• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMISelLowering.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "ARMPerfectShuffle.h"
22 #include "ARMRegisterInfo.h"
23 #include "ARMSelectionDAGInfo.h"
24 #include "ARMSubtarget.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "MCTargetDesc/ARMBaseInfo.h"
27 #include "Utils/ARMBaseInfo.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ADT/StringSwitch.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/VectorUtils.h"
43 #include "llvm/CodeGen/CallingConvLower.h"
44 #include "llvm/CodeGen/ISDOpcodes.h"
45 #include "llvm/CodeGen/IntrinsicLowering.h"
46 #include "llvm/CodeGen/MachineBasicBlock.h"
47 #include "llvm/CodeGen/MachineConstantPool.h"
48 #include "llvm/CodeGen/MachineFrameInfo.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineInstr.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/RuntimeLibcalls.h"
57 #include "llvm/CodeGen/SelectionDAG.h"
58 #include "llvm/CodeGen/SelectionDAGNodes.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/CallingConv.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InlineAsm.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/IntrinsicInst.h"
81 #include "llvm/IR/Intrinsics.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <cstdlib>
108 #include <iterator>
109 #include <limits>
110 #include <string>
111 #include <tuple>
112 #include <utility>
113 #include <vector>
114 
115 using namespace llvm;
116 
117 #define DEBUG_TYPE "arm-isel"
118 
119 STATISTIC(NumTailCalls, "Number of tail calls");
120 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
121 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
122 STATISTIC(NumConstpoolPromoted,
123   "Number of constants with their storage promoted into constant pools");
124 
125 static cl::opt<bool>
126 ARMInterworking("arm-interworking", cl::Hidden,
127   cl::desc("Enable / disable ARM interworking (for debugging only)"),
128   cl::init(true));
129 
130 static cl::opt<bool> EnableConstpoolPromotion(
131     "arm-promote-constant", cl::Hidden,
132     cl::desc("Enable / disable promotion of unnamed_addr constants into "
133              "constant pools"),
134     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
135 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
136     "arm-promote-constant-max-size", cl::Hidden,
137     cl::desc("Maximum size of constant to promote into a constant pool"),
138     cl::init(64));
139 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
140     "arm-promote-constant-max-total", cl::Hidden,
141     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
142     cl::init(128));
143 
144 // The APCS parameter registers.
145 static const MCPhysReg GPRArgRegs[] = {
146   ARM::R0, ARM::R1, ARM::R2, ARM::R3
147 };
148 
addTypeForNEON(MVT VT,MVT PromotedLdStVT,MVT PromotedBitwiseVT)149 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
150                                        MVT PromotedBitwiseVT) {
151   if (VT != PromotedLdStVT) {
152     setOperationAction(ISD::LOAD, VT, Promote);
153     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
154 
155     setOperationAction(ISD::STORE, VT, Promote);
156     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
157   }
158 
159   MVT ElemTy = VT.getVectorElementType();
160   if (ElemTy != MVT::f64)
161     setOperationAction(ISD::SETCC, VT, Custom);
162   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
163   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
164   if (ElemTy == MVT::i32) {
165     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
166     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
167     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
168     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
169   } else {
170     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
171     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
172     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
173     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
174   }
175   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
176   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
177   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
178   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
179   setOperationAction(ISD::SELECT,            VT, Expand);
180   setOperationAction(ISD::SELECT_CC,         VT, Expand);
181   setOperationAction(ISD::VSELECT,           VT, Expand);
182   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
183   if (VT.isInteger()) {
184     setOperationAction(ISD::SHL, VT, Custom);
185     setOperationAction(ISD::SRA, VT, Custom);
186     setOperationAction(ISD::SRL, VT, Custom);
187   }
188 
189   // Promote all bit-wise operations.
190   if (VT.isInteger() && VT != PromotedBitwiseVT) {
191     setOperationAction(ISD::AND, VT, Promote);
192     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
193     setOperationAction(ISD::OR,  VT, Promote);
194     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
195     setOperationAction(ISD::XOR, VT, Promote);
196     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
197   }
198 
199   // Neon does not support vector divide/remainder operations.
200   setOperationAction(ISD::SDIV, VT, Expand);
201   setOperationAction(ISD::UDIV, VT, Expand);
202   setOperationAction(ISD::FDIV, VT, Expand);
203   setOperationAction(ISD::SREM, VT, Expand);
204   setOperationAction(ISD::UREM, VT, Expand);
205   setOperationAction(ISD::FREM, VT, Expand);
206 
207   if (!VT.isFloatingPoint() &&
208       VT != MVT::v2i64 && VT != MVT::v1i64)
209     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
210       setOperationAction(Opcode, VT, Legal);
211 }
212 
addDRTypeForNEON(MVT VT)213 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
214   addRegisterClass(VT, &ARM::DPRRegClass);
215   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
216 }
217 
addQRTypeForNEON(MVT VT)218 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
219   addRegisterClass(VT, &ARM::DPairRegClass);
220   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
221 }
222 
ARMTargetLowering(const TargetMachine & TM,const ARMSubtarget & STI)223 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
224                                      const ARMSubtarget &STI)
225     : TargetLowering(TM), Subtarget(&STI) {
226   RegInfo = Subtarget->getRegisterInfo();
227   Itins = Subtarget->getInstrItineraryData();
228 
229   setBooleanContents(ZeroOrOneBooleanContent);
230   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
231 
232   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
233       !Subtarget->isTargetWatchOS()) {
234     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
235     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
236       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
237                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
238                                        : CallingConv::ARM_AAPCS);
239   }
240 
241   if (Subtarget->isTargetMachO()) {
242     // Uses VFP for Thumb libfuncs if available.
243     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
244         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
245       static const struct {
246         const RTLIB::Libcall Op;
247         const char * const Name;
248         const ISD::CondCode Cond;
249       } LibraryCalls[] = {
250         // Single-precision floating-point arithmetic.
251         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
252         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
253         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
254         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
255 
256         // Double-precision floating-point arithmetic.
257         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
258         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
259         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
260         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
261 
262         // Single-precision comparisons.
263         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
264         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
265         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
266         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
267         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
268         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
269         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
270         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
271 
272         // Double-precision comparisons.
273         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
274         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
275         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
276         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
277         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
278         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
279         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
280         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
281 
282         // Floating-point to integer conversions.
283         // i64 conversions are done via library routines even when generating VFP
284         // instructions, so use the same ones.
285         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
286         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
287         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
288         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
289 
290         // Conversions between floating types.
291         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
292         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
293 
294         // Integer to floating-point conversions.
295         // i64 conversions are done via library routines even when generating VFP
296         // instructions, so use the same ones.
297         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
298         // e.g., __floatunsidf vs. __floatunssidfvfp.
299         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
300         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
301         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
302         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
303       };
304 
305       for (const auto &LC : LibraryCalls) {
306         setLibcallName(LC.Op, LC.Name);
307         if (LC.Cond != ISD::SETCC_INVALID)
308           setCmpLibcallCC(LC.Op, LC.Cond);
309       }
310     }
311   }
312 
313   // These libcalls are not available in 32-bit.
314   setLibcallName(RTLIB::SHL_I128, nullptr);
315   setLibcallName(RTLIB::SRL_I128, nullptr);
316   setLibcallName(RTLIB::SRA_I128, nullptr);
317 
318   // RTLIB
319   if (Subtarget->isAAPCS_ABI() &&
320       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
321        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
322     static const struct {
323       const RTLIB::Libcall Op;
324       const char * const Name;
325       const CallingConv::ID CC;
326       const ISD::CondCode Cond;
327     } LibraryCalls[] = {
328       // Double-precision floating-point arithmetic helper functions
329       // RTABI chapter 4.1.2, Table 2
330       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
331       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
332       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
333       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
334 
335       // Double-precision floating-point comparison helper functions
336       // RTABI chapter 4.1.2, Table 3
337       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
338       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
339       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
340       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
341       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
342       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
343       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
344       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
345 
346       // Single-precision floating-point arithmetic helper functions
347       // RTABI chapter 4.1.2, Table 4
348       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
349       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
350       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
351       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
352 
353       // Single-precision floating-point comparison helper functions
354       // RTABI chapter 4.1.2, Table 5
355       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
356       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
357       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
358       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
359       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
360       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
361       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
362       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
363 
364       // Floating-point to integer conversions.
365       // RTABI chapter 4.1.2, Table 6
366       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
367       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
368       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
369       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
370       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
371       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
372       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
373       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
374 
375       // Conversions between floating types.
376       // RTABI chapter 4.1.2, Table 7
377       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
378       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
379       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
380 
381       // Integer to floating-point conversions.
