLoc dl(Op);
3961
3962 // FIXME: We are currently always generating CMPs because we don't support
3963 // generating CMN through the backend. This is not as good as the natural
3964 // CMP case because it causes a register dependency and cannot be folded
3965 // later.
3966
3967 switch (Op.getOpcode()) {
3968 default:
3969 llvm_unreachable("Unknown overflow instruction!");
3970 case ISD::SADDO:
3971 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3972 Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3973 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3974 break;
3975 case ISD::UADDO:
3976 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3977 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
3978 // We do not use it in the USUBO case as Value may not be used.
3979 Value = DAG.getNode(ARMISD::ADDC, dl,
3980 DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
3981 .getValue(0);
3982 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3983 break;
3984 case ISD::SSUBO:
3985 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3986 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3987 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3988 break;
3989 case ISD::USUBO:
3990 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3991 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3992 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3993 break;
3994 case ISD::UMULO:
3995 // We generate a UMUL_LOHI and then check if the high word is 0.
3996 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
3997 Value = DAG.getNode(ISD::UMUL_LOHI, dl,
3998 DAG.getVTList(Op.getValueType(), Op.getValueType()),
3999 LHS, RHS);
4000 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4001 DAG.getConstant(0, dl, MVT::i32));
4002 Value = Value.getValue(0); // We only want the low 32 bits for the result.
4003 break;
4004 case ISD::SMULO:
4005 // We generate a SMUL_LOHI and then check if all the bits of the high word
4006 // are the same as the sign bit of the low word.
4007 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4008 Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4009 DAG.getVTList(Op.getValueType(), Op.getValueType()),
4010 LHS, RHS);
4011 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4012 DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4013 Value.getValue(0),
4014 DAG.getConstant(31, dl, MVT::i32)));
4015 Value = Value.getValue(0); // We only want the low 32 bits for the result.
4016 break;
4017 } // switch (...)
4018
4019 return std::make_pair(Value, OverflowCmp);
4020 }
4021
4022 SDValue
LowerSignedALUO(SDValue Op,SelectionDAG & DAG) const4023 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4024 // Let legalize expand this if it isn't a legal type yet.
4025 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4026 return SDValue();
4027
4028 SDValue Value, OverflowCmp;
4029 SDValue ARMcc;
4030 std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4031 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4032 SDLoc dl(Op);
4033 // We use 0 and 1 as false and true values.
4034 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4035 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4036 EVT VT = Op.getValueType();
4037
4038 SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4039 ARMcc, CCR, OverflowCmp);
4040
4041 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4042 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4043 }
4044
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,SelectionDAG & DAG)4045 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4046 SelectionDAG &DAG) {
4047 SDLoc DL(BoolCarry);
4048 EVT CarryVT = BoolCarry.getValueType();
4049
4050 // This converts the boolean value carry into the carry flag by doing
4051 // ARMISD::SUBC Carry, 1
4052 SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4053 DAG.getVTList(CarryVT, MVT::i32),
4054 BoolCarry, DAG.getConstant(1, DL, CarryVT));
4055 return Carry.getValue(1);
4056 }
4057
ConvertCarryFlagToBooleanCarry(SDValue Flags,EVT VT,SelectionDAG & DAG)4058 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4059 SelectionDAG &DAG) {
4060 SDLoc DL(Flags);
4061
4062 // Now convert the carry flag into a boolean carry. We do this
4063 // using ARMISD:ADDE 0, 0, Carry
4064 return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4065 DAG.getConstant(0, DL, MVT::i32),
4066 DAG.getConstant(0, DL, MVT::i32), Flags);
4067 }
4068
LowerUnsignedALUO(SDValue Op,SelectionDAG & DAG) const4069 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4070 SelectionDAG &DAG) const {
4071 // Let legalize expand this if it isn't a legal type yet.
4072 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4073 return SDValue();
4074
4075 SDValue LHS = Op.getOperand(0);
4076 SDValue RHS = Op.getOperand(1);
4077 SDLoc dl(Op);
4078
4079 EVT VT = Op.getValueType();
4080 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4081 SDValue Value;
4082 SDValue Overflow;
4083 switch (Op.getOpcode()) {
4084 default:
4085 llvm_unreachable("Unknown overflow instruction!");
4086 case ISD::UADDO:
4087 Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4088 // Convert the carry flag into a boolean value.
4089 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4090 break;
4091 case ISD::USUBO: {
4092 Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4093 // Convert the carry flag into a boolean value.
4094 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4095 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4096 // value. So compute 1 - C.
4097 Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4098 DAG.getConstant(1, dl, MVT::i32), Overflow);
4099 break;
4100 }
4101 }
4102
4103 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4104 }
4105
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4106 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4107 SDValue Cond = Op.getOperand(0);
4108 SDValue SelectTrue = Op.getOperand(1);
4109 SDValue SelectFalse = Op.getOperand(2);
4110 SDLoc dl(Op);
4111 unsigned Opc = Cond.getOpcode();
4112
4113 if (Cond.getResNo() == 1 &&
4114 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4115 Opc == ISD::USUBO)) {
4116 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4117 return SDValue();
4118
4119 SDValue Value, OverflowCmp;
4120 SDValue ARMcc;
4121 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4122 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4123 EVT VT = Op.getValueType();
4124
4125 return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4126 OverflowCmp, DAG);
4127 }
4128
4129 // Convert:
4130 //
4131 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4132 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4133 //
4134 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4135 const ConstantSDNode *CMOVTrue =
4136 dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4137 const ConstantSDNode *CMOVFalse =
4138 dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4139
4140 if (CMOVTrue && CMOVFalse) {
4141 unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4142 unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4143
4144 SDValue True;
4145 SDValue False;
4146 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4147 True = SelectTrue;
4148 False = SelectFalse;
4149 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4150 True = SelectFalse;
4151 False = SelectTrue;
4152 }
4153
4154 if (True.getNode() && False.getNode()) {
4155 EVT VT = Op.getValueType();
4156 SDValue ARMcc = Cond.getOperand(2);
4157 SDValue CCR = Cond.getOperand(3);
4158 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4159 assert(True.getValueType() == VT);
4160 return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4161 }
4162 }
4163 }
4164
4165 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4166 // undefined bits before doing a full-word comparison with zero.
4167 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4168 DAG.getConstant(1, dl, Cond.getValueType()));
4169
4170 return DAG.getSelectCC(dl, Cond,
4171 DAG.getConstant(0, dl, Cond.getValueType()),
4172 SelectTrue, SelectFalse, ISD::SETNE);
4173 }
4174
checkVSELConstraints(ISD::CondCode CC,ARMCC::CondCodes & CondCode,bool & swpCmpOps,bool & swpVselOps)4175 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4176 bool &swpCmpOps, bool &swpVselOps) {
4177 // Start by selecting the GE condition code for opcodes that return true for
4178 // 'equality'
4179 if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4180 CC == ISD::SETULE)
4181 CondCode = ARMCC::GE;
4182
4183 // and GT for opcodes that return false for 'equality'.
4184 else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4185 CC == ISD::SETULT)
4186 CondCode = ARMCC::GT;
4187
4188 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4189 // to swap the compare operands.
4190 if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4191 CC == ISD::SETULT)
4192 swpCmpOps = true;
4193
4194 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4195 // If we have an unordered opcode, we need to swap the operands to the VSEL
4196 // instruction (effectively negating the condition).
4197 //
4198 // This also has the effect of swapping which one of 'less' or 'greater'
4199 // returns true, so we also swap the compare operands. It also switches
4200 // whether we return true for 'equality', so we compensate by picking the
4201 // opposite condition code to our original choice.
4202 if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4203 CC == ISD::SETUGT) {
4204 swpCmpOps = !swpCmpOps;
4205 swpVselOps = !swpVselOps;
4206 CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4207 }
4208
4209 // 'ordered' is 'anything but unordered', so use the VS condition code and
4210 // swap the VSEL operands.
4211 if (CC == ISD::SETO) {
4212 CondCode = ARMCC::VS;
4213 swpVselOps = true;
4214 }
4215
4216 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4217 // code and swap the VSEL operands.
4218 if (CC == ISD::SETUNE) {
4219 CondCode = ARMCC::EQ;
4220 swpVselOps = true;
4221 }
4222 }
4223
getCMOV(const SDLoc & dl,EVT VT,SDValue FalseVal,SDValue TrueVal,SDValue ARMcc,SDValue CCR,SDValue Cmp,SelectionDAG & DAG) const4224 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4225 SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4226 SDValue Cmp, SelectionDAG &DAG) const {
4227 if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
4228 FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4229 DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4230 TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4231 DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4232
4233 SDValue TrueLow = TrueVal.getValue(0);
4234 SDValue TrueHigh = TrueVal.getValue(1);
4235 SDValue FalseLow = FalseVal.getValue(0);
4236 SDValue FalseHigh = FalseVal.getValue(1);
4237
4238 SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4239 ARMcc, CCR, Cmp);
4240 SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4241 ARMcc, CCR, duplicateCmp(Cmp, DAG));
4242
4243 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4244 } else {
4245 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4246 Cmp);
4247 }
4248 }
4249
isGTorGE(ISD::CondCode CC)4250 static bool isGTorGE(ISD::CondCode CC) {
4251 return CC == ISD::SETGT || CC == ISD::SETGE;
4252 }
4253
isLTorLE(ISD::CondCode CC)4254 static bool isLTorLE(ISD::CondCode CC) {
4255 return CC == ISD::SETLT || CC == ISD::SETLE;
4256 }
4257
4258 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4259 // All of these conditions (and their <= and >= counterparts) will do:
4260 // x < k ? k : x
4261 // x > k ? x : k
4262 // k < x ? x : k
4263 // k > x ? k : x
isLowerSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)4264 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
4265 const SDValue TrueVal, const SDValue FalseVal,
4266 const ISD::CondCode CC, const SDValue K) {
4267 return (isGTorGE(CC) &&
4268 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
4269 (isLTorLE(CC) &&
4270 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
4271 }
4272
4273 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
isUpperSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)4274 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4275 const SDValue TrueVal, const SDValue FalseVal,
4276 const ISD::CondCode CC, const SDValue K) {
4277 return (isGTorGE(CC) &&
4278 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4279 (isLTorLE(CC) &&
4280 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4281 }
4282
4283 // Check if two chained conditionals could be converted into SSAT or USAT.
4284 //
4285 // SSAT can replace a set of two conditional selectors that bound a number to an
4286 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4287 //
4288 // x < -k ? -k : (x > k ? k : x)
4289 // x < -k ? -k : (x < k ? x : k)
4290 // x > -k ? (x > k ? k : x) : -k
4291 // x < k ? (x < -k ? -k : x) : k
4292 // etc.
4293 //
4294 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4295 // a power of 2.
4296 //
4297 // It returns true if the conversion can be done, false otherwise.
4298 // Additionally, the variable is returned in parameter V, the constant in K and
4299 // usat is set to true if the conditional represents an unsigned saturation
isSaturatingConditional(const SDValue & Op,SDValue & V,uint64_t & K,bool & usat)4300 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4301 uint64_t &K, bool &usat) {
4302 SDValue LHS1 = Op.getOperand(0);
4303 SDValue RHS1 = Op.getOperand(1);
4304 SDValue TrueVal1 = Op.getOperand(2);
4305 SDValue FalseVal1 = Op.getOperand(3);
4306 ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4307
4308 const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4309 if (Op2.getOpcode() != ISD::SELECT_CC)
4310 return false;
4311
4312 SDValue LHS2 = Op2.getOperand(0);
4313 SDValue RHS2 = Op2.getOperand(1);
4314 SDValue TrueVal2 = Op2.getOperand(2);
4315 SDValue FalseVal2 = Op2.getOperand(3);
4316 ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4317
4318 // Find out which are the constants and which are the variables
4319 // in each conditional
4320 SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4321 ? &RHS1
4322 : nullptr;
4323 SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4324 ? &RHS2
4325 : nullptr;
4326 SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4327 SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4328 SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4329 SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4330
4331 // We must detect cases where the original operations worked with 16- or
4332 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4333 // must work with sign-extended values but the select operations return
4334 // the original non-extended value.
4335 SDValue V2TmpReg = V2Tmp;
4336 if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4337 V2TmpReg = V2Tmp->getOperand(0);
4338
4339 // Check that the registers and the constants have the correct values
4340 // in both conditionals
4341 if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4342 V2TmpReg != V2)
4343 return false;
4344
4345 // Figure out which conditional is saturating the lower/upper bound.
4346 const SDValue *LowerCheckOp =
4347 isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4348 ? &Op
4349 : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4350 ? &Op2
4351 : nullptr;
4352 const SDValue *UpperCheckOp =
4353 isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4354 ? &Op
4355 : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4356 ? &Op2
4357 : nullptr;
4358
4359 if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4360 return false;
4361
4362 // Check that the constant in the lower-bound check is
4363 // the opposite of the constant in the upper-bound check
4364 // in 1's complement.
4365 int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4366 int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4367 int64_t PosVal = std::max(Val1, Val2);
4368 int64_t NegVal = std::min(Val1, Val2);
4369
4370 if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4371 (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4372 isPowerOf2_64(PosVal + 1)) {
4373
4374 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4375 if (Val1 == ~Val2)
4376 usat = false;
4377 else if (NegVal == 0)
4378 usat = true;
4379 else
4380 return false;
4381
4382 V = V2;
4383 K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4384
4385 return true;
4386 }
4387
4388 return false;
4389 }
4390
4391 // Check if a condition of the type x < k ? k : x can be converted into a
4392 // bit operation instead of conditional moves.
4393 // Currently this is allowed given:
4394 // - The conditions and values match up
4395 // - k is 0 or -1 (all ones)
4396 // This function will not check the last condition, thats up to the caller
4397 // It returns true if the transformation can be made, and in such case
4398 // returns x in V, and k in SatK.
isLowerSaturatingConditional(const SDValue & Op,SDValue & V,SDValue & SatK)4399 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
4400 SDValue &SatK)
4401 {
4402 SDValue LHS = Op.getOperand(0);
4403 SDValue RHS = Op.getOperand(1);
4404 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4405 SDValue TrueVal = Op.getOperand(2);
4406 SDValue FalseVal = Op.getOperand(3);
4407
4408 SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
4409 ? &RHS
4410 : nullptr;
4411
4412 // No constant operation in comparison, early out
4413 if (!K)
4414 return false;
4415
4416 SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
4417 V = (KTmp == TrueVal) ? FalseVal : TrueVal;
4418 SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
4419
4420 // If the constant on left and right side, or variable on left and right,
4421 // does not match, early out
4422 if (*K != KTmp || V != VTmp)
4423 return false;
4424
4425 if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
4426 SatK = *K;
4427 return true;
4428 }
4429
4430 return false;
4431 }
4432
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const4433 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4434 EVT VT = Op.getValueType();
4435 SDLoc dl(Op);
4436
4437 // Try to convert two saturating conditional selects into a single SSAT
4438 SDValue SatValue;
4439 uint64_t SatConstant;
4440 bool SatUSat;
4441 if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4442 isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
4443 if (SatUSat)
4444 return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
4445 DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4446 else
4447 return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4448 DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4449 }
4450
4451 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4452 // into more efficient bit operations, which is possible when k is 0 or -1
4453 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4454 // single instructions. On Thumb the shift and the bit operation will be two
4455 // instructions.
4456 // Only allow this transformation on full-width (32-bit) operations
4457 SDValue LowerSatConstant;
4458 if (VT == MVT::i32 &&
4459 isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
4460 SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
4461 DAG.getConstant(31, dl, VT));
4462 if (isNullConstant(LowerSatConstant)) {
4463 SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
4464 DAG.getAllOnesConstant(dl, VT));
4465 return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
4466 } else if (isAllOnesConstant(LowerSatConstant))
4467 return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
4468 }
4469
4470 SDValue LHS = Op.getOperand(0);
4471 SDValue RHS = Op.getOperand(1);
4472 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4473 SDValue TrueVal = Op.getOperand(2);
4474 SDValue FalseVal = Op.getOperand(3);
4475
4476 if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4477 DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4478 dl);
4479
4480 // If softenSetCCOperands only returned one value, we should compare it to
4481 // zero.
4482 if (!RHS.getNode()) {
4483 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4484 CC = ISD::SETNE;
4485 }
4486 }
4487
4488 if (LHS.getValueType() == MVT::i32) {
4489 // Try to generate VSEL on ARMv8.
4490 // The VSEL instruction can't use all the usual ARM condition
4491 // codes: it only has two bits to select the condition code, so it's
4492 // constrained to use only GE, GT, VS and EQ.
4493 //
4494 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4495 // swap the operands of the previous compare instruction (effectively
4496 // inverting the compare condition, swapping 'less' and 'greater') and
4497 // sometimes need to swap the operands to the VSEL (which inverts the
4498 // condition in the sense of firing whenever the previous condition didn't)
4499 if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
4500 TrueVal.getValueType() == MVT::f64)) {
4501 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4502 if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
4503 CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
4504 CC = ISD::getSetCCInverse(CC, true);
4505 std::swap(TrueVal, FalseVal);
4506 }
4507 }
4508
4509 SDValue ARMcc;
4510 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4511 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4512 return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4513 }
4514
4515 ARMCC::CondCodes CondCode, CondCode2;
4516 bool InvalidOnQNaN;
4517 FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4518
4519 // Normalize the fp compare. If RHS is zero we keep it there so we match
4520 // CMPFPw0 instead of CMPFP.
4521 if (Subtarget->hasFPARMv8() && !isFloatingPointZero(RHS) &&
4522 (TrueVal.getValueType() == MVT::f16 ||
4523 TrueVal.getValueType() == MVT::f32 ||
4524 TrueVal.getValueType() == MVT::f64)) {
4525 bool swpCmpOps = false;
4526 bool swpVselOps = false;
4527 checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
4528
4529 if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
4530 CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
4531 if (swpCmpOps)
4532 std::swap(LHS, RHS);
4533 if (swpVselOps)
4534 std::swap(TrueVal, FalseVal);
4535 }
4536 }
4537
4538 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4539 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4540 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4541 SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4542 if (CondCode2 != ARMCC::AL) {
4543 SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
4544 // FIXME: Needs another CMP because flag can have but one use.
4545 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4546 Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
4547 }
4548 return Result;
4549 }
4550
4551 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4552 /// to morph to an integer compare sequence.
canChangeToInt(SDValue Op,bool & SeenZero,const ARMSubtarget * Subtarget)4553 static bool canChangeToInt(SDValue Op, bool &SeenZero,
4554 const ARMSubtarget *Subtarget) {
4555 SDNode *N = Op.getNode();
4556 if (!N->hasOneUse())
4557 // Otherwise it requires moving the value from fp to integer registers.
4558 return false;
4559 if (!N->getNumValues())
4560 return false;
4561 EVT VT = Op.getValueType();
4562 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
4563 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4564 // vmrs are very slow, e.g. cortex-a8.
4565 return false;
4566
4567 if (isFloatingPointZero(Op)) {
4568 SeenZero = true;
4569 return true;
4570 }
4571 return ISD::isNormalLoad(N);
4572 }
4573
bitcastf32Toi32(SDValue Op,SelectionDAG & DAG)4574 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
4575 if (isFloatingPointZero(Op))
4576 return DAG.getConstant(0, SDLoc(Op), MVT::i32);
4577
4578 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
4579 return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
4580 Ld->getPointerInfo(), Ld->getAlignment(),
4581 Ld->getMemOperand()->getFlags());
4582
4583 llvm_unreachable("Unknown VFP cmp argument!");
4584 }
4585
expandf64Toi32(SDValue Op,SelectionDAG & DAG,SDValue & RetVal1,SDValue & RetVal2)4586 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
4587 SDValue &RetVal1, SDValue &RetVal2) {
4588 SDLoc dl(Op);
4589
4590 if (isFloatingPointZero(Op)) {
4591 RetVal1 = DAG.getConstant(0, dl, MVT::i32);
4592 RetVal2 = DAG.getConstant(0, dl, MVT::i32);
4593 return;
4594 }
4595
4596 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
4597 SDValue Ptr = Ld->getBasePtr();
4598 RetVal1 =
4599 DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
4600 Ld->getAlignment(), Ld->getMemOperand()->getFlags());
4601
4602 EVT PtrType = Ptr.getValueType();
4603 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
4604 SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
4605 PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
4606 RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
4607 Ld->getPointerInfo().getWithOffset(4), NewAlign,
4608 Ld->getMemOperand()->getFlags());
4609 return;
4610 }
4611
4612 llvm_unreachable("Unknown VFP cmp argument!");
4613 }
4614
4615 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4616 /// f32 and even f64 comparisons to integer ones.
4617 SDValue
OptimizeVFPBrcond(SDValue Op,SelectionDAG & DAG) const4618 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4619 SDValue Chain = Op.getOperand(0);
4620 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4621 SDValue LHS = Op.getOperand(2);
4622 SDValue RHS = Op.getOperand(3);
4623 SDValue Dest = Op.getOperand(4);
4624 SDLoc dl(Op);
4625
4626 bool LHSSeenZero = false;
4627 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4628 bool RHSSeenZero = false;
4629 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4630 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4631 // If unsafe fp math optimization is enabled and there are no other uses of
4632 // the CMP operands, and the condition code is EQ or NE, we can optimize it
4633 // to an integer comparison.
4634 if (CC == ISD::SETOEQ)
4635 CC = ISD::SETEQ;
4636 else if (CC == ISD::SETUNE)
4637 CC = ISD::SETNE;
4638
4639 SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4640 SDValue ARMcc;
4641 if (LHS.getValueType() == MVT::f32) {
4642 LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4643 bitcastf32Toi32(LHS, DAG), Mask);
4644 RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4645 bitcastf32Toi32(RHS, DAG), Mask);
4646 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4647 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4648 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4649 Chain, Dest, ARMcc, CCR, Cmp);
4650 }
4651
4652 SDValue LHS1, LHS2;
4653 SDValue RHS1, RHS2;
4654 expandf64Toi32(LHS, DAG, LHS1, LHS2);
4655 expandf64Toi32(RHS, DAG, RHS1, RHS2);
4656 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4657 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4658 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4659 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4660 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4661 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4662 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4663 }
4664
4665 return SDValue();
4666 }
4667
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const4668 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4669 SDValue Chain = Op.getOperand(0);
4670 SDValue Cond = Op.getOperand(1);
4671 SDValue Dest = Op.getOperand(2);
4672 SDLoc dl(Op);
4673
4674 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4675 // instruction.
4676 unsigned Opc = Cond.getOpcode();
4677 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4678 !Subtarget->isThumb1Only();
4679 if (Cond.getResNo() == 1 &&
4680 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4681 Opc == ISD::USUBO || OptimizeMul)) {
4682 // Only lower legal XALUO ops.
4683 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4684 return SDValue();
4685
4686 // The actual operation with overflow check.
4687 SDValue Value, OverflowCmp;
4688 SDValue ARMcc;
4689 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4690
4691 // Reverse the condition code.
4692 ARMCC::CondCodes CondCode =
4693 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4694 CondCode = ARMCC::getOppositeCondition(CondCode);
4695 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4696 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4697
4698 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4699 OverflowCmp);
4700 }
4701
4702 return SDValue();
4703 }
4704
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const4705 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4706 SDValue Chain = Op.getOperand(0);
4707 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4708 SDValue LHS = Op.getOperand(2);
4709 SDValue RHS = Op.getOperand(3);
4710 SDValue Dest = Op.getOperand(4);
4711 SDLoc dl(Op);
4712
4713 if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4714 DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4715 dl);
4716
4717 // If softenSetCCOperands only returned one value, we should compare it to
4718 // zero.
4719 if (!RHS.getNode()) {
4720 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4721 CC = ISD::SETNE;
4722 }
4723 }
4724
4725 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4726 // instruction.
4727 unsigned Opc = LHS.getOpcode();
4728 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4729 !Subtarget->isThumb1Only();
4730 if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
4731 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4732 Opc == ISD::USUBO || OptimizeMul) &&
4733 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4734 // Only lower legal XALUO ops.
4735 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4736 return SDValue();
4737
4738 // The actual operation with overflow check.
4739 SDValue Value, OverflowCmp;
4740 SDValue ARMcc;
4741 std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
4742
4743 if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
4744 // Reverse the condition code.
4745 ARMCC::CondCodes CondCode =
4746 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4747 CondCode = ARMCC::getOppositeCondition(CondCode);
4748 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4749 }
4750 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4751
4752 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4753 OverflowCmp);
4754 }
4755
4756 if (LHS.getValueType() == MVT::i32) {
4757 SDValue ARMcc;
4758 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4759 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4760 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4761 Chain, Dest, ARMcc, CCR, Cmp);
4762 }
4763
4764 if (getTargetMachine().Options.UnsafeFPMath &&
4765 (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
4766 CC == ISD::SETNE || CC == ISD::SETUNE)) {
4767 if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
4768 return Result;
4769 }
4770
4771 ARMCC::CondCodes CondCode, CondCode2;
4772 bool InvalidOnQNaN;
4773 FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4774
4775 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4776 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4777 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4778 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4779 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
4780 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4781 if (CondCode2 != ARMCC::AL) {
4782 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
4783 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
4784 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4785 }
4786 return Res;
4787 }
4788
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const4789 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
4790 SDValue Chain = Op.getOperand(0);
4791 SDValue Table = Op.getOperand(1);
4792 SDValue Index = Op.getOperand(2);
4793 SDLoc dl(Op);
4794
4795 EVT PTy = getPointerTy(DAG.getDataLayout());
4796 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
4797 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
4798 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
4799 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
4800 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
4801 if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
4802 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
4803 // which does another jump to the destination. This also makes it easier
4804 // to translate it to TBB / TBH later (Thumb2 only).
4805 // FIXME: This might not work if the function is extremely large.
4806 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4807 Addr, Op.getOperand(2), JTI);
4808 }
4809 if (isPositionIndependent() || Subtarget->isROPI()) {
4810 Addr =
4811 DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4812 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4813 Chain = Addr.getValue(1);
4814 Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
4815 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4816 } else {
4817 Addr =
4818 DAG.getLoad(PTy, dl, Chain, Addr,
4819 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4820 Chain = Addr.getValue(1);
4821 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4822 }
4823 }
4824
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)4825 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4826 EVT VT = Op.getValueType();
4827 SDLoc dl(Op);
4828
4829 if (Op.getValueType().getVectorElementType() == MVT::i32) {
4830 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4831 return Op;
4832 return DAG.UnrollVectorOp(Op.getNode());
4833 }
4834
4835 assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
4836 "Invalid type for custom lowering!");
4837 if (VT != MVT::v4i16)
4838 return DAG.UnrollVectorOp(Op.getNode());
4839
4840 Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
4841 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4842 }
4843
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const4844 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4845 EVT VT = Op.getValueType();
4846 if (VT.isVector())
4847 return LowerVectorFP_TO_INT(Op, DAG);
4848 if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
4849 RTLIB::Libcall LC;
4850 if (Op.getOpcode() == ISD::FP_TO_SINT)
4851 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
4852 Op.getValueType());
4853 else
4854 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
4855 Op.getValueType());
4856 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4857 /*isSigned*/ false, SDLoc(Op)).first;
4858 }
4859
4860 return Op;
4861 }
4862
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)4863 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4864 EVT VT = Op.getValueType();
4865 SDLoc dl(Op);
4866
4867 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
4868 if (VT.getVectorElementType() == MVT::f32)
4869 return Op;
4870 return DAG.UnrollVectorOp(Op.getNode());
4871 }
4872
4873 assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
4874 "Invalid type for custom lowering!");
4875 if (VT != MVT::v4f32)
4876 return DAG.UnrollVectorOp(Op.getNode());
4877
4878 unsigned CastOpc;
4879 unsigned Opc;
4880 switch (Op.getOpcode()) {
4881 default: llvm_unreachable("Invalid opcode!");
4882 case ISD::SINT_TO_FP:
4883 CastOpc = ISD::SIGN_EXTEND;
4884 Opc = ISD::SINT_TO_FP;
4885 break;
4886 case ISD::UINT_TO_FP:
4887 CastOpc = ISD::ZERO_EXTEND;
4888 Opc = ISD::UINT_TO_FP;
4889 break;
4890 }
4891
4892 Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
4893 return DAG.getNode(Opc, dl, VT, Op);
4894 }
4895
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const4896 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
4897 EVT VT = Op.getValueType();
4898 if (VT.isVector())
4899 return LowerVectorINT_TO_FP(Op, DAG);
4900 if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
4901 RTLIB::Libcall LC;
4902 if (Op.getOpcode() == ISD::SINT_TO_FP)
4903 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
4904 Op.getValueType());
4905 else
4906 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
4907 Op.getValueType());
4908 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4909 /*isSigned*/ false, SDLoc(Op)).first;
4910 }
4911
4912 return Op;
4913 }
4914
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const4915 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4916 // Implement fcopysign with a fabs and a conditional fneg.
4917 SDValue Tmp0 = Op.getOperand(0);
4918 SDValue Tmp1 = Op.getOperand(1);
4919 SDLoc dl(Op);
4920 EVT VT = Op.getValueType();
4921 EVT SrcVT = Tmp1.getValueType();
4922 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4923 Tmp0.getOpcode() == ARMISD::VMOVDRR;
4924 bool UseNEON = !InGPR && Subtarget->hasNEON();
4925
4926 if (UseNEON) {
4927 // Use VBSL to copy the sign bit.
4928 unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4929 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4930 DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
4931 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4932 if (VT == MVT::f64)
4933 Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4934 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4935 DAG.getConstant(32, dl, MVT::i32));
4936 else /*if (VT == MVT::f32)*/
4937 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4938 if (SrcVT == MVT::f32) {
4939 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4940 if (VT == MVT::f64)
4941 Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4942 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4943 DAG.getConstant(32, dl, MVT::i32));
4944 } else if (VT == MVT::f32)
4945 Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4946 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4947 DAG.getConstant(32, dl, MVT::i32));
4948 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4949 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4950
4951 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4952 dl, MVT::i32);
4953 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4954 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4955 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4956
4957 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4958 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4959 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4960 if (VT == MVT::f32) {
4961 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4962 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4963 DAG.getConstant(0, dl, MVT::i32));
4964 } else {
4965 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4966 }
4967
4968 return Res;
4969 }
4970
4971 // Bitcast operand 1 to i32.
4972 if (SrcVT == MVT::f64)
4973 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4974 Tmp1).getValue(1);
4975 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
4976
4977 // Or in the signbit with integer operations.
4978 SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
4979 SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4980 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
4981 if (VT == MVT::f32) {
4982 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
4983 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
4984 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4985 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
4986 }
4987
4988 // f64: Or the high part with signbit and then combine two parts.
4989 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4990 Tmp0);
4991 SDValue Lo = Tmp0.getValue(0);
4992 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
4993 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
4994 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
4995 }
4996
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const4997 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
4998 MachineFunction &MF = DAG.getMachineFunction();
4999 MachineFrameInfo &MFI = MF.getFrameInfo();
5000 MFI.setReturnAddressIsTaken(true);
5001
5002 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5003 return SDValue();
5004
5005 EVT VT = Op.getValueType();
5006 SDLoc dl(Op);
5007 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5008 if (Depth) {
5009 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5010 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5011 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5012 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5013 MachinePointerInfo());
5014 }
5015
5016 // Return LR, which contains the return address. Mark it an implicit live-in.
5017 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5018 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5019 }
5020
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const5021 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5022 const ARMBaseRegisterInfo &ARI =
5023 *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5024 MachineFunction &MF = DAG.getMachineFunction();
5025 MachineFrameInfo &MFI = MF.getFrameInfo();
5026 MFI.setFrameAddressIsTaken(true);
5027
5028 EVT VT = Op.getValueType();
5029 SDLoc dl(Op); // FIXME probably not meaningful
5030 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5031 unsigned FrameReg = ARI.getFrameRegister(MF);
5032 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5033 while (Depth--)
5034 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5035 MachinePointerInfo());
5036 return FrameAddr;
5037 }
5038
5039 // FIXME? Maybe this could be a TableGen attribute on some registers and
5040 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const5041 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
5042 SelectionDAG &DAG) const {
5043 unsigned Reg = StringSwitch<unsigned>(RegName)
5044 .Case("sp", ARM::SP)
5045 .Default(0);
5046 if (Reg)
5047 return Reg;
5048 report_fatal_error(Twine("Invalid register name \""
5049 + StringRef(RegName) + "\"."));
5050 }
5051
5052 // Result is 64 bit value so split into two 32 bit values and return as a
5053 // pair of values.
ExpandREAD_REGISTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)5054 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5055 SelectionDAG &DAG) {
5056 SDLoc DL(N);
5057
5058 // This function is only supposed to be called for i64 type destination.
5059 assert(N->getValueType(0) == MVT::i64
5060 && "ExpandREAD_REGISTER called for non-i64 type result.");
5061
5062 SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5063 DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5064 N->getOperand(0),
5065 N->getOperand(1));
5066
5067 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5068 Read.getValue(1)));
5069 Results.push_back(Read.getOperand(0));
5070 }
5071
5072 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5073 /// When \p DstVT, the destination type of \p BC, is on the vector
5074 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5075 /// it might be possible to combine them, such that everything stays on the
5076 /// vector register bank.
5077 /// \p return The node that would replace \p BT, if the combine
5078 /// is possible.
CombineVMOVDRRCandidateWithVecOp(const SDNode * BC,SelectionDAG & DAG)5079 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5080 SelectionDAG &DAG) {
5081 SDValue Op = BC->getOperand(0);
5082 EVT DstVT = BC->getValueType(0);
5083
5084 // The only vector instruction that can produce a scalar (remember,
5085 // since the bitcast was about to be turned into VMOVDRR, the source
5086 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5087 // Moreover, we can do this combine only if there is one use.
5088 // Finally, if the destination type is not a vector, there is not
5089 // much point on forcing everything on the vector bank.
5090 if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5091 !Op.hasOneUse())
5092 return SDValue();
5093
5094 // If the index is not constant, we will introduce an additional
5095 // multiply that will stick.
5096 // Give up in that case.
5097 ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5098 if (!Index)
5099 return SDValue();
5100 unsigned DstNumElt = DstVT.getVectorNumElements();
5101
5102 // Compute the new index.
5103 const APInt &APIntIndex = Index->getAPIntValue();
5104 APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5105 NewIndex *= APIntIndex;
5106 // Check if the new constant index fits into i32.
5107 if (NewIndex.getBitWidth() > 32)
5108 return SDValue();
5109
5110 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5111 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5112 SDLoc dl(Op);
5113 SDValue ExtractSrc = Op.getOperand(0);
5114 EVT VecVT = EVT::getVectorVT(
5115 *DAG.getContext(), DstVT.getScalarType(),
5116 ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5117 SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5118 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5119 DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5120 }
5121
5122 /// ExpandBITCAST - If the target supports VFP, this function is called to
5123 /// expand a bit convert where either the source or destination type is i64 to
5124 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5125 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5126 /// vectors), since the legalizer won't know what to do with that.
ExpandBITCAST(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)5127 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5128 const ARMSubtarget *Subtarget) {
5129 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5130 SDLoc dl(N);
5131 SDValue Op = N->getOperand(0);
5132
5133 // This function is only supposed to be called for i64 types, either as the
5134 // source or destination of the bit convert.
5135 EVT SrcVT = Op.getValueType();
5136 EVT DstVT = N->getValueType(0);
5137 const bool HasFullFP16 = Subtarget->hasFullFP16();
5138
5139 if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
5140 // FullFP16: half values are passed in S-registers, and we don't
5141 // need any of the bitcast and moves:
5142 //
5143 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5144 // t5: i32 = bitcast t2
5145 // t18: f16 = ARMISD::VMOVhr t5
5146 if (Op.getOpcode() != ISD::CopyFromReg ||
5147 Op.getValueType() != MVT::f32)
5148 return SDValue();
5149
5150 auto Move = N->use_begin();
5151 if (Move->getOpcode() != ARMISD::VMOVhr)
5152 return SDValue();
5153
5154 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
5155 SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
5156 DAG.ReplaceAllUsesWith(*Move, &Copy);
5157 return Copy;
5158 }
5159
5160 if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
5161 if (!HasFullFP16)
5162 return SDValue();
5163 // SoftFP: read half-precision arguments:
5164 //
5165 // t2: i32,ch = ...
5166 // t7: i16 = truncate t2 <~~~~ Op
5167 // t8: f16 = bitcast t7 <~~~~ N
5168 //
5169 if (Op.getOperand(0).getValueType() == MVT::i32)
5170 return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
5171 MVT::f16, Op.getOperand(0));
5172
5173 return SDValue();
5174 }
5175
5176 // Half-precision return values
5177 if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
5178 if (!HasFullFP16)
5179 return SDValue();
5180 //
5181 // t11: f16 = fadd t8, t10
5182 // t12: i16 = bitcast t11 <~~~ SDNode N
5183 // t13: i32 = zero_extend t12
5184 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5185 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5186 //
5187 // transform this into:
5188 //
5189 // t20: i32 = ARMISD::VMOVrh t11
5190 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5191 //
5192 auto ZeroExtend = N->use_begin();
5193 if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
5194 ZeroExtend->getValueType(0) != MVT::i32)
5195 return SDValue();
5196
5197 auto Copy = ZeroExtend->use_begin();
5198 if (Copy->getOpcode() == ISD::CopyToReg &&
5199 Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
5200 SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
5201 DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
5202 return Cvt;
5203 }
5204 return SDValue();
5205 }
5206
5207 if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5208 return SDValue();
5209
5210 // Turn i64->f64 into VMOVDRR.
5211 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5212 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5213 // if we can combine the bitcast with its source.
5214 if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5215 return Val;
5216
5217 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5218 DAG.getConstant(0, dl, MVT::i32));
5219 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5220 DAG.getConstant(1, dl, MVT::i32));
5221 return DAG.getNode(ISD::BITCAST, dl, DstVT,
5222 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5223 }
5224
5225 // Turn f64->i64 into VMOVRRD.
5226 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5227 SDValue Cvt;
5228 if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5229 SrcVT.getVectorNumElements() > 1)
5230 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5231 DAG.getVTList(MVT::i32, MVT::i32),
5232 DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5233 else
5234 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5235 DAG.getVTList(MVT::i32, MVT::i32), Op);
5236 // Merge the pieces into a single i64 value.
5237 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5238 }
5239
5240 return SDValue();
5241 }
5242
5243 /// getZeroVector - Returns a vector of specified type with all zero elements.
5244 /// Zero vectors are used to represent vector negation and in those cases
5245 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5246 /// not support i64 elements, so sometimes the zero vectors will need to be
5247 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5248 /// zero vector.
getZeroVector(EVT VT,SelectionDAG & DAG,const SDLoc & dl)5249 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5250 assert(VT.isVector() && "Expected a vector type");
5251 // The canonical modified immediate encoding of a zero vector is....0!
5252 SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
5253 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5254 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
5255 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5256 }
5257
5258 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5259 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const5260 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
5261 SelectionDAG &DAG) const {
5262 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5263 EVT VT = Op.getValueType();
5264 unsigned VTBits = VT.getSizeInBits();
5265 SDLoc dl(Op);
5266 SDValue ShOpLo = Op.getOperand(0);
5267 SDValue ShOpHi = Op.getOperand(1);
5268 SDValue ShAmt = Op.getOperand(2);
5269 SDValue ARMcc;
5270 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5271 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5272
5273 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5274
5275 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5276 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5277 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5278 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5279 DAG.getConstant(VTBits, dl, MVT::i32));
5280 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5281 SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5282 SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5283 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5284 ISD::SETGE, ARMcc, DAG, dl);
5285 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
5286 ARMcc, CCR, CmpLo);
5287
5288 SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5289 SDValue HiBigShift = Opc == ISD::SRA
5290 ? DAG.getNode(Opc, dl, VT, ShOpHi,
5291 DAG.getConstant(VTBits - 1, dl, VT))
5292 : DAG.getConstant(0, dl, VT);
5293 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5294 ISD::SETGE, ARMcc, DAG, dl);
5295 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5296 ARMcc, CCR, CmpHi);
5297
5298 SDValue Ops[2] = { Lo, Hi };
5299 return DAG.getMergeValues(Ops, dl);
5300 }
5301
5302 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5303 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const5304 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
5305 SelectionDAG &DAG) const {
5306 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5307 EVT VT = Op.getValueType();
5308 unsigned VTBits = VT.getSizeInBits();
5309 SDLoc dl(Op);
5310 SDValue ShOpLo = Op.getOperand(0);
5311 SDValue ShOpHi = Op.getOperand(1);
5312 SDValue ShAmt = Op.getOperand(2);
5313 SDValue ARMcc;
5314 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5315
5316 assert(Op.getOpcode() == ISD::SHL_PARTS);
5317 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5318 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5319 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5320 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5321 SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5322
5323 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5324 DAG.getConstant(VTBits, dl, MVT::i32));
5325 SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5326 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5327 ISD::SETGE, ARMcc, DAG, dl);
5328 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5329 ARMcc, CCR, CmpHi);
5330
5331 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5332 ISD::SETGE, ARMcc, DAG, dl);
5333 SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5334 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
5335 DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
5336
5337 SDValue Ops[2] = { Lo, Hi };
5338 return DAG.getMergeValues(Ops, dl);
5339 }
5340
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const5341 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5342 SelectionDAG &DAG) const {
5343 // The rounding mode is in bits 23:22 of the FPSCR.
5344 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5345 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5346 // so that the shift + and get folded into a bitfield extract.
5347 SDLoc dl(Op);
5348 SDValue Ops[] = { DAG.getEntryNode(),
5349 DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
5350
5351 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
5352 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
5353 DAG.getConstant(1U << 22, dl, MVT::i32));
5354 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
5355 DAG.getConstant(22, dl, MVT::i32));
5356 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
5357 DAG.getConstant(3, dl, MVT::i32));
5358 }
5359
LowerCTTZ(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5360 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
5361 const ARMSubtarget *ST) {
5362 SDLoc dl(N);
5363 EVT VT = N->getValueType(0);
5364 if (VT.isVector()) {
5365 assert(ST->hasNEON());
5366
5367 // Compute the least significant set bit: LSB = X & -X
5368 SDValue X = N->getOperand(0);
5369 SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
5370 SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
5371
5372 EVT ElemTy = VT.getVectorElementType();
5373
5374 if (ElemTy == MVT::i8) {
5375 // Compute with: cttz(x) = ctpop(lsb - 1)
5376 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5377 DAG.getTargetConstant(1, dl, ElemTy));
5378 SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5379 return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5380 }
5381
5382 if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
5383 (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
5384 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5385 unsigned NumBits = ElemTy.getSizeInBits();
5386 SDValue WidthMinus1 =
5387 DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5388 DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
5389 SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
5390 return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
5391 }
5392
5393 // Compute with: cttz(x) = ctpop(lsb - 1)
5394
5395 // Since we can only compute the number of bits in a byte with vcnt.8, we
5396 // have to gather the result with pairwise addition (vpaddl) for i16, i32,
5397 // and i64.
5398
5399 // Compute LSB - 1.
5400 SDValue Bits;
5401 if (ElemTy == MVT::i64) {
5402 // Load constant 0xffff'ffff'ffff'ffff to register.
5403 SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5404 DAG.getTargetConstant(0x1eff, dl, MVT::i32));
5405 Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
5406 } else {
5407 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5408 DAG.getTargetConstant(1, dl, ElemTy));
5409 Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5410 }
5411
5412 // Count #bits with vcnt.8.
5413 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5414 SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
5415 SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
5416
5417 // Gather the #bits with vpaddl (pairwise add.)
5418 EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
5419 SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
5420 DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5421 Cnt8);
5422 if (ElemTy == MVT::i16)
5423 return Cnt16;
5424
5425 EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
5426 SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
5427 DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5428 Cnt16);
5429 if (ElemTy == MVT::i32)
5430 return Cnt32;
5431
5432 assert(ElemTy == MVT::i64);
5433 SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5434 DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5435 Cnt32);
5436 return Cnt64;
5437 }
5438
5439 if (!ST->hasV6T2Ops())
5440 return SDValue();
5441
5442 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
5443 return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
5444 }
5445
5446 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
5447 /// for each 16-bit element from operand, repeated. The basic idea is to
5448 /// leverage vcnt to get the 8-bit counts, gather and add the results.
5449 ///
5450 /// Trace for v4i16:
5451 /// input = [v0 v1 v2 v3 ] (vi 16-bit element)
5452 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
5453 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
5454 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
5455 /// [b0 b1 b2 b3 b4 b5 b6 b7]
5456 /// +[b1 b0 b3 b2 b5 b4 b7 b6]
5457 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
5458 /// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits)
getCTPOP16BitCounts(SDNode * N,SelectionDAG & DAG)5459 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
5460 EVT VT = N->getValueType(0);
5461 SDLoc DL(N);
5462
5463 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5464 SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
5465 SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
5466 SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
5467 SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
5468 return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
5469 }
5470
5471 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
5472 /// bit-count for each 16-bit element from the operand. We need slightly
5473 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
5474 /// 64/128-bit registers.
5475 ///
5476 /// Trace for v4i16:
5477 /// input = [v0 v1 v2 v3 ] (vi 16-bit element)
5478 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
5479 /// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ]
5480 /// v4i16:Extracted = [k0 k1 k2 k3 ]
lowerCTPOP16BitElements(SDNode * N,SelectionDAG & DAG)5481 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
5482 EVT VT = N->getValueType(0);
5483 SDLoc DL(N);
5484
5485 SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
5486 if (VT.is64BitVector()) {
5487 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
5488 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
5489 DAG.getIntPtrConstant(0, DL));
5490 } else {
5491 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
5492 BitCounts, DAG.getIntPtrConstant(0, DL));
5493 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
5494 }
5495 }
5496
5497 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
5498 /// bit-count for each 32-bit element from the operand. The idea here is
5499 /// to split the vector into 16-bit elements, leverage the 16-bit count
5500 /// routine, and then combine the results.