382       // RTABI chapter 4.1.2, Table 8
383       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
384       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
385       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
386       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
387       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
388       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
389       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
390       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
391 
392       // Long long helper functions
393       // RTABI chapter 4.2, Table 9
394       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
395       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
396       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
397       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
398 
399       // Integer division functions
400       // RTABI chapter 4.3.1
401       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
402       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
403       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
404       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
405       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
406       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
407       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
408       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
409     };
410 
411     for (const auto &LC : LibraryCalls) {
412       setLibcallName(LC.Op, LC.Name);
413       setLibcallCallingConv(LC.Op, LC.CC);
414       if (LC.Cond != ISD::SETCC_INVALID)
415         setCmpLibcallCC(LC.Op, LC.Cond);
416     }
417 
418     // EABI dependent RTLIB
419     if (TM.Options.EABIVersion == EABI::EABI4 ||
420         TM.Options.EABIVersion == EABI::EABI5) {
421       static const struct {
422         const RTLIB::Libcall Op;
423         const char *const Name;
424         const CallingConv::ID CC;
425         const ISD::CondCode Cond;
426       } MemOpsLibraryCalls[] = {
427         // Memory operations
428         // RTABI chapter 4.3.4
429         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
430         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
431         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
432       };
433 
434       for (const auto &LC : MemOpsLibraryCalls) {
435         setLibcallName(LC.Op, LC.Name);
436         setLibcallCallingConv(LC.Op, LC.CC);
437         if (LC.Cond != ISD::SETCC_INVALID)
438           setCmpLibcallCC(LC.Op, LC.Cond);
439       }
440     }
441   }
442 
443   if (Subtarget->isTargetWindows()) {
444     static const struct {
445       const RTLIB::Libcall Op;
446       const char * const Name;
447       const CallingConv::ID CC;
448     } LibraryCalls[] = {
449       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
450       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
451       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
452       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
453       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
454       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
455       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
456       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
457     };
458 
459     for (const auto &LC : LibraryCalls) {
460       setLibcallName(LC.Op, LC.Name);
461       setLibcallCallingConv(LC.Op, LC.CC);
462     }
463   }
464 
465   // Use divmod compiler-rt calls for iOS 5.0 and later.
466   if (Subtarget->isTargetMachO() &&
467       !(Subtarget->isTargetIOS() &&
468         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
469     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
470     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
471   }
472 
473   // The half <-> float conversion functions are always soft-float on
474   // non-watchos platforms, but are needed for some targets which use a
475   // hard-float calling convention by default.
476   if (!Subtarget->isTargetWatchABI()) {
477     if (Subtarget->isAAPCS_ABI()) {
478       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
479       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
480       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
481     } else {
482       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
483       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
484       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
485     }
486   }
487 
488   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
489   // a __gnu_ prefix (which is the default).
490   if (Subtarget->isTargetAEABI()) {
491     static const struct {
492       const RTLIB::Libcall Op;
493       const char * const Name;
494       const CallingConv::ID CC;
495     } LibraryCalls[] = {
496       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
497       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
498       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
499     };
500 
501     for (const auto &LC : LibraryCalls) {
502       setLibcallName(LC.Op, LC.Name);
503       setLibcallCallingConv(LC.Op, LC.CC);
504     }
505   }
506 
507   if (Subtarget->isThumb1Only())
508     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
509   else
510     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
511 
512   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
513       !Subtarget->isThumb1Only()) {
514     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
515     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
516   }
517 
518   if (Subtarget->hasFullFP16()) {
519     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
520     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
521     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
522     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
523 
524     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
525     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
526   }
527 
528   for (MVT VT : MVT::vector_valuetypes()) {
529     for (MVT InnerVT : MVT::vector_valuetypes()) {
530       setTruncStoreAction(VT, InnerVT, Expand);
531       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
532       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
533       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
534     }
535 
536     setOperationAction(ISD::MULHS, VT, Expand);
537     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
538     setOperationAction(ISD::MULHU, VT, Expand);
539     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
540 
541     setOperationAction(ISD::BSWAP, VT, Expand);
542   }
543 
544   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
545   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
546 
547   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
548   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
549 
550   if (Subtarget->hasNEON()) {
551     addDRTypeForNEON(MVT::v2f32);
552     addDRTypeForNEON(MVT::v8i8);
553     addDRTypeForNEON(MVT::v4i16);
554     addDRTypeForNEON(MVT::v2i32);
555     addDRTypeForNEON(MVT::v1i64);
556 
557     addQRTypeForNEON(MVT::v4f32);
558     addQRTypeForNEON(MVT::v2f64);
559     addQRTypeForNEON(MVT::v16i8);
560     addQRTypeForNEON(MVT::v8i16);
561     addQRTypeForNEON(MVT::v4i32);
562     addQRTypeForNEON(MVT::v2i64);
563 
564     if (Subtarget->hasFullFP16()) {
565       addQRTypeForNEON(MVT::v8f16);
566       addDRTypeForNEON(MVT::v4f16);
567     }
568 
569     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
570     // neither Neon nor VFP support any arithmetic operations on it.
571     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
572     // supported for v4f32.
573     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
574     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
575     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
576     // FIXME: Code duplication: FDIV and FREM are expanded always, see
577     // ARMTargetLowering::addTypeForNEON method for details.
578     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
579     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
580     // FIXME: Create unittest.
581     // In another words, find a way when "copysign" appears in DAG with vector
582     // operands.
583     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
584     // FIXME: Code duplication: SETCC has custom operation action, see
585     // ARMTargetLowering::addTypeForNEON method for details.
586     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
587     // FIXME: Create unittest for FNEG and for FABS.
588     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
589     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
590     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
591     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
592     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
593     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
594     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
595     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
596     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
597     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
598     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
599     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
600     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
601     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
602     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
603     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
604     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
605     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
606 
607     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
608     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
609     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
610     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
611     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
612     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
613     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
614     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
615     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
616     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
617     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
618     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
619     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
620     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
621 
622     // Mark v2f32 intrinsics.
623     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
624     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
625     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
626     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
627     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
628     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
629     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
630     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
631     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
632     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
633     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
634     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
635     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
636     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
637 
638     // Neon does not support some operations on v1i64 and v2i64 types.
639     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
640     // Custom handling for some quad-vector types to detect VMULL.
641     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
642     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
643     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
644     // Custom handling for some vector types to avoid expensive expansions
645     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
646     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
647     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
648     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
649     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
650     // a destination type that is wider than the source, and nor does
651     // it have a FP_TO_[SU]INT instruction with a narrower destination than
652     // source.
653     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
654     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
655     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
656     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
657 
658     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
659     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
660 
661     // NEON does not have single instruction CTPOP for vectors with element
662     // types wider than 8-bits.  However, custom lowering can leverage the
663     // v8i8/v16i8 vcnt instruction.
664     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
665     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
666     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
667     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
668     setOperationAction(ISD::CTPOP,      MVT::v1i64, Expand);
669     setOperationAction(ISD::CTPOP,      MVT::v2i64, Expand);
670 
671     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
672     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
673 
674     // NEON does not have single instruction CTTZ for vectors.
675     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
676     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
677     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
678     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
679 
680     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
681     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
682     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
683     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
684 
685     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
686     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
687     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
688     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
689 
690     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
691     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
692     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
693     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
694 
695     // NEON only has FMA instructions as of VFP4.
696     if (!Subtarget->hasVFP4()) {
697       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
698       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
699     }
700 
701     setTargetDAGCombine(ISD::INTRINSIC_VOID);
702     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
703     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
704     setTargetDAGCombine(ISD::SHL);
705     setTargetDAGCombine(ISD::SRL);
706     setTargetDAGCombine(ISD::SRA);
707     setTargetDAGCombine(ISD::SIGN_EXTEND);
708     setTargetDAGCombine(ISD::ZERO_EXTEND);
709     setTargetDAGCombine(ISD::ANY_EXTEND);
710     setTargetDAGCombine(ISD::BUILD_VECTOR);
711     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
712     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
713     setTargetDAGCombine(ISD::STORE);
714     setTargetDAGCombine(ISD::FP_TO_SINT);
715     setTargetDAGCombine(ISD::FP_TO_UINT);
716     setTargetDAGCombine(ISD::FDIV);
717     setTargetDAGCombine(ISD::LOAD);
718 
719     // It is legal to extload from v4i8 to v4i16 or v4i32.
720     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
721                    MVT::v2i32}) {
722       for (MVT VT : MVT::integer_vector_valuetypes()) {
723         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
724         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
725         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
726       }
727     }
728   }
729 
730   if (Subtarget->isFPOnlySP()) {
731     // When targeting a floating-point unit with only single-precision
732     // operations, f64 is legal for the few double-precision instructions which
733     // are present However, no double-precision operations other than moves,
734     // loads and stores are provided by the hardware.
735     setOperationAction(ISD::FADD,       MVT::f64, Expand);
736     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
737     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
738     setOperationAction(ISD::FMA,        MVT::f64, Expand);
739     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
740     setOperationAction(ISD::FREM,       MVT::f64, Expand);
741     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
742     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
743     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
744     setOperationAction(ISD::FABS,       MVT::f64, Expand);
745     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
746     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
747     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
748     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
749     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
750     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
751     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
752     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
753     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
754     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
755     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
756     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
757     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
758     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
759     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
760     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
761     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
762     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
763     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
764     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
765     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
766     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
767   }
768 
769   computeRegisterProperties(Subtarget->getRegisterInfo());
770 
771   // ARM does not have floating-point extending loads.
772   for (MVT VT : MVT::fp_valuetypes()) {
773     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
774     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
775   }
776 
777   // ... or truncating stores
778   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
779   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
780   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
781 
782   // ARM does not have i1 sign extending load.
783   for (MVT VT : MVT::integer_valuetypes())
784     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
785 
786   // ARM supports all 4 flavors of integer indexed load / store.
787   if (!Subtarget->isThumb1Only()) {
788     for (unsigned im = (unsigned)ISD::PRE_INC;
789          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
790       setIndexedLoadAction(im,  MVT::i1,  Legal);
791       setIndexedLoadAction(im,  MVT::i8,  Legal);
792       setIndexedLoadAction(im,  MVT::i16, Legal);
793       setIndexedLoadAction(im,  MVT::i32, Legal);
794       setIndexedStoreAction(im, MVT::i1,  Legal);
795       setIndexedStoreAction(im, MVT::i8,  Legal);
796       setIndexedStoreAction(im, MVT::i16, Legal);
797       setIndexedStoreAction(im, MVT::i32, Legal);
798     }
799   } else {
800     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
801     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
802     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
803   }
804 
805   setOperationAction(ISD::SADDO, MVT::i32, Custom);
806   setOperationAction(ISD::UADDO, MVT::i32, Custom);
807   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
808   setOperationAction(ISD::USUBO, MVT::i32, Custom);
809 
810   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
811   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
812 
813   // i64 operation support.
814   setOperationAction(ISD::MUL,     MVT::i64, Expand);
815   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
816   if (Subtarget->isThumb1Only()) {
817     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
818     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
819   }
820   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
821       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
822     setOperationAction(ISD::MULHS, MVT::i32, Expand);
823 
824   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
825   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
826   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
827   setOperationAction(ISD::SRL,       MVT::i64, Custom);
828   setOperationAction(ISD::SRA,       MVT::i64, Custom);
829   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
830 
831   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
832   if (Subtarget->isThumb1Only()) {
833     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
834     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
835     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
836   }
837 
838   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
839     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
840 
841   // ARM does not have ROTL.
842   setOperationAction(ISD::ROTL, MVT::i32, Expand);
843   for (MVT VT : MVT::vector_valuetypes()) {
844     setOperationAction(ISD::ROTL, VT, Expand);
845     setOperationAction(ISD::ROTR, VT, Expand);
846   }
847   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
848   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
849   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
850     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
851 
852   // @llvm.readcyclecounter requires the Performance Monitors extension.
853   // Default to the 0 expansion on unsupported platforms.
854   // FIXME: Technically there are older ARM CPUs that have
855   // implementation-specific ways of obtaining this information.
856   if (Subtarget->hasPerfMon())
857     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
858 
859   // Only ARMv6 has BSWAP.
860   if (!Subtarget->hasV6Ops())
861     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
862 
863   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
864                                         : Subtarget->hasDivideInARMMode();
865   if (!hasDivide) {
866     // These are expanded into libcalls if the cpu doesn't have HW divider.
867     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
868     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
869   }
870 
871   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
872     setOperationAction(ISD::SDIV, MVT::i32, Custom);
873     setOperationAction(ISD::UDIV, MVT::i32, Custom);
874 
875     setOperationAction(ISD::SDIV, MVT::i64, Custom);
876     setOperationAction(ISD::UDIV, MVT::i64, Custom);
877   }
878 
879   setOperationAction(ISD::SREM,  MVT::i32, Expand);
880   setOperationAction(ISD::UREM,  MVT::i32, Expand);
881 
882   // Register based DivRem for AEABI (RTABI 4.2)
883   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
884       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
885       Subtarget->isTargetWindows()) {
886     setOperationAction(ISD::SREM, MVT::i64, Custom);
887     setOperationAction(ISD::UREM, MVT::i64, Custom);
888     HasStandaloneRem = false;
889 
890     if (Subtarget->isTargetWindows()) {
891       const struct {
892         const RTLIB::Libcall Op;
893         const char * const Name;
894         const CallingConv::ID CC;
895       } LibraryCalls[] = {
896         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
897         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
898         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
899         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
900 
901         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
902         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
903         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
904         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
905       };
906 
907       for (const auto &LC : LibraryCalls) {
908         setLibcallName(LC.Op, LC.Name);
909         setLibcallCallingConv(LC.Op, LC.CC);
910       }
911     } else {
912       const struct {
913         const RTLIB::Libcall Op;
914         const char * const Name;
915         const CallingConv::ID CC;
916       } LibraryCalls[] = {
917         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
918         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
919         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
920         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
921 
922         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
923         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
924         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
925         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
926       };
927 
928       for (const auto &LC : LibraryCalls) {
929         setLibcallName(LC.Op, LC.Name);
930         setLibcallCallingConv(LC.Op, LC.CC);
931       }
932     }
933 
934     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
935     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
936     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
937     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
938   } else {
939     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
940     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
941   }
942 
943   if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
944     for (auto &VT : {MVT::f32, MVT::f64})
945       setOperationAction(ISD::FPOWI, VT, Custom);
946 
947   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
948   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
949   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
950   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
951 
952   setOperationAction(ISD::TRAP, MVT::Other, Legal);
953 
954   // Use the default implementation.
955   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
956   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
957   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
958   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
959   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
960   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
961 
962   if (Subtarget->isTargetWindows())
963     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
964   else
965     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
966 
967   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
968   // the default expansion.
969   InsertFencesForAtomic = false;
970   if (Subtarget->hasAnyDataBarrier() &&
971       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
972     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
973     // to ldrex/strex loops already.
974     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
975     if (!Subtarget->isThumb() || !Subtarget->isMClass())
976       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
977 
978     // On v8, we have particularly efficient implementations of atomic fences
979     // if they can be combined with nearby atomic loads and stores.
980     if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
981       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
982       InsertFencesForAtomic = true;
983     }
984   } else {
985     // If there's anything we can use as a barrier, go through custom lowering
986     // for ATOMIC_FENCE.
987     // If target has DMB in thumb, Fences can be inserted.
988     if (Subtarget->hasDataBarrier())
989       InsertFencesForAtomic = true;
990 
991     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
992                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
993 
994     // Set them all for expansion, which will force libcalls.
995     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
996     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
997     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
998     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
999     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1000     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1001     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1002     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1003     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1004     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1005     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1006     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1007     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1008     // Unordered/Monotonic case.
1009     if (!InsertFencesForAtomic) {
1010       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1011       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1012     }
1013   }
1014 
1015   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1016 
1017   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1018   if (!Subtarget->hasV6Ops()) {
1019     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1020     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1021   }
1022   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1023 
1024   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1025       !Subtarget->isThumb1Only()) {
1026     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1027     // iff target supports vfp2.
1028     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1029     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1030   }
1031 
1032   // We want to custom lower some of our intrinsics.
1033   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1034   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1035   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1036   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1037   if (Subtarget->useSjLjEH())
1038     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1039 
1040   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1041   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1042   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1043   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1044   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1045   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1046   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1047   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1048   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1049   if (Subtarget->hasFullFP16()) {
1050     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1051     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1052     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1053   }
1054 
1055   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1056 
1057   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1058   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1059   if (Subtarget->hasFullFP16())
1060       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1061   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1062   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1063   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1064 
1065   // We don't support sin/cos/fmod/copysign/pow
1066   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1067   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1068   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1069   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1070   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1071   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1072   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1073   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1074   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
1075       !Subtarget->isThumb1Only()) {
1076     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1077     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1078   }
1079   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1080   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1081 
1082   if (!Subtarget->hasVFP4()) {
1083     setOperationAction(ISD::FMA, MVT::f64, Expand);
1084     setOperationAction(ISD::FMA, MVT::f32, Expand);
1085   }
1086 
1087   // Various VFP goodness
1088   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1089     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1090     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
1091       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1092       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1093     }
1094 
1095     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1096     if (!Subtarget->hasFP16()) {
1097       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1098       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1099     }
1100   }
1101 
1102   // Use __sincos_stret if available.