5501 ///
5502 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
5503 /// input = [v0 v1 ] (vi: 32-bit elements)
5504 /// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
5505 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
5506 /// vrev: N0 = [k1 k0 k3 k2 ]
5507 /// [k0 k1 k2 k3 ]
5508 /// N1 =+[k1 k0 k3 k2 ]
5509 /// [k0 k2 k1 k3 ]
5510 /// N2 =+[k1 k3 k0 k2 ]
5511 /// [k0 k2 k1 k3 ]
5512 /// Extended =+[k1 k3 k0 k2 ]
5513 /// [k0 k2 ]
5514 /// Extracted=+[k1 k3 ]
5515 ///
lowerCTPOP32BitElements(SDNode * N,SelectionDAG & DAG)5516 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
5517 EVT VT = N->getValueType(0);
5518 SDLoc DL(N);
5519
5520 EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
5521
5522 SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
5523 SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
5524 SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
5525 SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
5526 SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
5527
5528 if (VT.is64BitVector()) {
5529 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
5530 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
5531 DAG.getIntPtrConstant(0, DL));
5532 } else {
5533 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
5534 DAG.getIntPtrConstant(0, DL));
5535 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
5536 }
5537 }
5538
LowerCTPOP(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5539 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
5540 const ARMSubtarget *ST) {
5541 EVT VT = N->getValueType(0);
5542
5543 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
5544 assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
5545 VT == MVT::v4i16 || VT == MVT::v8i16) &&
5546 "Unexpected type for custom ctpop lowering");
5547
5548 if (VT.getVectorElementType() == MVT::i32)
5549 return lowerCTPOP32BitElements(N, DAG);
5550 else
5551 return lowerCTPOP16BitElements(N, DAG);
5552 }
5553
LowerShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5554 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
5555 const ARMSubtarget *ST) {
5556 EVT VT = N->getValueType(0);
5557 SDLoc dl(N);
5558
5559 if (!VT.isVector())
5560 return SDValue();
5561
5562 // Lower vector shifts on NEON to use VSHL.
5563 assert(ST->hasNEON() && "unexpected vector shift");
5564
5565 // Left shifts translate directly to the vshiftu intrinsic.
5566 if (N->getOpcode() == ISD::SHL)
5567 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5568 DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
5569 MVT::i32),
5570 N->getOperand(0), N->getOperand(1));
5571
5572 assert((N->getOpcode() == ISD::SRA ||
5573 N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
5574
5575 // NEON uses the same intrinsics for both left and right shifts. For
5576 // right shifts, the shift amounts are negative, so negate the vector of
5577 // shift amounts.
5578 EVT ShiftVT = N->getOperand(1).getValueType();
5579 SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
5580 getZeroVector(ShiftVT, DAG, dl),
5581 N->getOperand(1));
5582 Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
5583 Intrinsic::arm_neon_vshifts :
5584 Intrinsic::arm_neon_vshiftu);
5585 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5586 DAG.getConstant(vshiftInt, dl, MVT::i32),
5587 N->getOperand(0), NegatedCount);
5588 }
5589
Expand64BitShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5590 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
5591 const ARMSubtarget *ST) {
5592 EVT VT = N->getValueType(0);
5593 SDLoc dl(N);
5594
5595 // We can get here for a node like i32 = ISD::SHL i32, i64
5596 if (VT != MVT::i64)
5597 return SDValue();
5598
5599 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
5600 "Unknown shift to lower!");
5601
5602 // We only lower SRA, SRL of 1 here, all others use generic lowering.
5603 if (!isOneConstant(N->getOperand(1)))
5604 return SDValue();
5605
5606 // If we are in thumb mode, we don't have RRX.
5607 if (ST->isThumb1Only()) return SDValue();
5608
5609 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
5610 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5611 DAG.getConstant(0, dl, MVT::i32));
5612 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5613 DAG.getConstant(1, dl, MVT::i32));
5614
5615 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5616 // captures the result into a carry flag.
5617 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
5618 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
5619
5620 // The low part is an ARMISD::RRX operand, which shifts the carry in.
5621 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
5622
5623 // Merge the pieces into a single i64 value.
5624 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5625 }
5626
LowerVSETCC(SDValue Op,SelectionDAG & DAG)5627 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5628 SDValue TmpOp0, TmpOp1;
5629 bool Invert = false;
5630 bool Swap = false;
5631 unsigned Opc = 0;
5632
5633 SDValue Op0 = Op.getOperand(0);
5634 SDValue Op1 = Op.getOperand(1);
5635 SDValue CC = Op.getOperand(2);
5636 EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
5637 EVT VT = Op.getValueType();
5638 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5639 SDLoc dl(Op);
5640
5641 if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
5642 (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
5643 // Special-case integer 64-bit equality comparisons. They aren't legal,
5644 // but they can be lowered with a few vector instructions.
5645 unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
5646 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
5647 SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
5648 SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
5649 SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
5650 DAG.getCondCode(ISD::SETEQ));
5651 SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
5652 SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
5653 Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
5654 if (SetCCOpcode == ISD::SETNE)
5655 Merged = DAG.getNOT(dl, Merged, CmpVT);
5656 Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
5657 return Merged;
5658 }
5659
5660 if (CmpVT.getVectorElementType() == MVT::i64)
5661 // 64-bit comparisons are not legal in general.
5662 return SDValue();
5663
5664 if (Op1.getValueType().isFloatingPoint()) {
5665 switch (SetCCOpcode) {
5666 default: llvm_unreachable("Illegal FP comparison");
5667 case ISD::SETUNE:
5668 case ISD::SETNE: Invert = true; LLVM_FALLTHROUGH;
5669 case ISD::SETOEQ:
5670 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
5671 case ISD::SETOLT:
5672 case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5673 case ISD::SETOGT:
5674 case ISD::SETGT: Opc = ARMISD::VCGT; break;
5675 case ISD::SETOLE:
5676 case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
5677 case ISD::SETOGE:
5678 case ISD::SETGE: Opc = ARMISD::VCGE; break;
5679 case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
5680 case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
5681 case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
5682 case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
5683 case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
5684 case ISD::SETONE:
5685 // Expand this to (OLT | OGT).
5686 TmpOp0 = Op0;
5687 TmpOp1 = Op1;
5688 Opc = ISD::OR;
5689 Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5690 Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
5691 break;
5692 case ISD::SETUO:
5693 Invert = true;
5694 LLVM_FALLTHROUGH;
5695 case ISD::SETO:
5696 // Expand this to (OLT | OGE).
5697 TmpOp0 = Op0;
5698 TmpOp1 = Op1;
5699 Opc = ISD::OR;
5700 Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5701 Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
5702 break;
5703 }
5704 } else {
5705 // Integer comparisons.
5706 switch (SetCCOpcode) {
5707 default: llvm_unreachable("Illegal integer comparison");
5708 case ISD::SETNE: Invert = true; LLVM_FALLTHROUGH;
5709 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
5710 case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5711 case ISD::SETGT: Opc = ARMISD::VCGT; break;
5712 case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
5713 case ISD::SETGE: Opc = ARMISD::VCGE; break;
5714 case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
5715 case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
5716 case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
5717 case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
5718 }
5719
5720 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
5721 if (Opc == ARMISD::VCEQ) {
5722 SDValue AndOp;
5723 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5724 AndOp = Op0;
5725 else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
5726 AndOp = Op1;
5727
5728 // Ignore bitconvert.
5729 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
5730 AndOp = AndOp.getOperand(0);
5731
5732 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
5733 Opc = ARMISD::VTST;
5734 Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
5735 Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
5736 Invert = !Invert;
5737 }
5738 }
5739 }
5740
5741 if (Swap)
5742 std::swap(Op0, Op1);
5743
5744 // If one of the operands is a constant vector zero, attempt to fold the
5745 // comparison to a specialized compare-against-zero form.
5746 SDValue SingleOp;
5747 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5748 SingleOp = Op0;
5749 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5750 if (Opc == ARMISD::VCGE)
5751 Opc = ARMISD::VCLEZ;
5752 else if (Opc == ARMISD::VCGT)
5753 Opc = ARMISD::VCLTZ;
5754 SingleOp = Op1;
5755 }
5756
5757 SDValue Result;
5758 if (SingleOp.getNode()) {
5759 switch (Opc) {
5760 case ARMISD::VCEQ:
5761 Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
5762 case ARMISD::VCGE:
5763 Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
5764 case ARMISD::VCLEZ:
5765 Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
5766 case ARMISD::VCGT:
5767 Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
5768 case ARMISD::VCLTZ:
5769 Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
5770 default:
5771 Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5772 }
5773 } else {
5774 Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5775 }
5776
5777 Result = DAG.getSExtOrTrunc(Result, dl, VT);
5778
5779 if (Invert)
5780 Result = DAG.getNOT(dl, Result, VT);
5781
5782 return Result;
5783 }
5784
LowerSETCCCARRY(SDValue Op,SelectionDAG & DAG)5785 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
5786 SDValue LHS = Op.getOperand(0);
5787 SDValue RHS = Op.getOperand(1);
5788 SDValue Carry = Op.getOperand(2);
5789 SDValue Cond = Op.getOperand(3);
5790 SDLoc DL(Op);
5791
5792 assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
5793
5794 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
5795 // have to invert the carry first.
5796 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
5797 DAG.getConstant(1, DL, MVT::i32), Carry);
5798 // This converts the boolean value carry into the carry flag.
5799 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
5800
5801 SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
5802 SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
5803
5804 SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
5805 SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
5806 SDValue ARMcc = DAG.getConstant(
5807 IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
5808 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5809 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
5810 Cmp.getValue(1), SDValue());
5811 return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
5812 CCR, Chain.getValue(1));
5813 }
5814
5815 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
5816 /// valid vector constant for a NEON instruction with a "modified immediate"
5817 /// operand (e.g., VMOV). If so, return the encoded value.
isNEONModifiedImm(uint64_t SplatBits,uint64_t SplatUndef,unsigned SplatBitSize,SelectionDAG & DAG,const SDLoc & dl,EVT & VT,bool is128Bits,NEONModImmType type)5818 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
5819 unsigned SplatBitSize, SelectionDAG &DAG,
5820 const SDLoc &dl, EVT &VT, bool is128Bits,
5821 NEONModImmType type) {
5822 unsigned OpCmode, Imm;
5823
5824 // SplatBitSize is set to the smallest size that splats the vector, so a
5825 // zero vector will always have SplatBitSize == 8. However, NEON modified
5826 // immediate instructions others than VMOV do not support the 8-bit encoding
5827 // of a zero vector, and the default encoding of zero is supposed to be the
5828 // 32-bit version.
5829 if (SplatBits == 0)
5830 SplatBitSize = 32;
5831
5832 switch (SplatBitSize) {
5833 case 8:
5834 if (type != VMOVModImm)
5835 return SDValue();
5836 // Any 1-byte value is OK. Op=0, Cmode=1110.
5837 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
5838 OpCmode = 0xe;
5839 Imm = SplatBits;
5840 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
5841 break;
5842
5843 case 16:
5844 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
5845 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
5846 if ((SplatBits & ~0xff) == 0) {
5847 // Value = 0x00nn: Op=x, Cmode=100x.
5848 OpCmode = 0x8;
5849 Imm = SplatBits;
5850 break;
5851 }
5852 if ((SplatBits & ~0xff00) == 0) {
5853 // Value = 0xnn00: Op=x, Cmode=101x.
5854 OpCmode = 0xa;
5855 Imm = SplatBits >> 8;
5856 break;
5857 }
5858 return SDValue();
5859
5860 case 32:
5861 // NEON's 32-bit VMOV supports splat values where:
5862 // * only one byte is nonzero, or
5863 // * the least significant byte is 0xff and the second byte is nonzero, or
5864 // * the least significant 2 bytes are 0xff and the third is nonzero.
5865 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
5866 if ((SplatBits & ~0xff) == 0) {
5867 // Value = 0x000000nn: Op=x, Cmode=000x.
5868 OpCmode = 0;
5869 Imm = SplatBits;
5870 break;
5871 }
5872 if ((SplatBits & ~0xff00) == 0) {
5873 // Value = 0x0000nn00: Op=x, Cmode=001x.
5874 OpCmode = 0x2;
5875 Imm = SplatBits >> 8;
5876 break;
5877 }
5878 if ((SplatBits & ~0xff0000) == 0) {
5879 // Value = 0x00nn0000: Op=x, Cmode=010x.
5880 OpCmode = 0x4;
5881 Imm = SplatBits >> 16;
5882 break;
5883 }
5884 if ((SplatBits & ~0xff000000) == 0) {
5885 // Value = 0xnn000000: Op=x, Cmode=011x.
5886 OpCmode = 0x6;
5887 Imm = SplatBits >> 24;
5888 break;
5889 }
5890
5891 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
5892 if (type == OtherModImm) return SDValue();
5893
5894 if ((SplatBits & ~0xffff) == 0 &&
5895 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
5896 // Value = 0x0000nnff: Op=x, Cmode=1100.
5897 OpCmode = 0xc;
5898 Imm = SplatBits >> 8;
5899 break;
5900 }
5901
5902 if ((SplatBits & ~0xffffff) == 0 &&
5903 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
5904 // Value = 0x00nnffff: Op=x, Cmode=1101.
5905 OpCmode = 0xd;
5906 Imm = SplatBits >> 16;
5907 break;
5908 }
5909
5910 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
5911 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
5912 // VMOV.I32. A (very) minor optimization would be to replicate the value
5913 // and fall through here to test for a valid 64-bit splat. But, then the
5914 // caller would also need to check and handle the change in size.
5915 return SDValue();
5916
5917 case 64: {
5918 if (type != VMOVModImm)
5919 return SDValue();
5920 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
5921 uint64_t BitMask = 0xff;
5922 uint64_t Val = 0;
5923 unsigned ImmMask = 1;
5924 Imm = 0;
5925 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
5926 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
5927 Val |= BitMask;
5928 Imm |= ImmMask;
5929 } else if ((SplatBits & BitMask) != 0) {
5930 return SDValue();
5931 }
5932 BitMask <<= 8;
5933 ImmMask <<= 1;
5934 }
5935
5936 if (DAG.getDataLayout().isBigEndian())
5937 // swap higher and lower 32 bit word
5938 Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
5939
5940 // Op=1, Cmode=1110.
5941 OpCmode = 0x1e;
5942 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
5943 break;
5944 }
5945
5946 default:
5947 llvm_unreachable("unexpected size for isNEONModifiedImm");
5948 }
5949
5950 unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
5951 return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
5952 }
5953
LowerConstantFP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const5954 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
5955 const ARMSubtarget *ST) const {
5956 EVT VT = Op.getValueType();
5957 bool IsDouble = (VT == MVT::f64);
5958 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
5959 const APFloat &FPVal = CFP->getValueAPF();
5960
5961 // Prevent floating-point constants from using literal loads
5962 // when execute-only is enabled.
5963 if (ST->genExecuteOnly()) {
5964 // If we can represent the constant as an immediate, don't lower it
5965 if (isFPImmLegal(FPVal, VT))
5966 return Op;
5967 // Otherwise, construct as integer, and move to float register
5968 APInt INTVal = FPVal.bitcastToAPInt();
5969 SDLoc DL(CFP);
5970 switch (VT.getSimpleVT().SimpleTy) {
5971 default:
5972 llvm_unreachable("Unknown floating point type!");
5973 break;
5974 case MVT::f64: {
5975 SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
5976 SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
5977 if (!ST->isLittle())
5978 std::swap(Lo, Hi);
5979 return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
5980 }
5981 case MVT::f32:
5982 return DAG.getNode(ARMISD::VMOVSR, DL, VT,
5983 DAG.getConstant(INTVal, DL, MVT::i32));
5984 }
5985 }
5986
5987 if (!ST->hasVFP3())
5988 return SDValue();
5989
5990 // Use the default (constant pool) lowering for double constants when we have
5991 // an SP-only FPU
5992 if (IsDouble && Subtarget->isFPOnlySP())
5993 return SDValue();
5994
5995 // Try splatting with a VMOV.f32...
5996 int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
5997
5998 if (ImmVal != -1) {
5999 if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
6000 // We have code in place to select a valid ConstantFP already, no need to
6001 // do any mangling.
6002 return Op;
6003 }
6004
6005 // It's a float and we are trying to use NEON operations where
6006 // possible. Lower it to a splat followed by an extract.
6007 SDLoc DL(Op);
6008 SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6009 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6010 NewVal);
6011 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6012 DAG.getConstant(0, DL, MVT::i32));
6013 }
6014
6015 // The rest of our options are NEON only, make sure that's allowed before
6016 // proceeding..
6017 if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6018 return SDValue();
6019
6020 EVT VMovVT;
6021 uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6022
6023 // It wouldn't really be worth bothering for doubles except for one very
6024 // important value, which does happen to match: 0.0. So make sure we don't do
6025 // anything stupid.
6026 if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6027 return SDValue();
6028
6029 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6030 SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6031 VMovVT, false, VMOVModImm);
6032 if (NewVal != SDValue()) {
6033 SDLoc DL(Op);
6034 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6035 NewVal);
6036 if (IsDouble)
6037 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6038
6039 // It's a float: cast and extract a vector element.
6040 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6041 VecConstant);
6042 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6043 DAG.getConstant(0, DL, MVT::i32));
6044 }
6045
6046 // Finally, try a VMVN.i32
6047 NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6048 false, VMVNModImm);
6049 if (NewVal != SDValue()) {
6050 SDLoc DL(Op);
6051 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6052
6053 if (IsDouble)
6054 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6055
6056 // It's a float: cast and extract a vector element.
6057 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6058 VecConstant);
6059 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6060 DAG.getConstant(0, DL, MVT::i32));
6061 }
6062
6063 return SDValue();
6064 }
6065
6066 // check if an VEXT instruction can handle the shuffle mask when the
6067 // vector sources of the shuffle are the same.
isSingletonVEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)6068 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6069 unsigned NumElts = VT.getVectorNumElements();
6070
6071 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6072 if (M[0] < 0)
6073 return false;
6074
6075 Imm = M[0];
6076
6077 // If this is a VEXT shuffle, the immediate value is the index of the first
6078 // element. The other shuffle indices must be the successive elements after
6079 // the first one.
6080 unsigned ExpectedElt = Imm;
6081 for (unsigned i = 1; i < NumElts; ++i) {
6082 // Increment the expected index. If it wraps around, just follow it
6083 // back to index zero and keep going.
6084 ++ExpectedElt;
6085 if (ExpectedElt == NumElts)
6086 ExpectedElt = 0;
6087
6088 if (M[i] < 0) continue; // ignore UNDEF indices
6089 if (ExpectedElt != static_cast<unsigned>(M[i]))
6090 return false;
6091 }
6092
6093 return true;
6094 }
6095
isVEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseVEXT,unsigned & Imm)6096 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6097 bool &ReverseVEXT, unsigned &Imm) {
6098 unsigned NumElts = VT.getVectorNumElements();
6099 ReverseVEXT = false;
6100
6101 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6102 if (M[0] < 0)
6103 return false;
6104
6105 Imm = M[0];
6106
6107 // If this is a VEXT shuffle, the immediate value is the index of the first
6108 // element. The other shuffle indices must be the successive elements after
6109 // the first one.
6110 unsigned ExpectedElt = Imm;
6111 for (unsigned i = 1; i < NumElts; ++i) {
6112 // Increment the expected index. If it wraps around, it may still be
6113 // a VEXT but the source vectors must be swapped.
6114 ExpectedElt += 1;
6115 if (ExpectedElt == NumElts * 2) {
6116 ExpectedElt = 0;
6117 ReverseVEXT = true;
6118 }
6119
6120 if (M[i] < 0) continue; // ignore UNDEF indices
6121 if (ExpectedElt != static_cast<unsigned>(M[i]))
6122 return false;
6123 }
6124
6125 // Adjust the index value if the source operands will be swapped.
6126 if (ReverseVEXT)
6127 Imm -= NumElts;
6128
6129 return true;
6130 }
6131
6132 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6133 /// instruction with the specified blocksize. (The order of the elements
6134 /// within each block of the vector is reversed.)
isVREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)6135 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6136 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6137 "Only possible block sizes for VREV are: 16, 32, 64");
6138
6139 unsigned EltSz = VT.getScalarSizeInBits();
6140 if (EltSz == 64)
6141 return false;
6142
6143 unsigned NumElts = VT.getVectorNumElements();
6144 unsigned BlockElts = M[0] + 1;
6145 // If the first shuffle index is UNDEF, be optimistic.
6146 if (M[0] < 0)
6147 BlockElts = BlockSize / EltSz;
6148
6149 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6150 return false;
6151
6152 for (unsigned i = 0; i < NumElts; ++i) {
6153 if (M[i] < 0) continue; // ignore UNDEF indices
6154 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6155 return false;
6156 }
6157
6158 return true;
6159 }
6160
isVTBLMask(ArrayRef<int> M,EVT VT)6161 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6162 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6163 // range, then 0 is placed into the resulting vector. So pretty much any mask
6164 // of 8 elements can work here.
6165 return VT == MVT::v8i8 && M.size() == 8;
6166 }
6167
SelectPairHalf(unsigned Elements,ArrayRef<int> Mask,unsigned Index)6168 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6169 unsigned Index) {
6170 if (Mask.size() == Elements * 2)
6171 return Index / Elements;
6172 return Mask[Index] == 0 ? 0 : 1;
6173 }
6174
6175 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6176 // checking that pairs of elements in the shuffle mask represent the same index
6177 // in each vector, incrementing the expected index by 2 at each step.
6178 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6179 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6180 // v2={e,f,g,h}
6181 // WhichResult gives the offset for each element in the mask based on which
6182 // of the two results it belongs to.
6183 //
6184 // The transpose can be represented either as:
6185 // result1 = shufflevector v1, v2, result1_shuffle_mask
6186 // result2 = shufflevector v1, v2, result2_shuffle_mask
6187 // where v1/v2 and the shuffle masks have the same number of elements
6188 // (here WhichResult (see below) indicates which result is being checked)
6189 //
6190 // or as:
6191 // results = shufflevector v1, v2, shuffle_mask
6192 // where both results are returned in one vector and the shuffle mask has twice
6193 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6194 // want to check the low half and high half of the shuffle mask as if it were
6195 // the other case
isVTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6196 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6197 unsigned EltSz = VT.getScalarSizeInBits();
6198 if (EltSz == 64)
6199 return false;
6200
6201 unsigned NumElts = VT.getVectorNumElements();
6202 if (M.size() != NumElts && M.size() != NumElts*2)
6203 return false;
6204
6205 // If the mask is twice as long as the input vector then we need to check the
6206 // upper and lower parts of the mask with a matching value for WhichResult
6207 // FIXME: A mask with only even values will be rejected in case the first
6208 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6209 // M[0] is used to determine WhichResult
6210 for (unsigned i = 0; i < M.size(); i += NumElts) {
6211 WhichResult = SelectPairHalf(NumElts, M, i);
6212 for (unsigned j = 0; j < NumElts; j += 2) {
6213 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6214 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
6215 return false;
6216 }
6217 }
6218
6219 if (M.size() == NumElts*2)
6220 WhichResult = 0;
6221
6222 return true;
6223 }
6224
6225 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6226 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6227 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isVTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6228 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6229 unsigned EltSz = VT.getScalarSizeInBits();
6230 if (EltSz == 64)
6231 return false;
6232
6233 unsigned NumElts = VT.getVectorNumElements();
6234 if (M.size() != NumElts && M.size() != NumElts*2)
6235 return false;
6236
6237 for (unsigned i = 0; i < M.size(); i += NumElts) {
6238 WhichResult = SelectPairHalf(NumElts, M, i);
6239 for (unsigned j = 0; j < NumElts; j += 2) {
6240 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6241 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
6242 return false;
6243 }
6244 }
6245
6246 if (M.size() == NumElts*2)
6247 WhichResult = 0;
6248
6249 return true;
6250 }
6251
6252 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6253 // that the mask elements are either all even and in steps of size 2 or all odd
6254 // and in steps of size 2.
6255 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6256 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6257 // v2={e,f,g,h}
6258 // Requires similar checks to that of isVTRNMask with
6259 // respect the how results are returned.
isVUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6260 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6261 unsigned EltSz = VT.getScalarSizeInBits();
6262 if (EltSz == 64)
6263 return false;
6264
6265 unsigned NumElts = VT.getVectorNumElements();
6266 if (M.size() != NumElts && M.size() != NumElts*2)
6267 return false;
6268
6269 for (unsigned i = 0; i < M.size(); i += NumElts) {
6270 WhichResult = SelectPairHalf(NumElts, M, i);
6271 for (unsigned j = 0; j < NumElts; ++j) {
6272 if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
6273 return false;
6274 }
6275 }
6276
6277 if (M.size() == NumElts*2)
6278 WhichResult = 0;
6279
6280 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6281 if (VT.is64BitVector() && EltSz == 32)
6282 return false;
6283
6284 return true;
6285 }
6286
6287 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6288 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6289 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isVUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6290 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6291 unsigned EltSz = VT.getScalarSizeInBits();
6292 if (EltSz == 64)
6293 return false;
6294
6295 unsigned NumElts = VT.getVectorNumElements();
6296 if (M.size() != NumElts && M.size() != NumElts*2)
6297 return false;
6298
6299 unsigned Half = NumElts / 2;
6300 for (unsigned i = 0; i < M.size(); i += NumElts) {
6301 WhichResult = SelectPairHalf(NumElts, M, i);
6302 for (unsigned j = 0; j < NumElts; j += Half) {
6303 unsigned Idx = WhichResult;
6304 for (unsigned k = 0; k < Half; ++k) {
6305 int MIdx = M[i + j + k];
6306 if (MIdx >= 0 && (unsigned) MIdx != Idx)
6307 return false;
6308 Idx += 2;
6309 }
6310 }
6311 }
6312
6313 if (M.size() == NumElts*2)
6314 WhichResult = 0;
6315
6316 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6317 if (VT.is64BitVector() && EltSz == 32)
6318 return false;
6319
6320 return true;
6321 }
6322
6323 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6324 // that pairs of elements of the shufflemask represent the same index in each
6325 // vector incrementing sequentially through the vectors.
6326 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6327 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6328 // v2={e,f,g,h}
6329 // Requires similar checks to that of isVTRNMask with respect the how results
6330 // are returned.
isVZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6331 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6332 unsigned EltSz = VT.getScalarSizeInBits();
6333 if (EltSz == 64)
6334 return false;
6335
6336 unsigned NumElts = VT.getVectorNumElements();
6337 if (M.size() != NumElts && M.size() != NumElts*2)
6338 return false;
6339
6340 for (unsigned i = 0; i < M.size(); i += NumElts) {
6341 WhichResult = SelectPairHalf(NumElts, M, i);
6342 unsigned Idx = WhichResult * NumElts / 2;
6343 for (unsigned j = 0; j < NumElts; j += 2) {
6344 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6345 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
6346 return false;
6347 Idx += 1;
6348 }
6349 }
6350
6351 if (M.size() == NumElts*2)
6352 WhichResult = 0;
6353
6354 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6355 if (VT.is64BitVector() && EltSz == 32)
6356 return false;
6357
6358 return true;
6359 }
6360
6361 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6362 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6363 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isVZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6364 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6365 unsigned EltSz = VT.getScalarSizeInBits();
6366 if (EltSz == 64)
6367 return false;
6368
6369 unsigned NumElts = VT.getVectorNumElements();
6370 if (M.size() != NumElts && M.size() != NumElts*2)
6371 return false;
6372
6373 for (unsigned i = 0; i < M.size(); i += NumElts) {
6374 WhichResult = SelectPairHalf(NumElts, M, i);
6375 unsigned Idx = WhichResult * NumElts / 2;
6376 for (unsigned j = 0; j < NumElts; j += 2) {
6377 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6378 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
6379 return false;
6380 Idx += 1;
6381 }
6382 }
6383
6384 if (M.size() == NumElts*2)
6385 WhichResult = 0;
6386
6387 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6388 if (VT.is64BitVector() && EltSz == 32)
6389 return false;
6390
6391 return true;
6392 }
6393
6394 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6395 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask,EVT VT,unsigned & WhichResult,bool & isV_UNDEF)6396 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
6397 unsigned &WhichResult,
6398 bool &isV_UNDEF) {
6399 isV_UNDEF = false;
6400 if (isVTRNMask(ShuffleMask, VT, WhichResult))
6401 return ARMISD::VTRN;
6402 if (isVUZPMask(ShuffleMask, VT, WhichResult))
6403 return ARMISD::VUZP;
6404 if (isVZIPMask(ShuffleMask, VT, WhichResult))
6405 return ARMISD::VZIP;
6406
6407 isV_UNDEF = true;
6408 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
6409 return ARMISD::VTRN;
6410 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6411 return ARMISD::VUZP;
6412 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6413 return ARMISD::VZIP;
6414
6415 return 0;
6416 }
6417
6418 /// \return true if this is a reverse operation on an vector.
isReverseMask(ArrayRef<int> M,EVT VT)6419 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
6420 unsigned NumElts = VT.getVectorNumElements();
6421 // Make sure the mask has the right size.
6422 if (NumElts != M.size())
6423 return false;
6424
6425 // Look for <15, ..., 3, -1, 1, 0>.
6426 for (unsigned i = 0; i != NumElts; ++i)
6427 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
6428 return false;
6429
6430 return true;
6431 }
6432
6433 // If N is an integer constant that can be moved into a register in one
6434 // instruction, return an SDValue of such a constant (will become a MOV
6435 // instruction). Otherwise return null.
IsSingleInstrConstant(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST,const SDLoc & dl)6436 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
6437 const ARMSubtarget *ST, const SDLoc &dl) {
6438 uint64_t Val;
6439 if (!isa<ConstantSDNode>(N))
6440 return SDValue();
6441 Val = cast<ConstantSDNode>(N)->getZExtValue();
6442
6443 if (ST->isThumb1Only()) {
6444 if (Val <= 255 || ~Val <= 255)
6445 return DAG.getConstant(Val, dl, MVT::i32);
6446 } else {
6447 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
6448 return DAG.getConstant(Val, dl, MVT::i32);
6449 }
6450 return SDValue();
6451 }
6452
6453 // If this is a case we can't handle, return null and let the default
6454 // expansion code take care of it.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const6455 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
6456 const ARMSubtarget *ST) const {
6457 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6458 SDLoc dl(Op);
6459 EVT VT = Op.getValueType();
6460
6461 APInt SplatBits, SplatUndef;
6462 unsigned SplatBitSize;
6463 bool HasAnyUndefs;
6464 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6465 if (SplatUndef.isAllOnesValue())
6466 return DAG.getUNDEF(VT);
6467
6468 if (SplatBitSize <= 64) {
6469 // Check if an immediate VMOV works.
6470 EVT VmovVT;
6471 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6472 SplatUndef.getZExtValue(), SplatBitSize,
6473 DAG, dl, VmovVT, VT.is128BitVector(),
6474 VMOVModImm);
6475 if (Val.getNode()) {
6476 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
6477 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6478 }
6479
6480 // Try an immediate VMVN.
6481 uint64_t NegatedImm = (~SplatBits).getZExtValue();
6482 Val = isNEONModifiedImm(NegatedImm,
6483 SplatUndef.getZExtValue(), SplatBitSize,
6484 DAG, dl, VmovVT, VT.is128BitVector(),
6485 VMVNModImm);
6486 if (Val.getNode()) {
6487 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
6488 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6489 }
6490
6491 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6492 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
6493 int ImmVal = ARM_AM::getFP32Imm(SplatBits);
6494 if (ImmVal != -1) {
6495 SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
6496 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
6497 }
6498 }
6499 }
6500 }
6501
6502 // Scan through the operands to see if only one value is used.
6503 //
6504 // As an optimisation, even if more than one value is used it may be more
6505 // profitable to splat with one value then change some lanes.
6506 //
6507 // Heuristically we decide to do this if the vector has a "dominant" value,
6508 // defined as splatted to more than half of the lanes.
6509 unsigned NumElts = VT.getVectorNumElements();
6510 bool isOnlyLowElement = true;
6511 bool usesOnlyOneValue = true;
6512 bool hasDominantValue = false;
6513 bool isConstant = true;
6514
6515 // Map of the number of times a particular SDValue appears in the
6516 // element list.
6517 DenseMap<SDValue, unsigned> ValueCounts;
6518 SDValue Value;
6519 for (unsigned i = 0; i < NumElts; ++i) {
6520 SDValue V = Op.getOperand(i);
6521 if (V.isUndef())
6522 continue;
6523 if (i > 0)
6524 isOnlyLowElement = false;
6525 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6526 isConstant = false;
6527
6528 ValueCounts.insert(std::make_pair(V, 0));
6529 unsigned &Count = ValueCounts[V];
6530
6531 // Is this value dominant? (takes up more than half of the lanes)
6532 if (++Count > (NumElts / 2)) {
6533 hasDominantValue = true;
6534 Value = V;
6535 }
6536 }
6537 if (ValueCounts.size() != 1)
6538 usesOnlyOneValue = false;
6539 if (!Value.getNode() && !ValueCounts.empty())
6540 Value = ValueCounts.begin()->first;
6541
6542 if (ValueCounts.empty())
6543 return DAG.getUNDEF(VT);
6544
6545 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6546 // Keep going if we are hitting this case.
6547 if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
6548 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6549
6550 unsigned EltSize = VT.getScalarSizeInBits();
6551
6552 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
6553 // i32 and try again.
6554 if (hasDominantValue && EltSize <= 32) {
6555 if (!isConstant) {
6556 SDValue N;
6557
6558 // If we are VDUPing a value that comes directly from a vector, that will
6559 // cause an unnecessary move to and from a GPR, where instead we could
6560 // just use VDUPLANE. We can only do this if the lane being extracted
6561 // is at a constant index, as the VDUP from lane instructions only have
6562 // constant-index forms.
6563 ConstantSDNode *constIndex;
6564 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6565 (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
6566 // We need to create a new undef vector to use for the VDUPLANE if the
6567 // size of the vector from which we get the value is different than the
6568 // size of the vector that we need to create. We will insert the element
6569 // such that the register coalescer will remove unnecessary copies.
6570 if (VT != Value->getOperand(0).getValueType()) {
6571 unsigned index = constIndex->getAPIntValue().getLimitedValue() %
6572 VT.getVectorNumElements();
6573 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6574 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
6575 Value, DAG.getConstant(index, dl, MVT::i32)),
6576 DAG.getConstant(index, dl, MVT::i32));
6577 } else
6578 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6579 Value->getOperand(0), Value->getOperand(1));
6580 } else
6581 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
6582
6583 if (!usesOnlyOneValue) {
6584 // The dominant value was splatted as 'N', but we now have to insert
6585 // all differing elements.
6586 for (unsigned I = 0; I < NumElts; ++I) {
6587 if (Op.getOperand(I) == Value)
6588 continue;
6589 SmallVector<SDValue, 3> Ops;
6590 Ops.push_back(N);
6591 Ops.push_back(Op.getOperand(I));
6592 Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
6593 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
6594 }
6595 }
6596 return N;
6597 }
6598 if (VT.getVectorElementType().isFloatingPoint()) {
6599 SmallVector<SDValue, 8> Ops;
6600 for (unsigned i = 0; i < NumElts; ++i)
6601 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
6602 Op.getOperand(i)));
6603 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
6604 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6605 Val = LowerBUILD_VECTOR(Val, DAG, ST);
6606 if (Val.getNode())
6607 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6608 }
6609 if (usesOnlyOneValue) {
6610 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
6611 if (isConstant && Val.getNode())
6612 return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
6613 }
6614 }
6615
6616 // If all elements are constants and the case above didn't get hit, fall back
6617 // to the default expansion, which will generate a load from the constant
6618 // pool.
6619 if (isConstant)
6620 return SDValue();
6621
6622 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6623 if (NumElts >= 4) {
6624 SDValue shuffle = ReconstructShuffle(Op, DAG);
6625 if (shuffle != SDValue())
6626 return shuffle;
6627 }
6628
6629 if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
6630 // If we haven't found an efficient lowering, try splitting a 128-bit vector
6631 // into two 64-bit vectors; we might discover a better way to lower it.
6632 SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
6633 EVT ExtVT = VT.getVectorElementType();
6634 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
6635 SDValue Lower =
6636 DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
6637 if (Lower.getOpcode() == ISD::BUILD_VECTOR)
6638 Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
6639 SDValue Upper = DAG.getBuildVector(
6640 HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
6641 if (Upper.getOpcode() == ISD::BUILD_VECTOR)
6642 Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
6643 if (Lower && Upper)
6644 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
6645 }
6646
6647 // Vectors with 32- or 64-bit elements can be built by directly assigning
6648 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
6649 // will be legalized.
6650 if (EltSize >= 32) {
6651 // Do the expansion with floating-point types, since that is what the VFP
6652 // registers are defined to use, and since i64 is not legal.
6653 EVT EltVT = EVT::getFloatingPointVT(EltSize);
6654 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6655 SmallVector<SDValue, 8> Ops;
6656 for (unsigned i = 0; i < NumElts; ++i)
6657 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
6658 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6659 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6660 }
6661
6662 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6663 // know the default expansion would otherwise fall back on something even
6664 // worse. For a vector with one or two non-undef values, that's
6665 // scalar_to_vector for the elements followed by a shuffle (provided the
6666 // shuffle is valid for the target) and materialization element by element
6667 // on the stack followed by a load for everything else.
6668 if (!isConstant && !usesOnlyOneValue) {
6669 SDValue Vec = DAG.getUNDEF(VT);
6670 for (unsigned i = 0 ; i < NumElts; ++i) {
6671 SDValue V = Op.getOperand(i);
6672 if (V.isUndef())
6673 continue;
6674 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
6675 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6676 }
6677 return Vec;
6678 }
6679
6680 return SDValue();
6681 }
6682
6683 // Gather data to see if the operation can be modelled as a
6684 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const6685 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
6686 SelectionDAG &DAG) const {
6687 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6688 SDLoc dl(Op);
6689 EVT VT = Op.getValueType();
6690 unsigned NumElts = VT.getVectorNumElements();
6691
6692 struct ShuffleSourceInfo {
6693 SDValue Vec;
6694 unsigned MinElt = std::numeric_limits<unsigned>::max();
6695 unsigned MaxElt = 0;
6696
6697 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6698 // be compatible with the shuffle we intend to construct. As a result
6699 // ShuffleVec will be some sliding window into the original Vec.
6700 SDValue ShuffleVec;
6701
6702 // Code should guarantee that element i in Vec starts at element "WindowBase
6703 // + i * WindowScale in ShuffleVec".
6704 int WindowBase = 0;
6705 int WindowScale = 1;
6706
6707 ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
6708
6709 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6710 };
6711
6712 // First gather all vectors used as an immediate source for this BUILD_VECTOR
6713 // node.
6714 SmallVector<ShuffleSourceInfo, 2> Sources;
6715 for (unsigned i = 0; i < NumElts; ++i) {
6716 SDValue V = Op.getOperand(i);
6717 if (V.isUndef())
6718 continue;
6719 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
6720 // A shuffle can only come from building a vector from various
6721 // elements of other vectors.
6722 return SDValue();
6723 } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
6724 // Furthermore, shuffles require a constant mask, whereas extractelts
6725 // accept variable indices.
6726 return SDValue();
6727 }
6728
6729 // Add this element source to the list if it's not already there.
6730 SDValue SourceVec = V.getOperand(0);
6731 auto Source = llvm::find(Sources, SourceVec);
6732 if (Source == Sources.end())
6733 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6734
6735 // Update the minimum and maximum lane number seen.
6736 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6737 Source->MinElt = std::min(Source->MinElt, EltNo);
6738 Source->MaxElt = std::max(Source->MaxElt, EltNo);
6739 }
6740
6741 // Currently only do something sane when at most two source vectors
6742 // are involved.
6743 if (Sources.size() > 2)
6744 return SDValue();
6745
6746 // Find out the smallest element size among result and two sources, and use
6747 // it as element size to build the shuffle_vector.
6748 EVT SmallestEltTy = VT.getVectorElementType();
6749 for (auto &Source : Sources) {
6750 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6751 if (SrcEltTy.bitsLT(SmallestEltTy))
6752 SmallestEltTy = SrcEltTy;
6753 }
6754 unsigned ResMultiplier =
6755 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6756 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6757 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6758
6759 // If the source vector is too wide or too narrow, we may nevertheless be able
6760 // to construct a compatible shuffle either by concatenating it with UNDEF or
6761 // extracting a suitable range of elements.
6762 for (auto &Src : Sources) {
6763 EVT SrcVT = Src.ShuffleVec.getValueType();
6764
6765 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6766 continue;
6767
6768 // This stage of the search produces a source with the same element type as
6769 // the original, but with a total width matching the BUILD_VECTOR output.
6770 EVT EltVT = SrcVT.getVectorElementType();
6771 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6772 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6773
6774 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6775 if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
6776 return SDValue();
6777 // We can pad out the smaller vector for free, so if it's part of a
6778 // shuffle...
6779 Src.ShuffleVec =
6780 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6781 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6782 continue;
6783 }
6784
6785 if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
6786 return SDValue();
6787
6788 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6789 // Span too large for a VEXT to cope
6790 return SDValue();
6791 }
6792
6793 if (Src.MinElt >= NumSrcElts) {
6794 // The extraction can just take the second half
6795 Src.ShuffleVec =
6796 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6797 DAG.getConstant(NumSrcElts, dl, MVT::i32));
6798 Src.WindowBase = -NumSrcElts;
6799 } else if (Src.MaxElt < NumSrcElts) {
6800 // The extraction can just take the first half
6801 Src.ShuffleVec =
6802 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6803 DAG.getConstant(0, dl, MVT::i32));
6804 } else {
6805 // An actual VEXT is needed
6806 SDValue VEXTSrc1 =
6807 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6808 DAG.getConstant(0, dl, MVT::i32));
6809 SDValue VEXTSrc2 =
6810 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6811 DAG.getConstant(NumSrcElts, dl, MVT::i32));
6812
6813 Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
6814 VEXTSrc2,
6815 DAG.getConstant(Src.MinElt, dl, MVT::i32));
6816 Src.WindowBase = -Src.MinElt;
6817 }
6818 }
6819
6820 // Another possible incompatibility occurs from the vector element types. We
6821 // can fix this by bitcasting the source vectors to the same type we intend
6822 // for the shuffle.
6823 for (auto &Src : Sources) {
6824 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6825 if (SrcEltTy == SmallestEltTy)
6826 continue;
6827 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6828 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6829 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6830 Src.WindowBase *= Src.WindowScale;
6831 }
6832
6833 // Final sanity check before we try to actually produce a shuffle.
6834 LLVM_DEBUG(for (auto Src
6835 : Sources)
6836 assert(Src.ShuffleVec.getValueType() == ShuffleVT););
6837
6838 // The stars all align, our next step is to produce the mask for the shuffle.
6839 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6840 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6841 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6842 SDValue Entry = Op.getOperand(i);
6843 if (Entry.isUndef())
6844 continue;
6845
6846 auto Src = llvm::find(Sources, Entry.getOperand(0));
6847 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6848
6849 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6850 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6851 // segment.
6852 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6853 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
6854 VT.getScalarSizeInBits());
6855 int LanesDefined = BitsDefined / BitsPerShuffleLane;
6856
6857 // This source is expected to fill ResMultiplier lanes of the final shuffle,
6858 // starting at the appropriate offset.
6859 int *LaneMask = &Mask[i * ResMultiplier];
6860
6861 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6862 ExtractBase += NumElts * (Src - Sources.begin());
6863 for (int j = 0; j < LanesDefined; ++j)
6864 LaneMask[j] = ExtractBase + j;
6865 }
6866
6867 // Final check before we try to produce nonsense...
6868 if (!isShuffleMaskLegal(Mask, ShuffleVT))
6869 return SDValue();
6870
6871 // We can't handle more than two sources. This should have already
6872 // been checked before this point.
6873 assert(Sources.size() <= 2 && "Too many sources!");
6874
6875 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6876 for (unsigned i = 0; i < Sources.size(); ++i)
6877 ShuffleOps[i] = Sources[i].ShuffleVec;
6878
6879 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6880 ShuffleOps[1], Mask);
6881 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6882 }
6883
6884 /// isShuffleMaskLegal - Targets can use this to indicate that they only
6885 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6886 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6887 /// are assumed to be legal.
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const6888 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
6889 if (VT.getVectorNumElements() == 4 &&
6890 (VT.is128BitVector() || VT.is64BitVector())) {
6891 unsigned PFIndexes[4];
6892 for (unsigned i = 0; i != 4; ++i) {
6893 if (M[i] < 0)
6894 PFIndexes[i] = 8;
6895 else
6896 PFIndexes[i] = M[i];
6897 }
6898
6899 // Compute the index in the perfect shuffle table.
6900 unsigned PFTableIndex =
6901 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6902 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6903 unsigned Cost = (PFEntry >> 30);
6904
6905 if (Cost <= 4)
6906 return true;
6907 }
6908
6909 bool ReverseVEXT, isV_UNDEF;
6910 unsigned Imm, WhichResult;
6911
6912 unsigned EltSize = VT.getScalarSizeInBits();
6913 return (EltSize >= 32 ||
6914 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6915 isVREVMask(M, VT, 64) ||
6916 isVREVMask(M, VT, 32) ||
6917 isVREVMask(M, VT, 16) ||
6918 isVEXTMask(M, VT, ReverseVEXT, Imm) ||
6919 isVTBLMask(M, VT) ||
6920 isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
6921 ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
6922 }
6923
6924 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6925 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)6926 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6927 SDValue RHS, SelectionDAG &DAG,
6928 const SDLoc &dl) {
6929 unsigned OpNum = (PFEntry >> 26) & 0x0F;
6930 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
6931 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
6932
6933 enum {
6934 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6935 OP_VREV,
6936 OP_VDUP0,
6937 OP_VDUP1,
6938 OP_VDUP2,
6939 OP_VDUP3,
6940 OP_VEXT1,
6941 OP_VEXT2,
6942 OP_VEXT3,
6943 OP_VUZPL, // VUZP, left result
6944 OP_VUZPR, // VUZP, right result
6945 OP_VZIPL, // VZIP, left result
6946 OP_VZIPR, // VZIP, right result
6947 OP_VTRNL, // VTRN, left result
6948 OP_VTRNR // VTRN, right result
6949 };
6950
6951 if (OpNum == OP_COPY) {
6952 if (LHSID == (1*9+2)*9+3) return LHS;
6953 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6954 return RHS;
6955 }
6956
6957 SDValue OpLHS, OpRHS;
6958 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6959 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6960 EVT VT = OpLHS.getValueType();
6961
6962 switch (OpNum) {
6963 default: llvm_unreachable("Unknown shuffle opcode!");
6964 case OP_VREV:
6965 // VREV divides the vector in half and swaps within the half.
6966 if (VT.getVectorElementType() == MVT::i32 ||
6967 VT.getVectorElementType() == MVT::f32)
6968 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
6969 // vrev <4 x i16> -> VREV32
6970 if (VT.getVectorElementType() == MVT::i16)
6971 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
6972 // vrev <4 x i8> -> VREV16
6973 assert(VT.getVectorElementType() == MVT::i8);
6974 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
6975 case OP_VDUP0:
6976 case OP_VDUP1:
6977 case OP_VDUP2:
6978 case OP_VDUP3:
6979 return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6980 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
6981 case OP_VEXT1:
6982 case OP_VEXT2:
6983 case OP_VEXT3:
6984 return DAG.getNode(ARMISD::VEXT, dl, VT,
6985 OpLHS, OpRHS,
6986 DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
6987 case OP_VUZPL:
6988 case OP_VUZPR:
6989 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
6990 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
6991 case OP_VZIPL:
6992 case OP_VZIPR:
6993 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
6994 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
6995 case OP_VTRNL:
6996 case OP_VTRNR:
6997 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
6998 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
6999 }
7000 }
7001
LowerVECTOR_SHUFFLEv8i8(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)7002 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
7003 ArrayRef<int> ShuffleMask,
7004 SelectionDAG &DAG) {
7005 // Check to see if we can use the VTBL instruction.
7006 SDValue V1 = Op.getOperand(0);
7007 SDValue V2 = Op.getOperand(1);
7008 SDLoc DL(Op);
7009
7010 SmallVector<SDValue, 8> VTBLMask;
7011 for (ArrayRef<int>::iterator
7012 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
7013 VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
7014
7015 if (V2.getNode()->isUndef())
7016 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
7017 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7018
7019 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
7020 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7021 }
7022
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,SelectionDAG & DAG)7023 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
7024 SelectionDAG &DAG) {
7025 SDLoc DL(Op);
7026 SDValue OpLHS = Op.getOperand(0);
7027 EVT VT = OpLHS.getValueType();
7028
7029 assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
7030 "Expect an v8i16/v16i8 type");
7031 OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
7032 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7033 // extract the first 8 bytes into the top double word and the last 8 bytes
7034 // into the bottom double word. The v8i16 case is similar.
7035 unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
7036 return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
7037 DAG.getConstant(ExtractNum, DL, MVT::i32));
7038 }
7039
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG)7040 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
7041 SDValue V1 = Op.getOperand(0);
7042 SDValue V2 = Op.getOperand(1);
7043 SDLoc dl(Op);
7044 EVT VT = Op.getValueType();
7045 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7046
7047 // Convert shuffles that are directly supported on NEON to target-specific
7048 // DAG nodes, instead of keeping them as shuffles and matching them again
7049 // during code selection. This is more efficient and avoids the possibility
7050 // of inconsistencies between legalization and selection.
7051 // FIXME: floating-point vectors should be canonicalized to integer vectors
7052 // of the same time so that they get CSEd properly.
7053 ArrayRef<int> ShuffleMask = SVN->getMask();
7054
7055 unsigned EltSize = VT.getScalarSizeInBits();
7056 if (EltSize <= 32) {
7057 if (SVN->isSplat()) {
7058 int Lane = SVN->getSplatIndex();
7059 // If this is undef splat, generate it via "just" vdup, if possible.
7060 if (Lane == -1) Lane = 0;
7061
7062 // Test if V1 is a SCALAR_TO_VECTOR.
7063 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
7064 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7065 }
7066 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7067 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7068 // reaches it).
7069 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
7070 !isa<ConstantSDNode>(V1.getOperand(0))) {
7071 bool IsScalarToVector = true;
7072 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
7073 if (!V1.getOperand(i).isUndef()) {
7074 IsScalarToVector = false;
7075 break;
7076 }
7077 if (IsScalarToVector)
7078 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7079 }
7080 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
7081 DAG.getConstant(Lane, dl, MVT::i32));
7082 }
7083
7084 bool ReverseVEXT;
7085 unsigned Imm;
7086 if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
7087 if (ReverseVEXT)
7088 std::swap(V1, V2);
7089 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
7090 DAG.getConstant(Imm, dl, MVT::i32));
7091 }
7092
7093 if (isVREVMask(ShuffleMask, VT, 64))
7094 return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
7095 if (isVREVMask(ShuffleMask, VT, 32))
7096 return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
7097 if (isVREVMask(ShuffleMask, VT, 16))
7098 return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
7099
7100 if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
7101 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
7102 DAG.getConstant(Imm, dl, MVT::i32));
7103 }
7104
7105 // Check for Neon shuffles that modify both input vectors in place.
7106 // If both results are used, i.e., if there are two shuffles with the same
7107 // source operands and with masks corresponding to both results of one of
7108 // these operations, DAG memoization will ensure that a single node is
7109 // used for both shuffles.
7110 unsigned WhichResult;
7111 bool isV_UNDEF;
7112 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7113 ShuffleMask, VT, WhichResult, isV_UNDEF)) {
7114 if (isV_UNDEF)
7115 V2 = V1;
7116 return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
7117 .getValue(WhichResult);
7118 }
7119
7120 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7121 // shuffles that produce a result larger than their operands with:
7122 // shuffle(concat(v1, undef), concat(v2, undef))
7123 // ->
7124 // shuffle(concat(v1, v2), undef)
7125 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7126 //
7127 // This is useful in the general case, but there are special cases where
7128 // native shuffles produce larger results: the two-result ops.
7129 //
7130 // Look through the concat when lowering them:
7131 // shuffle(concat(v1, v2), undef)
7132 // ->
7133 // concat(VZIP(v1, v2):0, :1)
7134 //
7135 if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
7136 SDValue SubV1 = V1->getOperand(0);
7137 SDValue SubV2 = V1->getOperand(1);
7138 EVT SubVT = SubV1.getValueType();
7139
7140 // We expect these to have been canonicalized to -1.
7141 assert(llvm::all_of(ShuffleMask, [&](int i) {
7142 return i < (int)VT.getVectorNumElements();
7143 }) && "Unexpected shuffle index into UNDEF operand!");
7144
7145 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7146 ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
7147 if (isV_UNDEF)
7148 SubV2 = SubV1;
7149 assert((WhichResult == 0) &&
7150 "In-place shuffle of concat can only have one result!");
7151 SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
7152 SubV1, SubV2);
7153 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
7154 Res.getValue(1));
7155 }
7156 }
7157 }
7158
7159 // If the shuffle is not directly supported and it has 4 elements, use
7160 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7161 unsigned NumElts = VT.getVectorNumElements();
7162 if (NumElts == 4) {
7163 unsigned PFIndexes[4];
7164 for (unsigned i = 0; i != 4; ++i) {
7165 if (ShuffleMask[i] < 0)
7166 PFIndexes[i] = 8;
7167 else
7168 PFIndexes[i] = ShuffleMask[i];
7169 }
7170
7171 // Compute the index in the perfect shuffle table.
7172 unsigned PFTableIndex =
7173 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7174 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7175 unsigned Cost = (PFEntry >> 30);
7176
7177 if (Cost <= 4)
7178 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7179 }
7180
7181 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7182 if (EltSize >= 32) {
7183 // Do the expansion with floating-point types, since that is what the VFP
7184 // registers are defined to use, and since i64 is not legal.
7185 EVT EltVT = EVT::getFloatingPointVT(EltSize);
7186 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7187 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
7188 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
7189 SmallVector<SDValue, 8> Ops;
7190 for (unsigned i = 0; i < NumElts; ++i) {
7191 if (ShuffleMask[i] < 0)
7192 Ops.push_back(DAG.getUNDEF(EltVT));
7193 else
7194 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
7195 ShuffleMask[i] < (int)NumElts ? V1 : V2,
7196 DAG.getConstant(ShuffleMask[i] & (NumElts-1),
7197 dl, MVT::i32)));
7198 }
7199 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7200 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7201 }
7202
7203 if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
7204 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
7205
7206 if (VT == MVT::v8i8)
7207 if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
7208 return NewOp;
7209
7210 return SDValue();
7211 }
7212
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)7213 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7214 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7215 SDValue Lane = Op.getOperand(2);
7216 if (!isa<ConstantSDNode>(Lane))
7217 return SDValue();
7218
7219 return Op;
7220 }
7221
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)7222 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7223 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7224 SDValue Lane = Op.getOperand(1);
7225 if (!isa<ConstantSDNode>(Lane))
7226 return SDValue();
7227
7228 SDValue Vec = Op.getOperand(0);
7229 if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
7230 SDLoc dl(Op);
7231 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
7232 }
7233
7234 return Op;
7235 }
7236
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG)7237 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
7238 // The only time a CONCAT_VECTORS operation can have legal types is when
7239 // two 64-bit vectors are concatenated to a 128-bit vector.
7240 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
7241 "unexpected CONCAT_VECTORS");
7242 SDLoc dl(Op);
7243 SDValue Val = DAG.getUNDEF(MVT::v2f64);
7244 SDValue Op0 = Op.getOperand(0);
7245 SDValue Op1 = Op.getOperand(1);
7246 if (!Op0.isUndef())
7247 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7248 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
7249 DAG.getIntPtrConstant(0, dl));
7250 if (!Op1.isUndef())
7251 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7252 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
7253 DAG.getIntPtrConstant(1, dl));
7254 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
7255 }
7256
7257 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7258 /// element has been zero/sign-extended, depending on the isSigned parameter,
7259 /// from an integer type half its size.
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)7260 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
7261 bool isSigned) {
7262 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7263 EVT VT = N->getValueType(0);
7264 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
7265 SDNode *BVN = N->getOperand(0).getNode();
7266 if (BVN->getValueType(0) != MVT::v4i32 ||
7267 BVN->getOpcode() != ISD::BUILD_VECTOR)
7268 return false;
7269 unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7270 unsigned HiElt = 1 - LoElt;
7271 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
7272 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
7273 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
7274 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
7275 if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
7276 return false;
7277 if (isSigned) {
7278 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
7279 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
7280 return true;
7281 } else {
7282 if (Hi0->isNullValue() && Hi1->isNullValue())
7283 return true;
7284 }
7285 return false;
7286 }
7287
7288 if (N->getOpcode() != ISD::BUILD_VECTOR)
7289 return false;
7290
7291 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
7292 SDNode *Elt = N->getOperand(i).getNode();
7293 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
7294 unsigned EltSize = VT.getScalarSizeInBits();
7295 unsigned HalfSize = EltSize / 2;
7296 if (isSigned) {
7297 if (!isIntN(HalfSize, C->getSExtValue()))
7298 return false;
7299 } else {
7300 if (!isUIntN(HalfSize, C->getZExtValue()))
7301 return false;
7302 }
7303 continue;
7304 }
7305 return false;
7306 }
7307
7308 return true;
7309 }
7310
7311 /// isSignExtended - Check if a node is a vector value that is sign-extended
7312 /// or a constant BUILD_VECTOR with sign-extended elements.
isSignExtended(SDNode * N,SelectionDAG & DAG)7313 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
7314 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
7315 return true;
7316 if (isExtendedBUILD_VECTOR(N, DAG, true))
7317 return true;
7318 return false;
7319 }
7320
7321 /// isZeroExtended - Check if a node is a vector value that is zero-extended
7322 /// or a constant BUILD_VECTOR with zero-extended elements.
isZeroExtended(SDNode * N,SelectionDAG & DAG)7323 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
7324 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
7325 return true;
7326 if (isExtendedBUILD_VECTOR(N, DAG, false))
7327 return true;
7328 return false;
7329 }
7330
getExtensionTo64Bits(const EVT & OrigVT)7331 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
7332 if (OrigVT.getSizeInBits() >= 64)
7333 return OrigVT;
7334
7335 assert(OrigVT.isSimple() && "Expecting a simple value type");
7336
7337 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
7338 switch (OrigSimpleTy) {
7339 default: llvm_unreachable("Unexpected Vector Type");
7340 case MVT::v2i8:
7341 case MVT::v2i16:
7342 return MVT::v2i32;
7343 case MVT::v4i8:
7344 return MVT::v4i16;
7345 }
7346 }
7347
7348 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
7349 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
7350 /// We insert the required extension here to get the vector to fill a D register.
AddRequiredExtensionForVMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)7351 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
7352 const EVT &OrigTy,
7353 const EVT &ExtTy,
7354 unsigned ExtOpcode) {
7355 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
7356 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
7357 // 64-bits we need to insert a new extension so that it will be 64-bits.
7358 assert(ExtTy.is128BitVector() && "Unexpected extension size");
7359 if (OrigTy.getSizeInBits() >= 64)
7360 return N;
7361
7362 // Must extend size to at least 64 bits to be used as an operand for VMULL.
7363 EVT NewVT = getExtensionTo64Bits(OrigTy);
7364
7365 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
7366 }
7367
7368 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
7369 /// does not do any sign/zero extension. If the original vector is less
7370 /// than 64 bits, an appropriate extension will be added after the load to
7371 /// reach a total size of 64 bits. We have to add the extension separately
7372 /// because ARM does not have a sign/zero extending load for vectors.
SkipLoadExtensionForVMULL(LoadSDNode * LD,SelectionDAG & DAG)7373 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
7374 EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
7375
7376 // The load already has the right type.
7377 if (ExtendedTy == LD->getMemoryVT())
7378 return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
7379 LD->getBasePtr(), LD->getPointerInfo(),
7380 LD->getAlignment(), LD->getMemOperand()->getFlags());
7381
7382 // We need to create a zextload/sextload. We cannot just create a load
7383 // followed by a zext/zext node because LowerMUL is also run during normal
7384 // operation legalization where we can't create illegal types.
7385 return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
7386 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
7387 LD->getMemoryVT(), LD->getAlignment(),
7388 LD->getMemOperand()->getFlags());
7389 }
7390
7391 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
7392 /// extending load, or BUILD_VECTOR with extended elements, return the
7393 /// unextended value. The unextended vector should be 64 bits so that it can
7394 /// be used as an operand to a VMULL instruction. If the original vector size
7395 /// before extension is less than 64 bits we add a an extension to resize
7396 /// the vector to 64 bits.
SkipExtensionForVMULL(SDNode * N,SelectionDAG & DAG)7397 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
7398 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
7399 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
7400 N->getOperand(0)->getValueType(0),
7401 N->getValueType(0),
7402 N->getOpcode());
7403
7404 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7405 assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
7406 "Expected extending load");
7407
7408 SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
7409 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
7410 unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
7411 SDValue extLoad =
7412 DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
7413 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
7414
7415 return newLoad;
7416 }
7417
7418 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
7419 // have been legalized as a BITCAST from v4i32.
7420 if (N->getOpcode() == ISD::BITCAST) {
7421 SDNode *BVN = N->getOperand(0).getNode();
7422 assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
7423 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
7424 unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7425 return DAG.getBuildVector(
7426 MVT::v2i32, SDLoc(N),
7427 {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
7428 }
7429 // Construct a new BUILD_VECTOR with elements truncated to half the size.
7430 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
7431 EVT VT = N->getValueType(0);
7432 unsigned EltSize = VT.getScalarSizeInBits() / 2;
7433 unsigned NumElts = VT.getVectorNumElements();
7434 MVT TruncVT = MVT::getIntegerVT(EltSize);
7435 SmallVector<SDValue, 8> Ops;
7436 SDLoc dl(N);
7437 for (unsigned i = 0; i != NumElts; ++i) {
7438 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
7439 const APInt &CInt = C->getAPIntValue();
7440 // Element types smaller than 32 bits are not legal, so use i32 elements.
7441 // The values are implicitly truncated so sext vs. zext doesn't matter.
7442 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
7443 }
7444 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
7445 }
7446
isAddSubSExt(SDNode * N,SelectionDAG & DAG)7447 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
7448 unsigned Opcode = N->getOpcode();
7449 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7450 SDNode *N0 = N->getOperand(0).getNode();
7451 SDNode *N1 = N->getOperand(1).getNode();
7452 return N0->hasOneUse() && N1->hasOneUse() &&
7453 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
7454 }
7455 return false;
7456 }
7457
isAddSubZExt(SDNode * N,SelectionDAG & DAG)7458 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
7459 unsigned Opcode = N->getOpcode();
7460 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7461 SDNode *N0 = N->getOperand(0).getNode();
7462 SDNode *N1 = N->getOperand(1).getNode();
7463 return N0->hasOneUse() && N1->hasOneUse() &&
7464 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
7465 }
7466 return false;
7467 }
7468
LowerMUL(SDValue Op,SelectionDAG & DAG)7469 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
7470 // Multiplications are only custom-lowered for 128-bit vectors so that
7471 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
7472 EVT VT = Op.getValueType();
7473 assert(VT.is128BitVector() && VT.isInteger() &&
7474 "unexpected type for custom-lowering ISD::MUL");
7475 SDNode *N0 = Op.getOperand(0).getNode();
7476 SDNode *N1 = Op.getOperand(1).getNode();
7477 unsigned NewOpc = 0;
7478 bool isMLA = false;
7479 bool isN0SExt = isSignExtended(N0, DAG);
7480 bool isN1SExt = isSignExtended(N1, DAG);
7481 if (isN0SExt && isN1SExt)
7482 NewOpc = ARMISD::VMULLs;
7483 else {
7484 bool isN0ZExt = isZeroExtended(N0, DAG);
7485 bool isN1ZExt = isZeroExtended(N1, DAG);
7486 if (isN0ZExt && isN1ZExt)
7487 NewOpc = ARMISD::VMULLu;
7488 else if (isN1SExt || isN1ZExt) {
7489 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
7490 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
7491 if (isN1SExt && isAddSubSExt(N0, DAG)) {
7492 NewOpc = ARMISD::VMULLs;
7493 isMLA = true;
7494 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
7495 NewOpc = ARMISD::VMULLu;
7496 isMLA = true;
7497 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
7498 std::swap(N0, N1);
7499 NewOpc = ARMISD::VMULLu;
7500 isMLA = true;
7501 }
7502 }
7503
7504 if (!NewOpc) {
7505 if (VT == MVT::v2i64)
7506 // Fall through to expand this. It is not legal.
7507 return SDValue();
7508 else
7509 // Other vector multiplications are legal.
7510 return Op;
7511 }
7512 }
7513
7514 // Legalize to a VMULL instruction.
7515 SDLoc DL(Op);
7516 SDValue Op0;
7517 SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
7518 if (!isMLA) {
7519 Op0 = SkipExtensionForVMULL(N0, DAG);
7520 assert(Op0.getValueType().is64BitVector() &&
7521 Op1.getValueType().is64BitVector() &&
7522 "unexpected types for extended operands to VMULL");
7523 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
7524 }
7525
7526 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
7527 // isel lowering to take advantage of no-stall back to back vmul + vmla.
7528 // vmull q0, d4, d6
7529 // vmlal q0, d5, d6
7530 // is faster than
7531 // vaddl q0, d4, d5
7532 // vmovl q1, d6
7533 // vmul q0, q0, q1
7534 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
7535 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
7536 EVT Op1VT = Op1.getValueType();
7537 return DAG.getNode(N0->getOpcode(), DL, VT,
7538 DAG.getNode(NewOpc, DL, VT,
7539 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
7540 DAG.getNode(NewOpc, DL, VT,
7541 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
7542 }
7543
LowerSDIV_v4i8(SDValue X,SDValue Y,const SDLoc & dl,SelectionDAG & DAG)7544 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
7545 SelectionDAG &DAG) {
7546 // TODO: Should this propagate fast-math-flags?
7547
7548 // Convert to float
7549 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
7550 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
7551 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
7552 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
7553 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
7554 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
7555 // Get reciprocal estimate.
7556 // float4 recip = vrecpeq_f32(yf);
7557 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7558 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7559 Y);
7560 // Because char has a smaller range than uchar, we can actually get away
7561 // without any newton steps. This requires that we use a weird bias
7562 // of 0xb000, however (again, this has been exhaustively tested).
7563 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
7564 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
7565 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
7566 Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
7567 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
7568 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
7569 // Convert back to short.
7570 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
7571 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
7572 return X;
7573 }
7574
LowerSDIV_v4i16(SDValue N0,SDValue N1,const SDLoc & dl,SelectionDAG & DAG)7575 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
7576 SelectionDAG &DAG) {
7577 // TODO: Should this propagate fast-math-flags?
7578
7579 SDValue N2;
7580 // Convert to float.
7581 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
7582 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
7583 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
7584 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
7585 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7586 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7587
7588 // Use reciprocal estimate and one refinement step.
7589 // float4 recip = vrecpeq_f32(yf);
7590 // recip *= vrecpsq_f32(yf, recip);
7591 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7592 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7593 N1);
7594 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7595 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7596 N1, N2);
7597 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7598 // Because short has a smaller range than ushort, we can actually get away
7599 // with only a single newton step. This requires that we use a weird bias
7600 // of 89, however (again, this has been exhaustively tested).
7601 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
7602 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7603 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7604 N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
7605 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7606 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7607 // Convert back to integer and return.
7608 // return vmovn_s32(vcvt_s32_f32(result));
7609 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7610 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7611 return N0;
7612 }
7613
LowerSDIV(SDValue Op,SelectionDAG & DAG)7614 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
7615 EVT VT = Op.getValueType();
7616 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7617 "unexpected type for custom-lowering ISD::SDIV");
7618
7619 SDLoc dl(Op);
7620 SDValue N0 = Op.getOperand(0);
7621 SDValue N1 = Op.getOperand(1);
7622 SDValue N2, N3;
7623
7624 if (VT == MVT::v8i8) {
7625 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
7626 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
7627
7628 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7629 DAG.getIntPtrConstant(4, dl));
7630 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7631 DAG.getIntPtrConstant(4, dl));
7632 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7633 DAG.getIntPtrConstant(0, dl));
7634 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7635 DAG.getIntPtrConstant(0, dl));
7636
7637 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
7638 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
7639
7640 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7641 N0 = LowerCONCAT_VECTORS(N0, DAG);
7642
7643 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
7644 return N0;
7645 }
7646 return LowerSDIV_v4i16(N0, N1, dl, DAG);
7647 }
7648
LowerUDIV(SDValue Op,SelectionDAG & DAG)7649 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
7650 // TODO: Should this propagate fast-math-flags?
7651 EVT VT = Op.getValueType();
7652 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7653 "unexpected type for custom-lowering ISD::UDIV");
7654
7655 SDLoc dl(Op);
7656 SDValue N0 = Op.getOperand(0);
7657 SDValue N1 = Op.getOperand(1);
7658 SDValue N2, N3;
7659
7660 if (VT == MVT::v8i8) {
7661 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
7662 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
7663
7664 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7665 DAG.getIntPtrConstant(4, dl));
7666 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7667 DAG.getIntPtrConstant(4, dl));
7668 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7669 DAG.getIntPtrConstant(0, dl));
7670 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7671 DAG.getIntPtrConstant(0, dl));
7672
7673 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
7674 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
7675
7676 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7677 N0 = LowerCONCAT_VECTORS(N0, DAG);
7678
7679 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
7680 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
7681 MVT::i32),
7682 N0);
7683 return N0;
7684 }
7685
7686 // v4i16 sdiv ... Convert to float.
7687 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
7688 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
7689 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
7690 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
7691 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7692 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7693
7694 // Use reciprocal estimate and two refinement steps.
7695 // float4 recip = vrecpeq_f32(yf);
7696 // recip *= vrecpsq_f32(yf, recip);
7697 // recip *= vrecpsq_f32(yf, recip);
7698 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7699 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7700 BN1);
7701 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7702 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7703 BN1, N2);
7704 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7705 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7706 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7707 BN1, N2);
7708 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7709 // Simply multiplying by the reciprocal estimate can leave us a few ulps
7710 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
7711 // and that it will never cause us to return an answer too large).
7712 // float4 result = as_float4(as_int4(xf*recip) + 2);
7713 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7714 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7715 N1 = DAG.getConstant(2, dl, MVT::v4i32);
7716 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7717 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7718 // Convert back to integer and return.
7719 // return vmovn_u32(vcvt_s32_f32(result));
7720 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7721 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7722 return N0;
7723 }
7724
LowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG)7725 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
7726 SDNode *N = Op.getNode();
7727 EVT VT = N->getValueType(0);
7728 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
7729
7730 SDValue Carry = Op.getOperand(2);
7731
7732 SDLoc DL(Op);
7733
7734 SDValue Result;
7735 if (Op.getOpcode() == ISD::ADDCARRY) {
7736 // This converts the boolean value carry into the carry flag.
7737 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7738
7739 // Do the addition proper using the carry flag we wanted.
7740 Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
7741 Op.getOperand(1), Carry);
7742
7743 // Now convert the carry flag into a boolean value.
7744 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7745 } else {
7746 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
7747 // have to invert the carry first.
7748 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7749 DAG.getConstant(1, DL, MVT::i32), Carry);
7750 // This converts the boolean value carry into the carry flag.
7751 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7752
7753 // Do the subtraction proper using the carry flag we wanted.
7754 Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
7755 Op.getOperand(1), Carry);
7756
7757 // Now convert the carry flag into a boolean value.
7758 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7759 // But the carry returned by ARMISD::SUBE is not a borrow as expected
7760 // by ISD::SUBCARRY, so compute 1 - C.
7761 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7762 DAG.getConstant(1, DL, MVT::i32), Carry);
7763 }
7764
7765 // Return both values.
7766 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
7767 }
7768
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const7769 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
7770 assert(Subtarget->isTargetDarwin());
7771
7772 // For iOS, we want to call an alternative entry point: __sincos_stret,
7773 // return values are passed via sret.
7774 SDLoc dl(Op);
7775 SDValue Arg = Op.getOperand(0);
7776 EVT ArgVT = Arg.getValueType();
7777 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7778 auto PtrVT = getPointerTy(DAG.getDataLayout());
7779
7780 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7781 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7782
7783 // Pair of floats / doubles used to pass the result.
7784 Type *RetTy = StructType::get(ArgTy, ArgTy);
7785 auto &DL = DAG.getDataLayout();
7786
7787 ArgListTy Args;
7788 bool ShouldUseSRet = Subtarget->isAPCS_ABI();
7789 SDValue SRet;
7790 if (ShouldUseSRet) {
7791 // Create stack object for sret.
7792 const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
7793 const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
7794 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
7795 SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
7796
7797 ArgListEntry Entry;
7798 Entry.Node = SRet;
7799 Entry.Ty = RetTy->getPointerTo();
7800 Entry.IsSExt = false;
7801 Entry.IsZExt = false;
7802 Entry.IsSRet = true;
7803 Args.push_back(Entry);
7804 RetTy = Type::getVoidTy(*DAG.getContext());
7805 }
7806
7807 ArgListEntry Entry;
7808 Entry.Node = Arg;
7809 Entry.Ty = ArgTy;
7810 Entry.IsSExt = false;
7811 Entry.IsZExt = false;
7812 Args.push_back(Entry);
7813
7814 RTLIB::Libcall LC =
7815 (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
7816 const char *LibcallName = getLibcallName(LC);
7817 CallingConv::ID CC = getLibcallCallingConv(LC);
7818 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
7819
7820 TargetLowering::CallLoweringInfo CLI(DAG);
7821 CLI.setDebugLoc(dl)
7822 .setChain(DAG.getEntryNode())
7823 .setCallee(CC, RetTy, Callee, std::move(Args))
7824 .setDiscardResult(ShouldUseSRet);
7825 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7826
7827 if (!ShouldUseSRet)
7828 return CallResult.first;
7829
7830 SDValue LoadSin =
7831 DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
7832
7833 // Address of cos field.
7834 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
7835 DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
7836 SDValue LoadCos =
7837 DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
7838
7839 SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
7840 return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
7841 LoadSin.getValue(0), LoadCos.getValue(0));
7842 }
7843
LowerWindowsDIVLibCall(SDValue Op,SelectionDAG & DAG,bool Signed,SDValue & Chain) const7844 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
7845 bool Signed,
7846 SDValue &Chain) const {
7847 EVT VT = Op.getValueType();
7848 assert((VT == MVT::i32 || VT == MVT::i64) &&
7849 "unexpected type for custom lowering DIV");
7850 SDLoc dl(Op);
7851
7852 const auto &DL = DAG.getDataLayout();
7853 const auto &TLI = DAG.getTargetLoweringInfo();
7854
7855 const char *Name = nullptr;
7856 if (Signed)
7857 Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
7858 else
7859 Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
7860
7861 SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
7862
7863 ARMTargetLowering::ArgListTy Args;
7864
7865 for (auto AI : {1, 0}) {
7866 ArgListEntry Arg;
7867 Arg.Node = Op.getOperand(AI);
7868 Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
7869 Args.push_back(Arg);
7870 }
7871
7872 CallLoweringInfo CLI(DAG);
7873 CLI.setDebugLoc(dl)
7874 .setChain(Chain)
7875 .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
7876 ES, std::move(Args));
7877
7878 return LowerCallTo(CLI).first;
7879 }
7880
LowerDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed) const7881 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
7882 bool Signed) const {
7883 assert(Op.getValueType() == MVT::i32 &&
7884 "unexpected type for custom lowering DIV");
7885 SDLoc dl(Op);
7886
7887 SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
7888 DAG.getEntryNode(), Op.getOperand(1));
7889
7890 return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7891 }
7892
WinDBZCheckDenominator(SelectionDAG & DAG,SDNode * N,SDValue InChain)7893 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
7894 SDLoc DL(N);
7895 SDValue Op = N->getOperand(1);
7896 if (N->getValueType(0) == MVT::i32)
7897 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
7898 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7899 DAG.getConstant(0, DL, MVT::i32));
7900 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7901 DAG.getConstant(1, DL, MVT::i32));
7902 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
7903 DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
7904 }
7905
ExpandDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed,SmallVectorImpl<SDValue> & Results) const7906 void ARMTargetLowering::ExpandDIV_Windows(
7907 SDValue Op, SelectionDAG &DAG, bool Signed,
7908 SmallVectorImpl<SDValue> &Results) const {
7909 const auto &DL = DAG.getDataLayout();
7910 const auto &TLI = DAG.getTargetLoweringInfo();
7911
7912 assert(Op.getValueType() == MVT::i64 &&
7913 "unexpected type for custom lowering DIV");
7914 SDLoc dl(Op);
7915
7916 SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
7917
7918 SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7919
7920 SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
7921 SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
7922 DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
7923 Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
7924
7925 Results.push_back(Lower);
7926 Results.push_back(Upper);
7927 }
7928
LowerAtomicLoadStore(SDValue Op,SelectionDAG & DAG)7929 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
7930 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
7931 // Acquire/Release load/store is not legal for targets without a dmb or
7932 // equivalent available.
7933 return SDValue();
7934
7935 // Monotonic load/store is legal for all targets.
7936 return Op;
7937 }
7938
ReplaceREADCYCLECOUNTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const ARMSubtarget * Subtarget)7939 static void ReplaceREADCYCLECOUNTER(SDNode *N,
7940 SmallVectorImpl<SDValue> &Results,
7941 SelectionDAG &DAG,
7942 const ARMSubtarget *Subtarget) {
7943 SDLoc DL(N);
7944 // Under Power Management extensions, the cycle-count is:
7945 // mrc p15, #0, <Rt>, c9, c13, #0
7946 SDValue Ops[] = { N->getOperand(0), // Chain
7947 DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
7948 DAG.getConstant(15, DL, MVT::i32),
7949 DAG.getConstant(0, DL, MVT::i32),
7950 DAG.getConstant(9, DL, MVT::i32),
7951 DAG.getConstant(13, DL, MVT::i32),
7952 DAG.getConstant(0, DL, MVT::i32)
7953 };
7954
7955 SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
7956 DAG.getVTList(MVT::i32, MVT::Other), Ops);
7957 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
7958 DAG.getConstant(0, DL, MVT::i32)));
7959 Results.push_back(Cycles32.getValue(1));
7960 }
7961
createGPRPairNode(SelectionDAG & DAG,SDValue V)7962 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
7963 SDLoc dl(V.getNode());
7964 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
7965 SDValue VHi = DAG.getAnyExtOrTrunc(
7966 DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
7967 dl, MVT::i32);
7968 bool isBigEndian = DAG.getDataLayout().isBigEndian();
7969 if (isBigEndian)
7970 std::swap (VLo, VHi);
7971 SDValue RegClass =
7972 DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
7973 SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
7974 SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
7975 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
7976 return SDValue(
7977 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
7978 }
7979
ReplaceCMP_SWAP_64Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)7980 static void ReplaceCMP_SWAP_64Results(SDNode *N,
7981 SmallVectorImpl<SDValue> & Results,
7982 SelectionDAG &DAG) {
7983 assert(N->getValueType(0) == MVT::i64 &&
7984 "AtomicCmpSwap on types less than 64 should be legal");
7985 SDValue Ops[] = {N->getOperand(1),
7986 createGPRPairNode(DAG, N->getOperand(2)),
7987 createGPRPairNode(DAG, N->getOperand(3)),
7988 N->getOperand(0)};
7989 SDNode *CmpSwap = DAG.getMachineNode(
7990 ARM::CMP_SWAP_64, SDLoc(N),
7991 DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
7992
7993 MachineFunction &MF = DAG.getMachineFunction();
7994 MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
7995 MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
7996 cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
7997
7998 bool isBigEndian = DAG.getDataLayout().isBigEndian();
7999
8000 Results.push_back(
8001 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
8002 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8003 Results.push_back(
8004 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
8005 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8006 Results.push_back(SDValue(CmpSwap, 2));
8007 }
8008
LowerFPOWI(SDValue Op,const ARMSubtarget & Subtarget,SelectionDAG & DAG)8009 static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
8010 SelectionDAG &DAG) {
8011 const auto &TLI = DAG.getTargetLoweringInfo();
8012
8013 assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
8014 "Custom lowering is MSVCRT specific!");
8015
8016 SDLoc dl(Op);
8017 SDValue Val = Op.getOperand(0);
8018 MVT Ty = Val->getSimpleValueType(0);
8019 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
8020 SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
8021 TLI.getPointerTy(DAG.getDataLayout()));
8022
8023 TargetLowering::ArgListTy Args;
8024 TargetLowering::ArgListEntry Entry;
8025
8026 Entry.Node = Val;
8027 Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
8028 Entry.IsZExt = true;
8029 Args.push_back(Entry);
8030
8031 Entry.Node = Exponent;
8032 Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
8033 Entry.IsZExt = true;
8034 Args.push_back(Entry);
8035
8036 Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
8037
8038 // In the in-chain to the call is the entry node If we are emitting a
8039 // tailcall, the chain will be mutated if the node has a non-entry input
8040 // chain.
8041 SDValue InChain = DAG.getEntryNode();
8042 SDValue TCChain = InChain;
8043
8044 const Function &F = DAG.getMachineFunction().getFunction();
8045 bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
8046 F.getReturnType() == LCRTy;
8047 if (IsTC)
8048 InChain = TCChain;
8049
8050 TargetLowering::CallLoweringInfo CLI(DAG);
8051 CLI.setDebugLoc(dl)
8052 .setChain(InChain)
8053 .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
8054 .setTailCall(IsTC);
8055 std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
8056
8057 // Return the chain (the DAG root) if it is a tail call
8058 return !CI.second.getNode() ? DAG.getRoot() : CI.first;
8059 }
8060
LowerOperation(SDValue Op,SelectionDAG & DAG) const8061 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8062 LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
8063 switch (Op.getOpcode()) {
8064 default: llvm_unreachable("Don't know how to custom lower this!");
8065 case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
8066 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8067 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
8068 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8069 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8070 case ISD::SELECT: return LowerSELECT(Op, DAG);
8071 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
8072 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
8073 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
8074 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
8075 case ISD::VASTART: return LowerVASTART(Op, DAG);
8076 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
8077 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
8078 case ISD::SINT_TO_FP:
8079 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
8080 case ISD::FP_TO_SINT:
8081 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
8082 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
8083 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
8084 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
8085 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
8086 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
8087 case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
8088 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
8089 Subtarget);
8090 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
8091 case ISD::SHL:
8092 case ISD::SRL:
8093 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
8094 case ISD::SREM: return LowerREM(Op.getNode(), DAG);
8095 case ISD::UREM: return LowerREM(Op.getNode(), DAG);
8096 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
8097 case ISD::SRL_PARTS:
8098 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
8099 case ISD::CTTZ:
8100 case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
8101 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
8102 case ISD::SETCC: return LowerVSETCC(Op, DAG);
8103 case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
8104 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
8105 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
8106 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
8107 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
8108 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8109 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
8110 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
8111 case ISD::MUL: return LowerMUL(Op, DAG);
8112 case ISD::SDIV:
8113 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8114 return LowerDIV_Windows(Op, DAG, /* Signed */ true);
8115 return LowerSDIV(Op, DAG);
8116 case ISD::UDIV:
8117 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8118 return LowerDIV_Windows(Op, DAG, /* Signed */ false);
8119 return LowerUDIV(Op, DAG);
8120 case ISD::ADDCARRY:
8121 case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG);
8122 case ISD::SADDO:
8123 case ISD::SSUBO:
8124 return LowerSignedALUO(Op, DAG);
8125 case ISD::UADDO:
8126 case ISD::USUBO:
8127 return LowerUnsignedALUO(Op, DAG);
8128 case ISD::ATOMIC_LOAD:
8129 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
8130 case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
8131 case ISD::SDIVREM:
8132 case ISD::UDIVREM: return LowerDivRem(Op, DAG);
8133 case ISD::DYNAMIC_STACKALLOC:
8134 if (Subtarget->isTargetWindows())
8135 return LowerDYNAMIC_STACKALLOC(Op, DAG);
8136 llvm_unreachable("Don't know how to custom lower this!");
8137 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
8138 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
8139 case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
8140 case ARMISD::WIN__DBZCHK: return SDValue();
8141 }
8142 }
8143
ReplaceLongIntrinsic(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)8144 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
8145 SelectionDAG &DAG) {
8146 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8147 unsigned Opc = 0;
8148 if (IntNo == Intrinsic::arm_smlald)
8149 Opc = ARMISD::SMLALD;
8150 else if (IntNo == Intrinsic::arm_smlaldx)
8151 Opc = ARMISD::SMLALDX;
8152 else if (IntNo == Intrinsic::arm_smlsld)
8153 Opc = ARMISD::SMLSLD;
8154 else if (IntNo == Intrinsic::arm_smlsldx)
8155 Opc = ARMISD::SMLSLDX;
8156 else
8157 return;
8158
8159 SDLoc dl(N);
8160 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8161 N->getOperand(3),
8162 DAG.getConstant(0, dl, MVT::i32));
8163 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8164 N->getOperand(3),
8165 DAG.getConstant(1, dl, MVT::i32));
8166
8167 SDValue LongMul = DAG.getNode(Opc, dl,
8168 DAG.getVTList(MVT::i32, MVT::i32),
8169 N->getOperand(1), N->getOperand(2),
8170 Lo, Hi);
8171 Results.push_back(LongMul.getValue(0));
8172 Results.push_back(LongMul.getValue(1));
8173 }
8174
8175 /// ReplaceNodeResults - Replace the results of node with an illegal result
8176 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const8177 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
8178 SmallVectorImpl<SDValue> &Results,
8179 SelectionDAG &DAG) const {
8180 SDValue Res;
8181 switch (N->getOpcode()) {
8182 default:
8183 llvm_unreachable("Don't know how to custom expand this!");
8184 case ISD::READ_REGISTER:
8185 ExpandREAD_REGISTER(N, Results, DAG);
8186 break;
8187 case ISD::BITCAST:
8188 Res = ExpandBITCAST(N, DAG, Subtarget);
8189 break;
8190 case ISD::SRL:
8191 case ISD::SRA:
8192 Res = Expand64BitShift(N, DAG, Subtarget);
8193 break;
8194 case ISD::SREM:
8195 case ISD::UREM:
8196 Res = LowerREM(N, DAG);
8197 break;
8198 case ISD::SDIVREM:
8199 case ISD::UDIVREM:
8200 Res = LowerDivRem(SDValue(N, 0), DAG);
8201 assert(Res.getNumOperands() == 2 && "DivRem needs two values");
8202 Results.push_back(Res.getValue(0));
8203 Results.push_back(Res.getValue(1));
8204 return;
8205 case ISD::READCYCLECOUNTER:
8206 ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
8207 return;
8208 case ISD::UDIV:
8209 case ISD::SDIV:
8210 assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
8211 return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
8212 Results);
8213 case ISD::ATOMIC_CMP_SWAP:
8214 ReplaceCMP_SWAP_64Results(N, Results, DAG);
8215 return;
8216 case ISD::INTRINSIC_WO_CHAIN:
8217 return ReplaceLongIntrinsic(N, Results, DAG);
8218 }
8219 if (Res.getNode())
8220 Results.push_back(Res);
8221 }
8222
8223 //===----------------------------------------------------------------------===//
8224 // ARM Scheduler Hooks
8225 //===----------------------------------------------------------------------===//
8226
8227 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8228 /// registers the function context.
SetupEntryBlockForSjLj(MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * DispatchBB,int FI) const8229 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
8230 MachineBasicBlock *MBB,
8231 MachineBasicBlock *DispatchBB,
8232 int FI) const {
8233 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
8234 "ROPI/RWPI not currently supported with SjLj");
8235 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8236 DebugLoc dl = MI.getDebugLoc();
8237 MachineFunction *MF = MBB->getParent();
8238 MachineRegisterInfo *MRI = &MF->getRegInfo();
8239 MachineConstantPool *MCP = MF->getConstantPool();
8240 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
8241 const Function &F = MF->getFunction();
8242
8243 bool isThumb = Subtarget->isThumb();
8244 bool isThumb2 = Subtarget->isThumb2();
8245
8246 unsigned PCLabelId = AFI->createPICLabelUId();
8247 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
8248 ARMConstantPoolValue *CPV =
8249 ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
8250 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
8251
8252 const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
8253 : &ARM::GPRRegClass;
8254
8255 // Grab constant pool and fixed stack memory operands.
8256 MachineMemOperand *CPMMO =
8257 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
8258 MachineMemOperand::MOLoad, 4, 4);
8259
8260 MachineMemOperand *FIMMOSt =
8261 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
8262 MachineMemOperand::MOStore, 4, 4);
8263
8264 // Load the address of the dispatch MBB into the jump buffer.
8265 if (isThumb2) {
8266 // Incoming value: jbuf
8267 // ldr.n r5, LCPI1_1
8268 // orr r5, r5, #1
8269 // add r5, pc
8270 // str r5, [$jbuf, #+4] ; &jbuf[1]
8271 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8272 BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
8273 .addConstantPoolIndex(CPI)
8274 .addMemOperand(CPMMO)
8275 .add(predOps(ARMCC::AL));
8276 // Set the low bit because of thumb mode.
8277 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8278 BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
8279 .addReg(NewVReg1, RegState::Kill)
8280 .addImm(0x01)
8281 .add(predOps(ARMCC::AL))
8282 .add(condCodeOp());
8283 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8284 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
8285 .addReg(NewVReg2, RegState::Kill)
8286 .addImm(PCLabelId);
8287 BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
8288 .addReg(NewVReg3, RegState::Kill)
8289 .addFrameIndex(FI)
8290 .addImm(36) // &jbuf[1] :: pc
8291 .addMemOperand(FIMMOSt)
8292 .add(predOps(ARMCC::AL));
8293 } else if (isThumb) {
8294 // Incoming value: jbuf
8295 // ldr.n r1, LCPI1_4
8296 // add r1, pc
8297 // mov r2, #1
8298 // orrs r1, r2
8299 // add r2, $jbuf, #+4 ; &jbuf[1]
8300 // str r1, [r2]
8301 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8302 BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
8303 .addConstantPoolIndex(CPI)
8304 .addMemOperand(CPMMO)
8305 .add(predOps(ARMCC::AL));
8306 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8307 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
8308 .addReg(NewVReg1, RegState::Kill)
8309 .addImm(PCLabelId);
8310 // Set the low bit because of thumb mode.