1103   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1104       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1105     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1106     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1107   }
1108 
1109   // FP-ARMv8 implements a lot of rounding-like FP operations.
1110   if (Subtarget->hasFPARMv8()) {
1111     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1112     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1113     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1114     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1115     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1116     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1117     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1118     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1119     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1120     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1121     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1122     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1123 
1124     if (!Subtarget->isFPOnlySP()) {
1125       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1126       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1127       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1128       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1129       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1130       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1131       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1132       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1133     }
1134   }
1135 
1136   if (Subtarget->hasNEON()) {
1137     // vmin and vmax aren't available in a scalar form, so we use
1138     // a NEON instruction with an undef lane instead.
1139     setOperationAction(ISD::FMINNAN, MVT::f16, Legal);
1140     setOperationAction(ISD::FMAXNAN, MVT::f16, Legal);
1141     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
1142     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
1143     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
1144     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
1145     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
1146     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
1147   }
1148 
1149   // We have target-specific dag combine patterns for the following nodes:
1150   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1151   setTargetDAGCombine(ISD::ADD);
1152   setTargetDAGCombine(ISD::SUB);
1153   setTargetDAGCombine(ISD::MUL);
1154   setTargetDAGCombine(ISD::AND);
1155   setTargetDAGCombine(ISD::OR);
1156   setTargetDAGCombine(ISD::XOR);
1157 
1158   if (Subtarget->hasV6Ops())
1159     setTargetDAGCombine(ISD::SRL);
1160 
1161   setStackPointerRegisterToSaveRestore(ARM::SP);
1162 
1163   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1164       !Subtarget->hasVFP2())
1165     setSchedulingPreference(Sched::RegPressure);
1166   else
1167     setSchedulingPreference(Sched::Hybrid);
1168 
1169   //// temporary - rewrite interface to use type
1170   MaxStoresPerMemset = 8;
1171   MaxStoresPerMemsetOptSize = 4;
1172   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1173   MaxStoresPerMemcpyOptSize = 2;
1174   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1175   MaxStoresPerMemmoveOptSize = 2;
1176 
1177   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1178   // are at least 4 bytes aligned.
1179   setMinStackArgumentAlignment(4);
1180 
1181   // Prefer likely predicted branches to selects on out-of-order cores.
1182   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1183 
1184   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1185 }
1186 
useSoftFloat() const1187 bool ARMTargetLowering::useSoftFloat() const {
1188   return Subtarget->useSoftFloat();
1189 }
1190 
1191 // FIXME: It might make sense to define the representative register class as the
1192 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1193 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1194 // SPR's representative would be DPR_VFP2. This should work well if register
1195 // pressure tracking were modified such that a register use would increment the
1196 // pressure of the register class's representative and all of it's super
1197 // classes' representatives transitively. We have not implemented this because
1198 // of the difficulty prior to coalescing of modeling operand register classes
1199 // due to the common occurrence of cross class copies and subregister insertions
1200 // and extractions.
1201 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1202 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1203                                            MVT VT) const {
1204   const TargetRegisterClass *RRC = nullptr;
1205   uint8_t Cost = 1;
1206   switch (VT.SimpleTy) {
1207   default:
1208     return TargetLowering::findRepresentativeClass(TRI, VT);
1209   // Use DPR as representative register class for all floating point
1210   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1211   // the cost is 1 for both f32 and f64.
1212   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1213   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1214     RRC = &ARM::DPRRegClass;
1215     // When NEON is used for SP, only half of the register file is available
1216     // because operations that define both SP and DP results will be constrained
1217     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1218     // coalescing by double-counting the SP regs. See the FIXME above.
1219     if (Subtarget->useNEONForSinglePrecisionFP())
1220       Cost = 2;
1221     break;
1222   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1223   case MVT::v4f32: case MVT::v2f64:
1224     RRC = &ARM::DPRRegClass;
1225     Cost = 2;
1226     break;
1227   case MVT::v4i64:
1228     RRC = &ARM::DPRRegClass;
1229     Cost = 4;
1230     break;
1231   case MVT::v8i64:
1232     RRC = &ARM::DPRRegClass;
1233     Cost = 8;
1234     break;
1235   }
1236   return std::make_pair(RRC, Cost);
1237 }
1238 
getTargetNodeName(unsigned Opcode) const1239 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1240   switch ((ARMISD::NodeType)Opcode) {
1241   case ARMISD::FIRST_NUMBER:  break;
1242   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1243   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1244   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1245   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1246   case ARMISD::CALL:          return "ARMISD::CALL";
1247   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1248   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1249   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1250   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1251   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1252   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1253   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1254   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1255   case ARMISD::CMP:           return "ARMISD::CMP";
1256   case ARMISD::CMN:           return "ARMISD::CMN";
1257   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1258   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1259   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1260   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1261   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1262 
1263   case ARMISD::CMOV:          return "ARMISD::CMOV";
1264 
1265   case ARMISD::SSAT:          return "ARMISD::SSAT";
1266   case ARMISD::USAT:          return "ARMISD::USAT";
1267 
1268   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1269   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1270   case ARMISD::RRX:           return "ARMISD::RRX";
1271 
1272   case ARMISD::ADDC:          return "ARMISD::ADDC";
1273   case ARMISD::ADDE:          return "ARMISD::ADDE";
1274   case ARMISD::SUBC:          return "ARMISD::SUBC";
1275   case ARMISD::SUBE:          return "ARMISD::SUBE";
1276 
1277   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1278   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1279   case ARMISD::VMOVhr:        return "ARMISD::VMOVhr";
1280   case ARMISD::VMOVrh:        return "ARMISD::VMOVrh";
1281   case ARMISD::VMOVSR:        return "ARMISD::VMOVSR";
1282 
1283   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1284   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1285   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1286 
1287   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1288 
1289   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1290 
1291   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1292 
1293   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1294 
1295   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1296 
1297   case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
1298   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1299 
1300   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1301   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1302   case ARMISD::VCGE:          return "ARMISD::VCGE";
1303   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1304   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1305   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1306   case ARMISD::VCGT:          return "ARMISD::VCGT";
1307   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1308   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1309   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1310   case ARMISD::VTST:          return "ARMISD::VTST";
1311 
1312   case ARMISD::VSHL:          return "ARMISD::VSHL";
1313   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1314   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1315   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1316   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1317   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1318   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1319   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1320   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1321   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1322   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1323   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1324   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1325   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1326   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1327   case ARMISD::VSLI:          return "ARMISD::VSLI";
1328   case ARMISD::VSRI:          return "ARMISD::VSRI";
1329   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1330   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1331   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1332   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1333   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1334   case ARMISD::VDUP:          return "ARMISD::VDUP";
1335   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1336   case ARMISD::VEXT:          return "ARMISD::VEXT";
1337   case ARMISD::VREV64:        return "ARMISD::VREV64";
1338   case ARMISD::VREV32:        return "ARMISD::VREV32";
1339   case ARMISD::VREV16:        return "ARMISD::VREV16";
1340   case ARMISD::VZIP:          return "ARMISD::VZIP";
1341   case ARMISD::VUZP:          return "ARMISD::VUZP";
1342   case ARMISD::VTRN:          return "ARMISD::VTRN";
1343   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1344   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1345   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1346   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1347   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
1348   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1349   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1350   case ARMISD::SMLALBB:       return "ARMISD::SMLALBB";
1351   case ARMISD::SMLALBT:       return "ARMISD::SMLALBT";
1352   case ARMISD::SMLALTB:       return "ARMISD::SMLALTB";
1353   case ARMISD::SMLALTT:       return "ARMISD::SMLALTT";
1354   case ARMISD::SMULWB:        return "ARMISD::SMULWB";
1355   case ARMISD::SMULWT:        return "ARMISD::SMULWT";
1356   case ARMISD::SMLALD:        return "ARMISD::SMLALD";
1357   case ARMISD::SMLALDX:       return "ARMISD::SMLALDX";
1358   case ARMISD::SMLSLD:        return "ARMISD::SMLSLD";
1359   case ARMISD::SMLSLDX:       return "ARMISD::SMLSLDX";
1360   case ARMISD::SMMLAR:        return "ARMISD::SMMLAR";
1361   case ARMISD::SMMLSR:        return "ARMISD::SMMLSR";
1362   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1363   case ARMISD::BFI:           return "ARMISD::BFI";
1364   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1365   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1366   case ARMISD::VBSL:          return "ARMISD::VBSL";
1367   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1368   case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
1369   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1370   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1371   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1372   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1373   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1374   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1375   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1376   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1377   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1378   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1379   case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
1380   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1381   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1382   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1383   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1384   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1385   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1386   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1387   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1388   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1389   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1390   }
1391   return nullptr;
1392 }
1393 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1394 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1395                                           EVT VT) const {
1396   if (!VT.isVector())
1397     return getPointerTy(DL);
1398   return VT.changeVectorElementTypeToInteger();
1399 }
1400 
1401 /// getRegClassFor - Return the register class that should be used for the
1402 /// specified value type.
getRegClassFor(MVT VT) const1403 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1404   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1405   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1406   // load / store 4 to 8 consecutive D registers.