8311 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8312 BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
8313 .addReg(ARM::CPSR, RegState::Define)
8314 .addImm(1)
8315 .add(predOps(ARMCC::AL));
8316 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8317 BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
8318 .addReg(ARM::CPSR, RegState::Define)
8319 .addReg(NewVReg2, RegState::Kill)
8320 .addReg(NewVReg3, RegState::Kill)
8321 .add(predOps(ARMCC::AL));
8322 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8323 BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
8324 .addFrameIndex(FI)
8325 .addImm(36); // &jbuf[1] :: pc
8326 BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
8327 .addReg(NewVReg4, RegState::Kill)
8328 .addReg(NewVReg5, RegState::Kill)
8329 .addImm(0)
8330 .addMemOperand(FIMMOSt)
8331 .add(predOps(ARMCC::AL));
8332 } else {
8333 // Incoming value: jbuf
8334 // ldr r1, LCPI1_1
8335 // add r1, pc, r1
8336 // str r1, [$jbuf, #+4] ; &jbuf[1]
8337 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8338 BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
8339 .addConstantPoolIndex(CPI)
8340 .addImm(0)
8341 .addMemOperand(CPMMO)
8342 .add(predOps(ARMCC::AL));
8343 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8344 BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
8345 .addReg(NewVReg1, RegState::Kill)
8346 .addImm(PCLabelId)
8347 .add(predOps(ARMCC::AL));
8348 BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
8349 .addReg(NewVReg2, RegState::Kill)
8350 .addFrameIndex(FI)
8351 .addImm(36) // &jbuf[1] :: pc
8352 .addMemOperand(FIMMOSt)
8353 .add(predOps(ARMCC::AL));
8354 }
8355 }
8356
EmitSjLjDispatchBlock(MachineInstr & MI,MachineBasicBlock * MBB) const8357 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
8358 MachineBasicBlock *MBB) const {
8359 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8360 DebugLoc dl = MI.getDebugLoc();
8361 MachineFunction *MF = MBB->getParent();
8362 MachineRegisterInfo *MRI = &MF->getRegInfo();
8363 MachineFrameInfo &MFI = MF->getFrameInfo();
8364 int FI = MFI.getFunctionContextIndex();
8365
8366 const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
8367 : &ARM::GPRnopcRegClass;
8368
8369 // Get a mapping of the call site numbers to all of the landing pads they're
8370 // associated with.
8371 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
8372 unsigned MaxCSNum = 0;
8373 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
8374 ++BB) {
8375 if (!BB->isEHPad()) continue;
8376
8377 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
8378 // pad.
8379 for (MachineBasicBlock::iterator
8380 II = BB->begin(), IE = BB->end(); II != IE; ++II) {
8381 if (!II->isEHLabel()) continue;
8382
8383 MCSymbol *Sym = II->getOperand(0).getMCSymbol();
8384 if (!MF->hasCallSiteLandingPad(Sym)) continue;
8385
8386 SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
8387 for (SmallVectorImpl<unsigned>::iterator
8388 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
8389 CSI != CSE; ++CSI) {
8390 CallSiteNumToLPad[*CSI].push_back(&*BB);
8391 MaxCSNum = std::max(MaxCSNum, *CSI);
8392 }
8393 break;
8394 }
8395 }
8396
8397 // Get an ordered list of the machine basic blocks for the jump table.
8398 std::vector<MachineBasicBlock*> LPadList;
8399 SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
8400 LPadList.reserve(CallSiteNumToLPad.size());
8401 for (unsigned I = 1; I <= MaxCSNum; ++I) {
8402 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
8403 for (SmallVectorImpl<MachineBasicBlock*>::iterator
8404 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
8405 LPadList.push_back(*II);
8406 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
8407 }
8408 }
8409
8410 assert(!LPadList.empty() &&
8411 "No landing pad destinations for the dispatch jump table!");
8412
8413 // Create the jump table and associated information.
8414 MachineJumpTableInfo *JTI =
8415 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
8416 unsigned MJTI = JTI->createJumpTableIndex(LPadList);
8417
8418 // Create the MBBs for the dispatch code.
8419
8420 // Shove the dispatch's address into the return slot in the function context.
8421 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
8422 DispatchBB->setIsEHPad();
8423
8424 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8425 unsigned trap_opcode;
8426 if (Subtarget->isThumb())
8427 trap_opcode = ARM::tTRAP;
8428 else
8429 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
8430
8431 BuildMI(TrapBB, dl, TII->get(trap_opcode));
8432 DispatchBB->addSuccessor(TrapBB);
8433
8434 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
8435 DispatchBB->addSuccessor(DispContBB);
8436
8437 // Insert and MBBs.
8438 MF->insert(MF->end(), DispatchBB);
8439 MF->insert(MF->end(), DispContBB);
8440 MF->insert(MF->end(), TrapBB);
8441
8442 // Insert code into the entry block that creates and registers the function
8443 // context.
8444 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
8445
8446 MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
8447 MachinePointerInfo::getFixedStack(*MF, FI),
8448 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
8449
8450 MachineInstrBuilder MIB;
8451 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
8452
8453 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
8454 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
8455
8456 // Add a register mask with no preserved registers. This results in all
8457 // registers being marked as clobbered. This can't work if the dispatch block
8458 // is in a Thumb1 function and is linked with ARM code which uses the FP
8459 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
8460 MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
8461
8462 bool IsPositionIndependent = isPositionIndependent();
8463 unsigned NumLPads = LPadList.size();
8464 if (Subtarget->isThumb2()) {
8465 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8466 BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
8467 .addFrameIndex(FI)
8468 .addImm(4)
8469 .addMemOperand(FIMMOLd)
8470 .add(predOps(ARMCC::AL));
8471
8472 if (NumLPads < 256) {
8473 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
8474 .addReg(NewVReg1)
8475 .addImm(LPadList.size())
8476 .add(predOps(ARMCC::AL));
8477 } else {
8478 unsigned VReg1 = MRI->createVirtualRegister(TRC);
8479 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
8480 .addImm(NumLPads & 0xFFFF)
8481 .add(predOps(ARMCC::AL));
8482
8483 unsigned VReg2 = VReg1;
8484 if ((NumLPads & 0xFFFF0000) != 0) {
8485 VReg2 = MRI->createVirtualRegister(TRC);
8486 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
8487 .addReg(VReg1)
8488 .addImm(NumLPads >> 16)
8489 .add(predOps(ARMCC::AL));
8490 }
8491
8492 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
8493 .addReg(NewVReg1)
8494 .addReg(VReg2)
8495 .add(predOps(ARMCC::AL));
8496 }
8497
8498 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
8499 .addMBB(TrapBB)
8500 .addImm(ARMCC::HI)
8501 .addReg(ARM::CPSR);
8502
8503 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8504 BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
8505 .addJumpTableIndex(MJTI)
8506 .add(predOps(ARMCC::AL));
8507
8508 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8509 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
8510 .addReg(NewVReg3, RegState::Kill)
8511 .addReg(NewVReg1)
8512 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8513 .add(predOps(ARMCC::AL))
8514 .add(condCodeOp());
8515
8516 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
8517 .addReg(NewVReg4, RegState::Kill)
8518 .addReg(NewVReg1)
8519 .addJumpTableIndex(MJTI);
8520 } else if (Subtarget->isThumb()) {
8521 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8522 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
8523 .addFrameIndex(FI)
8524 .addImm(1)
8525 .addMemOperand(FIMMOLd)
8526 .add(predOps(ARMCC::AL));
8527
8528 if (NumLPads < 256) {
8529 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
8530 .addReg(NewVReg1)
8531 .addImm(NumLPads)
8532 .add(predOps(ARMCC::AL));
8533 } else {
8534 MachineConstantPool *ConstantPool = MF->getConstantPool();
8535 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8536 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8537
8538 // MachineConstantPool wants an explicit alignment.
8539 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8540 if (Align == 0)
8541 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8542 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8543
8544 unsigned VReg1 = MRI->createVirtualRegister(TRC);
8545 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
8546 .addReg(VReg1, RegState::Define)
8547 .addConstantPoolIndex(Idx)
8548 .add(predOps(ARMCC::AL));
8549 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
8550 .addReg(NewVReg1)
8551 .addReg(VReg1)
8552 .add(predOps(ARMCC::AL));
8553 }
8554
8555 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
8556 .addMBB(TrapBB)
8557 .addImm(ARMCC::HI)
8558 .addReg(ARM::CPSR);
8559
8560 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8561 BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
8562 .addReg(ARM::CPSR, RegState::Define)
8563 .addReg(NewVReg1)
8564 .addImm(2)
8565 .add(predOps(ARMCC::AL));
8566
8567 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8568 BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
8569 .addJumpTableIndex(MJTI)
8570 .add(predOps(ARMCC::AL));
8571
8572 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8573 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
8574 .addReg(ARM::CPSR, RegState::Define)
8575 .addReg(NewVReg2, RegState::Kill)
8576 .addReg(NewVReg3)
8577 .add(predOps(ARMCC::AL));
8578
8579 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8580 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8581
8582 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8583 BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
8584 .addReg(NewVReg4, RegState::Kill)
8585 .addImm(0)
8586 .addMemOperand(JTMMOLd)
8587 .add(predOps(ARMCC::AL));
8588
8589 unsigned NewVReg6 = NewVReg5;
8590 if (IsPositionIndependent) {
8591 NewVReg6 = MRI->createVirtualRegister(TRC);
8592 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
8593 .addReg(ARM::CPSR, RegState::Define)
8594 .addReg(NewVReg5, RegState::Kill)
8595 .addReg(NewVReg3)
8596 .add(predOps(ARMCC::AL));
8597 }
8598
8599 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
8600 .addReg(NewVReg6, RegState::Kill)
8601 .addJumpTableIndex(MJTI);
8602 } else {
8603 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8604 BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
8605 .addFrameIndex(FI)
8606 .addImm(4)
8607 .addMemOperand(FIMMOLd)
8608 .add(predOps(ARMCC::AL));
8609
8610 if (NumLPads < 256) {
8611 BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
8612 .addReg(NewVReg1)
8613 .addImm(NumLPads)
8614 .add(predOps(ARMCC::AL));
8615 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
8616 unsigned VReg1 = MRI->createVirtualRegister(TRC);
8617 BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
8618 .addImm(NumLPads & 0xFFFF)
8619 .add(predOps(ARMCC::AL));
8620
8621 unsigned VReg2 = VReg1;
8622 if ((NumLPads & 0xFFFF0000) != 0) {
8623 VReg2 = MRI->createVirtualRegister(TRC);
8624 BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
8625 .addReg(VReg1)
8626 .addImm(NumLPads >> 16)
8627 .add(predOps(ARMCC::AL));
8628 }
8629
8630 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8631 .addReg(NewVReg1)
8632 .addReg(VReg2)
8633 .add(predOps(ARMCC::AL));
8634 } else {
8635 MachineConstantPool *ConstantPool = MF->getConstantPool();
8636 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8637 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8638
8639 // MachineConstantPool wants an explicit alignment.
8640 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8641 if (Align == 0)
8642 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8643 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8644
8645 unsigned VReg1 = MRI->createVirtualRegister(TRC);
8646 BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
8647 .addReg(VReg1, RegState::Define)
8648 .addConstantPoolIndex(Idx)
8649 .addImm(0)
8650 .add(predOps(ARMCC::AL));
8651 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8652 .addReg(NewVReg1)
8653 .addReg(VReg1, RegState::Kill)
8654 .add(predOps(ARMCC::AL));
8655 }
8656
8657 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
8658 .addMBB(TrapBB)
8659 .addImm(ARMCC::HI)
8660 .addReg(ARM::CPSR);
8661
8662 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8663 BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
8664 .addReg(NewVReg1)
8665 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8666 .add(predOps(ARMCC::AL))
8667 .add(condCodeOp());
8668 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8669 BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
8670 .addJumpTableIndex(MJTI)
8671 .add(predOps(ARMCC::AL));
8672
8673 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8674 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8675 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8676 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
8677 .addReg(NewVReg3, RegState::Kill)
8678 .addReg(NewVReg4)
8679 .addImm(0)
8680 .addMemOperand(JTMMOLd)
8681 .add(predOps(ARMCC::AL));
8682
8683 if (IsPositionIndependent) {
8684 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
8685 .addReg(NewVReg5, RegState::Kill)
8686 .addReg(NewVReg4)
8687 .addJumpTableIndex(MJTI);
8688 } else {
8689 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
8690 .addReg(NewVReg5, RegState::Kill)
8691 .addJumpTableIndex(MJTI);
8692 }
8693 }
8694
8695 // Add the jump table entries as successors to the MBB.
8696 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
8697 for (std::vector<MachineBasicBlock*>::iterator
8698 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
8699 MachineBasicBlock *CurMBB = *I;
8700 if (SeenMBBs.insert(CurMBB).second)
8701 DispContBB->addSuccessor(CurMBB);
8702 }
8703
8704 // N.B. the order the invoke BBs are processed in doesn't matter here.
8705 const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
8706 SmallVector<MachineBasicBlock*, 64> MBBLPads;
8707 for (MachineBasicBlock *BB : InvokeBBs) {
8708
8709 // Remove the landing pad successor from the invoke block and replace it
8710 // with the new dispatch block.
8711 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
8712 BB->succ_end());
8713 while (!Successors.empty()) {
8714 MachineBasicBlock *SMBB = Successors.pop_back_val();
8715 if (SMBB->isEHPad()) {
8716 BB->removeSuccessor(SMBB);
8717 MBBLPads.push_back(SMBB);
8718 }
8719 }
8720
8721 BB->addSuccessor(DispatchBB, BranchProbability::getZero());
8722 BB->normalizeSuccProbs();
8723
8724 // Find the invoke call and mark all of the callee-saved registers as
8725 // 'implicit defined' so that they're spilled. This prevents code from
8726 // moving instructions to before the EH block, where they will never be
8727 // executed.
8728 for (MachineBasicBlock::reverse_iterator
8729 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
8730 if (!II->isCall()) continue;
8731
8732 DenseMap<unsigned, bool> DefRegs;
8733 for (MachineInstr::mop_iterator
8734 OI = II->operands_begin(), OE = II->operands_end();
8735 OI != OE; ++OI) {
8736 if (!OI->isReg()) continue;
8737 DefRegs[OI->getReg()] = true;
8738 }
8739
8740 MachineInstrBuilder MIB(*MF, &*II);
8741
8742 for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
8743 unsigned Reg = SavedRegs[i];
8744 if (Subtarget->isThumb2() &&
8745 !ARM::tGPRRegClass.contains(Reg) &&
8746 !ARM::hGPRRegClass.contains(Reg))
8747 continue;
8748 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
8749 continue;
8750 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
8751 continue;
8752 if (!DefRegs[Reg])
8753 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
8754 }
8755
8756 break;
8757 }
8758 }
8759
8760 // Mark all former landing pads as non-landing pads. The dispatch is the only
8761 // landing pad now.
8762 for (SmallVectorImpl<MachineBasicBlock*>::iterator
8763 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
8764 (*I)->setIsEHPad(false);
8765
8766 // The instruction is gone now.
8767 MI.eraseFromParent();
8768 }
8769
8770 static
OtherSucc(MachineBasicBlock * MBB,MachineBasicBlock * Succ)8771 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
8772 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
8773 E = MBB->succ_end(); I != E; ++I)
8774 if (*I != Succ)
8775 return *I;
8776 llvm_unreachable("Expecting a BB with two successors!");
8777 }
8778
8779 /// Return the load opcode for a given load size. If load size >= 8,
8780 /// neon opcode will be returned.
getLdOpcode(unsigned LdSize,bool IsThumb1,bool IsThumb2)8781 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
8782 if (LdSize >= 8)
8783 return LdSize == 16 ? ARM::VLD1q32wb_fixed
8784 : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
8785 if (IsThumb1)
8786 return LdSize == 4 ? ARM::tLDRi
8787 : LdSize == 2 ? ARM::tLDRHi
8788 : LdSize == 1 ? ARM::tLDRBi : 0;
8789 if (IsThumb2)
8790 return LdSize == 4 ? ARM::t2LDR_POST
8791 : LdSize == 2 ? ARM::t2LDRH_POST
8792 : LdSize == 1 ? ARM::t2LDRB_POST : 0;
8793 return LdSize == 4 ? ARM::LDR_POST_IMM
8794 : LdSize == 2 ? ARM::LDRH_POST
8795 : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
8796 }
8797
8798 /// Return the store opcode for a given store size. If store size >= 8,
8799 /// neon opcode will be returned.
getStOpcode(unsigned StSize,bool IsThumb1,bool IsThumb2)8800 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
8801 if (StSize >= 8)
8802 return StSize == 16 ? ARM::VST1q32wb_fixed
8803 : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
8804 if (IsThumb1)
8805 return StSize == 4 ? ARM::tSTRi
8806 : StSize == 2 ? ARM::tSTRHi
8807 : StSize == 1 ? ARM::tSTRBi : 0;
8808 if (IsThumb2)
8809 return StSize == 4 ? ARM::t2STR_POST
8810 : StSize == 2 ? ARM::t2STRH_POST
8811 : StSize == 1 ? ARM::t2STRB_POST : 0;
8812 return StSize == 4 ? ARM::STR_POST_IMM
8813 : StSize == 2 ? ARM::STRH_POST
8814 : StSize == 1 ? ARM::STRB_POST_IMM : 0;
8815 }
8816
8817 /// Emit a post-increment load operation with given size. The instructions
8818 /// will be added to BB at Pos.
emitPostLd(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned LdSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)8819 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8820 const TargetInstrInfo *TII, const DebugLoc &dl,
8821 unsigned LdSize, unsigned Data, unsigned AddrIn,
8822 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8823 unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
8824 assert(LdOpc != 0 && "Should have a load opcode");
8825 if (LdSize >= 8) {
8826 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8827 .addReg(AddrOut, RegState::Define)
8828 .addReg(AddrIn)
8829 .addImm(0)
8830 .add(predOps(ARMCC::AL));
8831 } else if (IsThumb1) {
8832 // load + update AddrIn
8833 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8834 .addReg(AddrIn)
8835 .addImm(0)
8836 .add(predOps(ARMCC::AL));
8837 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8838 .add(t1CondCodeOp())
8839 .addReg(AddrIn)
8840 .addImm(LdSize)
8841 .add(predOps(ARMCC::AL));
8842 } else if (IsThumb2) {
8843 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8844 .addReg(AddrOut, RegState::Define)
8845 .addReg(AddrIn)
8846 .addImm(LdSize)
8847 .add(predOps(ARMCC::AL));
8848 } else { // arm
8849 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8850 .addReg(AddrOut, RegState::Define)
8851 .addReg(AddrIn)
8852 .addReg(0)
8853 .addImm(LdSize)
8854 .add(predOps(ARMCC::AL));
8855 }
8856 }
8857
8858 /// Emit a post-increment store operation with given size. The instructions
8859 /// will be added to BB at Pos.
emitPostSt(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned StSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)8860 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8861 const TargetInstrInfo *TII, const DebugLoc &dl,
8862 unsigned StSize, unsigned Data, unsigned AddrIn,
8863 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8864 unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
8865 assert(StOpc != 0 && "Should have a store opcode");
8866 if (StSize >= 8) {
8867 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8868 .addReg(AddrIn)
8869 .addImm(0)
8870 .addReg(Data)
8871 .add(predOps(ARMCC::AL));
8872 } else if (IsThumb1) {
8873 // store + update AddrIn
8874 BuildMI(*BB, Pos, dl, TII->get(StOpc))
8875 .addReg(Data)
8876 .addReg(AddrIn)
8877 .addImm(0)
8878 .add(predOps(ARMCC::AL));
8879 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8880 .add(t1CondCodeOp())
8881 .addReg(AddrIn)
8882 .addImm(StSize)
8883 .add(predOps(ARMCC::AL));
8884 } else if (IsThumb2) {
8885 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8886 .addReg(Data)
8887 .addReg(AddrIn)
8888 .addImm(StSize)
8889 .add(predOps(ARMCC::AL));
8890 } else { // arm
8891 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8892 .addReg(Data)
8893 .addReg(AddrIn)
8894 .addReg(0)
8895 .addImm(StSize)
8896 .add(predOps(ARMCC::AL));
8897 }
8898 }
8899
8900 MachineBasicBlock *
EmitStructByval(MachineInstr & MI,MachineBasicBlock * BB) const8901 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
8902 MachineBasicBlock *BB) const {
8903 // This pseudo instruction has 3 operands: dst, src, size
8904 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
8905 // Otherwise, we will generate unrolled scalar copies.
8906 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8907 const BasicBlock *LLVM_BB = BB->getBasicBlock();
8908 MachineFunction::iterator It = ++BB->getIterator();
8909
8910 unsigned dest = MI.getOperand(0).getReg();
8911 unsigned src = MI.getOperand(1).getReg();
8912 unsigned SizeVal = MI.getOperand(2).getImm();
8913 unsigned Align = MI.getOperand(3).getImm();
8914 DebugLoc dl = MI.getDebugLoc();
8915
8916 MachineFunction *MF = BB->getParent();
8917 MachineRegisterInfo &MRI = MF->getRegInfo();
8918 unsigned UnitSize = 0;
8919 const TargetRegisterClass *TRC = nullptr;
8920 const TargetRegisterClass *VecTRC = nullptr;
8921
8922 bool IsThumb1 = Subtarget->isThumb1Only();
8923 bool IsThumb2 = Subtarget->isThumb2();
8924 bool IsThumb = Subtarget->isThumb();
8925
8926 if (Align & 1) {
8927 UnitSize = 1;
8928 } else if (Align & 2) {
8929 UnitSize = 2;
8930 } else {
8931 // Check whether we can use NEON instructions.
8932 if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
8933 Subtarget->hasNEON()) {
8934 if ((Align % 16 == 0) && SizeVal >= 16)
8935 UnitSize = 16;
8936 else if ((Align % 8 == 0) && SizeVal >= 8)
8937 UnitSize = 8;
8938 }
8939 // Can't use NEON instructions.
8940 if (UnitSize == 0)
8941 UnitSize = 4;
8942 }
8943
8944 // Select the correct opcode and register class for unit size load/store
8945 bool IsNeon = UnitSize >= 8;
8946 TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
8947 if (IsNeon)
8948 VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
8949 : UnitSize == 8 ? &ARM::DPRRegClass
8950 : nullptr;
8951
8952 unsigned BytesLeft = SizeVal % UnitSize;
8953 unsigned LoopSize = SizeVal - BytesLeft;
8954
8955 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
8956 // Use LDR and STR to copy.
8957 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
8958 // [destOut] = STR_POST(scratch, destIn, UnitSize)
8959 unsigned srcIn = src;
8960 unsigned destIn = dest;
8961 for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
8962 unsigned srcOut = MRI.createVirtualRegister(TRC);
8963 unsigned destOut = MRI.createVirtualRegister(TRC);
8964 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
8965 emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
8966 IsThumb1, IsThumb2);
8967 emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
8968 IsThumb1, IsThumb2);
8969 srcIn = srcOut;
8970 destIn = destOut;
8971 }
8972
8973 // Handle the leftover bytes with LDRB and STRB.
8974 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
8975 // [destOut] = STRB_POST(scratch, destIn, 1)
8976 for (unsigned i = 0; i < BytesLeft; i++) {
8977 unsigned srcOut = MRI.createVirtualRegister(TRC);
8978 unsigned destOut = MRI.createVirtualRegister(TRC);
8979 unsigned scratch = MRI.createVirtualRegister(TRC);
8980 emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
8981 IsThumb1, IsThumb2);
8982 emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
8983 IsThumb1, IsThumb2);
8984 srcIn = srcOut;
8985 destIn = destOut;
8986 }
8987 MI.eraseFromParent(); // The instruction is gone now.
8988 return BB;
8989 }
8990
8991 // Expand the pseudo op to a loop.
8992 // thisMBB:
8993 // ...
8994 // movw varEnd, # --> with thumb2
8995 // movt varEnd, #
8996 // ldrcp varEnd, idx --> without thumb2
8997 // fallthrough --> loopMBB
8998 // loopMBB:
8999 // PHI varPhi, varEnd, varLoop
9000 // PHI srcPhi, src, srcLoop
9001 // PHI destPhi, dst, destLoop
9002 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9003 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9004 // subs varLoop, varPhi, #UnitSize
9005 // bne loopMBB
9006 // fallthrough --> exitMBB
9007 // exitMBB:
9008 // epilogue to handle left-over bytes
9009 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9010 // [destOut] = STRB_POST(scratch, destLoop, 1)
9011 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9012 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9013 MF->insert(It, loopMBB);
9014 MF->insert(It, exitMBB);
9015
9016 // Transfer the remainder of BB and its successor edges to exitMBB.
9017 exitMBB->splice(exitMBB->begin(), BB,
9018 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9019 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9020
9021 // Load an immediate to varEnd.
9022 unsigned varEnd = MRI.createVirtualRegister(TRC);
9023 if (Subtarget->useMovt(*MF)) {
9024 unsigned Vtmp = varEnd;
9025 if ((LoopSize & 0xFFFF0000) != 0)
9026 Vtmp = MRI.createVirtualRegister(TRC);
9027 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
9028 .addImm(LoopSize & 0xFFFF)
9029 .add(predOps(ARMCC::AL));
9030
9031 if ((LoopSize & 0xFFFF0000) != 0)
9032 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
9033 .addReg(Vtmp)
9034 .addImm(LoopSize >> 16)
9035 .add(predOps(ARMCC::AL));
9036 } else {
9037 MachineConstantPool *ConstantPool = MF->getConstantPool();
9038 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9039 const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
9040
9041 // MachineConstantPool wants an explicit alignment.
9042 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9043 if (Align == 0)
9044 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9045 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9046
9047 if (IsThumb)
9048 BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
9049 .addReg(varEnd, RegState::Define)
9050 .addConstantPoolIndex(Idx)
9051 .add(predOps(ARMCC::AL));
9052 else
9053 BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
9054 .addReg(varEnd, RegState::Define)
9055 .addConstantPoolIndex(Idx)
9056 .addImm(0)
9057 .add(predOps(ARMCC::AL));
9058 }
9059 BB->addSuccessor(loopMBB);
9060
9061 // Generate the loop body:
9062 // varPhi = PHI(varLoop, varEnd)
9063 // srcPhi = PHI(srcLoop, src)
9064 // destPhi = PHI(destLoop, dst)
9065 MachineBasicBlock *entryBB = BB;
9066 BB = loopMBB;
9067 unsigned varLoop = MRI.createVirtualRegister(TRC);
9068 unsigned varPhi = MRI.createVirtualRegister(TRC);
9069 unsigned srcLoop = MRI.createVirtualRegister(TRC);
9070 unsigned srcPhi = MRI.createVirtualRegister(TRC);
9071 unsigned destLoop = MRI.createVirtualRegister(TRC);
9072 unsigned destPhi = MRI.createVirtualRegister(TRC);
9073
9074 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
9075 .addReg(varLoop).addMBB(loopMBB)
9076 .addReg(varEnd).addMBB(entryBB);
9077 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
9078 .addReg(srcLoop).addMBB(loopMBB)
9079 .addReg(src).addMBB(entryBB);
9080 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
9081 .addReg(destLoop).addMBB(loopMBB)
9082 .addReg(dest).addMBB(entryBB);
9083
9084 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9085 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9086 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9087 emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
9088 IsThumb1, IsThumb2);
9089 emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
9090 IsThumb1, IsThumb2);
9091
9092 // Decrement loop variable by UnitSize.
9093 if (IsThumb1) {
9094 BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
9095 .add(t1CondCodeOp())
9096 .addReg(varPhi)
9097 .addImm(UnitSize)
9098 .add(predOps(ARMCC::AL));
9099 } else {
9100 MachineInstrBuilder MIB =
9101 BuildMI(*BB, BB->end(), dl,
9102 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
9103 MIB.addReg(varPhi)
9104 .addImm(UnitSize)
9105 .add(predOps(ARMCC::AL))
9106 .add(condCodeOp());
9107 MIB->getOperand(5).setReg(ARM::CPSR);
9108 MIB->getOperand(5).setIsDef(true);
9109 }
9110 BuildMI(*BB, BB->end(), dl,
9111 TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
9112 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
9113
9114 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9115 BB->addSuccessor(loopMBB);
9116 BB->addSuccessor(exitMBB);
9117
9118 // Add epilogue to handle BytesLeft.
9119 BB = exitMBB;
9120 auto StartOfExit = exitMBB->begin();
9121
9122 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9123 // [destOut] = STRB_POST(scratch, destLoop, 1)
9124 unsigned srcIn = srcLoop;
9125 unsigned destIn = destLoop;
9126 for (unsigned i = 0; i < BytesLeft; i++) {
9127 unsigned srcOut = MRI.createVirtualRegister(TRC);
9128 unsigned destOut = MRI.createVirtualRegister(TRC);
9129 unsigned scratch = MRI.createVirtualRegister(TRC);
9130 emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
9131 IsThumb1, IsThumb2);
9132 emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
9133 IsThumb1, IsThumb2);
9134 srcIn = srcOut;
9135 destIn = destOut;
9136 }
9137
9138 MI.eraseFromParent(); // The instruction is gone now.
9139 return BB;
9140 }
9141
9142 MachineBasicBlock *
EmitLowered__chkstk(MachineInstr & MI,MachineBasicBlock * MBB) const9143 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
9144 MachineBasicBlock *MBB) const {
9145 const TargetMachine &TM = getTargetMachine();
9146 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
9147 DebugLoc DL = MI.getDebugLoc();
9148
9149 assert(Subtarget->isTargetWindows() &&
9150 "__chkstk is only supported on Windows");
9151 assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9152
9153 // __chkstk takes the number of words to allocate on the stack in R4, and
9154 // returns the stack adjustment in number of bytes in R4. This will not
9155 // clober any other registers (other than the obvious lr).
9156 //
9157 // Although, technically, IP should be considered a register which may be
9158 // clobbered, the call itself will not touch it. Windows on ARM is a pure
9159 // thumb-2 environment, so there is no interworking required. As a result, we
9160 // do not expect a veneer to be emitted by the linker, clobbering IP.
9161 //
9162 // Each module receives its own copy of __chkstk, so no import thunk is
9163 // required, again, ensuring that IP is not clobbered.
9164 //
9165 // Finally, although some linkers may theoretically provide a trampoline for
9166 // out of range calls (which is quite common due to a 32M range limitation of
9167 // branches for Thumb), we can generate the long-call version via
9168 // -mcmodel=large, alleviating the need for the trampoline which may clobber
9169 // IP.
9170
9171 switch (TM.getCodeModel()) {
9172 case CodeModel::Small:
9173 case CodeModel::Medium:
9174 case CodeModel::Kernel:
9175 BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
9176 .add(predOps(ARMCC::AL))
9177 .addExternalSymbol("__chkstk")
9178 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9179 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9180 .addReg(ARM::R12,
9181 RegState::Implicit | RegState::Define | RegState::Dead)
9182 .addReg(ARM::CPSR,
9183 RegState::Implicit | RegState::Define | RegState::Dead);
9184 break;
9185 case CodeModel::Large: {
9186 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9187 unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
9188
9189 BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
9190 .addExternalSymbol("__chkstk");
9191 BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
9192 .add(predOps(ARMCC::AL))
9193 .addReg(Reg, RegState::Kill)
9194 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9195 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9196 .addReg(ARM::R12,
9197 RegState::Implicit | RegState::Define | RegState::Dead)
9198 .addReg(ARM::CPSR,
9199 RegState::Implicit | RegState::Define | RegState::Dead);
9200 break;
9201 }
9202 }
9203
9204 BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
9205 .addReg(ARM::SP, RegState::Kill)
9206 .addReg(ARM::R4, RegState::Kill)
9207 .setMIFlags(MachineInstr::FrameSetup)
9208 .add(predOps(ARMCC::AL))
9209 .add(condCodeOp());
9210
9211 MI.eraseFromParent();
9212 return MBB;
9213 }
9214
9215 MachineBasicBlock *
EmitLowered__dbzchk(MachineInstr & MI,MachineBasicBlock * MBB) const9216 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
9217 MachineBasicBlock *MBB) const {
9218 DebugLoc DL = MI.getDebugLoc();
9219 MachineFunction *MF = MBB->getParent();
9220 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9221
9222 MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
9223 MF->insert(++MBB->getIterator(), ContBB);
9224 ContBB->splice(ContBB->begin(), MBB,
9225 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9226 ContBB->transferSuccessorsAndUpdatePHIs(MBB);
9227 MBB->addSuccessor(ContBB);
9228
9229 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9230 BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
9231 MF->push_back(TrapBB);
9232 MBB->addSuccessor(TrapBB);
9233
9234 BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
9235 .addReg(MI.getOperand(0).getReg())
9236 .addImm(0)
9237 .add(predOps(ARMCC::AL));
9238 BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
9239 .addMBB(TrapBB)
9240 .addImm(ARMCC::EQ)
9241 .addReg(ARM::CPSR);
9242
9243 MI.eraseFromParent();
9244 return ContBB;
9245 }
9246
9247 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const9248 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9249 MachineBasicBlock *BB) const {
9250 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9251 DebugLoc dl = MI.getDebugLoc();
9252 bool isThumb2 = Subtarget->isThumb2();
9253 switch (MI.getOpcode()) {
9254 default: {
9255 MI.print(errs());
9256 llvm_unreachable("Unexpected instr type to insert");
9257 }
9258
9259 // Thumb1 post-indexed loads are really just single-register LDMs.
9260 case ARM::tLDR_postidx: {
9261 MachineOperand Def(MI.getOperand(1));
9262 BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
9263 .add(Def) // Rn_wb
9264 .add(MI.getOperand(2)) // Rn
9265 .add(MI.getOperand(3)) // PredImm
9266 .add(MI.getOperand(4)) // PredReg
9267 .add(MI.getOperand(0)); // Rt
9268 MI.eraseFromParent();
9269 return BB;
9270 }
9271
9272 // The Thumb2 pre-indexed stores have the same MI operands, they just
9273 // define them differently in the .td files from the isel patterns, so
9274 // they need pseudos.
9275 case ARM::t2STR_preidx:
9276 MI.setDesc(TII->get(ARM::t2STR_PRE));
9277 return BB;
9278 case ARM::t2STRB_preidx:
9279 MI.setDesc(TII->get(ARM::t2STRB_PRE));
9280 return BB;
9281 case ARM::t2STRH_preidx:
9282 MI.setDesc(TII->get(ARM::t2STRH_PRE));
9283 return BB;
9284
9285 case ARM::STRi_preidx:
9286 case ARM::STRBi_preidx: {
9287 unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
9288 : ARM::STRB_PRE_IMM;
9289 // Decode the offset.
9290 unsigned Offset = MI.getOperand(4).getImm();
9291 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
9292 Offset = ARM_AM::getAM2Offset(Offset);
9293 if (isSub)
9294 Offset = -Offset;
9295
9296 MachineMemOperand *MMO = *MI.memoperands_begin();
9297 BuildMI(*BB, MI, dl, TII->get(NewOpc))
9298 .add(MI.getOperand(0)) // Rn_wb
9299 .add(MI.getOperand(1)) // Rt
9300 .add(MI.getOperand(2)) // Rn
9301 .addImm(Offset) // offset (skip GPR==zero_reg)
9302 .add(MI.getOperand(5)) // pred
9303 .add(MI.getOperand(6))
9304 .addMemOperand(MMO);
9305 MI.eraseFromParent();
9306 return BB;
9307 }
9308 case ARM::STRr_preidx:
9309 case ARM::STRBr_preidx:
9310 case ARM::STRH_preidx: {
9311 unsigned NewOpc;
9312 switch (MI.getOpcode()) {
9313 default: llvm_unreachable("unexpected opcode!");
9314 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
9315 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
9316 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
9317 }
9318 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
9319 for (unsigned i = 0; i < MI.getNumOperands(); ++i)
9320 MIB.add(MI.getOperand(i));
9321 MI.eraseFromParent();
9322 return BB;
9323 }
9324
9325 case ARM::tMOVCCr_pseudo: {
9326 // To "insert" a SELECT_CC instruction, we actually have to insert the
9327 // diamond control-flow pattern. The incoming instruction knows the
9328 // destination vreg to set, the condition code register to branch on, the
9329 // true/false values to select between, and a branch opcode to use.
9330 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9331 MachineFunction::iterator It = ++BB->getIterator();
9332
9333 // thisMBB:
9334 // ...
9335 // TrueVal = ...
9336 // cmpTY ccX, r1, r2
9337 // bCC copy1MBB
9338 // fallthrough --> copy0MBB
9339 MachineBasicBlock *thisMBB = BB;
9340 MachineFunction *F = BB->getParent();
9341 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9342 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9343 F->insert(It, copy0MBB);
9344 F->insert(It, sinkMBB);
9345
9346 // Transfer the remainder of BB and its successor edges to sinkMBB.
9347 sinkMBB->splice(sinkMBB->begin(), BB,
9348 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9349 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9350
9351 BB->addSuccessor(copy0MBB);
9352 BB->addSuccessor(sinkMBB);
9353
9354 BuildMI(BB, dl, TII->get(ARM::tBcc))
9355 .addMBB(sinkMBB)
9356 .addImm(MI.getOperand(3).getImm())
9357 .addReg(MI.getOperand(4).getReg());
9358
9359 // copy0MBB:
9360 // %FalseValue = ...
9361 // # fallthrough to sinkMBB
9362 BB = copy0MBB;
9363
9364 // Update machine-CFG edges
9365 BB->addSuccessor(sinkMBB);
9366
9367 // sinkMBB:
9368 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9369 // ...
9370 BB = sinkMBB;
9371 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
9372 .addReg(MI.getOperand(1).getReg())
9373 .addMBB(copy0MBB)
9374 .addReg(MI.getOperand(2).getReg())
9375 .addMBB(thisMBB);
9376
9377 MI.eraseFromParent(); // The pseudo instruction is gone now.
9378 return BB;
9379 }
9380
9381 case ARM::BCCi64:
9382 case ARM::BCCZi64: {
9383 // If there is an unconditional branch to the other successor, remove it.
9384 BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
9385
9386 // Compare both parts that make up the double comparison separately for
9387 // equality.
9388 bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
9389
9390 unsigned LHS1 = MI.getOperand(1).getReg();
9391 unsigned LHS2 = MI.getOperand(2).getReg();
9392 if (RHSisZero) {
9393 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9394 .addReg(LHS1)
9395 .addImm(0)
9396 .add(predOps(ARMCC::AL));
9397 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9398 .addReg(LHS2).addImm(0)
9399 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9400 } else {
9401 unsigned RHS1 = MI.getOperand(3).getReg();
9402 unsigned RHS2 = MI.getOperand(4).getReg();
9403 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9404 .addReg(LHS1)
9405 .addReg(RHS1)
9406 .add(predOps(ARMCC::AL));
9407 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9408 .addReg(LHS2).addReg(RHS2)
9409 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9410 }
9411
9412 MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
9413 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
9414 if (MI.getOperand(0).getImm() == ARMCC::NE)
9415 std::swap(destMBB, exitMBB);
9416
9417 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
9418 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
9419 if (isThumb2)
9420 BuildMI(BB, dl, TII->get(ARM::t2B))
9421 .addMBB(exitMBB)
9422 .add(predOps(ARMCC::AL));
9423 else
9424 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
9425
9426 MI.eraseFromParent(); // The pseudo instruction is gone now.
9427 return BB;
9428 }
9429
9430 case ARM::Int_eh_sjlj_setjmp:
9431 case ARM::Int_eh_sjlj_setjmp_nofp:
9432 case ARM::tInt_eh_sjlj_setjmp:
9433 case ARM::t2Int_eh_sjlj_setjmp:
9434 case ARM::t2Int_eh_sjlj_setjmp_nofp:
9435 return BB;
9436
9437 case ARM::Int_eh_sjlj_setup_dispatch:
9438 EmitSjLjDispatchBlock(MI, BB);
9439 return BB;
9440
9441 case ARM::ABS:
9442 case ARM::t2ABS: {
9443 // To insert an ABS instruction, we have to insert the
9444 // diamond control-flow pattern. The incoming instruction knows the
9445 // source vreg to test against 0, the destination vreg to set,
9446 // the condition code register to branch on, the
9447 // true/false values to select between, and a branch opcode to use.
9448 // It transforms
9449 // V1 = ABS V0
9450 // into
9451 // V2 = MOVS V0
9452 // BCC (branch to SinkBB if V0 >= 0)
9453 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
9454 // SinkBB: V1 = PHI(V2, V3)
9455 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9456 MachineFunction::iterator BBI = ++BB->getIterator();
9457 MachineFunction *Fn = BB->getParent();
9458 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
9459 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
9460 Fn->insert(BBI, RSBBB);
9461 Fn->insert(BBI, SinkBB);
9462
9463 unsigned int ABSSrcReg = MI.getOperand(1).getReg();
9464 unsigned int ABSDstReg = MI.getOperand(0).getReg();
9465 bool ABSSrcKIll = MI.getOperand(1).isKill();
9466 bool isThumb2 = Subtarget->isThumb2();
9467 MachineRegisterInfo &MRI = Fn->getRegInfo();
9468 // In Thumb mode S must not be specified if source register is the SP or
9469 // PC and if destination register is the SP, so restrict register class
9470 unsigned NewRsbDstReg =
9471 MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
9472
9473 // Transfer the remainder of BB and its successor edges to sinkMBB.
9474 SinkBB->splice(SinkBB->begin(), BB,
9475 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9476 SinkBB->transferSuccessorsAndUpdatePHIs(BB);
9477
9478 BB->addSuccessor(RSBBB);
9479 BB->addSuccessor(SinkBB);
9480
9481 // fall through to SinkMBB
9482 RSBBB->addSuccessor(SinkBB);
9483
9484 // insert a cmp at the end of BB
9485 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9486 .addReg(ABSSrcReg)
9487 .addImm(0)
9488 .add(predOps(ARMCC::AL));
9489
9490 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
9491 BuildMI(BB, dl,
9492 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
9493 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
9494
9495 // insert rsbri in RSBBB
9496 // Note: BCC and rsbri will be converted into predicated rsbmi
9497 // by if-conversion pass
9498 BuildMI(*RSBBB, RSBBB->begin(), dl,
9499 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
9500 .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
9501 .addImm(0)
9502 .add(predOps(ARMCC::AL))
9503 .add(condCodeOp());
9504
9505 // insert PHI in SinkBB,
9506 // reuse ABSDstReg to not change uses of ABS instruction
9507 BuildMI(*SinkBB, SinkBB->begin(), dl,
9508 TII->get(ARM::PHI), ABSDstReg)
9509 .addReg(NewRsbDstReg).addMBB(RSBBB)
9510 .addReg(ABSSrcReg).addMBB(BB);
9511
9512 // remove ABS instruction
9513 MI.eraseFromParent();
9514
9515 // return last added BB
9516 return SinkBB;
9517 }
9518 case ARM::COPY_STRUCT_BYVAL_I32:
9519 ++NumLoopByVals;
9520 return EmitStructByval(MI, BB);
9521 case ARM::WIN__CHKSTK:
9522 return EmitLowered__chkstk(MI, BB);
9523 case ARM::WIN__DBZCHK:
9524 return EmitLowered__dbzchk(MI, BB);
9525 }
9526 }
9527
9528 /// Attaches vregs to MEMCPY that it will use as scratch registers
9529 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
9530 /// instead of as a custom inserter because we need the use list from the SDNode.
attachMEMCPYScratchRegs(const ARMSubtarget * Subtarget,MachineInstr & MI,const SDNode * Node)9531 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
9532 MachineInstr &MI, const SDNode *Node) {
9533 bool isThumb1 = Subtarget->isThumb1Only();
9534
9535 DebugLoc DL = MI.getDebugLoc();
9536 MachineFunction *MF = MI.getParent()->getParent();
9537 MachineRegisterInfo &MRI = MF->getRegInfo();
9538 MachineInstrBuilder MIB(*MF, MI);
9539
9540 // If the new dst/src is unused mark it as dead.
9541 if (!Node->hasAnyUseOfValue(0)) {
9542 MI.getOperand(0).setIsDead(true);
9543 }
9544 if (!Node->hasAnyUseOfValue(1)) {
9545 MI.getOperand(1).setIsDead(true);
9546 }
9547
9548 // The MEMCPY both defines and kills the scratch registers.
9549 for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
9550 unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
9551 : &ARM::GPRRegClass);
9552 MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
9553 }
9554 }
9555
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const9556 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9557 SDNode *Node) const {
9558 if (MI.getOpcode() == ARM::MEMCPY) {
9559 attachMEMCPYScratchRegs(Subtarget, MI, Node);
9560 return;
9561 }
9562
9563 const MCInstrDesc *MCID = &MI.getDesc();
9564 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
9565 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
9566 // operand is still set to noreg. If needed, set the optional operand's
9567 // register to CPSR, and remove the redundant implicit def.
9568 //
9569 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
9570
9571 // Rename pseudo opcodes.
9572 unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
9573 unsigned ccOutIdx;
9574 if (NewOpc) {
9575 const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
9576 MCID = &TII->get(NewOpc);
9577
9578 assert(MCID->getNumOperands() ==
9579 MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
9580 && "converted opcode should be the same except for cc_out"
9581 " (and, on Thumb1, pred)");
9582
9583 MI.setDesc(*MCID);
9584
9585 // Add the optional cc_out operand
9586 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
9587
9588 // On Thumb1, move all input operands to the end, then add the predicate
9589 if (Subtarget->isThumb1Only()) {
9590 for (unsigned c = MCID->getNumOperands() - 4; c--;) {
9591 MI.addOperand(MI.getOperand(1));
9592 MI.RemoveOperand(1);
9593 }
9594
9595 // Restore the ties
9596 for (unsigned i = MI.getNumOperands(); i--;) {
9597 const MachineOperand& op = MI.getOperand(i);
9598 if (op.isReg() && op.isUse()) {
9599 int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
9600 if (DefIdx != -1)
9601 MI.tieOperands(DefIdx, i);
9602 }
9603 }
9604
9605 MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
9606 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
9607 ccOutIdx = 1;
9608 } else
9609 ccOutIdx = MCID->getNumOperands() - 1;
9610 } else
9611 ccOutIdx = MCID->getNumOperands() - 1;
9612
9613 // Any ARM instruction that sets the 's' bit should specify an optional
9614 // "cc_out" operand in the last operand position.
9615 if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
9616 assert(!NewOpc && "Optional cc_out operand required");
9617 return;
9618 }
9619 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
9620 // since we already have an optional CPSR def.