1407   if (Subtarget->hasNEON()) {
1408     if (VT == MVT::v4i64)
1409       return &ARM::QQPRRegClass;
1410     if (VT == MVT::v8i64)
1411       return &ARM::QQQQPRRegClass;
1412   }
1413   return TargetLowering::getRegClassFor(VT);
1414 }
1415 
1416 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1417 // source/dest is aligned and the copy size is large enough. We therefore want
1418 // to align such objects passed to memory intrinsics.
shouldAlignPointerArgs(CallInst * CI,unsigned & MinSize,unsigned & PrefAlign) const1419 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1420                                                unsigned &PrefAlign) const {
1421   if (!isa<MemIntrinsic>(CI))
1422     return false;
1423   MinSize = 8;
1424   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1425   // cycle faster than 4-byte aligned LDM.
1426   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1427   return true;
1428 }
1429 
1430 // Create a fast isel object.
1431 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1432 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1433                                   const TargetLibraryInfo *libInfo) const {
1434   return ARM::createFastISel(funcInfo, libInfo);
1435 }
1436 
getSchedulingPreference(SDNode * N) const1437 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1438   unsigned NumVals = N->getNumValues();
1439   if (!NumVals)
1440     return Sched::RegPressure;
1441 
1442   for (unsigned i = 0; i != NumVals; ++i) {
1443     EVT VT = N->getValueType(i);
1444     if (VT == MVT::Glue || VT == MVT::Other)
1445       continue;
1446     if (VT.isFloatingPoint() || VT.isVector())
1447       return Sched::ILP;
1448   }
1449 
1450   if (!N->isMachineOpcode())
1451     return Sched::RegPressure;
1452 
1453   // Load are scheduled for latency even if there instruction itinerary
1454   // is not available.
1455   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1456   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1457 
1458   if (MCID.getNumDefs() == 0)
1459     return Sched::RegPressure;
1460   if (!Itins->isEmpty() &&
1461       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1462     return Sched::ILP;
1463 
1464   return Sched::RegPressure;
1465 }
1466 
1467 //===----------------------------------------------------------------------===//
1468 // Lowering Code
1469 //===----------------------------------------------------------------------===//
1470 
isSRL16(const SDValue & Op)1471 static bool isSRL16(const SDValue &Op) {
1472   if (Op.getOpcode() != ISD::SRL)
1473     return false;
1474   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1475     return Const->getZExtValue() == 16;
1476   return false;
1477 }
1478 
isSRA16(const SDValue & Op)1479 static bool isSRA16(const SDValue &Op) {
1480   if (Op.getOpcode() != ISD::SRA)
1481     return false;
1482   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1483     return Const->getZExtValue() == 16;
1484   return false;
1485 }
1486 
isSHL16(const SDValue & Op)1487 static bool isSHL16(const SDValue &Op) {
1488   if (Op.getOpcode() != ISD::SHL)
1489     return false;
1490   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1491     return Const->getZExtValue() == 16;
1492   return false;
1493 }
1494 
1495 // Check for a signed 16-bit value. We special case SRA because it makes it
1496 // more simple when also looking for SRAs that aren't sign extending a
1497 // smaller value. Without the check, we'd need to take extra care with
1498 // checking order for some operations.
isS16(const SDValue & Op,SelectionDAG & DAG)1499 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1500   if (isSRA16(Op))
1501     return isSHL16(Op.getOperand(0));
1502   return DAG.ComputeNumSignBits(Op) == 17;
1503 }
1504 
1505 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
IntCCToARMCC(ISD::CondCode CC)1506 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1507   switch (CC) {
1508   default: llvm_unreachable("Unknown condition code!");
1509   case ISD::SETNE:  return ARMCC::NE;
1510   case ISD::SETEQ:  return ARMCC::EQ;
1511   case ISD::SETGT:  return ARMCC::GT;
1512   case ISD::SETGE:  return ARMCC::GE;
1513   case ISD::SETLT:  return ARMCC::LT;
1514   case ISD::SETLE:  return ARMCC::LE;
1515   case ISD::SETUGT: return ARMCC::HI;
1516   case ISD::SETUGE: return ARMCC::HS;
1517   case ISD::SETULT: return ARMCC::LO;
1518   case ISD::SETULE: return ARMCC::LS;
1519   }
1520 }
1521 
1522 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
FPCCToARMCC(ISD::CondCode CC,ARMCC::CondCodes & CondCode,ARMCC::CondCodes & CondCode2,bool & InvalidOnQNaN)1523 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1524                         ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
1525   CondCode2 = ARMCC::AL;
1526   InvalidOnQNaN = true;
1527   switch (CC) {
1528   default: llvm_unreachable("Unknown FP condition!");
1529   case ISD::SETEQ:
1530   case ISD::SETOEQ:
1531     CondCode = ARMCC::EQ;
1532     InvalidOnQNaN = false;
1533     break;
1534   case ISD::SETGT:
1535   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1536   case ISD::SETGE:
1537   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1538   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1539   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1540   case ISD::SETONE:
1541     CondCode = ARMCC::MI;
1542     CondCode2 = ARMCC::GT;
1543     InvalidOnQNaN = false;
1544     break;
1545   case ISD::SETO:   CondCode = ARMCC::VC; break;
1546   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1547   case ISD::SETUEQ:
1548     CondCode = ARMCC::EQ;
1549     CondCode2 = ARMCC::VS;
1550     InvalidOnQNaN = false;
1551     break;
1552   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1553   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1554   case ISD::SETLT:
1555   case ISD::SETULT: CondCode = ARMCC::LT; break;
1556   case ISD::SETLE:
1557   case ISD::SETULE: CondCode = ARMCC::LE; break;
1558   case ISD::SETNE:
1559   case ISD::SETUNE:
1560     CondCode = ARMCC::NE;
1561     InvalidOnQNaN = false;
1562     break;
1563   }
1564 }
1565 
1566 //===----------------------------------------------------------------------===//
1567 //                      Calling Convention Implementation
1568 //===----------------------------------------------------------------------===//
1569 
1570 #include "ARMGenCallingConv.inc"
1571 
1572 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1573 /// account presence of floating point hardware and calling convention
1574 /// limitations, such as support for variadic functions.
1575 CallingConv::ID
getEffectiveCallingConv(CallingConv::ID CC,bool isVarArg) const1576 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1577                                            bool isVarArg) const {
1578   switch (CC) {
1579   default:
1580     report_fatal_error("Unsupported calling convention");
1581   case CallingConv::ARM_AAPCS:
1582   case CallingConv::ARM_APCS:
1583   case CallingConv::GHC:
1584     return CC;
1585   case CallingConv::PreserveMost:
1586     return CallingConv::PreserveMost;
1587   case CallingConv::ARM_AAPCS_VFP:
1588   case CallingConv::Swift:
1589     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1590   case CallingConv::C:
1591     if (!Subtarget->isAAPCS_ABI())
1592       return CallingConv::ARM_APCS;
1593     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1594              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1595              !isVarArg)
1596       return CallingConv::ARM_AAPCS_VFP;
1597     else
1598       return CallingConv::ARM_AAPCS;
1599   case CallingConv::Fast:
1600   case CallingConv::CXX_FAST_TLS:
1601     if (!Subtarget->isAAPCS_ABI()) {
1602       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1603         return CallingConv::Fast;
1604       return CallingConv::ARM_APCS;
1605     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1606       return CallingConv::ARM_AAPCS_VFP;
1607     else
1608       return CallingConv::ARM_AAPCS;
1609   }
1610 }
1611 
CCAssignFnForCall(CallingConv::ID CC,bool isVarArg) const1612 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1613                                                  bool isVarArg) const {
1614   return CCAssignFnForNode(CC, false, isVarArg);
1615 }
1616 
CCAssignFnForReturn(CallingConv::ID CC,bool isVarArg) const1617 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1618                                                    bool isVarArg) const {
1619   return CCAssignFnForNode(CC, true, isVarArg);
1620 }
1621 
1622 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1623 /// CallingConvention.