9621 bool definesCPSR = false;
9622 bool deadCPSR = false;
9623 for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
9624 ++i) {
9625 const MachineOperand &MO = MI.getOperand(i);
9626 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
9627 definesCPSR = true;
9628 if (MO.isDead())
9629 deadCPSR = true;
9630 MI.RemoveOperand(i);
9631 break;
9632 }
9633 }
9634 if (!definesCPSR) {
9635 assert(!NewOpc && "Optional cc_out operand required");
9636 return;
9637 }
9638 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
9639 if (deadCPSR) {
9640 assert(!MI.getOperand(ccOutIdx).getReg() &&
9641 "expect uninitialized optional cc_out operand");
9642 // Thumb1 instructions must have the S bit even if the CPSR is dead.
9643 if (!Subtarget->isThumb1Only())
9644 return;
9645 }
9646
9647 // If this instruction was defined with an optional CPSR def and its dag node
9648 // had a live implicit CPSR def, then activate the optional CPSR def.
9649 MachineOperand &MO = MI.getOperand(ccOutIdx);
9650 MO.setReg(ARM::CPSR);
9651 MO.setIsDef(true);
9652 }
9653
9654 //===----------------------------------------------------------------------===//
9655 // ARM Optimization Hooks
9656 //===----------------------------------------------------------------------===//
9657
9658 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)9659 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
9660 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
9661 }
9662
9663 // Return true if N is conditionally 0 or all ones.
9664 // Detects these expressions where cc is an i1 value:
9665 //
9666 // (select cc 0, y) [AllOnes=0]
9667 // (select cc y, 0) [AllOnes=0]
9668 // (zext cc) [AllOnes=0]
9669 // (sext cc) [AllOnes=0/1]
9670 // (select cc -1, y) [AllOnes=1]
9671 // (select cc y, -1) [AllOnes=1]
9672 //
9673 // Invert is set when N is the null/all ones constant when CC is false.
9674 // OtherOp is set to the alternative value of N.
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)9675 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
9676 SDValue &CC, bool &Invert,
9677 SDValue &OtherOp,
9678 SelectionDAG &DAG) {
9679 switch (N->getOpcode()) {
9680 default: return false;
9681 case ISD::SELECT: {
9682 CC = N->getOperand(0);
9683 SDValue N1 = N->getOperand(1);
9684 SDValue N2 = N->getOperand(2);
9685 if (isZeroOrAllOnes(N1, AllOnes)) {
9686 Invert = false;
9687 OtherOp = N2;
9688 return true;
9689 }
9690 if (isZeroOrAllOnes(N2, AllOnes)) {
9691 Invert = true;
9692 OtherOp = N1;
9693 return true;
9694 }
9695 return false;
9696 }
9697 case ISD::ZERO_EXTEND:
9698 // (zext cc) can never be the all ones value.
9699 if (AllOnes)
9700 return false;
9701 LLVM_FALLTHROUGH;
9702 case ISD::SIGN_EXTEND: {
9703 SDLoc dl(N);
9704 EVT VT = N->getValueType(0);
9705 CC = N->getOperand(0);
9706 if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
9707 return false;
9708 Invert = !AllOnes;
9709 if (AllOnes)
9710 // When looking for an AllOnes constant, N is an sext, and the 'other'
9711 // value is 0.
9712 OtherOp = DAG.getConstant(0, dl, VT);
9713 else if (N->getOpcode() == ISD::ZERO_EXTEND)
9714 // When looking for a 0 constant, N can be zext or sext.
9715 OtherOp = DAG.getConstant(1, dl, VT);
9716 else
9717 OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
9718 VT);
9719 return true;
9720 }
9721 }
9722 }
9723
9724 // Combine a constant select operand into its use:
9725 //
9726 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
9727 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
9728 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
9729 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
9730 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
9731 //
9732 // The transform is rejected if the select doesn't have a constant operand that
9733 // is null, or all ones when AllOnes is set.
9734 //
9735 // Also recognize sext/zext from i1:
9736 //
9737 // (add (zext cc), x) -> (select cc (add x, 1), x)
9738 // (add (sext cc), x) -> (select cc (add x, -1), x)
9739 //
9740 // These transformations eventually create predicated instructions.
9741 //
9742 // @param N The node to transform.
9743 // @param Slct The N operand that is a select.
9744 // @param OtherOp The other N operand (x above).
9745 // @param DCI Context.
9746 // @param AllOnes Require the select constant to be all ones instead of null.
9747 // @returns The new node, or SDValue() on failure.
9748 static
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes=false)9749 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
9750 TargetLowering::DAGCombinerInfo &DCI,
9751 bool AllOnes = false) {
9752 SelectionDAG &DAG = DCI.DAG;
9753 EVT VT = N->getValueType(0);
9754 SDValue NonConstantVal;
9755 SDValue CCOp;
9756 bool SwapSelectOps;
9757 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
9758 NonConstantVal, DAG))
9759 return SDValue();
9760
9761 // Slct is now know to be the desired identity constant when CC is true.
9762 SDValue TrueVal = OtherOp;
9763 SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
9764 OtherOp, NonConstantVal);
9765 // Unless SwapSelectOps says CC should be false.
9766 if (SwapSelectOps)
9767 std::swap(TrueVal, FalseVal);
9768
9769 return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
9770 CCOp, TrueVal, FalseVal);
9771 }
9772
9773 // Attempt combineSelectAndUse on each operand of a commutative operator N.
9774 static
combineSelectAndUseCommutative(SDNode * N,bool AllOnes,TargetLowering::DAGCombinerInfo & DCI)9775 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
9776 TargetLowering::DAGCombinerInfo &DCI) {
9777 SDValue N0 = N->getOperand(0);
9778 SDValue N1 = N->getOperand(1);
9779 if (N0.getNode()->hasOneUse())
9780 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
9781 return Result;
9782 if (N1.getNode()->hasOneUse())
9783 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
9784 return Result;
9785 return SDValue();
9786 }
9787
IsVUZPShuffleNode(SDNode * N)9788 static bool IsVUZPShuffleNode(SDNode *N) {
9789 // VUZP shuffle node.
9790 if (N->getOpcode() == ARMISD::VUZP)
9791 return true;
9792
9793 // "VUZP" on i32 is an alias for VTRN.
9794 if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
9795 return true;
9796
9797 return false;
9798 }
9799
AddCombineToVPADD(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9800 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
9801 TargetLowering::DAGCombinerInfo &DCI,
9802 const ARMSubtarget *Subtarget) {
9803 // Look for ADD(VUZP.0, VUZP.1).
9804 if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
9805 N0 == N1)
9806 return SDValue();
9807
9808 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
9809 if (!N->getValueType(0).is64BitVector())
9810 return SDValue();
9811
9812 // Generate vpadd.
9813 SelectionDAG &DAG = DCI.DAG;
9814 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9815 SDLoc dl(N);
9816 SDNode *Unzip = N0.getNode();
9817 EVT VT = N->getValueType(0);
9818
9819 SmallVector<SDValue, 8> Ops;
9820 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
9821 TLI.getPointerTy(DAG.getDataLayout())));
9822 Ops.push_back(Unzip->getOperand(0));
9823 Ops.push_back(Unzip->getOperand(1));
9824
9825 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9826 }
9827
AddCombineVUZPToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9828 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9829 TargetLowering::DAGCombinerInfo &DCI,
9830 const ARMSubtarget *Subtarget) {
9831 // Check for two extended operands.
9832 if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
9833 N1.getOpcode() == ISD::SIGN_EXTEND) &&
9834 !(N0.getOpcode() == ISD::ZERO_EXTEND &&
9835 N1.getOpcode() == ISD::ZERO_EXTEND))
9836 return SDValue();
9837
9838 SDValue N00 = N0.getOperand(0);
9839 SDValue N10 = N1.getOperand(0);
9840
9841 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
9842 if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
9843 N00 == N10)
9844 return SDValue();
9845
9846 // We only recognize Q register paddl here; this can't be reached until
9847 // after type legalization.
9848 if (!N00.getValueType().is64BitVector() ||
9849 !N0.getValueType().is128BitVector())
9850 return SDValue();
9851
9852 // Generate vpaddl.
9853 SelectionDAG &DAG = DCI.DAG;
9854 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9855 SDLoc dl(N);
9856 EVT VT = N->getValueType(0);
9857
9858 SmallVector<SDValue, 8> Ops;
9859 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
9860 unsigned Opcode;
9861 if (N0.getOpcode() == ISD::SIGN_EXTEND)
9862 Opcode = Intrinsic::arm_neon_vpaddls;
9863 else
9864 Opcode = Intrinsic::arm_neon_vpaddlu;
9865 Ops.push_back(DAG.getConstant(Opcode, dl,
9866 TLI.getPointerTy(DAG.getDataLayout())));
9867 EVT ElemTy = N00.getValueType().getVectorElementType();
9868 unsigned NumElts = VT.getVectorNumElements();
9869 EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
9870 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
9871 N00.getOperand(0), N00.getOperand(1));
9872 Ops.push_back(Concat);
9873
9874 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9875 }
9876
9877 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
9878 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
9879 // much easier to match.
9880 static SDValue
AddCombineBUILD_VECTORToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9881 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9882 TargetLowering::DAGCombinerInfo &DCI,
9883 const ARMSubtarget *Subtarget) {
9884 // Only perform optimization if after legalize, and if NEON is available. We
9885 // also expected both operands to be BUILD_VECTORs.
9886 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
9887 || N0.getOpcode() != ISD::BUILD_VECTOR
9888 || N1.getOpcode() != ISD::BUILD_VECTOR)
9889 return SDValue();
9890
9891 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
9892 EVT VT = N->getValueType(0);
9893 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
9894 return SDValue();
9895
9896 // Check that the vector operands are of the right form.
9897 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
9898 // operands, where N is the size of the formed vector.
9899 // Each EXTRACT_VECTOR should have the same input vector and odd or even
9900 // index such that we have a pair wise add pattern.
9901
9902 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
9903 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9904 return SDValue();
9905 SDValue Vec = N0->getOperand(0)->getOperand(0);
9906 SDNode *V = Vec.getNode();
9907 unsigned nextIndex = 0;
9908
9909 // For each operands to the ADD which are BUILD_VECTORs,
9910 // check to see if each of their operands are an EXTRACT_VECTOR with
9911 // the same vector and appropriate index.
9912 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
9913 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
9914 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9915
9916 SDValue ExtVec0 = N0->getOperand(i);
9917 SDValue ExtVec1 = N1->getOperand(i);
9918
9919 // First operand is the vector, verify its the same.
9920 if (V != ExtVec0->getOperand(0).getNode() ||
9921 V != ExtVec1->getOperand(0).getNode())
9922 return SDValue();
9923
9924 // Second is the constant, verify its correct.
9925 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
9926 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
9927
9928 // For the constant, we want to see all the even or all the odd.
9929 if (!C0 || !C1 || C0->getZExtValue() != nextIndex
9930 || C1->getZExtValue() != nextIndex+1)
9931 return SDValue();
9932
9933 // Increment index.
9934 nextIndex+=2;
9935 } else
9936 return SDValue();
9937 }
9938
9939 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
9940 // we're using the entire input vector, otherwise there's a size/legality
9941 // mismatch somewhere.
9942 if (nextIndex != Vec.getValueType().getVectorNumElements() ||
9943 Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
9944 return SDValue();
9945
9946 // Create VPADDL node.
9947 SelectionDAG &DAG = DCI.DAG;
9948 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9949
9950 SDLoc dl(N);
9951
9952 // Build operand list.
9953 SmallVector<SDValue, 8> Ops;
9954 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
9955 TLI.getPointerTy(DAG.getDataLayout())));
9956
9957 // Input is the vector.
9958 Ops.push_back(Vec);
9959
9960 // Get widened type and narrowed type.
9961 MVT widenType;
9962 unsigned numElem = VT.getVectorNumElements();
9963
9964 EVT inputLaneType = Vec.getValueType().getVectorElementType();
9965 switch (inputLaneType.getSimpleVT().SimpleTy) {
9966 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
9967 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
9968 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
9969 default:
9970 llvm_unreachable("Invalid vector element type for padd optimization.");
9971 }
9972
9973 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
9974 unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
9975 return DAG.getNode(ExtOp, dl, VT, tmp);
9976 }
9977
findMUL_LOHI(SDValue V)9978 static SDValue findMUL_LOHI(SDValue V) {
9979 if (V->getOpcode() == ISD::UMUL_LOHI ||
9980 V->getOpcode() == ISD::SMUL_LOHI)
9981 return V;
9982 return SDValue();
9983 }
9984
AddCombineTo64BitSMLAL16(SDNode * AddcNode,SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9985 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
9986 TargetLowering::DAGCombinerInfo &DCI,
9987 const ARMSubtarget *Subtarget) {
9988 if (Subtarget->isThumb()) {
9989 if (!Subtarget->hasDSP())
9990 return SDValue();
9991 } else if (!Subtarget->hasV5TEOps())
9992 return SDValue();
9993
9994 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
9995 // accumulates the product into a 64-bit value. The 16-bit values will
9996 // be sign extended somehow or SRA'd into 32-bit values
9997 // (addc (adde (mul 16bit, 16bit), lo), hi)
9998 SDValue Mul = AddcNode->getOperand(0);
9999 SDValue Lo = AddcNode->getOperand(1);
10000 if (Mul.getOpcode() != ISD::MUL) {
10001 Lo = AddcNode->getOperand(0);
10002 Mul = AddcNode->getOperand(1);
10003 if (Mul.getOpcode() != ISD::MUL)
10004 return SDValue();
10005 }
10006
10007 SDValue SRA = AddeNode->getOperand(0);
10008 SDValue Hi = AddeNode->getOperand(1);
10009 if (SRA.getOpcode() != ISD::SRA) {
10010 SRA = AddeNode->getOperand(1);
10011 Hi = AddeNode->getOperand(0);
10012 if (SRA.getOpcode() != ISD::SRA)
10013 return SDValue();
10014 }
10015 if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
10016 if (Const->getZExtValue() != 31)
10017 return SDValue();
10018 } else
10019 return SDValue();
10020
10021 if (SRA.getOperand(0) != Mul)
10022 return SDValue();
10023
10024 SelectionDAG &DAG = DCI.DAG;
10025 SDLoc dl(AddcNode);
10026 unsigned Opcode = 0;
10027 SDValue Op0;
10028 SDValue Op1;
10029
10030 if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
10031 Opcode = ARMISD::SMLALBB;
10032 Op0 = Mul.getOperand(0);
10033 Op1 = Mul.getOperand(1);
10034 } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
10035 Opcode = ARMISD::SMLALBT;
10036 Op0 = Mul.getOperand(0);
10037 Op1 = Mul.getOperand(1).getOperand(0);
10038 } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
10039 Opcode = ARMISD::SMLALTB;
10040 Op0 = Mul.getOperand(0).getOperand(0);
10041 Op1 = Mul.getOperand(1);
10042 } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
10043 Opcode = ARMISD::SMLALTT;
10044 Op0 = Mul->getOperand(0).getOperand(0);
10045 Op1 = Mul->getOperand(1).getOperand(0);
10046 }
10047
10048 if (!Op0 || !Op1)
10049 return SDValue();
10050
10051 SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
10052 Op0, Op1, Lo, Hi);
10053 // Replace the ADDs' nodes uses by the MLA node's values.
10054 SDValue HiMLALResult(SMLAL.getNode(), 1);
10055 SDValue LoMLALResult(SMLAL.getNode(), 0);
10056
10057 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
10058 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
10059
10060 // Return original node to notify the driver to stop replacing.
10061 SDValue resNode(AddcNode, 0);
10062 return resNode;
10063 }
10064
AddCombineTo64bitMLAL(SDNode * AddeSubeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10065 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
10066 TargetLowering::DAGCombinerInfo &DCI,
10067 const ARMSubtarget *Subtarget) {
10068 // Look for multiply add opportunities.
10069 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10070 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10071 // a glue link from the first add to the second add.
10072 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10073 // a S/UMLAL instruction.
10074 // UMUL_LOHI
10075 // / :lo \ :hi
10076 // V \ [no multiline comment]
10077 // loAdd -> ADDC |
10078 // \ :carry /
10079 // V V
10080 // ADDE <- hiAdd
10081 //
10082 // In the special case where only the higher part of a signed result is used
10083 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10084 // a constant with the exact value of 0x80000000, we recognize we are dealing
10085 // with a "rounded multiply and add" (or subtract) and transform it into
10086 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10087
10088 assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
10089 AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
10090 "Expect an ADDE or SUBE");
10091
10092 assert(AddeSubeNode->getNumOperands() == 3 &&
10093 AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
10094 "ADDE node has the wrong inputs");
10095
10096 // Check that we are chained to the right ADDC or SUBC node.
10097 SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
10098 if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10099 AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
10100 (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
10101 AddcSubcNode->getOpcode() != ARMISD::SUBC))
10102 return SDValue();
10103
10104 SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
10105 SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
10106
10107 // Check if the two operands are from the same mul_lohi node.
10108 if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
10109 return SDValue();
10110
10111 assert(AddcSubcNode->getNumValues() == 2 &&
10112 AddcSubcNode->getValueType(0) == MVT::i32 &&
10113 "Expect ADDC with two result values. First: i32");
10114
10115 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10116 // maybe a SMLAL which multiplies two 16-bit values.
10117 if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10118 AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
10119 AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
10120 AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
10121 AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
10122 return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
10123
10124 // Check for the triangle shape.
10125 SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
10126 SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
10127
10128 // Make sure that the ADDE/SUBE operands are not coming from the same node.
10129 if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
10130 return SDValue();
10131
10132 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10133 bool IsLeftOperandMUL = false;
10134 SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
10135 if (MULOp == SDValue())
10136 MULOp = findMUL_LOHI(AddeSubeOp1);
10137 else
10138 IsLeftOperandMUL = true;
10139 if (MULOp == SDValue())
10140 return SDValue();
10141
10142 // Figure out the right opcode.
10143 unsigned Opc = MULOp->getOpcode();
10144 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
10145
10146 // Figure out the high and low input values to the MLAL node.
10147 SDValue *HiAddSub = nullptr;
10148 SDValue *LoMul = nullptr;
10149 SDValue *LowAddSub = nullptr;
10150
10151 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10152 if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
10153 return SDValue();
10154
10155 if (IsLeftOperandMUL)
10156 HiAddSub = &AddeSubeOp1;
10157 else
10158 HiAddSub = &AddeSubeOp0;
10159
10160 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10161 // whose low result is fed to the ADDC/SUBC we are checking.
10162
10163 if (AddcSubcOp0 == MULOp.getValue(0)) {
10164 LoMul = &AddcSubcOp0;
10165 LowAddSub = &AddcSubcOp1;
10166 }
10167 if (AddcSubcOp1 == MULOp.getValue(0)) {
10168 LoMul = &AddcSubcOp1;
10169 LowAddSub = &AddcSubcOp0;
10170 }
10171
10172 if (!LoMul)
10173 return SDValue();
10174
10175 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10176 // the replacement below will create a cycle.
10177 if (AddcSubcNode == HiAddSub->getNode() ||
10178 AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
10179 return SDValue();
10180
10181 // Create the merged node.
10182 SelectionDAG &DAG = DCI.DAG;
10183
10184 // Start building operand list.
10185 SmallVector<SDValue, 8> Ops;
10186 Ops.push_back(LoMul->getOperand(0));
10187 Ops.push_back(LoMul->getOperand(1));
10188
10189 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
10190 // the case, we must be doing signed multiplication and only use the higher
10191 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10192 // addition or subtraction with the value of 0x800000.
10193 if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
10194 FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
10195 LowAddSub->getNode()->getOpcode() == ISD::Constant &&
10196 static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
10197 0x80000000) {
10198 Ops.push_back(*HiAddSub);
10199 if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
10200 FinalOpc = ARMISD::SMMLSR;
10201 } else {
10202 FinalOpc = ARMISD::SMMLAR;
10203 }
10204 SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
10205 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
10206
10207 return SDValue(AddeSubeNode, 0);
10208 } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
10209 // SMMLS is generated during instruction selection and the rest of this
10210 // function can not handle the case where AddcSubcNode is a SUBC.
10211 return SDValue();
10212
10213 // Finish building the operand list for {U/S}MLAL
10214 Ops.push_back(*LowAddSub);
10215 Ops.push_back(*HiAddSub);
10216
10217 SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
10218 DAG.getVTList(MVT::i32, MVT::i32), Ops);
10219
10220 // Replace the ADDs' nodes uses by the MLA node's values.
10221 SDValue HiMLALResult(MLALNode.getNode(), 1);
10222 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
10223
10224 SDValue LoMLALResult(MLALNode.getNode(), 0);
10225 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
10226
10227 // Return original node to notify the driver to stop replacing.
10228 return SDValue(AddeSubeNode, 0);
10229 }
10230
AddCombineTo64bitUMAAL(SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10231 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
10232 TargetLowering::DAGCombinerInfo &DCI,
10233 const ARMSubtarget *Subtarget) {
10234 // UMAAL is similar to UMLAL except that it adds two unsigned values.
10235 // While trying to combine for the other MLAL nodes, first search for the
10236 // chance to use UMAAL. Check if Addc uses a node which has already
10237 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
10238 // as the addend, and it's handled in PerformUMLALCombine.
10239
10240 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10241 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10242
10243 // Check that we have a glued ADDC node.
10244 SDNode* AddcNode = AddeNode->getOperand(2).getNode();
10245 if (AddcNode->getOpcode() != ARMISD::ADDC)
10246 return SDValue();
10247
10248 // Find the converted UMAAL or quit if it doesn't exist.
10249 SDNode *UmlalNode = nullptr;
10250 SDValue AddHi;
10251 if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
10252 UmlalNode = AddcNode->getOperand(0).getNode();
10253 AddHi = AddcNode->getOperand(1);
10254 } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
10255 UmlalNode = AddcNode->getOperand(1).getNode();
10256 AddHi = AddcNode->getOperand(0);
10257 } else {
10258 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10259 }
10260
10261 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
10262 // the ADDC as well as Zero.
10263 if (!isNullConstant(UmlalNode->getOperand(3)))
10264 return SDValue();
10265
10266 if ((isNullConstant(AddeNode->getOperand(0)) &&
10267 AddeNode->getOperand(1).getNode() == UmlalNode) ||
10268 (AddeNode->getOperand(0).getNode() == UmlalNode &&
10269 isNullConstant(AddeNode->getOperand(1)))) {
10270 SelectionDAG &DAG = DCI.DAG;
10271 SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
10272 UmlalNode->getOperand(2), AddHi };
10273 SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
10274 DAG.getVTList(MVT::i32, MVT::i32), Ops);
10275
10276 // Replace the ADDs' nodes uses by the UMAAL node's values.
10277 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
10278 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
10279
10280 // Return original node to notify the driver to stop replacing.
10281 return SDValue(AddeNode, 0);
10282 }
10283 return SDValue();
10284 }
10285
PerformUMLALCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)10286 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
10287 const ARMSubtarget *Subtarget) {
10288 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10289 return SDValue();
10290
10291 // Check that we have a pair of ADDC and ADDE as operands.
10292 // Both addends of the ADDE must be zero.
10293 SDNode* AddcNode = N->getOperand(2).getNode();
10294 SDNode* AddeNode = N->getOperand(3).getNode();
10295 if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
10296 (AddeNode->getOpcode() == ARMISD::ADDE) &&
10297 isNullConstant(AddeNode->getOperand(0)) &&
10298 isNullConstant(AddeNode->getOperand(1)) &&
10299 (AddeNode->getOperand(2).getNode() == AddcNode))
10300 return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
10301 DAG.getVTList(MVT::i32, MVT::i32),
10302 {N->getOperand(0), N->getOperand(1),
10303 AddcNode->getOperand(0), AddcNode->getOperand(1)});
10304 else
10305 return SDValue();
10306 }
10307
PerformAddcSubcCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10308 static SDValue PerformAddcSubcCombine(SDNode *N,
10309 TargetLowering::DAGCombinerInfo &DCI,
10310 const ARMSubtarget *Subtarget) {
10311 SelectionDAG &DAG(DCI.DAG);
10312
10313 if (N->getOpcode() == ARMISD::SUBC) {
10314 // (SUBC (ADDE 0, 0, C), 1) -> C
10315 SDValue LHS = N->getOperand(0);
10316 SDValue RHS = N->getOperand(1);
10317 if (LHS->getOpcode() == ARMISD::ADDE &&
10318 isNullConstant(LHS->getOperand(0)) &&
10319 isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
10320 return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
10321 }
10322 }
10323
10324 if (Subtarget->isThumb1Only()) {
10325 SDValue RHS = N->getOperand(1);
10326 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10327 int32_t imm = C->getSExtValue();
10328 if (imm < 0 && imm > std::numeric_limits<int>::min()) {
10329 SDLoc DL(N);
10330 RHS = DAG.getConstant(-imm, DL, MVT::i32);
10331 unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
10332 : ARMISD::ADDC;
10333 return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
10334 }
10335 }
10336 }
10337
10338 return SDValue();
10339 }
10340
PerformAddeSubeCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10341 static SDValue PerformAddeSubeCombine(SDNode *N,
10342 TargetLowering::DAGCombinerInfo &DCI,
10343 const ARMSubtarget *Subtarget) {
10344 if (Subtarget->isThumb1Only()) {
10345 SelectionDAG &DAG = DCI.DAG;
10346 SDValue RHS = N->getOperand(1);
10347 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10348 int64_t imm = C->getSExtValue();
10349 if (imm < 0) {
10350 SDLoc DL(N);
10351
10352 // The with-carry-in form matches bitwise not instead of the negation.
10353 // Effectively, the inverse interpretation of the carry flag already
10354 // accounts for part of the negation.
10355 RHS = DAG.getConstant(~imm, DL, MVT::i32);
10356
10357 unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
10358 : ARMISD::ADDE;
10359 return DAG.getNode(Opcode, DL, N->getVTList(),
10360 N->getOperand(0), RHS, N->getOperand(2));
10361 }
10362 }
10363 } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
10364 return AddCombineTo64bitMLAL(N, DCI, Subtarget);
10365 }
10366 return SDValue();
10367 }
10368
10369 /// PerformADDECombine - Target-specific dag combine transform from
10370 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
10371 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
PerformADDECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10372 static SDValue PerformADDECombine(SDNode *N,
10373 TargetLowering::DAGCombinerInfo &DCI,
10374 const ARMSubtarget *Subtarget) {
10375 // Only ARM and Thumb2 support UMLAL/SMLAL.
10376 if (Subtarget->isThumb1Only())
10377 return PerformAddeSubeCombine(N, DCI, Subtarget);
10378
10379 // Only perform the checks after legalize when the pattern is available.
10380 if (DCI.isBeforeLegalize()) return SDValue();
10381
10382 return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
10383 }
10384
10385 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
10386 /// operands N0 and N1. This is a helper for PerformADDCombine that is
10387 /// called with the default operands, and if that fails, with commuted
10388 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10389 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
10390 TargetLowering::DAGCombinerInfo &DCI,
10391 const ARMSubtarget *Subtarget){
10392 // Attempt to create vpadd for this add.
10393 if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
10394 return Result;
10395
10396 // Attempt to create vpaddl for this add.
10397 if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
10398 return Result;
10399 if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
10400 Subtarget))
10401 return Result;
10402
10403 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10404 if (N0.getNode()->hasOneUse())
10405 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
10406 return Result;
10407 return SDValue();
10408 }
10409
PerformSHLSimplify(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)10410 static SDValue PerformSHLSimplify(SDNode *N,
10411 TargetLowering::DAGCombinerInfo &DCI,
10412 const ARMSubtarget *ST) {
10413 // Allow the generic combiner to identify potential bswaps.
10414 if (DCI.isBeforeLegalize())
10415 return SDValue();
10416
10417 // DAG combiner will fold:
10418 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
10419 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
10420 // Other code patterns that can be also be modified have the following form:
10421 // b + ((a << 1) | 510)
10422 // b + ((a << 1) & 510)
10423 // b + ((a << 1) ^ 510)
10424 // b + ((a << 1) + 510)
10425
10426 // Many instructions can perform the shift for free, but it requires both
10427 // the operands to be registers. If c1 << c2 is too large, a mov immediate
10428 // instruction will needed. So, unfold back to the original pattern if:
10429 // - if c1 and c2 are small enough that they don't require mov imms.
10430 // - the user(s) of the node can perform an shl
10431
10432 // No shifted operands for 16-bit instructions.
10433 if (ST->isThumb() && ST->isThumb1Only())
10434 return SDValue();
10435
10436 // Check that all the users could perform the shl themselves.
10437 for (auto U : N->uses()) {
10438 switch(U->getOpcode()) {
10439 default:
10440 return SDValue();
10441 case ISD::SUB:
10442 case ISD::ADD:
10443 case ISD::AND:
10444 case ISD::OR:
10445 case ISD::XOR:
10446 case ISD::SETCC:
10447 case ARMISD::CMP:
10448 // Check that the user isn't already using a constant because there
10449 // aren't any instructions that support an immediate operand and a
10450 // shifted operand.
10451 if (isa<ConstantSDNode>(U->getOperand(0)) ||
10452 isa<ConstantSDNode>(U->getOperand(1)))
10453 return SDValue();
10454
10455 // Check that it's not already using a shift.
10456 if (U->getOperand(0).getOpcode() == ISD::SHL ||
10457 U->getOperand(1).getOpcode() == ISD::SHL)
10458 return SDValue();
10459 break;
10460 }
10461 }
10462
10463 if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
10464 N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
10465 return SDValue();
10466
10467 if (N->getOperand(0).getOpcode() != ISD::SHL)
10468 return SDValue();
10469
10470 SDValue SHL = N->getOperand(0);
10471
10472 auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
10473 auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
10474 if (!C1ShlC2 || !C2)
10475 return SDValue();
10476
10477 APInt C2Int = C2->getAPIntValue();
10478 APInt C1Int = C1ShlC2->getAPIntValue();
10479
10480 // Check that performing a lshr will not lose any information.
10481 APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
10482 C2Int.getBitWidth() - C2->getZExtValue());
10483 if ((C1Int & Mask) != C1Int)
10484 return SDValue();
10485
10486 // Shift the first constant.
10487 C1Int.lshrInPlace(C2Int);
10488
10489 // The immediates are encoded as an 8-bit value that can be rotated.
10490 auto LargeImm = [](const APInt &Imm) {
10491 unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
10492 return Imm.getBitWidth() - Zeros > 8;
10493 };
10494
10495 if (LargeImm(C1Int) || LargeImm(C2Int))
10496 return SDValue();
10497
10498 SelectionDAG &DAG = DCI.DAG;
10499 SDLoc dl(N);
10500 SDValue X = SHL.getOperand(0);
10501 SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
10502 DAG.getConstant(C1Int, dl, MVT::i32));
10503 // Shift left to compensate for the lshr of C1Int.
10504 SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
10505
10506 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
10507 SHL.dump(); N->dump());
10508 LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
10509
10510 DAG.ReplaceAllUsesWith(SDValue(N, 0), Res);
10511 return SDValue(N, 0);
10512 }
10513
10514
10515 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
10516 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10517 static SDValue PerformADDCombine(SDNode *N,
10518 TargetLowering::DAGCombinerInfo &DCI,
10519 const ARMSubtarget *Subtarget) {
10520 SDValue N0 = N->getOperand(0);
10521 SDValue N1 = N->getOperand(1);
10522
10523 // Only works one way, because it needs an immediate operand.
10524 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10525 return Result;
10526
10527 // First try with the default operand order.
10528 if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
10529 return Result;
10530
10531 // If that didn't work, try again with the operands commuted.
10532 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
10533 }
10534
10535 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
10536 ///
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)10537 static SDValue PerformSUBCombine(SDNode *N,
10538 TargetLowering::DAGCombinerInfo &DCI) {
10539 SDValue N0 = N->getOperand(0);
10540 SDValue N1 = N->getOperand(1);
10541
10542 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10543 if (N1.getNode()->hasOneUse())
10544 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
10545 return Result;
10546
10547 return SDValue();
10548 }
10549
10550 /// PerformVMULCombine
10551 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
10552 /// special multiplier accumulator forwarding.
10553 /// vmul d3, d0, d2
10554 /// vmla d3, d1, d2
10555 /// is faster than
10556 /// vadd d3, d0, d1
10557 /// vmul d3, d3, d2
10558 // However, for (A + B) * (A + B),
10559 // vadd d2, d0, d1
10560 // vmul d3, d0, d2
10561 // vmla d3, d1, d2
10562 // is slower than
10563 // vadd d2, d0, d1
10564 // vmul d3, d2, d2
PerformVMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10565 static SDValue PerformVMULCombine(SDNode *N,
10566 TargetLowering::DAGCombinerInfo &DCI,
10567 const ARMSubtarget *Subtarget) {
10568 if (!Subtarget->hasVMLxForwarding())
10569 return SDValue();
10570
10571 SelectionDAG &DAG = DCI.DAG;
10572 SDValue N0 = N->getOperand(0);
10573 SDValue N1 = N->getOperand(1);
10574 unsigned Opcode = N0.getOpcode();
10575 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10576 Opcode != ISD::FADD && Opcode != ISD::FSUB) {
10577 Opcode = N1.getOpcode();
10578 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10579 Opcode != ISD::FADD && Opcode != ISD::FSUB)
10580 return SDValue();
10581 std::swap(N0, N1);
10582 }
10583
10584 if (N0 == N1)
10585 return SDValue();
10586
10587 EVT VT = N->getValueType(0);
10588 SDLoc DL(N);
10589 SDValue N00 = N0->getOperand(0);
10590 SDValue N01 = N0->getOperand(1);
10591 return DAG.getNode(Opcode, DL, VT,
10592 DAG.getNode(ISD::MUL, DL, VT, N00, N1),
10593 DAG.getNode(ISD::MUL, DL, VT, N01, N1));
10594 }
10595
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10596 static SDValue PerformMULCombine(SDNode *N,
10597 TargetLowering::DAGCombinerInfo &DCI,
10598 const ARMSubtarget *Subtarget) {
10599 SelectionDAG &DAG = DCI.DAG;
10600
10601 if (Subtarget->isThumb1Only())
10602 return SDValue();
10603
10604 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10605 return SDValue();
10606
10607 EVT VT = N->getValueType(0);
10608 if (VT.is64BitVector() || VT.is128BitVector())
10609 return PerformVMULCombine(N, DCI, Subtarget);
10610 if (VT != MVT::i32)
10611 return SDValue();
10612
10613 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10614 if (!C)
10615 return SDValue();
10616
10617 int64_t MulAmt = C->getSExtValue();
10618 unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
10619
10620 ShiftAmt = ShiftAmt & (32 - 1);
10621 SDValue V = N->getOperand(0);
10622 SDLoc DL(N);
10623
10624 SDValue Res;
10625 MulAmt >>= ShiftAmt;
10626
10627 if (MulAmt >= 0) {
10628 if (isPowerOf2_32(MulAmt - 1)) {
10629 // (mul x, 2^N + 1) => (add (shl x, N), x)
10630 Res = DAG.getNode(ISD::ADD, DL, VT,
10631 V,
10632 DAG.getNode(ISD::SHL, DL, VT,
10633 V,
10634 DAG.getConstant(Log2_32(MulAmt - 1), DL,
10635 MVT::i32)));
10636 } else if (isPowerOf2_32(MulAmt + 1)) {
10637 // (mul x, 2^N - 1) => (sub (shl x, N), x)
10638 Res = DAG.getNode(ISD::SUB, DL, VT,
10639 DAG.getNode(ISD::SHL, DL, VT,
10640 V,
10641 DAG.getConstant(Log2_32(MulAmt + 1), DL,
10642 MVT::i32)),
10643 V);
10644 } else
10645 return SDValue();
10646 } else {
10647 uint64_t MulAmtAbs = -MulAmt;
10648 if (isPowerOf2_32(MulAmtAbs + 1)) {
10649 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
10650 Res = DAG.getNode(ISD::SUB, DL, VT,
10651 V,
10652 DAG.getNode(ISD::SHL, DL, VT,
10653 V,
10654 DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
10655 MVT::i32)));
10656 } else if (isPowerOf2_32(MulAmtAbs - 1)) {
10657 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
10658 Res = DAG.getNode(ISD::ADD, DL, VT,
10659 V,
10660 DAG.getNode(ISD::SHL, DL, VT,
10661 V,
10662 DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
10663 MVT::i32)));
10664 Res = DAG.getNode(ISD::SUB, DL, VT,
10665 DAG.getConstant(0, DL, MVT::i32), Res);
10666 } else
10667 return SDValue();
10668 }
10669
10670 if (ShiftAmt != 0)
10671 Res = DAG.getNode(ISD::SHL, DL, VT,
10672 Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
10673
10674 // Do not add new nodes to DAG combiner worklist.
10675 DCI.CombineTo(N, Res, false);
10676 return SDValue();
10677 }
10678
CombineANDShift(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10679 static SDValue CombineANDShift(SDNode *N,
10680 TargetLowering::DAGCombinerInfo &DCI,
10681 const ARMSubtarget *Subtarget) {
10682 // Allow DAGCombine to pattern-match before we touch the canonical form.
10683 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10684 return SDValue();
10685
10686 if (N->getValueType(0) != MVT::i32)
10687 return SDValue();
10688
10689 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10690 if (!N1C)
10691 return SDValue();
10692
10693 uint32_t C1 = (uint32_t)N1C->getZExtValue();
10694 // Don't transform uxtb/uxth.
10695 if (C1 == 255 || C1 == 65535)
10696 return SDValue();
10697
10698 SDNode *N0 = N->getOperand(0).getNode();
10699 if (!N0->hasOneUse())
10700 return SDValue();
10701
10702 if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
10703 return SDValue();
10704
10705 bool LeftShift = N0->getOpcode() == ISD::SHL;
10706
10707 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10708 if (!N01C)
10709 return SDValue();
10710
10711 uint32_t C2 = (uint32_t)N01C->getZExtValue();
10712 if (!C2 || C2 >= 32)
10713 return SDValue();
10714
10715 SelectionDAG &DAG = DCI.DAG;
10716 SDLoc DL(N);
10717
10718 // We have a pattern of the form "(and (shl x, c2) c1)" or
10719 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
10720 // transform to a pair of shifts, to save materializing c1.
10721
10722 // First pattern: right shift, and c1+1 is a power of two.
10723 // FIXME: Also check reversed pattern (left shift, and ~c1+1 is a power
10724 // of two).
10725 // FIXME: Use demanded bits?
10726 if (!LeftShift && isMask_32(C1)) {
10727 uint32_t C3 = countLeadingZeros(C1);
10728 if (C2 < C3) {
10729 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
10730 DAG.getConstant(C3 - C2, DL, MVT::i32));
10731 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
10732 DAG.getConstant(C3, DL, MVT::i32));
10733 }
10734 }
10735
10736 // Second pattern: left shift, and (c1>>c2)+1 is a power of two.
10737 // FIXME: Also check reversed pattern (right shift, and ~(c1<<c2)+1
10738 // is a power of two).
10739 // FIXME: Use demanded bits?
10740 if (LeftShift && isShiftedMask_32(C1)) {
10741 uint32_t C3 = countLeadingZeros(C1);
10742 if (C2 + C3 < 32 && C1 == ((-1U << (C2 + C3)) >> C3)) {
10743 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
10744 DAG.getConstant(C2 + C3, DL, MVT::i32));
10745 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
10746 DAG.getConstant(C3, DL, MVT::i32));
10747 }
10748 }
10749
10750 // FIXME: Transform "(and (shl x, c2) c1)" ->
10751 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
10752 // c1.
10753 return SDValue();
10754 }
10755
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10756 static SDValue PerformANDCombine(SDNode *N,
10757 TargetLowering::DAGCombinerInfo &DCI,
10758 const ARMSubtarget *Subtarget) {
10759 // Attempt to use immediate-form VBIC
10760 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
10761 SDLoc dl(N);
10762 EVT VT = N->getValueType(0);
10763 SelectionDAG &DAG = DCI.DAG;
10764
10765 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10766 return SDValue();
10767
10768 APInt SplatBits, SplatUndef;
10769 unsigned SplatBitSize;
10770 bool HasAnyUndefs;
10771 if (BVN &&
10772 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
10773 if (SplatBitSize <= 64) {
10774 EVT VbicVT;
10775 SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
10776 SplatUndef.getZExtValue(), SplatBitSize,
10777 DAG, dl, VbicVT, VT.is128BitVector(),
10778 OtherModImm);
10779 if (Val.getNode()) {
10780 SDValue Input =
10781 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
10782 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
10783 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
10784 }
10785 }
10786 }
10787
10788 if (!Subtarget->isThumb1Only()) {
10789 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
10790 if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
10791 return Result;
10792
10793 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10794 return Result;
10795 }
10796
10797 if (Subtarget->isThumb1Only())
10798 if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
10799 return Result;
10800
10801 return SDValue();
10802 }
10803
10804 // Try combining OR nodes to SMULWB, SMULWT.
PerformORCombineToSMULWBT(SDNode * OR,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10805 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
10806 TargetLowering::DAGCombinerInfo &DCI,
10807 const ARMSubtarget *Subtarget) {
10808 if (!Subtarget->hasV6Ops() ||
10809 (Subtarget->isThumb() &&
10810 (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
10811 return SDValue();
10812
10813 SDValue SRL = OR->getOperand(0);
10814 SDValue SHL = OR->getOperand(1);
10815
10816 if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
10817 SRL = OR->getOperand(1);
10818 SHL = OR->getOperand(0);
10819 }
10820 if (!isSRL16(SRL) || !isSHL16(SHL))
10821 return SDValue();
10822
10823 // The first operands to the shifts need to be the two results from the
10824 // same smul_lohi node.
10825 if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
10826 SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
10827 return SDValue();
10828
10829 SDNode *SMULLOHI = SRL.getOperand(0).getNode();
10830 if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
10831 SHL.getOperand(0) != SDValue(SMULLOHI, 1))
10832 return SDValue();
10833
10834 // Now we have:
10835 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
10836 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
10837 // For SMUWB the 16-bit value will signed extended somehow.
10838 // For SMULWT only the SRA is required.
10839 // Check both sides of SMUL_LOHI
10840 SDValue OpS16 = SMULLOHI->getOperand(0);
10841 SDValue OpS32 = SMULLOHI->getOperand(1);
10842
10843 SelectionDAG &DAG = DCI.DAG;
10844 if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
10845 OpS16 = OpS32;
10846 OpS32 = SMULLOHI->getOperand(0);
10847 }
10848
10849 SDLoc dl(OR);
10850 unsigned Opcode = 0;
10851 if (isS16(OpS16, DAG))
10852 Opcode = ARMISD::SMULWB;
10853 else if (isSRA16(OpS16)) {
10854 Opcode = ARMISD::SMULWT;
10855 OpS16 = OpS16->getOperand(0);
10856 }
10857 else
10858 return SDValue();
10859
10860 SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
10861 DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
10862 return SDValue(OR, 0);
10863 }
10864
PerformORCombineToBFI(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10865 static SDValue PerformORCombineToBFI(SDNode *N,
10866 TargetLowering::DAGCombinerInfo &DCI,
10867 const ARMSubtarget *Subtarget) {
10868 // BFI is only available on V6T2+
10869 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
10870 return SDValue();
10871
10872 EVT VT = N->getValueType(0);
10873 SDValue N0 = N->getOperand(0);
10874 SDValue N1 = N->getOperand(1);
10875 SelectionDAG &DAG = DCI.DAG;
10876 SDLoc DL(N);
10877 // 1) or (and A, mask), val => ARMbfi A, val, mask
10878 // iff (val & mask) == val
10879 //
10880 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
10881 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
10882 // && mask == ~mask2
10883 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
10884 // && ~mask == mask2
10885 // (i.e., copy a bitfield value into another bitfield of the same width)
10886
10887 if (VT != MVT::i32)
10888 return SDValue();
10889
10890 SDValue N00 = N0.getOperand(0);
10891
10892 // The value and the mask need to be constants so we can verify this is
10893 // actually a bitfield set. If the mask is 0xffff, we can do better
10894 // via a movt instruction, so don't use BFI in that case.
10895 SDValue MaskOp = N0.getOperand(1);
10896 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
10897 if (!MaskC)
10898 return SDValue();
10899 unsigned Mask = MaskC->getZExtValue();
10900 if (Mask == 0xffff)
10901 return SDValue();
10902 SDValue Res;
10903 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
10904 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10905 if (N1C) {
10906 unsigned Val = N1C->getZExtValue();
10907 if ((Val & ~Mask) != Val)
10908 return SDValue();
10909
10910 if (ARM::isBitFieldInvertedMask(Mask)) {
10911 Val >>= countTrailingZeros(~Mask);
10912
10913 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
10914 DAG.getConstant(Val, DL, MVT::i32),
10915 DAG.getConstant(Mask, DL, MVT::i32));
10916
10917 DCI.CombineTo(N, Res, false);
10918 // Return value from the original node to inform the combiner than N is
10919 // now dead.
10920 return SDValue(N, 0);
10921 }
10922 } else if (N1.getOpcode() == ISD::AND) {
10923 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
10924 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
10925 if (!N11C)
10926 return SDValue();
10927 unsigned Mask2 = N11C->getZExtValue();
10928
10929 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
10930 // as is to match.
10931 if (ARM::isBitFieldInvertedMask(Mask) &&
10932 (Mask == ~Mask2)) {
10933 // The pack halfword instruction works better for masks that fit it,
10934 // so use that when it's available.
10935 if (Subtarget->hasDSP() &&
10936 (Mask == 0xffff || Mask == 0xffff0000))
10937 return SDValue();
10938 // 2a
10939 unsigned amt = countTrailingZeros(Mask2);
10940 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
10941 DAG.getConstant(amt, DL, MVT::i32));
10942 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
10943 DAG.getConstant(Mask, DL, MVT::i32));
10944 DCI.CombineTo(N, Res, false);
10945 // Return value from the original node to inform the combiner than N is
10946 // now dead.
10947 return SDValue(N, 0);
10948 } else if (ARM::isBitFieldInvertedMask(~Mask) &&
10949 (~Mask == Mask2)) {
10950 // The pack halfword instruction works better for masks that fit it,
10951 // so use that when it's available.
10952 if (Subtarget->hasDSP() &&
10953 (Mask2 == 0xffff || Mask2 == 0xffff0000))
10954 return SDValue();
10955 // 2b
10956 unsigned lsb = countTrailingZeros(Mask);
10957 Res = DAG.getNode(ISD::SRL, DL, VT, N00,
10958 DAG.getConstant(lsb, DL, MVT::i32));
10959 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
10960 DAG.getConstant(Mask2, DL, MVT::i32));
10961 DCI.CombineTo(N, Res, false);
10962 // Return value from the original node to inform the combiner than N is
10963 // now dead.
10964 return SDValue(N, 0);
10965 }
10966 }
10967
10968 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
10969 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
10970 ARM::isBitFieldInvertedMask(~Mask)) {
10971 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
10972 // where lsb(mask) == #shamt and masked bits of B are known zero.
10973 SDValue ShAmt = N00.getOperand(1);
10974 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10975 unsigned LSB = countTrailingZeros(Mask);
10976 if (ShAmtC != LSB)
10977 return SDValue();
10978
10979 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
10980 DAG.getConstant(~Mask, DL, MVT::i32));
10981
10982 DCI.CombineTo(N, Res, false);
10983 // Return value from the original node to inform the combiner than N is
10984 // now dead.
10985 return SDValue(N, 0);
10986 }
10987
10988 return SDValue();
10989 }
10990
10991 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
PerformORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10992 static SDValue PerformORCombine(SDNode *N,
10993 TargetLowering::DAGCombinerInfo &DCI,
10994 const ARMSubtarget *Subtarget) {
10995 // Attempt to use immediate-form VORR
10996 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
10997 SDLoc dl(N);
10998 EVT VT = N->getValueType(0);
10999 SelectionDAG &DAG = DCI.DAG;
11000
11001 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11002 return SDValue();
11003
11004 APInt SplatBits, SplatUndef;
11005 unsigned SplatBitSize;
11006 bool HasAnyUndefs;
11007 if (BVN && Subtarget->hasNEON() &&
11008 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
11009 if (SplatBitSize <= 64) {
11010 EVT VorrVT;
11011 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
11012 SplatUndef.getZExtValue(), SplatBitSize,
11013 DAG, dl, VorrVT, VT.is128BitVector(),
11014 OtherModImm);
11015 if (Val.getNode()) {
11016 SDValue Input =
11017 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
11018 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
11019 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
11020 }
11021 }
11022 }
11023
11024 if (!Subtarget->isThumb1Only()) {
11025 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
11026 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11027 return Result;
11028 if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
11029 return Result;
11030 }
11031
11032 SDValue N0 = N->getOperand(0);
11033 SDValue N1 = N->getOperand(1);
11034
11035 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
11036 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
11037 DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11038
11039 // The code below optimizes (or (and X, Y), Z).
11040 // The AND operand needs to have a single user to make these optimizations
11041 // profitable.
11042 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
11043 return SDValue();
11044
11045 APInt SplatUndef;
11046 unsigned SplatBitSize;
11047 bool HasAnyUndefs;
11048
11049 APInt SplatBits0, SplatBits1;
11050 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
11051 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
11052 // Ensure that the second operand of both ands are constants
11053 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
11054 HasAnyUndefs) && !HasAnyUndefs) {
11055 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
11056 HasAnyUndefs) && !HasAnyUndefs) {
11057 // Ensure that the bit width of the constants are the same and that
11058 // the splat arguments are logical inverses as per the pattern we
11059 // are trying to simplify.
11060 if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
11061 SplatBits0 == ~SplatBits1) {
11062 // Canonicalize the vector type to make instruction selection
11063 // simpler.
11064 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
11065 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
11066 N0->getOperand(1),
11067 N0->getOperand(0),
11068 N1->getOperand(0));
11069 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
11070 }
11071 }
11072 }
11073 }
11074
11075 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
11076 // reasonable.
11077 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
11078 if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
11079 return Res;
11080 }
11081
11082 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11083 return Result;
11084
11085 return SDValue();
11086 }
11087
PerformXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11088 static SDValue PerformXORCombine(SDNode *N,
11089 TargetLowering::DAGCombinerInfo &DCI,
11090 const ARMSubtarget *Subtarget) {
11091 EVT VT = N->getValueType(0);
11092 SelectionDAG &DAG = DCI.DAG;
11093
11094 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11095 return SDValue();
11096
11097 if (!Subtarget->isThumb1Only()) {
11098 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
11099 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11100 return Result;
11101
11102 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11103 return Result;
11104 }
11105
11106 return SDValue();
11107 }
11108
11109 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
11110 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
11111 // their position in "to" (Rd).
ParseBFI(SDNode * N,APInt & ToMask,APInt & FromMask)11112 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
11113 assert(N->getOpcode() == ARMISD::BFI);
11114
11115 SDValue From = N->getOperand(1);
11116 ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
11117 FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
11118
11119 // If the Base came from a SHR #C, we can deduce that it is really testing bit
11120 // #C in the base of the SHR.
11121 if (From->getOpcode() == ISD::SRL &&
11122 isa<ConstantSDNode>(From->getOperand(1))) {
11123 APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
11124 assert(Shift.getLimitedValue() < 32 && "Shift too large!");
11125 FromMask <<= Shift.getLimitedValue(31);
11126 From = From->getOperand(0);
11127 }
11128
11129 return From;
11130 }
11131
11132 // If A and B contain one contiguous set of bits, does A | B == A . B?
11133 //
11134 // Neither A nor B must be zero.
BitsProperlyConcatenate(const APInt & A,const APInt & B)11135 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
11136 unsigned LastActiveBitInA = A.countTrailingZeros();
11137 unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
11138 return LastActiveBitInA - 1 == FirstActiveBitInB;
11139 }
11140
FindBFIToCombineWith(SDNode * N)11141 static SDValue FindBFIToCombineWith(SDNode *N) {
11142 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
11143 // if one exists.
11144 APInt ToMask, FromMask;
11145 SDValue From = ParseBFI(N, ToMask, FromMask);
11146 SDValue To = N->getOperand(0);
11147
11148 // Now check for a compatible BFI to merge with. We can pass through BFIs that
11149 // aren't compatible, but not if they set the same bit in their destination as
11150 // we do (or that of any BFI we're going to combine with).
11151 SDValue V = To;
11152 APInt CombinedToMask = ToMask;
11153 while (V.getOpcode() == ARMISD::BFI) {
11154 APInt NewToMask, NewFromMask;
11155 SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
11156 if (NewFrom != From) {
11157 // This BFI has a different base. Keep going.
11158 CombinedToMask |= NewToMask;
11159 V = V.getOperand(0);
11160 continue;
11161 }
11162
11163 // Do the written bits conflict with any we've seen so far?
11164 if ((NewToMask & CombinedToMask).getBoolValue())
11165 // Conflicting bits - bail out because going further is unsafe.
11166 return SDValue();
11167
11168 // Are the new bits contiguous when combined with the old bits?
11169 if (BitsProperlyConcatenate(ToMask, NewToMask) &&
11170 BitsProperlyConcatenate(FromMask, NewFromMask))
11171 return V;
11172 if (BitsProperlyConcatenate(NewToMask, ToMask) &&
11173 BitsProperlyConcatenate(NewFromMask, FromMask))
11174 return V;
11175
11176 // We've seen a write to some bits, so track it.
11177 CombinedToMask |= NewToMask;
11178 // Keep going...
11179 V = V.getOperand(0);
11180 }
11181
11182 return SDValue();
11183 }
11184
PerformBFICombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11185 static SDValue PerformBFICombine(SDNode *N,
11186 TargetLowering::DAGCombinerInfo &DCI) {
11187 SDValue N1 = N->getOperand(1);
11188 if (N1.getOpcode() == ISD::AND) {
11189 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
11190 // the bits being cleared by the AND are not demanded by the BFI.
11191 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
11192 if (!N11C)
11193 return SDValue();
11194 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
11195 unsigned LSB = countTrailingZeros(~InvMask);
11196 unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
11197 assert(Width <
11198 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
11199 "undefined behavior");
11200 unsigned Mask = (1u << Width) - 1;
11201 unsigned Mask2 = N11C->getZExtValue();
11202 if ((Mask & (~Mask2)) == 0)
11203 return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
11204 N->getOperand(0), N1.getOperand(0),
11205 N->getOperand(2));
11206 } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
11207 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
11208 // Keep track of any consecutive bits set that all come from the same base
11209 // value. We can combine these together into a single BFI.
11210 SDValue CombineBFI = FindBFIToCombineWith(N);
11211 if (CombineBFI == SDValue())
11212 return SDValue();
11213
11214 // We've found a BFI.
11215 APInt ToMask1, FromMask1;
11216 SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
11217
11218 APInt ToMask2, FromMask2;
11219 SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
11220 assert(From1 == From2);
11221 (void)From2;
11222
11223 // First, unlink CombineBFI.
11224 DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
11225 // Then create a new BFI, combining the two together.
11226 APInt NewFromMask = FromMask1 | FromMask2;
11227 APInt NewToMask = ToMask1 | ToMask2;
11228
11229 EVT VT = N->getValueType(0);
11230 SDLoc dl(N);
11231
11232 if (NewFromMask[0] == 0)
11233 From1 = DCI.DAG.getNode(
11234 ISD::SRL, dl, VT, From1,
11235 DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
11236 return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
11237 DCI.DAG.getConstant(~NewToMask, dl, VT));
11238 }
11239 return SDValue();
11240 }
11241
11242 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
11243 /// ARMISD::VMOVRRD.
PerformVMOVRRDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11244 static SDValue PerformVMOVRRDCombine(SDNode *N,
11245 TargetLowering::DAGCombinerInfo &DCI,
11246 const ARMSubtarget *Subtarget) {
11247 // vmovrrd(vmovdrr x, y) -> x,y
11248 SDValue InDouble = N->getOperand(0);
11249 if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
11250 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
11251
11252 // vmovrrd(load f64) -> (load i32), (load i32)
11253 SDNode *InNode = InDouble.getNode();
11254 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
11255 InNode->getValueType(0) == MVT::f64 &&
11256 InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
11257 !cast<LoadSDNode>(InNode)->isVolatile()) {
11258 // TODO: Should this be done for non-FrameIndex operands?
11259 LoadSDNode *LD = cast<LoadSDNode>(InNode);
11260
11261 SelectionDAG &DAG = DCI.DAG;
11262 SDLoc DL(LD);
11263 SDValue BasePtr = LD->getBasePtr();
11264 SDValue NewLD1 =
11265 DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
11266 LD->getAlignment(), LD->getMemOperand()->getFlags());
11267
11268 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
11269 DAG.getConstant(4, DL, MVT::i32));
11270 SDValue NewLD2 = DAG.getLoad(
11271 MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
11272 std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
11273
11274 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
11275 if (DCI.DAG.getDataLayout().isBigEndian())
11276 std::swap (NewLD1, NewLD2);
11277 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
11278 return Result;
11279 }
11280
11281 return SDValue();
11282 }
11283
11284 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
11285 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
PerformVMOVDRRCombine(SDNode * N,SelectionDAG & DAG)11286 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
11287 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
11288 SDValue Op0 = N->getOperand(0);
11289 SDValue Op1 = N->getOperand(1);
11290 if (Op0.getOpcode() == ISD::BITCAST)
11291 Op0 = Op0.getOperand(0);
11292 if (Op1.getOpcode() == ISD::BITCAST)
11293 Op1 = Op1.getOperand(0);
11294 if (Op0.getOpcode() == ARMISD::VMOVRRD &&
11295 Op0.getNode() == Op1.getNode() &&
11296 Op0.getResNo() == 0 && Op1.getResNo() == 1)
11297 return DAG.getNode(ISD::BITCAST, SDLoc(N),
11298 N->getValueType(0), Op0.getOperand(0));
11299 return SDValue();
11300 }
11301
11302 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
11303 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
11304 /// i64 vector to have f64 elements, since the value can then be loaded
11305 /// directly into a VFP register.
hasNormalLoadOperand(SDNode * N)11306 static bool hasNormalLoadOperand(SDNode *N) {
11307 unsigned NumElts = N->getValueType(0).getVectorNumElements();
11308 for (unsigned i = 0; i < NumElts; ++i) {
11309 SDNode *Elt = N->getOperand(i).getNode();
11310 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
11311 return true;
11312 }
11313 return false;
11314 }
11315
11316 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
11317 /// ISD::BUILD_VECTOR.
PerformBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11318 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
11319 TargetLowering::DAGCombinerInfo &DCI,
11320 const ARMSubtarget *Subtarget) {
11321 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
11322 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
11323 // into a pair of GPRs, which is fine when the value is used as a scalar,
11324 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
11325 SelectionDAG &DAG = DCI.DAG;
11326 if (N->getNumOperands() == 2)
11327 if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
11328 return RV;
11329
11330 // Load i64 elements as f64 values so that type legalization does not split
11331 // them up into i32 values.
11332 EVT VT = N->getValueType(0);
11333 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
11334 return SDValue();
11335 SDLoc dl(N);
11336 SmallVector<SDValue, 8> Ops;
11337 unsigned NumElts = VT.getVectorNumElements();
11338 for (unsigned i = 0; i < NumElts; ++i) {
11339 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
11340 Ops.push_back(V);
11341 // Make the DAGCombiner fold the bitcast.
11342 DCI.AddToWorklist(V.getNode());
11343 }
11344 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
11345 SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
11346 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
11347 }
11348
11349 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
11350 static SDValue
PerformARMBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11351 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11352 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
11353 // At that time, we may have inserted bitcasts from integer to float.
11354 // If these bitcasts have survived DAGCombine, change the lowering of this
11355 // BUILD_VECTOR in something more vector friendly, i.e., that does not
11356 // force to use floating point types.
11357
11358 // Make sure we can change the type of the vector.
11359 // This is possible iff:
11360 // 1. The vector is only used in a bitcast to a integer type. I.e.,
11361 // 1.1. Vector is used only once.
11362 // 1.2. Use is a bit convert to an integer type.
11363 // 2. The size of its operands are 32-bits (64-bits are not legal).
11364 EVT VT = N->getValueType(0);
11365 EVT EltVT = VT.getVectorElementType();
11366
11367 // Check 1.1. and 2.
11368 if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
11369 return SDValue();
11370
11371 // By construction, the input type must be float.
11372 assert(EltVT == MVT::f32 && "Unexpected type!");
11373
11374 // Check 1.2.
11375 SDNode *Use = *N->use_begin();
11376 if (Use->getOpcode() != ISD::BITCAST ||
11377 Use->getValueType(0).isFloatingPoint())
11378 return SDValue();
11379
11380 // Check profitability.
11381 // Model is, if more than half of the relevant operands are bitcast from
11382 // i32, turn the build_vector into a sequence of insert_vector_elt.
11383 // Relevant operands are everything that is not statically
11384 // (i.e., at compile time) bitcasted.
11385 unsigned NumOfBitCastedElts = 0;
11386 unsigned NumElts = VT.getVectorNumElements();
11387 unsigned NumOfRelevantElts = NumElts;
11388 for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
11389 SDValue Elt = N->getOperand(Idx);
11390 if (Elt->getOpcode() == ISD::BITCAST) {
11391 // Assume only bit cast to i32 will go away.
11392 if (Elt->getOperand(0).getValueType() == MVT::i32)
11393 ++NumOfBitCastedElts;
11394 } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
11395 // Constants are statically casted, thus do not count them as
11396 // relevant operands.
11397 --NumOfRelevantElts;
11398 }
11399
11400 // Check if more than half of the elements require a non-free bitcast.
11401 if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
11402 return SDValue();
11403
11404 SelectionDAG &DAG = DCI.DAG;
11405 // Create the new vector type.
11406 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
11407 // Check if the type is legal.
11408 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11409 if (!TLI.isTypeLegal(VecVT))
11410 return SDValue();
11411
11412 // Combine:
11413 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
11414 // => BITCAST INSERT_VECTOR_ELT
11415 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
11416 // (BITCAST EN), N.
11417 SDValue Vec = DAG.getUNDEF(VecVT);
11418 SDLoc dl(N);
11419 for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
11420 SDValue V = N->getOperand(Idx);
11421 if (V.isUndef())
11422 continue;
11423 if (V.getOpcode() == ISD::BITCAST &&
11424 V->getOperand(0).getValueType() == MVT::i32)
11425 // Fold obvious case.
11426 V = V.getOperand(0);
11427 else {
11428 V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
11429 // Make the DAGCombiner fold the bitcasts.
11430 DCI.AddToWorklist(V.getNode());
11431 }
11432 SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
11433 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
11434 }
11435 Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
11436 // Make the DAGCombiner fold the bitcasts.
11437 DCI.AddToWorklist(Vec.getNode());
11438 return Vec;
11439 }
11440
11441 /// PerformInsertEltCombine - Target-specific dag combine xforms for
11442 /// ISD::INSERT_VECTOR_ELT.
PerformInsertEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11443 static SDValue PerformInsertEltCombine(SDNode *N,
11444 TargetLowering::DAGCombinerInfo &DCI) {
11445 // Bitcast an i64 load inserted into a vector to f64.
11446 // Otherwise, the i64 value will be legalized to a pair of i32 values.
11447 EVT VT = N->getValueType(0);
11448 SDNode *Elt = N->getOperand(1).getNode();
11449 if (VT.getVectorElementType() != MVT::i64 ||
11450 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
11451 return SDValue();
11452
11453 SelectionDAG &DAG = DCI.DAG;
11454 SDLoc dl(N);
11455 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
11456 VT.getVectorNumElements());
11457 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
11458 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
11459 // Make the DAGCombiner fold the bitcasts.
11460 DCI.AddToWorklist(Vec.getNode());
11461 DCI.AddToWorklist(V.getNode());
11462 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
11463 Vec, V, N->getOperand(2));
11464 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
11465 }
11466
11467 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
11468 /// ISD::VECTOR_SHUFFLE.
PerformVECTOR_SHUFFLECombine(SDNode * N,SelectionDAG & DAG)11469 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
11470 // The LLVM shufflevector instruction does not require the shuffle mask
11471 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
11472 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
11473 // operands do not match the mask length, they are extended by concatenating
11474 // them with undef vectors. That is probably the right thing for other
11475 // targets, but for NEON it is better to concatenate two double-register
11476 // size vector operands into a single quad-register size vector. Do that
11477 // transformation here:
11478 // shuffle(concat(v1, undef), concat(v2, undef)) ->
11479 // shuffle(concat(v1, v2), undef)
11480 SDValue Op0 = N->getOperand(0);
11481 SDValue Op1 = N->getOperand(1);
11482 if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
11483 Op1.getOpcode() != ISD::CONCAT_VECTORS ||
11484 Op0.getNumOperands() != 2 ||
11485 Op1.getNumOperands() != 2)
11486 return SDValue();
11487 SDValue Concat0Op1 = Op0.getOperand(1);
11488 SDValue Concat1Op1 = Op1.getOperand(1);
11489 if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
11490 return SDValue();
11491 // Skip the transformation if any of the types are illegal.
11492 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11493 EVT VT = N->getValueType(0);
11494 if (!TLI.isTypeLegal(VT) ||
11495 !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
11496 !TLI.isTypeLegal(Concat1Op1.getValueType()))
11497 return SDValue();
11498
11499 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
11500 Op0.getOperand(0), Op1.getOperand(0));
11501 // Translate the shuffle mask.
11502 SmallVector<int, 16> NewMask;
11503 unsigned NumElts = VT.getVectorNumElements();
11504 unsigned HalfElts = NumElts/2;
11505 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
11506 for (unsigned n = 0; n < NumElts; ++n) {
11507 int MaskElt = SVN->getMaskElt(n);
11508 int NewElt = -1;
11509 if (MaskElt < (int)HalfElts)
11510 NewElt = MaskElt;
11511 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
11512 NewElt = HalfElts + MaskElt - NumElts;
11513 NewMask.push_back(NewElt);
11514 }
11515 return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
11516 DAG.getUNDEF(VT), NewMask);
11517 }
11518
11519 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
11520 /// NEON load/store intrinsics, and generic vector load/stores, to merge
11521 /// base address updates.
11522 /// For generic load/stores, the memory type is assumed to be a vector.
11523 /// The caller is assumed to have checked legality.
CombineBaseUpdate(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11524 static SDValue CombineBaseUpdate(SDNode *N,
11525 TargetLowering::DAGCombinerInfo &DCI) {
11526 SelectionDAG &DAG = DCI.DAG;
11527 const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
11528 N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
11529 const bool isStore = N->getOpcode() == ISD::STORE;
11530 const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
11531 SDValue Addr = N->getOperand(AddrOpIdx);
11532 MemSDNode *MemN = cast<MemSDNode>(N);
11533 SDLoc dl(N);
11534
11535 // Search for a use of the address operand that is an increment.
11536 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
11537 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
11538 SDNode *User = *UI;
11539 if (User->getOpcode() != ISD::ADD ||
11540 UI.getUse().getResNo() != Addr.getResNo())
11541 continue;
11542
11543 // Check that the add is independent of the load/store. Otherwise, folding
11544 // it would create a cycle.
11545 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
11546 continue;
11547
11548 // Find the new opcode for the updating load/store.
11549 bool isLoadOp = true;
11550 bool isLaneOp = false;
11551 unsigned NewOpc = 0;
11552 unsigned NumVecs = 0;
11553 if (isIntrinsic) {
11554 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
11555 switch (IntNo) {
11556 default: llvm_unreachable("unexpected intrinsic for Neon base update");
11557 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
11558 NumVecs = 1; break;
11559 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
11560 NumVecs = 2; break;
11561 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
11562 NumVecs = 3; break;
11563 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
11564 NumVecs = 4; break;
11565 case Intrinsic::arm_neon_vld2dup:
11566 case Intrinsic::arm_neon_vld3dup:
11567 case Intrinsic::arm_neon_vld4dup:
11568 // TODO: Support updating VLDxDUP nodes. For now, we just skip
11569 // combining base updates for such intrinsics.
11570 continue;
11571 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
11572 NumVecs = 2; isLaneOp = true; break;
11573 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
11574 NumVecs = 3; isLaneOp = true; break;
11575 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
11576 NumVecs = 4; isLaneOp = true; break;
11577 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
11578 NumVecs = 1; isLoadOp = false; break;
11579 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
11580 NumVecs = 2; isLoadOp = false; break;
11581 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
11582 NumVecs = 3; isLoadOp = false; break;
11583 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
11584 NumVecs = 4; isLoadOp = false; break;
11585 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
11586 NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
11587 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
11588 NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
11589 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
11590 NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
11591 }
11592 } else {
11593 isLaneOp = true;
11594 switch (N->getOpcode()) {
11595 default: llvm_unreachable("unexpected opcode for Neon base update");
11596 case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
11597 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
11598 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
11599 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
11600 case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD;
11601 NumVecs = 1; isLaneOp = false; break;
11602 case ISD::STORE: NewOpc = ARMISD::VST1_UPD;
11603 NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
11604 }
11605 }
11606
11607 // Find the size of memory referenced by the load/store.
11608 EVT VecTy;
11609 if (isLoadOp) {
11610 VecTy = N->getValueType(0);
11611 } else if (isIntrinsic) {
11612 VecTy = N->getOperand(AddrOpIdx+1).getValueType();
11613 } else {
11614 assert(isStore && "Node has to be a load, a store, or an intrinsic!");
11615 VecTy = N->getOperand(1).getValueType();
11616 }
11617
11618 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
11619 if (isLaneOp)
11620 NumBytes /= VecTy.getVectorNumElements();
11621
11622 // If the increment is a constant, it must match the memory ref size.
11623 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
11624 ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
11625 if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
11626 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
11627 // separate instructions that make it harder to use a non-constant update.
11628 continue;
11629 }
11630
11631 // OK, we found an ADD we can fold into the base update.
11632 // Now, create a _UPD node, taking care of not breaking alignment.
11633
11634 EVT AlignedVecTy = VecTy;
11635 unsigned Alignment = MemN->getAlignment();
11636
11637 // If this is a less-than-standard-aligned load/store, change the type to
11638 // match the standard alignment.
11639 // The alignment is overlooked when selecting _UPD variants; and it's
11640 // easier to introduce bitcasts here than fix that.
11641 // There are 3 ways to get to this base-update combine:
11642 // - intrinsics: they are assumed to be properly aligned (to the standard
11643 // alignment of the memory type), so we don't need to do anything.
11644 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
11645 // intrinsics, so, likewise, there's nothing to do.
11646 // - generic load/store instructions: the alignment is specified as an
11647 // explicit operand, rather than implicitly as the standard alignment
11648 // of the memory type (like the intrisics). We need to change the
11649 // memory type to match the explicit alignment. That way, we don't
11650 // generate non-standard-aligned ARMISD::VLDx nodes.
11651 if (isa<LSBaseSDNode>(N)) {
11652 if (Alignment == 0)
11653 Alignment = 1;
11654 if (Alignment < VecTy.getScalarSizeInBits() / 8) {
11655 MVT EltTy = MVT::getIntegerVT(Alignment * 8);
11656 assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
11657 assert(!isLaneOp && "Unexpected generic load/store lane.");
11658 unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
11659 AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
11660 }
11661 // Don't set an explicit alignment on regular load/stores that we want
11662 // to transform to VLD/VST 1_UPD nodes.
11663 // This matches the behavior of regular load/stores, which only get an
11664 // explicit alignment if the MMO alignment is larger than the standard
11665 // alignment of the memory type.
11666 // Intrinsics, however, always get an explicit alignment, set to the
11667 // alignment of the MMO.
11668 Alignment = 1;
11669 }
11670
11671 // Create the new updating load/store node.
11672 // First, create an SDVTList for the new updating node's results.
11673 EVT Tys[6];
11674 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
11675 unsigned n;
11676 for (n = 0; n < NumResultVecs; ++n)
11677 Tys[n] = AlignedVecTy;
11678 Tys[n++] = MVT::i32;
11679 Tys[n] = MVT::Other;
11680 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
11681
11682 // Then, gather the new node's operands.
11683 SmallVector<SDValue, 8> Ops;
11684 Ops.push_back(N->getOperand(0)); // incoming chain
11685 Ops.push_back(N->getOperand(AddrOpIdx));
11686 Ops.push_back(Inc);
11687
11688 if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
11689 // Try to match the intrinsic's signature
11690 Ops.push_back(StN->getValue());
11691 } else {
11692 // Loads (and of course intrinsics) match the intrinsics' signature,
11693 // so just add all but the alignment operand.
11694 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
11695 Ops.push_back(N->getOperand(i));
11696 }
11697
11698 // For all node types, the alignment operand is always the last one.
11699 Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
11700
11701 // If this is a non-standard-aligned STORE, the penultimate operand is the
11702 // stored value. Bitcast it to the aligned type.
11703 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
11704 SDValue &StVal = Ops[Ops.size()-2];
11705 StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
11706 }
11707
11708 EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
11709 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
11710 MemN->getMemOperand());
11711
11712 // Update the uses.
11713 SmallVector<SDValue, 5> NewResults;
11714 for (unsigned i = 0; i < NumResultVecs; ++i)
11715 NewResults.push_back(SDValue(UpdN.getNode(), i));
11716
11717 // If this is an non-standard-aligned LOAD, the first result is the loaded
11718 // value. Bitcast it to the expected result type.
11719 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
11720 SDValue &LdVal = NewResults[0];
11721 LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
11722 }
11723
11724 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
11725 DCI.CombineTo(N, NewResults);
11726 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
11727
11728 break;
11729 }
11730 return SDValue();
11731 }
11732
PerformVLDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11733 static SDValue PerformVLDCombine(SDNode *N,
11734 TargetLowering::DAGCombinerInfo &DCI) {
11735 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11736 return SDValue();
11737
11738 return CombineBaseUpdate(N, DCI);
11739 }
11740
11741 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
11742 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
11743 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
11744 /// return true.
CombineVLDDUP(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11745 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11746 SelectionDAG &DAG = DCI.DAG;
11747 EVT VT = N->getValueType(0);
11748 // vldN-dup instructions only support 64-bit vectors for N > 1.
11749 if (!VT.is64BitVector())
11750 return false;
11751
11752 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
11753 SDNode *VLD = N->getOperand(0).getNode();
11754 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
11755 return false;
11756 unsigned NumVecs = 0;
11757 unsigned NewOpc = 0;
11758 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
11759 if (IntNo == Intrinsic::arm_neon_vld2lane) {
11760 NumVecs = 2;
11761 NewOpc = ARMISD::VLD2DUP;
11762 } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
11763 NumVecs = 3;
11764 NewOpc = ARMISD::VLD3DUP;
11765 } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
11766 NumVecs = 4;
11767 NewOpc = ARMISD::VLD4DUP;
11768 } else {
11769 return false;
11770 }
11771
11772 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
11773 // numbers match the load.
11774 unsigned VLDLaneNo =
11775 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
11776 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11777 UI != UE; ++UI) {
11778 // Ignore uses of the chain result.
11779 if (UI.getUse().getResNo() == NumVecs)
11780 continue;
11781 SDNode *User = *UI;
11782 if (User->getOpcode() != ARMISD::VDUPLANE ||
11783 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
11784 return false;
11785 }
11786
11787 // Create the vldN-dup node.
11788 EVT Tys[5];
11789 unsigned n;
11790 for (n = 0; n < NumVecs; ++n)
11791 Tys[n] = VT;
11792 Tys[n] = MVT::Other;
11793 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
11794 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
11795 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
11796 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
11797 Ops, VLDMemInt->getMemoryVT(),
11798 VLDMemInt->getMemOperand());
11799
11800 // Update the uses.
11801 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11802 UI != UE; ++UI) {
11803 unsigned ResNo = UI.getUse().getResNo();
11804 // Ignore uses of the chain result.
11805 if (ResNo == NumVecs)
11806 continue;
11807 SDNode *User = *UI;
11808 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
11809 }
11810
11811 // Now the vldN-lane intrinsic is dead except for its chain result.
11812 // Update uses of the chain.
11813 std::vector<SDValue> VLDDupResults;
11814 for (unsigned n = 0; n < NumVecs; ++n)
11815 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
11816 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
11817 DCI.CombineTo(VLD, VLDDupResults);
11818
11819 return true;
11820 }
11821
11822 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
11823 /// ARMISD::VDUPLANE.
PerformVDUPLANECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11824 static SDValue PerformVDUPLANECombine(SDNode *N,
11825 TargetLowering::DAGCombinerInfo &DCI) {
11826 SDValue Op = N->getOperand(0);
11827
11828 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
11829 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
11830 if (CombineVLDDUP(N, DCI))
11831 return SDValue(N, 0);
11832
11833 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
11834 // redundant. Ignore bit_converts for now; element sizes are checked below.
11835 while (Op.getOpcode() == ISD::BITCAST)
11836 Op = Op.getOperand(0);
11837 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
11838 return SDValue();
11839
11840 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
11841 unsigned EltSize = Op.getScalarValueSizeInBits();
11842 // The canonical VMOV for a zero vector uses a 32-bit element size.
11843 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11844 unsigned EltBits;
11845 if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
11846 EltSize = 8;
11847 EVT VT = N->getValueType(0);
11848 if (EltSize > VT.getScalarSizeInBits())
11849 return SDValue();
11850
11851 return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
11852 }
11853
11854 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
PerformVDUPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11855 static SDValue PerformVDUPCombine(SDNode *N,
11856 TargetLowering::DAGCombinerInfo &DCI) {
11857 SelectionDAG &DAG = DCI.DAG;
11858 SDValue Op = N->getOperand(0);
11859
11860 // Match VDUP(LOAD) -> VLD1DUP.
11861 // We match this pattern here rather than waiting for isel because the
11862 // transform is only legal for unindexed loads.
11863 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
11864 if (LD && Op.hasOneUse() && LD->isUnindexed() &&
11865 LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
11866 SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
11867 DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
11868 SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
11869 SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
11870 Ops, LD->getMemoryVT(),
11871 LD->getMemOperand());
11872 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
11873 return VLDDup;
11874 }
11875
11876 return SDValue();
11877 }
11878
PerformLOADCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11879 static SDValue PerformLOADCombine(SDNode *N,
11880 TargetLowering::DAGCombinerInfo &DCI) {
11881 EVT VT = N->getValueType(0);
11882
11883 // If this is a legal vector load, try to combine it into a VLD1_UPD.
11884 if (ISD::isNormalLoad(N) && VT.isVector() &&
11885 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
11886 return CombineBaseUpdate(N, DCI);
11887
11888 return SDValue();
11889 }
11890
11891 /// PerformSTORECombine - Target-specific dag combine xforms for
11892 /// ISD::STORE.
PerformSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11893 static SDValue PerformSTORECombine(SDNode *N,
11894 TargetLowering::DAGCombinerInfo &DCI) {
11895 StoreSDNode *St = cast<StoreSDNode>(N);
11896 if (St->isVolatile())
11897 return SDValue();
11898
11899 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
11900 // pack all of the elements in one place. Next, store to memory in fewer
11901 // chunks.
11902 SDValue StVal = St->getValue();
11903 EVT VT = StVal.getValueType();
11904 if (St->isTruncatingStore() && VT.isVector()) {
11905 SelectionDAG &DAG = DCI.DAG;
11906 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11907 EVT StVT = St->getMemoryVT();
11908 unsigned NumElems = VT.getVectorNumElements();
11909 assert(StVT != VT && "Cannot truncate to the same type");
11910 unsigned FromEltSz = VT.getScalarSizeInBits();
11911 unsigned ToEltSz = StVT.getScalarSizeInBits();
11912
11913 // From, To sizes and ElemCount must be pow of two
11914 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
11915
11916 // We are going to use the original vector elt for storing.
11917 // Accumulated smaller vector elements must be a multiple of the store size.
11918 if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
11919
11920 unsigned SizeRatio = FromEltSz / ToEltSz;
11921 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
11922
11923 // Create a type on which we perform the shuffle.
11924 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
11925 NumElems*SizeRatio);
11926 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
11927
11928 SDLoc DL(St);
11929 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
11930 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
11931 for (unsigned i = 0; i < NumElems; ++i)
11932 ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
11933 ? (i + 1) * SizeRatio - 1
11934 : i * SizeRatio;
11935
11936 // Can't shuffle using an illegal type.
11937 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
11938
11939 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
11940 DAG.getUNDEF(WideVec.getValueType()),
11941 ShuffleVec);
11942 // At this point all of the data is stored at the bottom of the
11943 // register. We now need to save it to mem.
11944
11945 // Find the largest store unit
11946 MVT StoreType = MVT::i8;
11947 for (MVT Tp : MVT::integer_valuetypes()) {
11948 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
11949 StoreType = Tp;
11950 }
11951 // Didn't find a legal store type.
11952 if (!TLI.isTypeLegal(StoreType))
11953 return SDValue();
11954
11955 // Bitcast the original vector into a vector of store-size units
11956 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
11957 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
11958 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
11959 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
11960 SmallVector<SDValue, 8> Chains;
11961 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
11962 TLI.getPointerTy(DAG.getDataLayout()));
11963 SDValue BasePtr = St->getBasePtr();
11964
11965 // Perform one or more big stores into memory.
11966 unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
11967 for (unsigned I = 0; I < E; I++) {
11968 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
11969 StoreType, ShuffWide,
11970 DAG.getIntPtrConstant(I, DL));
11971 SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
11972 St->getPointerInfo(), St->getAlignment(),
11973 St->getMemOperand()->getFlags());
11974 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
11975 Increment);
11976 Chains.push_back(Ch);
11977 }
11978 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
11979 }
11980
11981 if (!ISD::isNormalStore(St))
11982 return SDValue();
11983
11984 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
11985 // ARM stores of arguments in the same cache line.
11986 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
11987 StVal.getNode()->hasOneUse()) {
11988 SelectionDAG &DAG = DCI.DAG;
11989 bool isBigEndian = DAG.getDataLayout().isBigEndian();
11990 SDLoc DL(St);
11991 SDValue BasePtr = St->getBasePtr();
11992 SDValue NewST1 = DAG.getStore(
11993 St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
11994 BasePtr, St->getPointerInfo(), St->getAlignment(),
11995 St->getMemOperand()->getFlags());
11996
11997 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
11998 DAG.getConstant(4, DL, MVT::i32));
11999 return DAG.getStore(NewST1.getValue(0), DL,
12000 StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
12001 OffsetPtr, St->getPointerInfo(),
12002 std::min(4U, St->getAlignment() / 2),
12003 St->getMemOperand()->getFlags());
12004 }
12005
12006 if (StVal.getValueType() == MVT::i64 &&
12007 StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12008
12009 // Bitcast an i64 store extracted from a vector to f64.
12010 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12011 SelectionDAG &DAG = DCI.DAG;
12012 SDLoc dl(StVal);
12013 SDValue IntVec = StVal.getOperand(0);
12014 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
12015 IntVec.getValueType().getVectorNumElements());
12016 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
12017 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
12018 Vec, StVal.getOperand(1));
12019 dl = SDLoc(N);
12020 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
12021 // Make the DAGCombiner fold the bitcasts.
12022 DCI.AddToWorklist(Vec.getNode());
12023 DCI.AddToWorklist(ExtElt.getNode());
12024 DCI.AddToWorklist(V.getNode());
12025 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
12026 St->getPointerInfo(), St->getAlignment(),
12027 St->getMemOperand()->getFlags(), St->getAAInfo());
12028 }
12029
12030 // If this is a legal vector store, try to combine it into a VST1_UPD.
12031 if (ISD::isNormalStore(N) && VT.isVector() &&
12032 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
12033 return CombineBaseUpdate(N, DCI);
12034
12035 return SDValue();
12036 }
12037
12038 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
12039 /// can replace combinations of VMUL and VCVT (floating-point to integer)
12040 /// when the VMUL has a constant operand that is a power of 2.
12041 ///
12042 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12043 /// vmul.f32 d16, d17, d16
12044 /// vcvt.s32.f32 d16, d16
12045 /// becomes:
12046 /// vcvt.s32.f32 d16, d16, #3
PerformVCVTCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)12047 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
12048 const ARMSubtarget *Subtarget) {
12049 if (!Subtarget->hasNEON())
12050 return SDValue();
12051
12052 SDValue Op = N->getOperand(0);
12053 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
12054 Op.getOpcode() != ISD::FMUL)
12055 return SDValue();
12056
12057 SDValue ConstVec = Op->getOperand(1);
12058 if (!isa<BuildVectorSDNode>(ConstVec))
12059 return SDValue();
12060
12061 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
12062 uint32_t FloatBits = FloatTy.getSizeInBits();
12063 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
12064 uint32_t IntBits = IntTy.getSizeInBits();
12065 unsigned NumLanes = Op.getValueType().getVectorNumElements();
12066 if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
12067 // These instructions only exist converting from f32 to i32. We can handle
12068 // smaller integers by generating an extra truncate, but larger ones would
12069 // be lossy. We also can't handle more then 4 lanes, since these intructions
12070 // only support v2i32/v4i32 types.
12071 return SDValue();
12072 }
12073
12074 BitVector UndefElements;
12075 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12076 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12077 if (C == -1 || C == 0 || C > 32)
12078 return SDValue();
12079
12080 SDLoc dl(N);
12081 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
12082 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
12083 Intrinsic::arm_neon_vcvtfp2fxu;
12084 SDValue FixConv = DAG.getNode(
12085 ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12086 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
12087 DAG.getConstant(C, dl, MVT::i32));
12088
12089 if (IntBits < FloatBits)
12090 FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
12091
12092 return FixConv;
12093 }
12094
12095 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
12096 /// can replace combinations of VCVT (integer to floating-point) and VDIV
12097 /// when the VDIV has a constant operand that is a power of 2.
12098 ///
12099 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12100 /// vcvt.f32.s32 d16, d16
12101 /// vdiv.f32 d16, d17, d16
12102 /// becomes:
12103 /// vcvt.f32.s32 d16, d16, #3
PerformVDIVCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)12104 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
12105 const ARMSubtarget *Subtarget) {
12106 if (!Subtarget->hasNEON())
12107 return SDValue();
12108
12109 SDValue Op = N->getOperand(0);
12110 unsigned OpOpcode = Op.getNode()->getOpcode();
12111 if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
12112 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
12113 return SDValue();
12114
12115 SDValue ConstVec = N->getOperand(1);
12116 if (!isa<BuildVectorSDNode>(ConstVec))
12117 return SDValue();
12118
12119 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
12120 uint32_t FloatBits = FloatTy.getSizeInBits();
12121 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
12122 uint32_t IntBits = IntTy.getSizeInBits();
12123 unsigned NumLanes = Op.getValueType().getVectorNumElements();
12124 if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
12125 // These instructions only exist converting from i32 to f32. We can handle
12126 // smaller integers by generating an extra extend, but larger ones would
12127 // be lossy. We also can't handle more then 4 lanes, since these intructions
12128 // only support v2i32/v4i32 types.
12129 return SDValue();
12130 }
12131
12132 BitVector UndefElements;
12133 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12134 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12135 if (C == -1 || C == 0 || C > 32)
12136 return SDValue();
12137
12138 SDLoc dl(N);
12139 bool isSigned = OpOpcode == ISD::SINT_TO_FP;
12140 SDValue ConvInput = Op.getOperand(0);
12141 if (IntBits < FloatBits)
12142 ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
12143 dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12144 ConvInput);
12145
12146 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
12147 Intrinsic::arm_neon_vcvtfxu2fp;
12148 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
12149 Op.getValueType(),
12150 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
12151 ConvInput, DAG.getConstant(C, dl, MVT::i32));
12152 }
12153
12154 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
12155 /// operand of a vector shift operation, where all the elements of the
12156 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)12157 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
12158 // Ignore bit_converts.
12159 while (Op.getOpcode() == ISD::BITCAST)
12160 Op = Op.getOperand(0);
12161 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
12162 APInt SplatBits, SplatUndef;
12163 unsigned SplatBitSize;
12164 bool HasAnyUndefs;
12165 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
12166 HasAnyUndefs, ElementBits) ||
12167 SplatBitSize > ElementBits)
12168 return false;
12169 Cnt = SplatBits.getSExtValue();
12170 return true;
12171 }
12172
12173 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
12174 /// operand of a vector shift left operation. That value must be in the range:
12175 /// 0 <= Value < ElementBits for a left shift; or
12176 /// 0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)12177 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
12178 assert(VT.isVector() && "vector shift count is not a vector type");
12179 int64_t ElementBits = VT.getScalarSizeInBits();
12180 if (! getVShiftImm(Op, ElementBits, Cnt))
12181 return false;
12182 return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
12183 }
12184
12185 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
12186 /// operand of a vector shift right operation. For a shift opcode, the value
12187 /// is positive, but for an intrinsic the value count must be negative. The
12188 /// absolute value must be in the range:
12189 /// 1 <= |Value| <= ElementBits for a right shift; or
12190 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,bool isIntrinsic,int64_t & Cnt)12191 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
12192 int64_t &Cnt) {
12193 assert(VT.isVector() && "vector shift count is not a vector type");
12194 int64_t ElementBits = VT.getScalarSizeInBits();
12195 if (! getVShiftImm(Op, ElementBits, Cnt))
12196 return false;
12197 if (!isIntrinsic)
12198 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
12199 if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
12200 Cnt = -Cnt;
12201 return true;
12202 }
12203 return false;
12204 }
12205
12206 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
PerformIntrinsicCombine(SDNode * N,SelectionDAG & DAG)12207 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
12208 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12209 switch (IntNo) {
12210 default:
12211 // Don't do anything for most intrinsics.
12212 break;
12213
12214 // Vector shifts: check for immediate versions and lower them.
12215 // Note: This is done during DAG combining instead of DAG legalizing because
12216 // the build_vectors for 64-bit vector element shift counts are generally
12217 // not legal, and it is hard to see their values after they get legalized to
12218 // loads from a constant pool.
12219 case Intrinsic::arm_neon_vshifts:
12220 case Intrinsic::arm_neon_vshiftu:
12221 case Intrinsic::arm_neon_vrshifts:
12222 case Intrinsic::arm_neon_vrshiftu:
12223 case Intrinsic::arm_neon_vrshiftn:
12224 case Intrinsic::arm_neon_vqshifts:
12225 case Intrinsic::arm_neon_vqshiftu:
12226 case Intrinsic::arm_neon_vqshiftsu:
12227 case Intrinsic::arm_neon_vqshiftns:
12228 case Intrinsic::arm_neon_vqshiftnu:
12229 case Intrinsic::arm_neon_vqshiftnsu:
12230 case Intrinsic::arm_neon_vqrshiftns:
12231 case Intrinsic::arm_neon_vqrshiftnu:
12232 case Intrinsic::arm_neon_vqrshiftnsu: {
12233 EVT VT = N->getOperand(1).getValueType();
12234 int64_t Cnt;
12235 unsigned VShiftOpc = 0;
12236
12237 switch (IntNo) {
12238 case Intrinsic::arm_neon_vshifts:
12239 case Intrinsic::arm_neon_vshiftu:
12240 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
12241 VShiftOpc = ARMISD::VSHL;
12242 break;
12243 }
12244 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
12245 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
12246 ARMISD::VSHRs : ARMISD::VSHRu);
12247 break;
12248 }
12249 return SDValue();
12250
12251 case Intrinsic::arm_neon_vrshifts:
12252 case Intrinsic::arm_neon_vrshiftu:
12253 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
12254 break;
12255 return SDValue();
12256
12257 case Intrinsic::arm_neon_vqshifts:
12258 case Intrinsic::arm_neon_vqshiftu:
12259 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12260 break;
12261 return SDValue();
12262
12263 case Intrinsic::arm_neon_vqshiftsu:
12264 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12265 break;
12266 llvm_unreachable("invalid shift count for vqshlu intrinsic");
12267
12268 case Intrinsic::arm_neon_vrshiftn:
12269 case Intrinsic::arm_neon_vqshiftns:
12270 case Intrinsic::arm_neon_vqshiftnu:
12271 case Intrinsic::arm_neon_vqshiftnsu:
12272 case Intrinsic::arm_neon_vqrshiftns:
12273 case Intrinsic::arm_neon_vqrshiftnu:
12274 case Intrinsic::arm_neon_vqrshiftnsu:
12275 // Narrowing shifts require an immediate right shift.