CCAssignFnForNode(CallingConv::ID CC,bool Return,bool isVarArg) const1624 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1625                                                  bool Return,
1626                                                  bool isVarArg) const {
1627   switch (getEffectiveCallingConv(CC, isVarArg)) {
1628   default:
1629     report_fatal_error("Unsupported calling convention");
1630   case CallingConv::ARM_APCS:
1631     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1632   case CallingConv::ARM_AAPCS:
1633     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1634   case CallingConv::ARM_AAPCS_VFP:
1635     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1636   case CallingConv::Fast:
1637     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1638   case CallingConv::GHC:
1639     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1640   case CallingConv::PreserveMost:
1641     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1642   }
1643 }
1644 
1645 /// LowerCallResult - Lower the result values of a call into the
1646 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const1647 SDValue ARMTargetLowering::LowerCallResult(
1648     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1649     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1650     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1651     SDValue ThisVal) const {
1652   // Assign locations to each value returned by this call.
1653   SmallVector<CCValAssign, 16> RVLocs;
1654   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1655                  *DAG.getContext());
1656   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1657 
1658   // Copy all of the result registers out of their specified physreg.
1659   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1660     CCValAssign VA = RVLocs[i];
1661 
1662     // Pass 'this' value directly from the argument to return value, to avoid
1663     // reg unit interference
1664     if (i == 0 && isThisReturn) {
1665       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1666              "unexpected return calling convention register assignment");
1667       InVals.push_back(ThisVal);
1668       continue;
1669     }
1670 
1671     SDValue Val;
1672     if (VA.needsCustom()) {
1673       // Handle f64 or half of a v2f64.
1674       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1675                                       InFlag);
1676       Chain = Lo.getValue(1);
1677       InFlag = Lo.getValue(2);
1678       VA = RVLocs[++i]; // skip ahead to next loc
1679       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1680                                       InFlag);
1681       Chain = Hi.getValue(1);
1682       InFlag = Hi.getValue(2);
1683       if (!Subtarget->isLittle())
1684         std::swap (Lo, Hi);
1685       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1686 
1687       if (VA.getLocVT() == MVT::v2f64) {
1688         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1689         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1690                           DAG.getConstant(0, dl, MVT::i32));
1691 
1692         VA = RVLocs[++i]; // skip ahead to next loc
1693         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1694         Chain = Lo.getValue(1);
1695         InFlag = Lo.getValue(2);
1696         VA = RVLocs[++i]; // skip ahead to next loc
1697         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1698         Chain = Hi.getValue(1);
1699         InFlag = Hi.getValue(2);
1700         if (!Subtarget->isLittle())
1701           std::swap (Lo, Hi);
1702         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1703         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1704                           DAG.getConstant(1, dl, MVT::i32));
1705       }
1706     } else {
1707       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1708                                InFlag);
1709       Chain = Val.getValue(1);
1710       InFlag = Val.getValue(2);
1711     }
1712 
1713     switch (VA.getLocInfo()) {
1714     default: llvm_unreachable("Unknown loc info!");
1715     case CCValAssign::Full: break;
1716     case CCValAssign::BCvt:
1717       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1718       break;
1719     }
1720 
1721     InVals.push_back(Val);
1722   }
1723 
1724   return Chain;
1725 }
1726 
1727 /// LowerMemOpCallTo - Store the argument to the stack.
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,const SDLoc & dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1728 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1729                                             SDValue Arg, const SDLoc &dl,
1730                                             SelectionDAG &DAG,
1731                                             const CCValAssign &VA,
1732                                             ISD::ArgFlagsTy Flags) const {
1733   unsigned LocMemOffset = VA.getLocMemOffset();
1734   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1735   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1736                        StackPtr, PtrOff);
1737   return DAG.getStore(
1738       Chain, dl, Arg, PtrOff,
1739       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
1740 }
1741 
PassF64ArgInRegs(const SDLoc & dl,SelectionDAG & DAG,SDValue Chain,SDValue & Arg,RegsToPassVector & RegsToPass,CCValAssign & VA,CCValAssign & NextVA,SDValue & StackPtr,SmallVectorImpl<SDValue> & MemOpChains,ISD::ArgFlagsTy Flags) const1742 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1743                                          SDValue Chain, SDValue &Arg,
1744                                          RegsToPassVector &RegsToPass,
1745                                          CCValAssign &VA, CCValAssign &NextVA,
1746                                          SDValue &StackPtr,
1747                                          SmallVectorImpl<SDValue> &MemOpChains,
1748                                          ISD::ArgFlagsTy Flags) const {
1749   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1750                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
1751   unsigned id = Subtarget->isLittle() ? 0 : 1;
1752   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1753 
1754   if (NextVA.isRegLoc())
1755     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1756   else {
1757     assert(NextVA.isMemLoc());
1758     if (!StackPtr.getNode())
1759       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1760                                     getPointerTy(DAG.getDataLayout()));
1761 
1762     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1763                                            dl, DAG, NextVA,
1764                                            Flags));
1765   }
1766 }
1767 
1768 /// LowerCall - Lowering a call into a callseq_start <-
1769 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1770 /// nodes.
1771 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1772 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1773                              SmallVectorImpl<SDValue> &InVals) const {
1774   SelectionDAG &DAG                     = CLI.DAG;
1775   SDLoc &dl                             = CLI.DL;
1776   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1777   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1778   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1779   SDValue Chain                         = CLI.Chain;
1780   SDValue Callee                        = CLI.Callee;
1781   bool &isTailCall                      = CLI.IsTailCall;
1782   CallingConv::ID CallConv              = CLI.CallConv;
1783   bool doesNotRet                       = CLI.DoesNotReturn;
1784   bool isVarArg                         = CLI.IsVarArg;
1785 
1786   MachineFunction &MF = DAG.getMachineFunction();
1787   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1788   bool isThisReturn   = false;
1789   bool isSibCall      = false;
1790   auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
1791 
1792   // Disable tail calls if they're not supported.
1793   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1794     isTailCall = false;
1795 
1796   if (isTailCall) {
1797     // Check if it's really possible to do a tail call.
1798     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1799                     isVarArg, isStructRet, MF.getFunction().hasStructRetAttr(),
1800                                                    Outs, OutVals, Ins, DAG);
1801     if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
1802       report_fatal_error("failed to perform tail call elimination on a call "
1803                          "site marked musttail");
1804     // We don't support GuaranteedTailCallOpt for ARM, only automatically
1805     // detected sibcalls.
1806     if (isTailCall) {
1807       ++NumTailCalls;
1808       isSibCall = true;
1809     }
1810   }
1811 
1812   // Analyze operands of the call, assigning locations to each operand.
1813   SmallVector<CCValAssign, 16> ArgLocs;
1814   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1815                  *DAG.getContext());
1816   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
1817 
1818   // Get a count of how many bytes are to be pushed on the stack.
1819   unsigned NumBytes = CCInfo.getNextStackOffset();
1820 
1821   // For tail calls, memory operands are available in our caller's stack.
1822   if (isSibCall)
1823     NumBytes = 0;
1824 
1825   // Adjust the stack pointer for the new arguments...
1826   // These operations are automatically eliminated by the prolog/epilog pass
1827   if (!isSibCall)
1828     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1829 
1830   SDValue StackPtr =
1831       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
1832 
1833   RegsToPassVector RegsToPass;
1834   SmallVector<SDValue, 8> MemOpChains;
1835 
1836   // Walk the register/memloc assignments, inserting copies/loads.  In the case
1837   // of tail call optimization, arguments are handled later.
1838   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1839        i != e;
1840        ++i, ++realArgIdx) {
1841     CCValAssign &VA = ArgLocs[i];
1842     SDValue Arg = OutVals[realArgIdx];
1843     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1844     bool isByVal = Flags.isByVal();
1845 
1846     // Promote the value if needed.
1847     switch (VA.getLocInfo()) {
1848     default: llvm_unreachable("Unknown loc info!");
1849     case CCValAssign::Full: break;
1850     case CCValAssign::SExt:
1851       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1852       break;
1853     case CCValAssign::ZExt:
1854       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1855       break;
1856     case CCValAssign::AExt:
1857       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1858       break;
1859     case CCValAssign::BCvt:
1860       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1861       break;
1862     }
1863 
1864     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1865     if (VA.needsCustom()) {
1866       if (VA.getLocVT() == MVT::v2f64) {
1867         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1868                                   DAG.getConstant(0, dl, MVT::i32));
1869         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1870                                   DAG.getConstant(1, dl, MVT::i32));
1871 
1872         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1873                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1874 
1875         VA = ArgLocs[++i]; // skip ahead to next loc
1876         if (VA.isRegLoc()) {
1877           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1878                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1879         } else {
1880           assert(VA.isMemLoc());
1881 
1882           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1883                                                  dl, DAG, VA, Flags));
1884         }
1885       } else {
1886         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1887                          StackPtr, MemOpChains, Flags);
1888       }
1889     } else if (VA.isRegLoc()) {
1890       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
1891           Outs[0].VT == MVT::i32) {
1892         assert(VA.getLocVT() == MVT::i32 &&
1893                "unexpected calling convention register assignment");
1894         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1895                "unexpected use of 'returned'");
1896         isThisReturn = true;
1897       }
1898       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1899     } else if (isByVal) {
1900       assert(VA.isMemLoc());
1901       unsigned offset = 0;
1902 
1903       // True if this byval aggregate will be split between registers
1904       // and memory.