12276 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
12277 break;
12278 llvm_unreachable("invalid shift count for narrowing vector shift "
12279 "intrinsic");
12280
12281 default:
12282 llvm_unreachable("unhandled vector shift");
12283 }
12284
12285 switch (IntNo) {
12286 case Intrinsic::arm_neon_vshifts:
12287 case Intrinsic::arm_neon_vshiftu:
12288 // Opcode already set above.
12289 break;
12290 case Intrinsic::arm_neon_vrshifts:
12291 VShiftOpc = ARMISD::VRSHRs; break;
12292 case Intrinsic::arm_neon_vrshiftu:
12293 VShiftOpc = ARMISD::VRSHRu; break;
12294 case Intrinsic::arm_neon_vrshiftn:
12295 VShiftOpc = ARMISD::VRSHRN; break;
12296 case Intrinsic::arm_neon_vqshifts:
12297 VShiftOpc = ARMISD::VQSHLs; break;
12298 case Intrinsic::arm_neon_vqshiftu:
12299 VShiftOpc = ARMISD::VQSHLu; break;
12300 case Intrinsic::arm_neon_vqshiftsu:
12301 VShiftOpc = ARMISD::VQSHLsu; break;
12302 case Intrinsic::arm_neon_vqshiftns:
12303 VShiftOpc = ARMISD::VQSHRNs; break;
12304 case Intrinsic::arm_neon_vqshiftnu:
12305 VShiftOpc = ARMISD::VQSHRNu; break;
12306 case Intrinsic::arm_neon_vqshiftnsu:
12307 VShiftOpc = ARMISD::VQSHRNsu; break;
12308 case Intrinsic::arm_neon_vqrshiftns:
12309 VShiftOpc = ARMISD::VQRSHRNs; break;
12310 case Intrinsic::arm_neon_vqrshiftnu:
12311 VShiftOpc = ARMISD::VQRSHRNu; break;
12312 case Intrinsic::arm_neon_vqrshiftnsu:
12313 VShiftOpc = ARMISD::VQRSHRNsu; break;
12314 }
12315
12316 SDLoc dl(N);
12317 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12318 N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
12319 }
12320
12321 case Intrinsic::arm_neon_vshiftins: {
12322 EVT VT = N->getOperand(1).getValueType();
12323 int64_t Cnt;
12324 unsigned VShiftOpc = 0;
12325
12326 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
12327 VShiftOpc = ARMISD::VSLI;
12328 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
12329 VShiftOpc = ARMISD::VSRI;
12330 else {
12331 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
12332 }
12333
12334 SDLoc dl(N);
12335 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12336 N->getOperand(1), N->getOperand(2),
12337 DAG.getConstant(Cnt, dl, MVT::i32));
12338 }
12339
12340 case Intrinsic::arm_neon_vqrshifts:
12341 case Intrinsic::arm_neon_vqrshiftu:
12342 // No immediate versions of these to check for.
12343 break;
12344 }
12345
12346 return SDValue();
12347 }
12348
12349 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
12350 /// lowers them. As with the vector shift intrinsics, this is done during DAG
12351 /// combining instead of DAG legalizing because the build_vectors for 64-bit
12352 /// vector element shift counts are generally not legal, and it is hard to see
12353 /// their values after they get legalized to loads from a constant pool.
PerformShiftCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)12354 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
12355 const ARMSubtarget *ST) {
12356 EVT VT = N->getValueType(0);
12357 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
12358 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
12359 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
12360 SDValue N1 = N->getOperand(1);
12361 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
12362 SDValue N0 = N->getOperand(0);
12363 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
12364 DAG.MaskedValueIsZero(N0.getOperand(0),
12365 APInt::getHighBitsSet(32, 16)))
12366 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
12367 }
12368 }
12369
12370 // Nothing to be done for scalar shifts.
12371 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12372 if (!VT.isVector() || !TLI.isTypeLegal(VT))
12373 return SDValue();
12374
12375 assert(ST->hasNEON() && "unexpected vector shift");
12376 int64_t Cnt;
12377
12378 switch (N->getOpcode()) {
12379 default: llvm_unreachable("unexpected shift opcode");
12380
12381 case ISD::SHL:
12382 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
12383 SDLoc dl(N);
12384 return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
12385 DAG.getConstant(Cnt, dl, MVT::i32));
12386 }
12387 break;
12388
12389 case ISD::SRA:
12390 case ISD::SRL:
12391 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
12392 unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
12393 ARMISD::VSHRs : ARMISD::VSHRu);
12394 SDLoc dl(N);
12395 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
12396 DAG.getConstant(Cnt, dl, MVT::i32));
12397 }
12398 }
12399 return SDValue();
12400 }
12401
12402 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
12403 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
PerformExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)12404 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
12405 const ARMSubtarget *ST) {
12406 SDValue N0 = N->getOperand(0);
12407
12408 // Check for sign- and zero-extensions of vector extract operations of 8-
12409 // and 16-bit vector elements. NEON supports these directly. They are
12410 // handled during DAG combining because type legalization will promote them
12411 // to 32-bit types and it is messy to recognize the operations after that.
12412 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12413 SDValue Vec = N0.getOperand(0);
12414 SDValue Lane = N0.getOperand(1);
12415 EVT VT = N->getValueType(0);
12416 EVT EltVT = N0.getValueType();
12417 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12418
12419 if (VT == MVT::i32 &&
12420 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
12421 TLI.isTypeLegal(Vec.getValueType()) &&
12422 isa<ConstantSDNode>(Lane)) {
12423
12424 unsigned Opc = 0;
12425 switch (N->getOpcode()) {
12426 default: llvm_unreachable("unexpected opcode");
12427 case ISD::SIGN_EXTEND:
12428 Opc = ARMISD::VGETLANEs;
12429 break;
12430 case ISD::ZERO_EXTEND:
12431 case ISD::ANY_EXTEND:
12432 Opc = ARMISD::VGETLANEu;
12433 break;
12434 }
12435 return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
12436 }
12437 }
12438
12439 return SDValue();
12440 }
12441
isPowerOf2Constant(SDValue V)12442 static const APInt *isPowerOf2Constant(SDValue V) {
12443 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
12444 if (!C)
12445 return nullptr;
12446 const APInt *CV = &C->getAPIntValue();
12447 return CV->isPowerOf2() ? CV : nullptr;
12448 }
12449
PerformCMOVToBFICombine(SDNode * CMOV,SelectionDAG & DAG) const12450 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
12451 // If we have a CMOV, OR and AND combination such as:
12452 // if (x & CN)
12453 // y |= CM;
12454 //
12455 // And:
12456 // * CN is a single bit;
12457 // * All bits covered by CM are known zero in y
12458 //
12459 // Then we can convert this into a sequence of BFI instructions. This will
12460 // always be a win if CM is a single bit, will always be no worse than the
12461 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
12462 // three bits (due to the extra IT instruction).
12463
12464 SDValue Op0 = CMOV->getOperand(0);
12465 SDValue Op1 = CMOV->getOperand(1);
12466 auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
12467 auto CC = CCNode->getAPIntValue().getLimitedValue();
12468 SDValue CmpZ = CMOV->getOperand(4);
12469
12470 // The compare must be against zero.
12471 if (!isNullConstant(CmpZ->getOperand(1)))
12472 return SDValue();
12473
12474 assert(CmpZ->getOpcode() == ARMISD::CMPZ);
12475 SDValue And = CmpZ->getOperand(0);
12476 if (And->getOpcode() != ISD::AND)
12477 return SDValue();
12478 const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
12479 if (!AndC)
12480 return SDValue();
12481 SDValue X = And->getOperand(0);
12482
12483 if (CC == ARMCC::EQ) {
12484 // We're performing an "equal to zero" compare. Swap the operands so we
12485 // canonicalize on a "not equal to zero" compare.
12486 std::swap(Op0, Op1);
12487 } else {
12488 assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
12489 }
12490
12491 if (Op1->getOpcode() != ISD::OR)
12492 return SDValue();
12493
12494 ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
12495 if (!OrC)
12496 return SDValue();
12497 SDValue Y = Op1->getOperand(0);
12498
12499 if (Op0 != Y)
12500 return SDValue();
12501
12502 // Now, is it profitable to continue?
12503 APInt OrCI = OrC->getAPIntValue();
12504 unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
12505 if (OrCI.countPopulation() > Heuristic)
12506 return SDValue();
12507
12508 // Lastly, can we determine that the bits defined by OrCI
12509 // are zero in Y?
12510 KnownBits Known;
12511 DAG.computeKnownBits(Y, Known);
12512 if ((OrCI & Known.Zero) != OrCI)
12513 return SDValue();
12514
12515 // OK, we can do the combine.
12516 SDValue V = Y;
12517 SDLoc dl(X);
12518 EVT VT = X.getValueType();
12519 unsigned BitInX = AndC->logBase2();
12520
12521 if (BitInX != 0) {
12522 // We must shift X first.
12523 X = DAG.getNode(ISD::SRL, dl, VT, X,
12524 DAG.getConstant(BitInX, dl, VT));
12525 }
12526
12527 for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
12528 BitInY < NumActiveBits; ++BitInY) {
12529 if (OrCI[BitInY] == 0)
12530 continue;
12531 APInt Mask(VT.getSizeInBits(), 0);
12532 Mask.setBit(BitInY);
12533 V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
12534 // Confusingly, the operand is an *inverted* mask.
12535 DAG.getConstant(~Mask, dl, VT));
12536 }
12537
12538 return V;
12539 }
12540
12541 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
12542 SDValue
PerformBRCONDCombine(SDNode * N,SelectionDAG & DAG) const12543 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
12544 SDValue Cmp = N->getOperand(4);
12545 if (Cmp.getOpcode() != ARMISD::CMPZ)
12546 // Only looking at NE cases.
12547 return SDValue();
12548
12549 EVT VT = N->getValueType(0);
12550 SDLoc dl(N);
12551 SDValue LHS = Cmp.getOperand(0);
12552 SDValue RHS = Cmp.getOperand(1);
12553 SDValue Chain = N->getOperand(0);
12554 SDValue BB = N->getOperand(1);
12555 SDValue ARMcc = N->getOperand(2);
12556 ARMCC::CondCodes CC =
12557 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12558
12559 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
12560 // -> (brcond Chain BB CC CPSR Cmp)
12561 if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
12562 LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
12563 LHS->getOperand(0)->hasOneUse()) {
12564 auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
12565 auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
12566 auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12567 auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12568 if ((LHS00C && LHS00C->getZExtValue() == 0) &&
12569 (LHS01C && LHS01C->getZExtValue() == 1) &&
12570 (LHS1C && LHS1C->getZExtValue() == 1) &&
12571 (RHSC && RHSC->getZExtValue() == 0)) {
12572 return DAG.getNode(
12573 ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
12574 LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
12575 }
12576 }
12577
12578 return SDValue();
12579 }
12580
12581 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
12582 SDValue
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG) const12583 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
12584 SDValue Cmp = N->getOperand(4);
12585 if (Cmp.getOpcode() != ARMISD::CMPZ)
12586 // Only looking at EQ and NE cases.
12587 return SDValue();
12588
12589 EVT VT = N->getValueType(0);
12590 SDLoc dl(N);
12591 SDValue LHS = Cmp.getOperand(0);
12592 SDValue RHS = Cmp.getOperand(1);
12593 SDValue FalseVal = N->getOperand(0);
12594 SDValue TrueVal = N->getOperand(1);
12595 SDValue ARMcc = N->getOperand(2);
12596 ARMCC::CondCodes CC =
12597 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12598
12599 // BFI is only available on V6T2+.
12600 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
12601 SDValue R = PerformCMOVToBFICombine(N, DAG);
12602 if (R)
12603 return R;
12604 }
12605
12606 // Simplify
12607 // mov r1, r0
12608 // cmp r1, x
12609 // mov r0, y
12610 // moveq r0, x
12611 // to
12612 // cmp r0, x
12613 // movne r0, y
12614 //
12615 // mov r1, r0
12616 // cmp r1, x
12617 // mov r0, x
12618 // movne r0, y
12619 // to
12620 // cmp r0, x
12621 // movne r0, y
12622 /// FIXME: Turn this into a target neutral optimization?
12623 SDValue Res;
12624 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
12625 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
12626 N->getOperand(3), Cmp);
12627 } else if (CC == ARMCC::EQ && TrueVal == RHS) {
12628 SDValue ARMcc;
12629 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
12630 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
12631 N->getOperand(3), NewCmp);
12632 }
12633
12634 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
12635 // -> (cmov F T CC CPSR Cmp)
12636 if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
12637 auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
12638 auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12639 auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12640 if ((LHS0C && LHS0C->getZExtValue() == 0) &&
12641 (LHS1C && LHS1C->getZExtValue() == 1) &&
12642 (RHSC && RHSC->getZExtValue() == 0)) {
12643 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
12644 LHS->getOperand(2), LHS->getOperand(3),
12645 LHS->getOperand(4));
12646 }
12647 }
12648
12649 if (!VT.isInteger())
12650 return SDValue();
12651
12652 // Materialize a boolean comparison for integers so we can avoid branching.
12653 if (isNullConstant(FalseVal)) {
12654 if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
12655 if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
12656 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
12657 // right 5 bits will make that 32 be 1, otherwise it will be 0.
12658 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
12659 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12660 Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
12661 DAG.getConstant(5, dl, MVT::i32));
12662 } else {
12663 // CMOV 0, 1, ==, (CMPZ x, y) ->
12664 // (ADDCARRY (SUB x, y), t:0, t:1)
12665 // where t = (SUBCARRY 0, (SUB x, y), 0)
12666 //
12667 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
12668 // x != y. In other words, a carry C == 1 when x == y, C == 0
12669 // otherwise.
12670 // The final ADDCARRY computes
12671 // x - y + (0 - (x - y)) + C == C
12672 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12673 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12674 SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
12675 // ISD::SUBCARRY returns a borrow but we want the carry here
12676 // actually.
12677 SDValue Carry =
12678 DAG.getNode(ISD::SUB, dl, MVT::i32,
12679 DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
12680 Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
12681 }
12682 } else if (CC == ARMCC::NE && LHS != RHS &&
12683 (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
12684 // This seems pointless but will allow us to combine it further below.
12685 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
12686 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12687 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
12688 N->getOperand(3), Cmp);
12689 }
12690 } else if (isNullConstant(TrueVal)) {
12691 if (CC == ARMCC::EQ && LHS != RHS &&
12692 (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
12693 // This seems pointless but will allow us to combine it further below
12694 // Note that we change == for != as this is the dual for the case above.
12695 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
12696 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12697 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
12698 DAG.getConstant(ARMCC::NE, dl, MVT::i32),
12699 N->getOperand(3), Cmp);
12700 }
12701 }
12702
12703 // On Thumb1, the DAG above may be further combined if z is a power of 2
12704 // (z == 2 ^ K).
12705 // CMOV (SUB x, y), z, !=, (CMPZ x, y) ->
12706 // merge t3, t4
12707 // where t1 = (SUBCARRY (SUB x, y), z, 0)
12708 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
12709 // t3 = if K != 0 then (SHL t2:0, K) else t2:0
12710 // t4 = (SUB 1, t2:1) [ we want a carry, not a borrow ]
12711 const APInt *TrueConst;
12712 if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
12713 (FalseVal.getOpcode() == ISD::SUB) && (FalseVal.getOperand(0) == LHS) &&
12714 (FalseVal.getOperand(1) == RHS) &&
12715 (TrueConst = isPowerOf2Constant(TrueVal))) {
12716 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12717 unsigned ShiftAmount = TrueConst->logBase2();
12718 if (ShiftAmount)
12719 TrueVal = DAG.getConstant(1, dl, VT);
12720 SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
12721 Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
12722 // Make it a carry, not a borrow.
12723 SDValue Carry = DAG.getNode(
12724 ISD::SUB, dl, VT, DAG.getConstant(1, dl, MVT::i32), Res.getValue(1));
12725 Res = DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Res, Carry);
12726
12727 if (ShiftAmount)
12728 Res = DAG.getNode(ISD::SHL, dl, VT, Res,
12729 DAG.getConstant(ShiftAmount, dl, MVT::i32));
12730 }
12731
12732 if (Res.getNode()) {
12733 KnownBits Known;
12734 DAG.computeKnownBits(SDValue(N,0), Known);
12735 // Capture demanded bits information that would be otherwise lost.
12736 if (Known.Zero == 0xfffffffe)
12737 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12738 DAG.getValueType(MVT::i1));
12739 else if (Known.Zero == 0xffffff00)
12740 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12741 DAG.getValueType(MVT::i8));
12742 else if (Known.Zero == 0xffff0000)
12743 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12744 DAG.getValueType(MVT::i16));
12745 }
12746
12747 return Res;
12748 }
12749
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const12750 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
12751 DAGCombinerInfo &DCI) const {
12752 switch (N->getOpcode()) {
12753 default: break;
12754 case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget);
12755 case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget);
12756 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
12757 case ISD::SUB: return PerformSUBCombine(N, DCI);
12758 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
12759 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
12760 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
12761 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
12762 case ARMISD::ADDC:
12763 case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget);
12764 case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget);
12765 case ARMISD::BFI: return PerformBFICombine(N, DCI);
12766 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
12767 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
12768 case ISD::STORE: return PerformSTORECombine(N, DCI);
12769 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
12770 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
12771 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
12772 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
12773 case ARMISD::VDUP: return PerformVDUPCombine(N, DCI);
12774 case ISD::FP_TO_SINT:
12775 case ISD::FP_TO_UINT:
12776 return PerformVCVTCombine(N, DCI.DAG, Subtarget);
12777 case ISD::FDIV:
12778 return PerformVDIVCombine(N, DCI.DAG, Subtarget);
12779 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
12780 case ISD::SHL:
12781 case ISD::SRA:
12782 case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
12783 case ISD::SIGN_EXTEND:
12784 case ISD::ZERO_EXTEND:
12785 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
12786 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
12787 case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
12788 case ISD::LOAD: return PerformLOADCombine(N, DCI);
12789 case ARMISD::VLD1DUP:
12790 case ARMISD::VLD2DUP:
12791 case ARMISD::VLD3DUP:
12792 case ARMISD::VLD4DUP:
12793 return PerformVLDCombine(N, DCI);
12794 case ARMISD::BUILD_VECTOR:
12795 return PerformARMBUILD_VECTORCombine(N, DCI);
12796 case ARMISD::SMULWB: {
12797 unsigned BitWidth = N->getValueType(0).getSizeInBits();
12798 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12799 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12800 return SDValue();
12801 break;
12802 }
12803 case ARMISD::SMULWT: {
12804 unsigned BitWidth = N->getValueType(0).getSizeInBits();
12805 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
12806 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12807 return SDValue();
12808 break;
12809 }
12810 case ARMISD::SMLALBB: {
12811 unsigned BitWidth = N->getValueType(0).getSizeInBits();
12812 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12813 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
12814 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
12815 return SDValue();
12816 break;
12817 }
12818 case ARMISD::SMLALBT: {
12819 unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
12820 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12821 unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
12822 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12823 if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
12824 (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
12825 return SDValue();
12826 break;
12827 }
12828 case ARMISD::SMLALTB: {
12829 unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
12830 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12831 unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
12832 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12833 if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
12834 (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
12835 return SDValue();
12836 break;
12837 }
12838 case ARMISD::SMLALTT: {
12839 unsigned BitWidth = N->getValueType(0).getSizeInBits();
12840 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
12841 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
12842 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
12843 return SDValue();
12844 break;
12845 }
12846 case ISD::INTRINSIC_VOID:
12847 case ISD::INTRINSIC_W_CHAIN:
12848 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12849 case Intrinsic::arm_neon_vld1:
12850 case Intrinsic::arm_neon_vld1x2:
12851 case Intrinsic::arm_neon_vld1x3:
12852 case Intrinsic::arm_neon_vld1x4:
12853 case Intrinsic::arm_neon_vld2:
12854 case Intrinsic::arm_neon_vld3:
12855 case Intrinsic::arm_neon_vld4:
12856 case Intrinsic::arm_neon_vld2lane:
12857 case Intrinsic::arm_neon_vld3lane:
12858 case Intrinsic::arm_neon_vld4lane:
12859 case Intrinsic::arm_neon_vld2dup:
12860 case Intrinsic::arm_neon_vld3dup:
12861 case Intrinsic::arm_neon_vld4dup:
12862 case Intrinsic::arm_neon_vst1:
12863 case Intrinsic::arm_neon_vst1x2:
12864 case Intrinsic::arm_neon_vst1x3:
12865 case Intrinsic::arm_neon_vst1x4:
12866 case Intrinsic::arm_neon_vst2:
12867 case Intrinsic::arm_neon_vst3:
12868 case Intrinsic::arm_neon_vst4:
12869 case Intrinsic::arm_neon_vst2lane:
12870 case Intrinsic::arm_neon_vst3lane:
12871 case Intrinsic::arm_neon_vst4lane:
12872 return PerformVLDCombine(N, DCI);
12873 default: break;
12874 }
12875 break;
12876 }
12877 return SDValue();
12878 }
12879
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT) const12880 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
12881 EVT VT) const {
12882 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
12883 }
12884
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const12885 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
12886 unsigned,
12887 unsigned,
12888 bool *Fast) const {
12889 // Depends what it gets converted into if the type is weird.
12890 if (!VT.isSimple())
12891 return false;
12892
12893 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
12894 bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
12895
12896 switch (VT.getSimpleVT().SimpleTy) {
12897 default:
12898 return false;
12899 case MVT::i8:
12900 case MVT::i16:
12901 case MVT::i32: {
12902 // Unaligned access can use (for example) LRDB, LRDH, LDR
12903 if (AllowsUnaligned) {
12904 if (Fast)
12905 *Fast = Subtarget->hasV7Ops();
12906 return true;
12907 }
12908 return false;
12909 }
12910 case MVT::f64:
12911 case MVT::v2f64: {
12912 // For any little-endian targets with neon, we can support unaligned ld/st
12913 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
12914 // A big-endian target may also explicitly support unaligned accesses
12915 if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
12916 if (Fast)
12917 *Fast = true;
12918 return true;
12919 }
12920 return false;
12921 }
12922 }
12923 }
12924
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)12925 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
12926 unsigned AlignCheck) {
12927 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
12928 (DstAlign == 0 || DstAlign % AlignCheck == 0));
12929 }
12930
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const12931 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
12932 unsigned DstAlign, unsigned SrcAlign,
12933 bool IsMemset, bool ZeroMemset,
12934 bool MemcpyStrSrc,
12935 MachineFunction &MF) const {
12936 const Function &F = MF.getFunction();
12937
12938 // See if we can use NEON instructions for this...
12939 if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
12940 !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
12941 bool Fast;
12942 if (Size >= 16 &&
12943 (memOpAlign(SrcAlign, DstAlign, 16) ||
12944 (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
12945 return MVT::v2f64;
12946 } else if (Size >= 8 &&
12947 (memOpAlign(SrcAlign, DstAlign, 8) ||
12948 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
12949 Fast))) {
12950 return MVT::f64;
12951 }
12952 }
12953
12954 // Let the target-independent logic figure it out.
12955 return MVT::Other;
12956 }
12957
12958 // 64-bit integers are split into their high and low parts and held in two
12959 // different registers, so the trunc is free since the low register can just
12960 // be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const12961 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
12962 if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
12963 return false;
12964 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
12965 unsigned DestBits = DstTy->getPrimitiveSizeInBits();
12966 return (SrcBits == 64 && DestBits == 32);
12967 }
12968
isTruncateFree(EVT SrcVT,EVT DstVT) const12969 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
12970 if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
12971 !DstVT.isInteger())
12972 return false;
12973 unsigned SrcBits = SrcVT.getSizeInBits();
12974 unsigned DestBits = DstVT.getSizeInBits();
12975 return (SrcBits == 64 && DestBits == 32);
12976 }
12977
isZExtFree(SDValue Val,EVT VT2) const12978 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12979 if (Val.getOpcode() != ISD::LOAD)
12980 return false;
12981
12982 EVT VT1 = Val.getValueType();
12983 if (!VT1.isSimple() || !VT1.isInteger() ||
12984 !VT2.isSimple() || !VT2.isInteger())
12985 return false;
12986
12987 switch (VT1.getSimpleVT().SimpleTy) {
12988 default: break;
12989 case MVT::i1:
12990 case MVT::i8:
12991 case MVT::i16:
12992 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
12993 return true;
12994 }
12995
12996 return false;
12997 }
12998
isFNegFree(EVT VT) const12999 bool ARMTargetLowering::isFNegFree(EVT VT) const {
13000 if (!VT.isSimple())
13001 return false;
13002
13003 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
13004 // negate values directly (fneg is free). So, we don't want to let the DAG
13005 // combiner rewrite fneg into xors and some other instructions. For f16 and
13006 // FullFP16 argument passing, some bitcast nodes may be introduced,
13007 // triggering this DAG combine rewrite, so we are avoiding that with this.
13008 switch (VT.getSimpleVT().SimpleTy) {
13009 default: break;
13010 case MVT::f16:
13011 return Subtarget->hasFullFP16();
13012 }
13013
13014 return false;
13015 }
13016
isVectorLoadExtDesirable(SDValue ExtVal) const13017 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
13018 EVT VT = ExtVal.getValueType();
13019
13020 if (!isTypeLegal(VT))
13021 return false;
13022
13023 // Don't create a loadext if we can fold the extension into a wide/long
13024 // instruction.
13025 // If there's more than one user instruction, the loadext is desirable no
13026 // matter what. There can be two uses by the same instruction.
13027 if (ExtVal->use_empty() ||
13028 !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
13029 return true;
13030
13031 SDNode *U = *ExtVal->use_begin();
13032 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
13033 U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
13034 return false;
13035
13036 return true;
13037 }
13038
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const13039 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
13040 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13041 return false;
13042
13043 if (!isTypeLegal(EVT::getEVT(Ty1)))
13044 return false;
13045
13046 assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
13047
13048 // Assuming the caller doesn't have a zeroext or signext return parameter,
13049 // truncation all the way down to i1 is valid.
13050 return true;
13051 }
13052
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const13053 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
13054 const AddrMode &AM, Type *Ty,
13055 unsigned AS) const {
13056 if (isLegalAddressingMode(DL, AM, Ty, AS)) {
13057 if (Subtarget->hasFPAO())
13058 return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
13059 return 0;
13060 }
13061 return -1;
13062 }
13063
isLegalT1AddressImmediate(int64_t V,EVT VT)13064 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
13065 if (V < 0)
13066 return false;
13067
13068 unsigned Scale = 1;
13069 switch (VT.getSimpleVT().SimpleTy) {
13070 default: return false;
13071 case MVT::i1:
13072 case MVT::i8:
13073 // Scale == 1;
13074 break;
13075 case MVT::i16:
13076 // Scale == 2;
13077 Scale = 2;
13078 break;
13079 case MVT::i32:
13080 // Scale == 4;
13081 Scale = 4;
13082 break;
13083 }
13084
13085 if ((V & (Scale - 1)) != 0)
13086 return false;
13087 V /= Scale;
13088 return V == (V & ((1LL << 5) - 1));
13089 }
13090
isLegalT2AddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)13091 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
13092 const ARMSubtarget *Subtarget) {
13093 bool isNeg = false;
13094 if (V < 0) {
13095 isNeg = true;
13096 V = - V;
13097 }
13098
13099 switch (VT.getSimpleVT().SimpleTy) {
13100 default: return false;
13101 case MVT::i1:
13102 case MVT::i8:
13103 case MVT::i16:
13104 case MVT::i32:
13105 // + imm12 or - imm8
13106 if (isNeg)
13107 return V == (V & ((1LL << 8) - 1));
13108 return V == (V & ((1LL << 12) - 1));
13109 case MVT::f32:
13110 case MVT::f64:
13111 // Same as ARM mode. FIXME: NEON?
13112 if (!Subtarget->hasVFP2())
13113 return false;
13114 if ((V & 3) != 0)
13115 return false;
13116 V >>= 2;
13117 return V == (V & ((1LL << 8) - 1));
13118 }
13119 }
13120
13121 /// isLegalAddressImmediate - Return true if the integer value can be used
13122 /// as the offset of the target addressing mode for load / store of the
13123 /// given type.
isLegalAddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)13124 static bool isLegalAddressImmediate(int64_t V, EVT VT,
13125 const ARMSubtarget *Subtarget) {
13126 if (V == 0)
13127 return true;
13128
13129 if (!VT.isSimple())
13130 return false;
13131
13132 if (Subtarget->isThumb1Only())
13133 return isLegalT1AddressImmediate(V, VT);
13134 else if (Subtarget->isThumb2())
13135 return isLegalT2AddressImmediate(V, VT, Subtarget);
13136
13137 // ARM mode.
13138 if (V < 0)
13139 V = - V;
13140 switch (VT.getSimpleVT().SimpleTy) {
13141 default: return false;
13142 case MVT::i1:
13143 case MVT::i8:
13144 case MVT::i32:
13145 // +- imm12
13146 return V == (V & ((1LL << 12) - 1));
13147 case MVT::i16:
13148 // +- imm8
13149 return V == (V & ((1LL << 8) - 1));
13150 case MVT::f32:
13151 case MVT::f64:
13152 if (!Subtarget->hasVFP2()) // FIXME: NEON?
13153 return false;
13154 if ((V & 3) != 0)
13155 return false;
13156 V >>= 2;
13157 return V == (V & ((1LL << 8) - 1));
13158 }
13159 }
13160
isLegalT2ScaledAddressingMode(const AddrMode & AM,EVT VT) const13161 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
13162 EVT VT) const {
13163 int Scale = AM.Scale;
13164 if (Scale < 0)
13165 return false;
13166
13167 switch (VT.getSimpleVT().SimpleTy) {
13168 default: return false;
13169 case MVT::i1:
13170 case MVT::i8:
13171 case MVT::i16:
13172 case MVT::i32:
13173 if (Scale == 1)
13174 return true;
13175 // r + r << imm
13176 Scale = Scale & ~1;
13177 return Scale == 2 || Scale == 4 || Scale == 8;
13178 case MVT::i64:
13179 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
13180 // version in Thumb mode.
13181 // r + r
13182 if (Scale == 1)
13183 return true;
13184 // r * 2 (this can be lowered to r + r).
13185 if (!AM.HasBaseReg && Scale == 2)
13186 return true;
13187 return false;
13188 case MVT::isVoid:
13189 // Note, we allow "void" uses (basically, uses that aren't loads or
13190 // stores), because arm allows folding a scale into many arithmetic
13191 // operations. This should be made more precise and revisited later.
13192
13193 // Allow r << imm, but the imm has to be a multiple of two.
13194 if (Scale & 1) return false;
13195 return isPowerOf2_32(Scale);
13196 }
13197 }
13198
isLegalT1ScaledAddressingMode(const AddrMode & AM,EVT VT) const13199 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
13200 EVT VT) const {
13201 const int Scale = AM.Scale;
13202
13203 // Negative scales are not supported in Thumb1.
13204 if (Scale < 0)
13205 return false;
13206
13207 // Thumb1 addressing modes do not support register scaling excepting the
13208 // following cases:
13209 // 1. Scale == 1 means no scaling.
13210 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
13211 return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
13212 }
13213
13214 /// isLegalAddressingMode - Return true if the addressing mode represented
13215 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const13216 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13217 const AddrMode &AM, Type *Ty,
13218 unsigned AS, Instruction *I) const {
13219 EVT VT = getValueType(DL, Ty, true);
13220 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
13221 return false;
13222
13223 // Can never fold addr of global into load/store.
13224 if (AM.BaseGV)
13225 return false;
13226
13227 switch (AM.Scale) {
13228 case 0: // no scale reg, must be "r+i" or "r", or "i".
13229 break;
13230 default:
13231 // ARM doesn't support any R+R*scale+imm addr modes.
13232 if (AM.BaseOffs)
13233 return false;
13234
13235 if (!VT.isSimple())
13236 return false;
13237
13238 if (Subtarget->isThumb1Only())
13239 return isLegalT1ScaledAddressingMode(AM, VT);
13240
13241 if (Subtarget->isThumb2())
13242 return isLegalT2ScaledAddressingMode(AM, VT);
13243
13244 int Scale = AM.Scale;
13245 switch (VT.getSimpleVT().SimpleTy) {
13246 default: return false;
13247 case MVT::i1:
13248 case MVT::i8:
13249 case MVT::i32:
13250 if (Scale < 0) Scale = -Scale;
13251 if (Scale == 1)
13252 return true;
13253 // r + r << imm
13254 return isPowerOf2_32(Scale & ~1);
13255 case MVT::i16:
13256 case MVT::i64:
13257 // r +/- r
13258 if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
13259 return true;
13260 // r * 2 (this can be lowered to r + r).
13261 if (!AM.HasBaseReg && Scale == 2)
13262 return true;
13263 return false;
13264
13265 case MVT::isVoid:
13266 // Note, we allow "void" uses (basically, uses that aren't loads or
13267 // stores), because arm allows folding a scale into many arithmetic
13268 // operations. This should be made more precise and revisited later.
13269
13270 // Allow r << imm, but the imm has to be a multiple of two.
13271 if (Scale & 1) return false;
13272 return isPowerOf2_32(Scale);
13273 }
13274 }
13275 return true;
13276 }
13277
13278 /// isLegalICmpImmediate - Return true if the specified immediate is legal
13279 /// icmp immediate, that is the target has icmp instructions which can compare
13280 /// a register against the immediate without having to materialize the
13281 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const13282 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13283 // Thumb2 and ARM modes can use cmn for negative immediates.
13284 if (!Subtarget->isThumb())
13285 return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
13286 ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
13287 if (Subtarget->isThumb2())
13288 return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
13289 ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
13290 // Thumb1 doesn't have cmn, and only 8-bit immediates.
13291 return Imm >= 0 && Imm <= 255;
13292 }
13293
13294 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
13295 /// *or sub* immediate, that is the target has add or sub instructions which can
13296 /// add a register with the immediate without having to materialize the
13297 /// immediate into a register.
isLegalAddImmediate(int64_t Imm) const13298 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13299 // Same encoding for add/sub, just flip the sign.
13300 int64_t AbsImm = std::abs(Imm);
13301 if (!Subtarget->isThumb())
13302 return ARM_AM::getSOImmVal(AbsImm) != -1;
13303 if (Subtarget->isThumb2())
13304 return ARM_AM::getT2SOImmVal(AbsImm) != -1;
13305 // Thumb1 only has 8-bit unsigned immediate.
13306 return AbsImm >= 0 && AbsImm <= 255;
13307 }
13308
getARMIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)13309 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
13310 bool isSEXTLoad, SDValue &Base,
13311 SDValue &Offset, bool &isInc,
13312 SelectionDAG &DAG) {
13313 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13314 return false;
13315
13316 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
13317 // AddressingMode 3
13318 Base = Ptr->getOperand(0);
13319 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13320 int RHSC = (int)RHS->getZExtValue();
13321 if (RHSC < 0 && RHSC > -256) {
13322 assert(Ptr->getOpcode() == ISD::ADD);
13323 isInc = false;
13324 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13325 return true;
13326 }
13327 }
13328 isInc = (Ptr->getOpcode() == ISD::ADD);
13329 Offset = Ptr->getOperand(1);
13330 return true;
13331 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
13332 // AddressingMode 2
13333 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13334 int RHSC = (int)RHS->getZExtValue();
13335 if (RHSC < 0 && RHSC > -0x1000) {
13336 assert(Ptr->getOpcode() == ISD::ADD);
13337 isInc = false;
13338 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13339 Base = Ptr->getOperand(0);
13340 return true;
13341 }
13342 }
13343
13344 if (Ptr->getOpcode() == ISD::ADD) {
13345 isInc = true;
13346 ARM_AM::ShiftOpc ShOpcVal=
13347 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
13348 if (ShOpcVal != ARM_AM::no_shift) {
13349 Base = Ptr->getOperand(1);
13350 Offset = Ptr->getOperand(0);
13351 } else {
13352 Base = Ptr->getOperand(0);
13353 Offset = Ptr->getOperand(1);
13354 }
13355 return true;
13356 }
13357
13358 isInc = (Ptr->getOpcode() == ISD::ADD);
13359 Base = Ptr->getOperand(0);
13360 Offset = Ptr->getOperand(1);
13361 return true;
13362 }
13363
13364 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
13365 return false;
13366 }
13367
getT2IndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)13368 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
13369 bool isSEXTLoad, SDValue &Base,
13370 SDValue &Offset, bool &isInc,
13371 SelectionDAG &DAG) {
13372 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13373 return false;
13374
13375 Base = Ptr->getOperand(0);
13376 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13377 int RHSC = (int)RHS->getZExtValue();
13378 if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
13379 assert(Ptr->getOpcode() == ISD::ADD);
13380 isInc = false;
13381 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13382 return true;
13383 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
13384 isInc = Ptr->getOpcode() == ISD::ADD;
13385 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
13386 return true;
13387 }
13388 }
13389
13390 return false;
13391 }
13392
13393 /// getPreIndexedAddressParts - returns true by value, base pointer and
13394 /// offset pointer and addressing mode by reference if the node's address
13395 /// can be legally represented as pre-indexed load / store address.
13396 bool
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const13397 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
13398 SDValue &Offset,
13399 ISD::MemIndexedMode &AM,
13400 SelectionDAG &DAG) const {
13401 if (Subtarget->isThumb1Only())
13402 return false;
13403
13404 EVT VT;
13405 SDValue Ptr;
13406 bool isSEXTLoad = false;
13407 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13408 Ptr = LD->getBasePtr();
13409 VT = LD->getMemoryVT();
13410 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13411 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13412 Ptr = ST->getBasePtr();
13413 VT = ST->getMemoryVT();
13414 } else
13415 return false;
13416
13417 bool isInc;
13418 bool isLegal = false;
13419 if (Subtarget->isThumb2())
13420 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13421 Offset, isInc, DAG);
13422 else
13423 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13424 Offset, isInc, DAG);
13425 if (!isLegal)
13426 return false;
13427
13428 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
13429 return true;
13430 }
13431
13432 /// getPostIndexedAddressParts - returns true by value, base pointer and
13433 /// offset pointer and addressing mode by reference if this node can be
13434 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const13435 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
13436 SDValue &Base,
13437 SDValue &Offset,
13438 ISD::MemIndexedMode &AM,
13439 SelectionDAG &DAG) const {
13440 EVT VT;
13441 SDValue Ptr;
13442 bool isSEXTLoad = false, isNonExt;
13443 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13444 VT = LD->getMemoryVT();
13445 Ptr = LD->getBasePtr();
13446 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13447 isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
13448 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13449 VT = ST->getMemoryVT();
13450 Ptr = ST->getBasePtr();
13451 isNonExt = !ST->isTruncatingStore();
13452 } else
13453 return false;
13454
13455 if (Subtarget->isThumb1Only()) {
13456 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
13457 // must be non-extending/truncating, i32, with an offset of 4.
13458 assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
13459 if (Op->getOpcode() != ISD::ADD || !isNonExt)
13460 return false;
13461 auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
13462 if (!RHS || RHS->getZExtValue() != 4)
13463 return false;
13464
13465 Offset = Op->getOperand(1);
13466 Base = Op->getOperand(0);
13467 AM = ISD::POST_INC;
13468 return true;
13469 }
13470
13471 bool isInc;
13472 bool isLegal = false;
13473 if (Subtarget->isThumb2())
13474 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13475 isInc, DAG);
13476 else
13477 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13478 isInc, DAG);
13479 if (!isLegal)
13480 return false;
13481
13482 if (Ptr != Base) {
13483 // Swap base ptr and offset to catch more post-index load / store when
13484 // it's legal. In Thumb2 mode, offset must be an immediate.
13485 if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
13486 !Subtarget->isThumb2())
13487 std::swap(Base, Offset);
13488
13489 // Post-indexed load / store update the base pointer.
13490 if (Ptr != Base)
13491 return false;
13492 }
13493
13494 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
13495 return true;
13496 }
13497
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const13498 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13499 KnownBits &Known,
13500 const APInt &DemandedElts,
13501 const SelectionDAG &DAG,
13502 unsigned Depth) const {
13503 unsigned BitWidth = Known.getBitWidth();
13504 Known.resetAll();
13505 switch (Op.getOpcode()) {
13506 default: break;
13507 case ARMISD::ADDC:
13508 case ARMISD::ADDE:
13509 case ARMISD::SUBC:
13510 case ARMISD::SUBE:
13511 // Special cases when we convert a carry to a boolean.
13512 if (Op.getResNo() == 0) {
13513 SDValue LHS = Op.getOperand(0);
13514 SDValue RHS = Op.getOperand(1);
13515 // (ADDE 0, 0, C) will give us a single bit.
13516 if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
13517 isNullConstant(RHS)) {
13518 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13519 return;
13520 }
13521 }
13522 break;
13523 case ARMISD::CMOV: {
13524 // Bits are known zero/one if known on the LHS and RHS.
13525 DAG.computeKnownBits(Op.getOperand(0), Known, Depth+1);
13526 if (Known.isUnknown())
13527 return;
13528
13529 KnownBits KnownRHS;
13530 DAG.computeKnownBits(Op.getOperand(1), KnownRHS, Depth+1);
13531 Known.Zero &= KnownRHS.Zero;
13532 Known.One &= KnownRHS.One;
13533 return;
13534 }
13535 case ISD::INTRINSIC_W_CHAIN: {
13536 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
13537 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
13538 switch (IntID) {
13539 default: return;
13540 case Intrinsic::arm_ldaex:
13541 case Intrinsic::arm_ldrex: {
13542 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
13543 unsigned MemBits = VT.getScalarSizeInBits();
13544 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
13545 return;
13546 }
13547 }
13548 }
13549 case ARMISD::BFI: {
13550 // Conservatively, we can recurse down the first operand
13551 // and just mask out all affected bits.
13552 DAG.computeKnownBits(Op.getOperand(0), Known, Depth + 1);
13553
13554 // The operand to BFI is already a mask suitable for removing the bits it
13555 // sets.
13556 ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
13557 const APInt &Mask = CI->getAPIntValue();
13558 Known.Zero &= Mask;
13559 Known.One &= Mask;
13560 return;
13561 }
13562 }
13563 }
13564
13565 //===----------------------------------------------------------------------===//
13566 // ARM Inline Assembly Support
13567 //===----------------------------------------------------------------------===//
13568
ExpandInlineAsm(CallInst * CI) const13569 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
13570 // Looking for "rev" which is V6+.
13571 if (!Subtarget->hasV6Ops())
13572 return false;
13573
13574 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13575 std::string AsmStr = IA->getAsmString();
13576 SmallVector<StringRef, 4> AsmPieces;
13577 SplitString(AsmStr, AsmPieces, ";\n");
13578
13579 switch (AsmPieces.size()) {
13580 default: return false;
13581 case 1:
13582 AsmStr = AsmPieces[0];
13583 AsmPieces.clear();
13584 SplitString(AsmStr, AsmPieces, " \t,");
13585
13586 // rev $0, $1
13587 if (AsmPieces.size() == 3 &&
13588 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
13589 IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
13590 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13591 if (Ty && Ty->getBitWidth() == 32)
13592 return IntrinsicLowering::LowerToByteSwap(CI);
13593 }
13594 break;
13595 }
13596
13597 return false;
13598 }
13599
LowerXConstraint(EVT ConstraintVT) const13600 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
13601 // At this point, we have to lower this constraint to something else, so we
13602 // lower it to an "r" or "w". However, by doing this we will force the result
13603 // to be in register, while the X constraint is much more permissive.
13604 //
13605 // Although we are correct (we are free to emit anything, without
13606 // constraints), we might break use cases that would expect us to be more
13607 // efficient and emit something else.
13608 if (!Subtarget->hasVFP2())
13609 return "r";
13610 if (ConstraintVT.isFloatingPoint())
13611 return "w";
13612 if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
13613 (ConstraintVT.getSizeInBits() == 64 ||
13614 ConstraintVT.getSizeInBits() == 128))
13615 return "w";
13616
13617 return "r";
13618 }
13619
13620 /// getConstraintType - Given a constraint letter, return the type of
13621 /// constraint it is for this target.
13622 ARMTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const13623 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
13624 if (Constraint.size() == 1) {
13625 switch (Constraint[0]) {
13626 default: break;
13627 case 'l': return C_RegisterClass;
13628 case 'w': return C_RegisterClass;
13629 case 'h': return C_RegisterClass;
13630 case 'x': return C_RegisterClass;
13631 case 't': return C_RegisterClass;
13632 case 'j': return C_Other; // Constant for movw.
13633 // An address with a single base register. Due to the way we
13634 // currently handle addresses it is the same as an 'r' memory constraint.
13635 case 'Q': return C_Memory;
13636 }
13637 } else if (Constraint.size() == 2) {
13638 switch (Constraint[0]) {
13639 default: break;
13640 // All 'U+' constraints are addresses.
13641 case 'U': return C_Memory;
13642 }
13643 }
13644 return TargetLowering::getConstraintType(Constraint);
13645 }
13646
13647 /// Examine constraint type and operand type and determine a weight value.
13648 /// This object must already have been set up with the operand type
13649 /// and the current alternative constraint selected.
13650 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const13651 ARMTargetLowering::getSingleConstraintMatchWeight(
13652 AsmOperandInfo &info, const char *constraint) const {
13653 ConstraintWeight weight = CW_Invalid;
13654 Value *CallOperandVal = info.CallOperandVal;
13655 // If we don't have a value, we can't do a match,
13656 // but allow it at the lowest weight.
13657 if (!CallOperandVal)
13658 return CW_Default;
13659 Type *type = CallOperandVal->getType();
13660 // Look at the constraint type.
13661 switch (*constraint) {
13662 default:
13663 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13664 break;
13665 case 'l':
13666 if (type->isIntegerTy()) {
13667 if (Subtarget->isThumb())
13668 weight = CW_SpecificReg;
13669 else
13670 weight = CW_Register;
13671 }
13672 break;
13673 case 'w':
13674 if (type->isFloatingPointTy())
13675 weight = CW_Register;
13676 break;
13677 }
13678 return weight;
13679 }
13680
13681 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
13682
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const13683 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
13684 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
13685 if (Constraint.size() == 1) {
13686 // GCC ARM Constraint Letters
13687 switch (Constraint[0]) {
13688 case 'l': // Low regs or general regs.
13689 if (Subtarget->isThumb())
13690 return RCPair(0U, &ARM::tGPRRegClass);
13691 return RCPair(0U, &ARM::GPRRegClass);
13692 case 'h': // High regs or no regs.
13693 if (Subtarget->isThumb())
13694 return RCPair(0U, &ARM::hGPRRegClass);
13695 break;
13696 case 'r':
13697 if (Subtarget->isThumb1Only())
13698 return RCPair(0U, &ARM::tGPRRegClass);
13699 return RCPair(0U, &ARM::GPRRegClass);
13700 case 'w':
13701 if (VT == MVT::Other)
13702 break;
13703 if (VT == MVT::f32)
13704 return RCPair(0U, &ARM::SPRRegClass);
13705 if (VT.getSizeInBits() == 64)
13706 return RCPair(0U, &ARM::DPRRegClass);
13707 if (VT.getSizeInBits() == 128)
13708 return RCPair(0U, &ARM::QPRRegClass);
13709 break;
13710 case 'x':
13711 if (VT == MVT::Other)
13712 break;
13713 if (VT == MVT::f32)
13714 return RCPair(0U, &ARM::SPR_8RegClass);
13715 if (VT.getSizeInBits() == 64)
13716 return RCPair(0U, &ARM::DPR_8RegClass);
13717 if (VT.getSizeInBits() == 128)
13718 return RCPair(0U, &ARM::QPR_8RegClass);
13719 break;
13720 case 't':
13721 if (VT == MVT::Other)
13722 break;
13723 if (VT == MVT::f32 || VT == MVT::i32)
13724 return RCPair(0U, &ARM::SPRRegClass);
13725 if (VT.getSizeInBits() == 64)
13726 return RCPair(0U, &ARM::DPR_VFP2RegClass);
13727 if (VT.getSizeInBits() == 128)
13728 return RCPair(0U, &ARM::QPR_VFP2RegClass);
13729 break;
13730 }
13731 }
13732 if (StringRef("{cc}").equals_lower(Constraint))
13733 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
13734
13735 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13736 }
13737
13738 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13739 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const13740 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13741 std::string &Constraint,
13742 std::vector<SDValue>&Ops,
13743 SelectionDAG &DAG) const {
13744 SDValue Result;
13745
13746 // Currently only support length 1 constraints.
13747 if (Constraint.length() != 1) return;
13748
13749 char ConstraintLetter = Constraint[0];
13750 switch (ConstraintLetter) {
13751 default: break;
13752 case 'j':
13753 case 'I': case 'J': case 'K': case 'L':
13754 case 'M': case 'N': case 'O':
13755 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
13756 if (!C)
13757 return;
13758
13759 int64_t CVal64 = C->getSExtValue();
13760 int CVal = (int) CVal64;
13761 // None of these constraints allow values larger than 32 bits. Check
13762 // that the value fits in an int.
13763 if (CVal != CVal64)
13764 return;
13765
13766 switch (ConstraintLetter) {
13767 case 'j':
13768 // Constant suitable for movw, must be between 0 and
13769 // 65535.
13770 if (Subtarget->hasV6T2Ops())
13771 if (CVal >= 0 && CVal <= 65535)
13772 break;
13773 return;
13774 case 'I':
13775 if (Subtarget->isThumb1Only()) {
13776 // This must be a constant between 0 and 255, for ADD
13777 // immediates.
13778 if (CVal >= 0 && CVal <= 255)
13779 break;
13780 } else if (Subtarget->isThumb2()) {
13781 // A constant that can be used as an immediate value in a
13782 // data-processing instruction.
13783 if (ARM_AM::getT2SOImmVal(CVal) != -1)
13784 break;
13785 } else {
13786 // A constant that can be used as an immediate value in a
13787 // data-processing instruction.
13788 if (ARM_AM::getSOImmVal(CVal) != -1)
13789 break;
13790 }
13791 return;
13792
13793 case 'J':
13794 if (Subtarget->isThumb1Only()) {
13795 // This must be a constant between -255 and -1, for negated ADD
13796 // immediates. This can be used in GCC with an "n" modifier that
13797 // prints the negated value, for use with SUB instructions. It is
13798 // not useful otherwise but is implemented for compatibility.
13799 if (CVal >= -255 && CVal <= -1)
13800 break;
13801 } else {
13802 // This must be a constant between -4095 and 4095. It is not clear
13803 // what this constraint is intended for. Implemented for
13804 // compatibility with GCC.
13805 if (CVal >= -4095 && CVal <= 4095)
13806 break;
13807 }
13808 return;
13809
13810 case 'K':
13811 if (Subtarget->isThumb1Only()) {
13812 // A 32-bit value where only one byte has a nonzero value. Exclude
13813 // zero to match GCC. This constraint is used by GCC internally for
13814 // constants that can be loaded with a move/shift combination.
13815 // It is not useful otherwise but is implemented for compatibility.
13816 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
13817 break;
13818 } else if (Subtarget->isThumb2()) {
13819 // A constant whose bitwise inverse can be used as an immediate
13820 // value in a data-processing instruction. This can be used in GCC
13821 // with a "B" modifier that prints the inverted value, for use with
13822 // BIC and MVN instructions. It is not useful otherwise but is
13823 // implemented for compatibility.
13824 if (ARM_AM::getT2SOImmVal(~CVal) != -1)
13825 break;
13826 } else {
13827 // A constant whose bitwise inverse can be used as an immediate
13828 // value in a data-processing instruction. This can be used in GCC
13829 // with a "B" modifier that prints the inverted value, for use with
13830 // BIC and MVN instructions. It is not useful otherwise but is
13831 // implemented for compatibility.
13832 if (ARM_AM::getSOImmVal(~CVal) != -1)
13833 break;
13834 }
13835 return;
13836
13837 case 'L':
13838 if (Subtarget->isThumb1Only()) {
13839 // This must be a constant between -7 and 7,
13840 // for 3-operand ADD/SUB immediate instructions.
13841 if (CVal >= -7 && CVal < 7)
13842 break;
13843 } else if (Subtarget->isThumb2()) {
13844 // A constant whose negation can be used as an immediate value in a
13845 // data-processing instruction. This can be used in GCC with an "n"
13846 // modifier that prints the negated value, for use with SUB
13847 // instructions. It is not useful otherwise but is implemented for
13848 // compatibility.
13849 if (ARM_AM::getT2SOImmVal(-CVal) != -1)
13850 break;
13851 } else {
13852 // A constant whose negation can be used as an immediate value in a
13853 // data-processing instruction. This can be used in GCC with an "n"
13854 // modifier that prints the negated value, for use with SUB
13855 // instructions. It is not useful otherwise but is implemented for
13856 // compatibility.
13857 if (ARM_AM::getSOImmVal(-CVal) != -1)
13858 break;
13859 }
13860 return;
13861
13862 case 'M':
13863 if (Subtarget->isThumb1Only()) {
13864 // This must be a multiple of 4 between 0 and 1020, for
13865 // ADD sp + immediate.
13866 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
13867 break;
13868 } else {
13869 // A power of two or a constant between 0 and 32. This is used in
13870 // GCC for the shift amount on shifted register operands, but it is
13871 // useful in general for any shift amounts.
13872 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
13873 break;
13874 }
13875 return;
13876
13877 case 'N':
13878 if (Subtarget->isThumb()) { // FIXME thumb2
13879 // This must be a constant between 0 and 31, for shift amounts.
13880 if (CVal >= 0 && CVal <= 31)
13881 break;
13882 }
13883 return;
13884
13885 case 'O':
13886 if (Subtarget->isThumb()) { // FIXME thumb2
13887 // This must be a multiple of 4 between -508 and 508, for
13888 // ADD/SUB sp = sp + immediate.
13889 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
13890 break;
13891 }
13892 return;
13893 }
13894 Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
13895 break;
13896 }
13897
13898 if (Result.getNode()) {
13899 Ops.push_back(Result);
13900 return;
13901 }
13902 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13903 }
13904
getDivRemLibcall(const SDNode * N,MVT::SimpleValueType SVT)13905 static RTLIB::Libcall getDivRemLibcall(
13906 const SDNode *N, MVT::SimpleValueType SVT) {
13907 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
13908 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
13909 "Unhandled Opcode in getDivRemLibcall");
13910 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
13911 N->getOpcode() == ISD::SREM;
13912 RTLIB::Libcall LC;
13913 switch (SVT) {
13914 default: llvm_unreachable("Unexpected request for libcall!");
13915 case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
13916 case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
13917 case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
13918 case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
13919 }
13920 return LC;
13921 }
13922
getDivRemArgList(const SDNode * N,LLVMContext * Context,const ARMSubtarget * Subtarget)13923 static TargetLowering::ArgListTy getDivRemArgList(
13924 const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
13925 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
13926 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
13927 "Unhandled Opcode in getDivRemArgList");
13928 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
13929 N->getOpcode() == ISD::SREM;
13930 TargetLowering::ArgListTy Args;
13931 TargetLowering::ArgListEntry Entry;
13932 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
13933 EVT ArgVT = N->getOperand(i).getValueType();
13934 Type *ArgTy = ArgVT.getTypeForEVT(*Context);
13935 Entry.Node = N->getOperand(i);
13936 Entry.Ty = ArgTy;
13937 Entry.IsSExt = isSigned;
13938 Entry.IsZExt = !isSigned;
13939 Args.push_back(Entry);
13940 }
13941 if (Subtarget->isTargetWindows() && Args.size() >= 2)
13942 std::swap(Args[0], Args[1]);
13943 return Args;
13944 }
13945
LowerDivRem(SDValue Op,SelectionDAG & DAG) const13946 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
13947 assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
13948 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
13949 Subtarget->isTargetWindows()) &&
13950 "Register-based DivRem lowering only");
13951 unsigned Opcode = Op->getOpcode();
13952 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
13953 "Invalid opcode for Div/Rem lowering");
13954 bool isSigned = (Opcode == ISD::SDIVREM);
13955 EVT VT = Op->getValueType(0);
13956 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
13957 SDLoc dl(Op);
13958
13959 // If the target has hardware divide, use divide + multiply + subtract:
13960 // div = a / b
13961 // rem = a - b * div
13962 // return {div, rem}
13963 // This should be lowered into UDIV/SDIV + MLS later on.
13964 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
13965 : Subtarget->hasDivideInARMMode();
13966 if (hasDivide && Op->getValueType(0).isSimple() &&
13967 Op->getSimpleValueType(0) == MVT::i32) {
13968 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
13969 const SDValue Dividend = Op->getOperand(0);
13970 const SDValue Divisor = Op->getOperand(1);
13971 SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
13972 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
13973 SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
13974
13975 SDValue Values[2] = {Div, Rem};
13976 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
13977 }
13978
13979 RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
13980 VT.getSimpleVT().SimpleTy);
13981 SDValue InChain = DAG.getEntryNode();
13982
13983 TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
13984 DAG.getContext(),
13985 Subtarget);
13986
13987 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
13988 getPointerTy(DAG.getDataLayout()));
13989
13990 Type *RetTy = StructType::get(Ty, Ty);
13991
13992 if (Subtarget->isTargetWindows())
13993 InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
13994
13995 TargetLowering::CallLoweringInfo CLI(DAG);
13996 CLI.setDebugLoc(dl).setChain(InChain)
13997 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
13998 .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
13999
14000 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
14001 return CallInfo.first;
14002 }
14003
14004 // Lowers REM using divmod helpers
14005 // see RTABI section 4.2/4.3
LowerREM(SDNode * N,SelectionDAG & DAG) const14006 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
14007 // Build return types (div and rem)
14008 std::vector<Type*> RetTyParams;
14009 Type *RetTyElement;
14010
14011 switch (N->getValueType(0).getSimpleVT().SimpleTy) {
14012 default: llvm_unreachable("Unexpected request for libcall!");
14013 case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break;
14014 case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
14015 case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
14016 case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
14017 }
14018
14019 RetTyParams.push_back(RetTyElement);
14020 RetTyParams.push_back(RetTyElement);
14021 ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
14022 Type *RetTy = StructType::get(*DAG.getContext(), ret);
14023
14024 RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
14025 SimpleTy);
14026 SDValue InChain = DAG.getEntryNode();
14027 TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
14028 Subtarget);
14029 bool isSigned = N->getOpcode() == ISD::SREM;
14030 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
14031 getPointerTy(DAG.getDataLayout()));
14032
14033 if (Subtarget->isTargetWindows())
14034 InChain = WinDBZCheckDenominator(DAG, N, InChain);
14035
14036 // Lower call
14037 CallLoweringInfo CLI(DAG);
14038 CLI.setChain(InChain)
14039 .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
14040 .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
14041 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
14042
14043 // Return second (rem) result operand (first contains div)
14044 SDNode *ResNode = CallResult.first.getNode();
14045 assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
14046 return ResNode->getOperand(1);
14047 }
14048
14049 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const14050 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
14051 assert(Subtarget->isTargetWindows() && "unsupported target platform");
14052 SDLoc DL(Op);
14053
14054 // Get the inputs.
14055 SDValue Chain = Op.getOperand(0);
14056 SDValue Size = Op.getOperand(1);
14057
14058 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
14059 "no-stack-arg-probe")) {
14060 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
14061 SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14062 Chain = SP.getValue(1);
14063 SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
14064 if (Align)
14065 SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
14066 DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
14067 Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
14068 SDValue Ops[2] = { SP, Chain };
14069 return DAG.getMergeValues(Ops, DL);
14070 }
14071
14072 SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
14073 DAG.getConstant(2, DL, MVT::i32));
14074
14075 SDValue Flag;
14076 Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
14077 Flag = Chain.getValue(1);
14078
14079 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
14080 Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
14081
14082 SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14083 Chain = NewSP.getValue(1);
14084
14085 SDValue Ops[2] = { NewSP, Chain };
14086 return DAG.getMergeValues(Ops, DL);
14087 }
14088
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const14089 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
14090 assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
14091 "Unexpected type for custom-lowering FP_EXTEND");
14092
14093 RTLIB::Libcall LC;
14094 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
14095
14096 SDValue SrcVal = Op.getOperand(0);
14097 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14098 SDLoc(Op)).first;
14099 }
14100
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const14101 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
14102 assert(Op.getOperand(0).getValueType() == MVT::f64 &&
14103 Subtarget->isFPOnlySP() &&
14104 "Unexpected type for custom-lowering FP_ROUND");
14105
14106 RTLIB::Libcall LC;
14107 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
14108
14109 SDValue SrcVal = Op.getOperand(0);
14110 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14111 SDLoc(Op)).first;
14112 }
14113
14114 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const14115 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14116 // The ARM target isn't yet aware of offsets.
14117 return false;
14118 }
14119
isBitFieldInvertedMask(unsigned v)14120 bool ARM::isBitFieldInvertedMask(unsigned v) {
14121 if (v == 0xffffffff)
14122 return false;
14123
14124 // there can be 1's on either or both "outsides", all the "inside"
14125 // bits must be 0's
14126 return isShiftedMask_32(~v);
14127 }
14128
14129 /// isFPImmLegal - Returns true if the target can instruction select the
14130 /// specified FP immediate natively. If false, the legalizer will
14131 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT) const14132 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
14133 if (!Subtarget->hasVFP3())
14134 return false;
14135 if (VT == MVT::f16 && Subtarget->hasFullFP16())
14136 return ARM_AM::getFP16Imm(Imm) != -1;
14137 if (VT == MVT::f32)
14138 return ARM_AM::getFP32Imm(Imm) != -1;
14139 if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
14140 return ARM_AM::getFP64Imm(Imm) != -1;
14141 return false;
14142 }
14143
14144 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
14145 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
14146 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const14147 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14148 const CallInst &I,
14149 MachineFunction &MF,
14150 unsigned Intrinsic) const {
14151 switch (Intrinsic) {
14152 case Intrinsic::arm_neon_vld1:
14153 case Intrinsic::arm_neon_vld2:
14154 case Intrinsic::arm_neon_vld3:
14155 case Intrinsic::arm_neon_vld4:
14156 case Intrinsic::arm_neon_vld2lane:
14157 case Intrinsic::arm_neon_vld3lane:
14158 case Intrinsic::arm_neon_vld4lane:
14159 case Intrinsic::arm_neon_vld2dup:
14160 case Intrinsic::arm_neon_vld3dup:
14161 case Intrinsic::arm_neon_vld4dup: {
14162 Info.opc = ISD::INTRINSIC_W_CHAIN;
14163 // Conservatively set memVT to the entire set of vectors loaded.
14164 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14165 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14166 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14167 Info.ptrVal = I.getArgOperand(0);
14168 Info.offset = 0;
14169 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14170 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14171 // volatile loads with NEON intrinsics not supported
14172 Info.flags = MachineMemOperand::MOLoad;
14173 return true;
14174 }
14175 case Intrinsic::arm_neon_vld1x2:
14176 case Intrinsic::arm_neon_vld1x3:
14177 case Intrinsic::arm_neon_vld1x4: {
14178 Info.opc = ISD::INTRINSIC_W_CHAIN;
14179 // Conservatively set memVT to the entire set of vectors loaded.
14180 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14181 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14182 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14183 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
14184 Info.offset = 0;
14185 Info.align = 0;
14186 // volatile loads with NEON intrinsics not supported
14187 Info.flags = MachineMemOperand::MOLoad;
14188 return true;
14189 }
14190 case Intrinsic::arm_neon_vst1:
14191 case Intrinsic::arm_neon_vst2:
14192 case Intrinsic::arm_neon_vst3:
14193 case Intrinsic::arm_neon_vst4:
14194 case Intrinsic::arm_neon_vst2lane:
14195 case Intrinsic::arm_neon_vst3lane:
14196 case Intrinsic::arm_neon_vst4lane: {
14197 Info.opc = ISD::INTRINSIC_VOID;
14198 // Conservatively set memVT to the entire set of vectors stored.
14199 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14200 unsigned NumElts = 0;
14201 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14202 Type *ArgTy = I.getArgOperand(ArgI)->getType();
14203 if (!ArgTy->isVectorTy())
14204 break;
14205 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14206 }
14207 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14208 Info.ptrVal = I.getArgOperand(0);
14209 Info.offset = 0;
14210 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14211 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14212 // volatile stores with NEON intrinsics not supported
14213 Info.flags = MachineMemOperand::MOStore;
14214 return true;
14215 }
14216 case Intrinsic::arm_neon_vst1x2:
14217 case Intrinsic::arm_neon_vst1x3:
14218 case Intrinsic::arm_neon_vst1x4: {
14219 Info.opc = ISD::INTRINSIC_VOID;
14220 // Conservatively set memVT to the entire set of vectors stored.
14221 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14222 unsigned NumElts = 0;
14223 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14224 Type *ArgTy = I.getArgOperand(ArgI)->getType();
14225 if (!ArgTy->isVectorTy())
14226 break;
14227 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14228 }
14229 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14230 Info.ptrVal = I.getArgOperand(0);
14231 Info.offset = 0;
14232 Info.align = 0;
14233 // volatile stores with NEON intrinsics not supported
14234 Info.flags = MachineMemOperand::MOStore;
14235 return true;
14236 }
14237 case Intrinsic::arm_ldaex:
14238 case Intrinsic::arm_ldrex: {
14239 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14240 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
14241 Info.opc = ISD::INTRINSIC_W_CHAIN;
14242 Info.memVT = MVT::getVT(PtrTy->getElementType());
14243 Info.ptrVal = I.getArgOperand(0);
14244 Info.offset = 0;
14245 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14246 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14247 return true;
14248 }
14249 case Intrinsic::arm_stlex:
14250 case Intrinsic::arm_strex: {
14251 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14252 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
14253 Info.opc = ISD::INTRINSIC_W_CHAIN;
14254 Info.memVT = MVT::getVT(PtrTy->getElementType());
14255 Info.ptrVal = I.getArgOperand(1);
14256 Info.offset = 0;
14257 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14258 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14259 return true;
14260 }
14261 case Intrinsic::arm_stlexd:
14262 case Intrinsic::arm_strexd:
14263 Info.opc = ISD::INTRINSIC_W_CHAIN;
14264 Info.memVT = MVT::i64;
14265 Info.ptrVal = I.getArgOperand(2);
14266 Info.offset = 0;
14267 Info.align = 8;
14268 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14269 return true;
14270
14271 case Intrinsic::arm_ldaexd:
14272 case Intrinsic::arm_ldrexd:
14273 Info.opc = ISD::INTRINSIC_W_CHAIN;
14274 Info.memVT = MVT::i64;
14275 Info.ptrVal = I.getArgOperand(0);
14276 Info.offset = 0;
14277 Info.align = 8;
14278 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14279 return true;
14280
14281 default:
14282 break;
14283 }
14284
14285 return false;
14286 }
14287
14288 /// Returns true if it is beneficial to convert a load of a constant
14289 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const14290 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14291 Type *Ty) const {
14292 assert(Ty->isIntegerTy());
14293
14294 unsigned Bits = Ty->getPrimitiveSizeInBits();
14295 if (Bits == 0 || Bits > 32)
14296 return false;
14297 return true;
14298 }
14299
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const14300 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
14301 unsigned Index) const {
14302 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
14303 return false;
14304
14305 return (Index == 0 || Index == ResVT.getVectorNumElements());
14306 }
14307
makeDMB(IRBuilder<> & Builder,ARM_MB::MemBOpt Domain) const14308 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
14309 ARM_MB::MemBOpt Domain) const {
14310 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14311
14312 // First, if the target has no DMB, see what fallback we can use.
14313 if (!Subtarget->hasDataBarrier()) {
14314 // Some ARMv6 cpus can support data barriers with an mcr instruction.
14315 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
14316 // here.
14317 if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
14318 Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
14319 Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
14320 Builder.getInt32(0), Builder.getInt32(7),
14321 Builder.getInt32(10), Builder.getInt32(5)};
14322 return Builder.CreateCall(MCR, args);
14323 } else {
14324 // Instead of using barriers, atomic accesses on these subtargets use
14325 // libcalls.
14326 llvm_unreachable("makeDMB on a target so old that it has no barriers");
14327 }
14328 } else {
14329 Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
14330 // Only a full system barrier exists in the M-class architectures.
14331 Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
14332 Constant *CDomain = Builder.getInt32(Domain);
14333 return Builder.CreateCall(DMB, CDomain);
14334 }
14335 }
14336
14337 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const14338 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
14339 Instruction *Inst,
14340 AtomicOrdering Ord) const {
14341 switch (Ord) {
14342 case AtomicOrdering::NotAtomic:
14343 case AtomicOrdering::Unordered:
14344 llvm_unreachable("Invalid fence: unordered/non-atomic");
14345 case AtomicOrdering::Monotonic:
14346 case AtomicOrdering::Acquire:
14347 return nullptr; // Nothing to do
14348 case AtomicOrdering::SequentiallyConsistent:
14349 if (!Inst->hasAtomicStore())
14350 return nullptr; // Nothing to do
14351 LLVM_FALLTHROUGH;
14352 case AtomicOrdering::Release:
14353 case AtomicOrdering::AcquireRelease:
14354 if (Subtarget->preferISHSTBarriers())
14355 return makeDMB(Builder, ARM_MB::ISHST);
14356 // FIXME: add a comment with a link to documentation justifying this.
14357 else
14358 return makeDMB(Builder, ARM_MB::ISH);
14359 }
14360 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
14361 }
14362
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const14363 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
14364 Instruction *Inst,
14365 AtomicOrdering Ord) const {
14366 switch (Ord) {
14367 case AtomicOrdering::NotAtomic:
14368 case AtomicOrdering::Unordered:
14369 llvm_unreachable("Invalid fence: unordered/not-atomic");
14370 case AtomicOrdering::Monotonic:
14371 case AtomicOrdering::Release:
14372 return nullptr; // Nothing to do
14373 case AtomicOrdering::Acquire:
14374 case AtomicOrdering::AcquireRelease:
14375 case AtomicOrdering::SequentiallyConsistent:
14376 return makeDMB(Builder, ARM_MB::ISH);
14377 }
14378 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
14379 }
14380
14381 // Loads and stores less than 64-bits are already atomic; ones above that
14382 // are doomed anyway, so defer to the default libcall and blame the OS when
14383 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14384 // anything for those.
shouldExpandAtomicStoreInIR(StoreInst * SI) const14385 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
14386 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
14387 return (Size == 64) && !Subtarget->isMClass();
14388 }
14389
14390 // Loads and stores less than 64-bits are already atomic; ones above that
14391 // are doomed anyway, so defer to the default libcall and blame the OS when
14392 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14393 // anything for those.
14394 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
14395 // guarantee, see DDI0406C ARM architecture reference manual,
14396 // sections A8.8.72-74 LDRD)
14397 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const14398 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
14399 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
14400 return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
14401 : AtomicExpansionKind::None;
14402 }
14403
14404 // For the real atomic operations, we have ldrex/strex up to 32 bits,
14405 // and up to 64 bits on the non-M profiles
14406 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const14407 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
14408 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
14409 bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14410 return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
14411 ? AtomicExpansionKind::LLSC
14412 : AtomicExpansionKind::None;
14413 }
14414
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const14415 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
14416 AtomicCmpXchgInst *AI) const {
14417 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
14418 // implement cmpxchg without spilling. If the address being exchanged is also
14419 // on the stack and close enough to the spill slot, this can lead to a
14420 // situation where the monitor always gets cleared and the atomic operation
14421 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
14422 bool hasAtomicCmpXchg =
14423 !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14424 return getTargetMachine().getOptLevel() != 0 && hasAtomicCmpXchg;
14425 }
14426
shouldInsertFencesForAtomic(const Instruction * I) const14427 bool ARMTargetLowering::shouldInsertFencesForAtomic(
14428 const Instruction *I) const {
14429 return InsertFencesForAtomic;
14430 }
14431
14432 // This has so far only been implemented for MachO.
useLoadStackGuardNode() const14433 bool ARMTargetLowering::useLoadStackGuardNode() const {
14434 return Subtarget->isTargetMachO();
14435 }
14436
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost) const14437 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
14438 unsigned &Cost) const {
14439 // If we do not have NEON, vector types are not natively supported.
14440 if (!Subtarget->hasNEON())
14441 return false;
14442
14443 // Floating point values and vector values map to the same register file.
14444 // Therefore, although we could do a store extract of a vector type, this is
14445 // better to leave at float as we have more freedom in the addressing mode for
14446 // those.
14447 if (VectorTy->isFPOrFPVectorTy())
14448 return false;
14449
14450 // If the index is unknown at compile time, this is very expensive to lower
14451 // and it is not possible to combine the store with the extract.
14452 if (!isa<ConstantInt>(Idx))
14453 return false;
14454
14455 assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
14456 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
14457 // We can do a store + vector extract on any vector that fits perfectly in a D
14458 // or Q register.
14459 if (BitWidth == 64 || BitWidth == 128) {
14460 Cost = 0;
14461 return true;
14462 }
14463 return false;
14464 }
14465
isCheapToSpeculateCttz() const14466 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
14467 return Subtarget->hasV6T2Ops();
14468 }
14469
isCheapToSpeculateCtlz() const14470 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
14471 return Subtarget->hasV6T2Ops();
14472 }
14473
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const14474 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
14475 AtomicOrdering Ord) const {
14476 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14477 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
14478 bool IsAcquire = isAcquireOrStronger(Ord);
14479
14480 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
14481 // intrinsic must return {i32, i32} and we have to recombine them into a
14482 // single i64 here.
14483 if (ValTy->getPrimitiveSizeInBits() == 64) {
14484 Intrinsic::ID Int =
14485 IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
14486 Function *Ldrex = Intrinsic::getDeclaration(M, Int);
14487
14488 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14489 Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
14490
14491 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
14492 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
14493 if (!Subtarget->isLittle())
14494 std::swap (Lo, Hi);
14495 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
14496 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
14497 return Builder.CreateOr(
14498 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
14499 }
14500
14501 Type *Tys[] = { Addr->getType() };
14502 Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
14503 Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
14504
14505 return Builder.CreateTruncOrBitCast(
14506 Builder.CreateCall(Ldrex, Addr),
14507 cast<PointerType>(Addr->getType())->getElementType());
14508 }
14509
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const14510 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
14511 IRBuilder<> &Builder) const {
14512 if (!Subtarget->hasV7Ops())
14513 return;
14514 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14515 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
14516 }
14517
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const14518 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
14519 Value *Addr,
14520 AtomicOrdering Ord) const {
14521 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14522 bool IsRelease = isReleaseOrStronger(Ord);
14523
14524 // Since the intrinsics must have legal type, the i64 intrinsics take two
14525 // parameters: "i32, i32". We must marshal Val into the appropriate form
14526 // before the call.
14527 if (Val->getType()->getPrimitiveSizeInBits() == 64) {
14528 Intrinsic::ID Int =
14529 IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
14530 Function *Strex = Intrinsic::getDeclaration(M, Int);
14531 Type *Int32Ty = Type::getInt32Ty(M->getContext());
14532
14533 Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
14534 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
14535 if (!Subtarget->isLittle())
14536 std::swap(Lo, Hi);
14537 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14538 return Builder.CreateCall(Strex, {Lo, Hi, Addr});
14539 }
14540
14541 Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
14542 Type *Tys[] = { Addr->getType() };
14543 Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
14544
14545 return Builder.CreateCall(
14546 Strex, {Builder.CreateZExtOrBitCast(
14547 Val, Strex->getFunctionType()->getParamType(0)),
14548 Addr});
14549 }
14550
14551 /// A helper function for determining the number of interleaved accesses we
14552 /// will generate when lowering accesses of the given type.
14553 unsigned
getNumInterleavedAccesses(VectorType * VecTy,const DataLayout & DL) const14554 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
14555 const DataLayout &DL) const {
14556 return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
14557 }
14558
isLegalInterleavedAccessType(VectorType * VecTy,const DataLayout & DL) const14559 bool ARMTargetLowering::isLegalInterleavedAccessType(
14560 VectorType *VecTy, const DataLayout &DL) const {
14561
14562 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
14563 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
14564
14565 // Ensure the vector doesn't have f16 elements. Even though we could do an
14566 // i16 vldN, we can't hold the f16 vectors and will end up converting via
14567 // f32.
14568 if (VecTy->getElementType()->isHalfTy())
14569 return false;
14570
14571 // Ensure the number of vector elements is greater than 1.
14572 if (VecTy->getNumElements() < 2)
14573 return false;
14574
14575 // Ensure the element type is legal.
14576 if (ElSize != 8 && ElSize != 16 && ElSize != 32)
14577 return false;
14578
14579 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
14580 // 128 will be split into multiple interleaved accesses.
14581 return VecSize == 64 || VecSize % 128 == 0;
14582 }
14583
14584 /// Lower an interleaved load into a vldN intrinsic.
14585 ///
14586 /// E.g. Lower an interleaved load (Factor = 2):
14587 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
14588 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
14589 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
14590 ///
14591 /// Into:
14592 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
14593 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
14594 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const14595 bool ARMTargetLowering::lowerInterleavedLoad(
14596 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
14597 ArrayRef<unsigned> Indices, unsigned Factor) const {
14598 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
14599 "Invalid interleave factor");
14600 assert(!Shuffles.empty() && "Empty shufflevector input");
14601 assert(Shuffles.size() == Indices.size() &&
14602 "Unmatched number of shufflevectors and indices");
14603
14604 VectorType *VecTy = Shuffles[0]->getType();
14605 Type *EltTy = VecTy->getVectorElementType();
14606
14607 const DataLayout &DL = LI->getModule()->getDataLayout();
14608
14609 // Skip if we do not have NEON and skip illegal vector types. We can
14610 // "legalize" wide vector types into multiple interleaved accesses as long as
14611 // the vector types are divisible by 128.
14612 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
14613 return false;
14614
14615 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
14616
14617 // A pointer vector can not be the return type of the ldN intrinsics. Need to
14618 // load integer vectors first and then convert to pointer vectors.
14619 if (EltTy->isPointerTy())
14620 VecTy =
14621 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
14622
14623 IRBuilder<> Builder(LI);
14624
14625 // The base address of the load.
14626 Value *BaseAddr = LI->getPointerOperand();
14627
14628 if (NumLoads > 1) {
14629 // If we're going to generate more than one load, reset the sub-vector type
14630 // to something legal.
14631 VecTy = VectorType::get(VecTy->getVectorElementType(),
14632 VecTy->getVectorNumElements() / NumLoads);
14633
14634 // We will compute the pointer operand of each load from the original base
14635 // address using GEPs. Cast the base address to a pointer to the scalar
14636 // element type.
14637 BaseAddr = Builder.CreateBitCast(
14638 BaseAddr, VecTy->getVectorElementType()->getPointerTo(
14639 LI->getPointerAddressSpace()));
14640 }
14641
14642 assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
14643
14644 Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
14645 Type *Tys[] = {VecTy, Int8Ptr};
14646 static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
14647 Intrinsic::arm_neon_vld3,
14648 Intrinsic::arm_neon_vld4};
14649 Function *VldnFunc =
14650 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
14651
14652 // Holds sub-vectors extracted from the load intrinsic return values. The
14653 // sub-vectors are associated with the shufflevector instructions they will
14654 // replace.
14655 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
14656
14657 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
14658 // If we're generating more than one load, compute the base address of
14659 // subsequent loads as an offset from the previous.
14660 if (LoadCount > 0)
14661 BaseAddr = Builder.CreateConstGEP1_32(
14662 BaseAddr, VecTy->getVectorNumElements() * Factor);
14663
14664 SmallVector<Value *, 2> Ops;
14665 Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
14666 Ops.push_back(Builder.getInt32(LI->getAlignment()));
14667
14668 CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
14669
14670 // Replace uses of each shufflevector with the corresponding vector loaded
14671 // by ldN.
14672 for (unsigned i = 0; i < Shuffles.size(); i++) {
14673 ShuffleVectorInst *SV = Shuffles[i];
14674 unsigned Index = Indices[i];
14675
14676 Value *SubVec = Builder.CreateExtractValue(VldN, Index);
14677
14678 // Convert the integer vector to pointer vector if the element is pointer.
14679 if (EltTy->isPointerTy())
14680 SubVec = Builder.CreateIntToPtr(
14681 SubVec, VectorType::get(SV->getType()->getVectorElementType(),
14682 VecTy->getVectorNumElements()));
14683
14684 SubVecs[SV].push_back(SubVec);
14685 }
14686 }
14687
14688 // Replace uses of the shufflevector instructions with the sub-vectors
14689 // returned by the load intrinsic. If a shufflevector instruction is
14690 // associated with more than one sub-vector, those sub-vectors will be
14691 // concatenated into a single wide vector.
14692 for (ShuffleVectorInst *SVI : Shuffles) {
14693 auto &SubVec = SubVecs[SVI];
14694 auto *WideVec =
14695 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
14696 SVI->replaceAllUsesWith(WideVec);
14697 }
14698
14699 return true;
14700 }
14701
14702 /// Lower an interleaved store into a vstN intrinsic.
14703 ///
14704 /// E.g. Lower an interleaved store (Factor = 3):
14705 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
14706 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
14707 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
14708 ///
14709 /// Into:
14710 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
14711 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
14712 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
14713 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
14714 ///
14715 /// Note that the new shufflevectors will be removed and we'll only generate one
14716 /// vst3 instruction in CodeGen.
14717 ///
14718 /// Example for a more general valid mask (Factor 3). Lower:
14719 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
14720 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
14721 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
14722 ///
14723 /// Into:
14724 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
14725 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
14726 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
14727 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const14728 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
14729 ShuffleVectorInst *SVI,
14730 unsigned Factor) const {
14731 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
14732 "Invalid interleave factor");
14733
14734 VectorType *VecTy = SVI->getType();
14735 assert(VecTy->getVectorNumElements() % Factor == 0 &&
14736 "Invalid interleaved store");
14737
14738 unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
14739 Type *EltTy = VecTy->getVectorElementType();
14740 VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
14741
14742 const DataLayout &DL = SI->getModule()->getDataLayout();
14743
14744 // Skip if we do not have NEON and skip illegal vector types. We can
14745 // "legalize" wide vector types into multiple interleaved accesses as long as
14746 // the vector types are divisible by 128.
14747 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
14748 return false;
14749
14750 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
14751
14752 Value *Op0 = SVI->getOperand(0);
14753 Value *Op1 = SVI->getOperand(1);
14754 IRBuilder<> Builder(SI);
14755
14756 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
14757 // vectors to integer vectors.
14758 if (EltTy->isPointerTy()) {
14759 Type *IntTy = DL.getIntPtrType(EltTy);
14760
14761 // Convert to the corresponding integer vector.
14762 Type *IntVecTy =
14763 VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
14764 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
14765 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
14766
14767 SubVecTy = VectorType::get(IntTy, LaneLen);
14768 }
14769
14770 // The base address of the store.
14771 Value *BaseAddr = SI->getPointerOperand();
14772
14773 if (NumStores > 1) {
14774 // If we're going to generate more than one store, reset the lane length
14775 // and sub-vector type to something legal.
14776 LaneLen /= NumStores;
14777 SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
14778
14779 // We will compute the pointer operand of each store from the original base
14780 // address using GEPs. Cast the base address to a pointer to the scalar
14781 // element type.
14782 BaseAddr = Builder.CreateBitCast(
14783 BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
14784 SI->getPointerAddressSpace()));
14785 }
14786
14787 assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
14788
14789 auto Mask = SVI->getShuffleMask();
14790
14791 Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
14792 Type *Tys[] = {Int8Ptr, SubVecTy};
14793 static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
14794 Intrinsic::arm_neon_vst3,
14795 Intrinsic::arm_neon_vst4};
14796
14797 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
14798 // If we generating more than one store, we compute the base address of
14799 // subsequent stores as an offset from the previous.
14800 if (StoreCount > 0)
14801 BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
14802
14803 SmallVector<Value *, 6> Ops;
14804 Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
14805
14806 Function *VstNFunc =
14807 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
14808
14809 // Split the shufflevector operands into sub vectors for the new vstN call.
14810 for (unsigned i = 0; i < Factor; i++) {
14811 unsigned IdxI = StoreCount * LaneLen * Factor + i;
14812 if (Mask[IdxI] >= 0) {
14813 Ops.push_back(Builder.CreateShuffleVector(
14814 Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
14815 } else {
14816 unsigned StartMask = 0;
14817 for (unsigned j = 1; j < LaneLen; j++) {
14818 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
14819 if (Mask[IdxJ * Factor + IdxI] >= 0) {
14820 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
14821 break;
14822 }
14823 }
14824 // Note: If all elements in a chunk are undefs, StartMask=0!
14825 // Note: Filling undef gaps with random elements is ok, since
14826 // those elements were being written anyway (with undefs).
14827 // In the case of all undefs we're defaulting to using elems from 0
14828 // Note: StartMask cannot be negative, it's checked in
14829 // isReInterleaveMask
14830 Ops.push_back(Builder.CreateShuffleVector(
14831 Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
14832 }
14833 }
14834
14835 Ops.push_back(Builder.getInt32(SI->getAlignment()));
14836 Builder.CreateCall(VstNFunc, Ops);
14837 }
14838 return true;
14839 }
14840
14841 enum HABaseType {
14842 HA_UNKNOWN = 0,
14843 HA_FLOAT,
14844 HA_DOUBLE,
14845 HA_VECT64,
14846 HA_VECT128
14847 };
14848
isHomogeneousAggregate(Type * Ty,HABaseType & Base,uint64_t & Members)14849 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
14850 uint64_t &Members) {
14851 if (auto *ST = dyn_cast<StructType>(Ty)) {
14852 for (unsigned i = 0; i < ST->getNumElements(); ++i) {
14853 uint64_t SubMembers = 0;
14854 if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
14855 return false;
14856 Members += SubMembers;
14857 }
14858 } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
14859 uint64_t SubMembers = 0;
14860 if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
14861 return false;
14862 Members += SubMembers * AT->getNumElements();
14863 } else if (Ty->isFloatTy()) {
14864 if (Base != HA_UNKNOWN && Base != HA_FLOAT)
14865 return false;
14866 Members = 1;
14867 Base = HA_FLOAT;
14868 } else if (Ty->isDoubleTy()) {
14869 if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
14870 return false;
14871 Members = 1;
14872 Base = HA_DOUBLE;
14873 } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
14874 Members = 1;
14875 switch (Base) {
14876 case HA_FLOAT:
14877 case HA_DOUBLE:
14878 return false;
14879 case HA_VECT64:
14880 return VT->getBitWidth() == 64;
14881 case HA_VECT128:
14882 return VT->getBitWidth() == 128;
14883 case HA_UNKNOWN:
14884 switch (VT->getBitWidth()) {
14885 case 64:
14886 Base = HA_VECT64;
14887 return true;
14888 case 128:
14889 Base = HA_VECT128;
14890 return true;
14891 default:
14892 return false;
14893 }
14894 }
14895 }
14896
14897 return (Members > 0 && Members <= 4);
14898 }
14899
14900 /// Return the correct alignment for the current calling convention.
14901 unsigned
getABIAlignmentForCallingConv(Type * ArgTy,DataLayout DL) const14902 ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
14903 DataLayout DL) const {
14904 if (!ArgTy->isVectorTy())
14905 return DL.getABITypeAlignment(ArgTy);
14906
14907 // Avoid over-aligning vector parameters. It would require realigning the
14908 // stack and waste space for no real benefit.
14909 return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment());
14910 }
14911
14912 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
14913 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
14914 /// passing according to AAPCS rules.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const14915 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
14916 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
14917 if (getEffectiveCallingConv(CallConv, isVarArg) !=
14918 CallingConv::ARM_AAPCS_VFP)
14919 return false;
14920
14921 HABaseType Base = HA_UNKNOWN;
14922 uint64_t Members = 0;
14923 bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
14924 LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
14925
14926 bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
14927 return IsHA || IsIntArray;
14928 }
14929
getExceptionPointerRegister(const Constant * PersonalityFn) const14930 unsigned ARMTargetLowering::getExceptionPointerRegister(
14931 const Constant *PersonalityFn) const {
14932 // Platforms which do not use SjLj EH may return values in these registers
14933 // via the personality function.
14934 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
14935 }
14936
getExceptionSelectorRegister(const Constant * PersonalityFn) const14937 unsigned ARMTargetLowering::getExceptionSelectorRegister(
14938 const Constant *PersonalityFn) const {
14939 // Platforms which do not use SjLj EH may return values in these registers
14940 // via the personality function.
14941 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
14942 }
14943
initializeSplitCSR(MachineBasicBlock * Entry) const14944 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14945 // Update IsSplitCSR in ARMFunctionInfo.
14946 ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
14947 AFI->setIsSplitCSR(true);
14948 }
14949
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const14950 void ARMTargetLowering::insertCopiesSplitCSR(
14951 MachineBasicBlock *Entry,
14952 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14953 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
14954 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14955 if (!IStart)
14956 return;
14957
14958 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
14959 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14960 MachineBasicBlock::iterator MBBI = Entry->begin();
14961 for (const MCPhysReg *I = IStart; *I; ++I) {
14962 const TargetRegisterClass *RC = nullptr;
14963 if (ARM::GPRRegClass.contains(*I))
14964 RC = &ARM::GPRRegClass;
14965 else if (ARM::DPRRegClass.contains(*I))
14966 RC = &ARM::DPRRegClass;
14967 else
14968 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14969
14970 unsigned NewVR = MRI->createVirtualRegister(RC);
14971 // Create copy from CSR to a virtual register.
14972 // FIXME: this currently does not emit CFI pseudo-instructions, it works
14973 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14974 // nounwind. If we want to generalize this later, we may need to emit
14975 // CFI pseudo-instructions.
14976 assert(Entry->getParent()->getFunction().hasFnAttribute(
14977 Attribute::NoUnwind) &&
14978 "Function should be nounwind in insertCopiesSplitCSR!");
14979 Entry->addLiveIn(*I);
14980 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14981 .addReg(*I);
14982
14983 // Insert the copy-back instructions right before the terminator.
14984 for (auto *Exit : Exits)
14985 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14986 TII->get(TargetOpcode::COPY), *I)
14987 .addReg(NewVR);
14988 }
14989 }
14990
finalizeLowering(MachineFunction & MF) const14991 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
14992 MF.getFrameInfo().computeMaxCallFrameSize(MF);
14993 TargetLoweringBase::finalizeLowering(MF);
14994 }
14995