1905       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1906       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1907 
1908       if (CurByValIdx < ByValArgsCount) {
1909 
1910         unsigned RegBegin, RegEnd;
1911         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1912 
1913         EVT PtrVT =
1914             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1915         unsigned int i, j;
1916         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1917           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
1918           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1919           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1920                                      MachinePointerInfo(),
1921                                      DAG.InferPtrAlignment(AddArg));
1922           MemOpChains.push_back(Load.getValue(1));
1923           RegsToPass.push_back(std::make_pair(j, Load));
1924         }
1925 
1926         // If parameter size outsides register area, "offset" value
1927         // helps us to calculate stack slot for remained part properly.
1928         offset = RegEnd - RegBegin;
1929 
1930         CCInfo.nextInRegsParam();
1931       }
1932 
1933       if (Flags.getByValSize() > 4*offset) {
1934         auto PtrVT = getPointerTy(DAG.getDataLayout());
1935         unsigned LocMemOffset = VA.getLocMemOffset();
1936         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1937         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
1938         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
1939         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
1940         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
1941                                            MVT::i32);
1942         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
1943                                             MVT::i32);
1944 
1945         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1946         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1947         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1948                                           Ops));
1949       }
1950     } else if (!isSibCall) {
1951       assert(VA.isMemLoc());
1952 
1953       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1954                                              dl, DAG, VA, Flags));
1955     }
1956   }
1957 
1958   if (!MemOpChains.empty())
1959     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1960 
1961   // Build a sequence of copy-to-reg nodes chained together with token chain
1962   // and flag operands which copy the outgoing args into the appropriate regs.
1963   SDValue InFlag;
1964   // Tail call byval lowering might overwrite argument registers so in case of
1965   // tail call optimization the copies to registers are lowered later.
1966   if (!isTailCall)
1967     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1968       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1969                                RegsToPass[i].second, InFlag);
1970       InFlag = Chain.getValue(1);
1971     }
1972 
1973   // For tail calls lower the arguments to the 'real' stack slot.
1974   if (isTailCall) {
1975     // Force all the incoming stack arguments to be loaded from the stack
1976     // before any new outgoing arguments are stored to the stack, because the
1977     // outgoing stack slots may alias the incoming argument stack slots, and
1978     // the alias isn't otherwise explicit. This is slightly more conservative
1979     // than necessary, because it means that each store effectively depends
1980     // on every argument instead of just those arguments it would clobber.
1981 
1982     // Do not flag preceding copytoreg stuff together with the following stuff.
1983     InFlag = SDValue();
1984     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1985       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1986                                RegsToPass[i].second, InFlag);
1987       InFlag = Chain.getValue(1);
1988     }
1989     InFlag = SDValue();
1990   }
1991 
1992   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1993   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1994   // node so that legalize doesn't hack it.
1995   bool isDirect = false;
1996 
1997   const TargetMachine &TM = getTargetMachine();
1998   const Module *Mod = MF.getFunction().getParent();
1999   const GlobalValue *GV = nullptr;
2000   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2001     GV = G->getGlobal();
2002   bool isStub =
2003       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2004 
2005   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2006   bool isLocalARMFunc = false;
2007   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2008   auto PtrVt = getPointerTy(DAG.getDataLayout());
2009 
2010   if (Subtarget->genLongCalls()) {
2011     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2012            "long-calls codegen is not position independent!");
2013     // Handle a global address or an external symbol. If it's not one of
2014     // those, the target's already in a register, so we don't need to do
2015     // anything extra.
2016     if (isa<GlobalAddressSDNode>(Callee)) {
2017       // Create a constant pool entry for the callee address
2018       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2019       ARMConstantPoolValue *CPV =
2020         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2021 
2022       // Get the address of the callee into a register
2023       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2024       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2025       Callee = DAG.getLoad(
2026           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2027           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2028     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2029       const char *Sym = S->getSymbol();
2030 
2031       // Create a constant pool entry for the callee address
2032       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2033       ARMConstantPoolValue *CPV =
2034         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2035                                       ARMPCLabelIndex, 0);
2036       // Get the address of the callee into a register
2037       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2038       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2039       Callee = DAG.getLoad(
2040           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2041           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2042     }
2043   } else if (isa<GlobalAddressSDNode>(Callee)) {
2044     // If we're optimizing for minimum size and the function is called three or
2045     // more times in this block, we can improve codesize by calling indirectly
2046     // as BLXr has a 16-bit encoding.
2047     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2048     auto *BB = CLI.CS.getParent();
2049     bool PreferIndirect =
2050         Subtarget->isThumb() && MF.getFunction().optForMinSize() &&
2051         count_if(GV->users(), [&BB](const User *U) {
2052           return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
2053         }) > 2;
2054 
2055     if (!PreferIndirect) {
2056       isDirect = true;
2057       bool isDef = GV->isStrongDefinitionForLinker();
2058 
2059       // ARM call to a local ARM function is predicable.
2060       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2061       // tBX takes a register source operand.
2062       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2063         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2064         Callee = DAG.getNode(
2065             ARMISD::WrapperPIC, dl, PtrVt,
2066             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2067         Callee = DAG.getLoad(
2068             PtrVt, dl, DAG.getEntryNode(), Callee,
2069             MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2070             /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2071                                      MachineMemOperand::MOInvariant);
2072       } else if (Subtarget->isTargetCOFF()) {
2073         assert(Subtarget->isTargetWindows() &&
2074                "Windows is the only supported COFF target");
2075         unsigned TargetFlags = GV->hasDLLImportStorageClass()
2076                                    ? ARMII::MO_DLLIMPORT
2077                                    : ARMII::MO_NO_FLAG;
2078         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
2079                                             TargetFlags);
2080         if (GV->hasDLLImportStorageClass())
2081           Callee =
2082               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2083                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2084                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2085       } else {
2086         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2087       }
2088     }
2089   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2090     isDirect = true;
2091     // tBX takes a register source operand.
2092     const char *Sym = S->getSymbol();
2093     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2094       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2095       ARMConstantPoolValue *CPV =
2096         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2097                                       ARMPCLabelIndex, 4);
2098       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2099       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2100       Callee = DAG.getLoad(
2101           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2102           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2103       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2104       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2105     } else {
2106       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2107     }
2108   }
2109 
2110   // FIXME: handle tail calls differently.
2111   unsigned CallOpc;
2112   if (Subtarget->isThumb()) {
2113     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2114       CallOpc = ARMISD::CALL_NOLINK;
2115     else
2116       CallOpc = ARMISD::CALL;
2117   } else {
2118     if (!isDirect && !Subtarget->hasV5TOps())
2119       CallOpc = ARMISD::CALL_NOLINK;
2120     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2121              // Emit regular call when code size is the priority
2122              !MF.getFunction().optForMinSize())
2123       // "mov lr, pc; b _foo" to avoid confusing the RSP
2124       CallOpc = ARMISD::CALL_NOLINK;
2125     else
2126       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2127   }
2128 
2129   std::vector<SDValue> Ops;
2130   Ops.push_back(Chain);
2131   Ops.push_back(Callee);
2132 
2133   // Add argument registers to the end of the list so that they are known live
2134   // into the call.
2135   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2136     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2137                                   RegsToPass[i].second.getValueType()));
2138 
2139   // Add a register mask operand representing the call-preserved registers.
2140   if (!isTailCall) {
2141     const uint32_t *Mask;
2142     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2143     if (isThisReturn) {
2144       // For 'this' returns, use the R0-preserving mask if applicable
2145       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2146       if (!Mask) {
2147         // Set isThisReturn to false if the calling convention is not one that
2148         // allows 'returned' to be modeled in this way, so LowerCallResult does
2149         // not try to pass 'this' straight through
2150         isThisReturn = false;
2151         Mask = ARI->getCallPreservedMask(MF, CallConv);
2152       }
2153     } else
2154       Mask = ARI->getCallPreservedMask(MF, CallConv);
2155 
2156     assert(Mask && "Missing call preserved mask for calling convention");
2157     Ops.push_back(DAG.getRegisterMask(Mask));
2158   }
2159 
2160   if (InFlag.getNode())
2161     Ops.push_back(InFlag);
2162 
2163   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2164   if (isTailCall) {
2165     MF.getFrameInfo().setHasTailCall();
2166     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2167   }
2168 
2169   // Returns a chain and a flag for retval copy to use.
2170   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2171   InFlag = Chain.getValue(1);
2172 
2173   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2174                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2175   if (!Ins.empty())
2176     InFlag = Chain.getValue(1);
2177 
2178   // Handle result values, copying them out of physregs into vregs that we
2179   // return.
2180   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2181                          InVals, isThisReturn,
2182                          isThisReturn ? OutVals[0] : SDValue());
2183 }
2184 
2185 /// HandleByVal - Every parameter *after* a byval parameter is passed
2186 /// on the stack.  Remember the next parameter register to allocate,
2187 /// and then confiscate the rest of the parameter registers to insure
2188 /// this.
HandleByVal(CCState * State,unsigned & Size,unsigned Align) const2189 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2190                                     unsigned Align) const {
2191   // Byval (as with any stack) slots are always at least 4 byte aligned.
2192   Align = std::max(Align, 4U);
2193 
2194   unsigned Reg = State->AllocateReg(GPRArgRegs);
2195   if (!Reg)
2196     return;
2197 
2198   unsigned AlignInRegs = Align / 4;
2199   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2200   for (unsigned i = 0; i < Waste; ++i)
2201     Reg = State->AllocateReg(GPRArgRegs);
2202 
2203   if (!Reg)
2204     return;
2205 
2206   unsigned Excess = 4 * (ARM::R4 - Reg);
2207 
2208   // Special case when NSAA != SP and parameter size greater than size of
2209   // all remained GPR regs. In that case we can't split parameter, we must
2210   // send it to stack. We also must set NCRN to R4, so waste all
2211   // remained registers.
2212   const unsigned NSAAOffset = State->getNextStackOffset();
2213   if (NSAAOffset != 0 && Size > Excess) {
2214     while (State->AllocateReg(GPRArgRegs))
2215       ;
2216     return;
2217   }
2218 
2219   // First register for byval parameter is the first register that wasn't
2220   // allocated before this method call, so it would be "reg".
2221   // If parameter is small enough to be saved in range [reg, r4), then
2222   // the end (first after last) register would be reg + param-size-in-regs,
2223   // else parameter would be splitted between registers and stack,
2224   // end register would be r4 in this case.
2225   unsigned ByValRegBegin = Reg;
2226   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2227   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2228   // Note, first register is allocated in the beginning of function already,
2229   // allocate remained amount of registers we need.
2230   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2231     State->AllocateReg(GPRArgRegs);
2232   // A byval parameter that is split between registers and memory needs its
2233   // size truncated here.
2234   // In the case where the entire structure fits in registers, we set the
2235   // size in memory to zero.
2236   Size = std::max<int>(Size - Excess, 0);
2237 }
2238 
2239 /// MatchingStackOffset - Return true if the given stack call argument is
2240 /// already available in the same position (relatively) of the caller's
2241 /// incoming argument stack.
2242 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo & MFI,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)2243 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2244                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2245                          const TargetInstrInfo *TII) {
2246   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2247   int FI = std::numeric_limits<int>::max();
2248   if (Arg.getOpcode() == ISD::CopyFromReg) {
2249     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2250     if (!TargetRegisterInfo::isVirtualRegister(VR))
2251       return false;
2252     MachineInstr *Def = MRI->getVRegDef(VR);
2253     if (!Def)
2254       return false;
2255     if (!Flags.isByVal()) {
2256       if (!TII->isLoadFromStackSlot(*Def, FI))
2257         return false;
2258     } else {
2259       return false;
2260     }
2261   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2262     if (Flags.isByVal())
2263       // ByVal argument is passed in as a pointer but it's now being
2264       // dereferenced. e.g.
2265       // define @foo(%struct.X* %A) {
2266       //   tail call @bar(%struct.X* byval %A)
2267       // }
2268       return false;
2269     SDValue Ptr = Ld->getBasePtr();
2270     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2271     if (!FINode)
2272       return false;
2273     FI = FINode->getIndex();
2274   } else
2275     return false;
2276 
2277   assert(FI != std::numeric_limits<int>::max());
2278   if (!MFI.isFixedObjectIndex(FI))
2279     return false;
2280   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2281 }
2282 
2283 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2284 /// for tail call optimization. Targets which want to do tail call
2285 /// optimization should implement this function.
2286 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2287 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2288                                                      CallingConv::ID CalleeCC,
2289                                                      bool isVarArg,
2290                                                      bool isCalleeStructRet,
2291                                                      bool isCallerStructRet,
2292                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
2293                                     const SmallVectorImpl<SDValue> &OutVals,
2294                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2295                                                      SelectionDAG& DAG) const {
2296   MachineFunction &MF = DAG.getMachineFunction();
2297   const Function &CallerF = MF.getFunction();
2298   CallingConv::ID CallerCC = CallerF.getCallingConv();
2299 
2300   assert(Subtarget->supportsTailCall());
2301 
2302   // Tail calls to function pointers cannot be optimized for Thumb1 if the args
2303   // to the call take up r0-r3. The reason is that there are no legal registers
2304   // left to hold the pointer to the function to be called.
2305   if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2306       !isa<GlobalAddressSDNode>(Callee.getNode()))
2307       return false;
2308 
2309   // Look for obvious safe cases to perform tail call optimization that do not
2310   // require ABI changes. This is what gcc calls sibcall.
2311 
2312   // Exception-handling functions need a special set of instructions to indicate
2313   // a return to the hardware. Tail-calling another function would probably
2314   // break this.
2315   if (CallerF.hasFnAttribute("interrupt"))
2316     return false;
2317 
2318   // Also avoid sibcall optimization if either caller or callee uses struct
2319   // return semantics.
2320   if (isCalleeStructRet || isCallerStructRet)
2321     return false;
2322 
2323   // Externally-defined functions with weak linkage should not be
2324   // tail-called on ARM when the OS does not support dynamic
2325   // pre-emption of symbols, as the AAELF spec requires normal calls
2326   // to undefined weak functions to be replaced with a NOP or jump to the
2327   // next instruction. The behaviour of branch instructions in this
2328   // situation (as used for tail calls) is implementation-defined, so we
2329   // cannot rely on the linker replacing the tail call with a return.
2330   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2331     const GlobalValue *GV = G->getGlobal();
2332     const Triple &TT = getTargetMachine().getTargetTriple();
2333     if (GV->hasExternalWeakLinkage() &&
2334         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2335       return false;
2336   }
2337 
2338   // Check that the call results are passed in the same way.
2339   LLVMContext &C = *DAG.getContext();
2340   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2341                                   CCAssignFnForReturn(CalleeCC, isVarArg),
2342                                   CCAssignFnForReturn(CallerCC, isVarArg)))
2343     return false;
2344   // The callee has to preserve all registers the caller needs to preserve.
2345   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2346   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2347   if (CalleeCC != CallerCC) {
2348     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2349     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2350       return false;
2351   }
2352 
2353   // If Caller's vararg or byval argument has been split between registers and
2354   // stack, do not perform tail call, since part of the argument is in caller's
2355   // local frame.
2356   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2357   if (AFI_Caller->getArgRegsSaveSize())
2358     return false;
2359 
2360   // If the callee takes no arguments then go on to check the results of the
2361   // call.
2362   if (!Outs.empty()) {
2363     // Check if stack adjustment is needed. For now, do not do this if any
2364     // argument is passed on the stack.
2365     SmallVector<CCValAssign, 16> ArgLocs;
2366     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2367     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2368     if (CCInfo.getNextStackOffset()) {
2369       // Check if the arguments are already laid out in the right way as
2370       // the caller's fixed stack objects.
2371       MachineFrameInfo &MFI = MF.getFrameInfo();
2372       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2373       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2374       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2375            i != e;
2376            ++i, ++realArgIdx) {
2377         CCValAssign &VA = ArgLocs[i];
2378         EVT RegVT = VA.getLocVT();
2379         SDValue Arg = OutVals[realArgIdx];
2380         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2381         if (VA.getLocInfo() == CCValAssign::Indirect)
2382           return false;
2383         if (VA.needsCustom()) {
2384           // f64 and vector types are split into multiple registers or
2385           // register/stack-slot combinations.  The types will not match
2386           // the registers; give up on memory f64 refs until we figure
2387           // out what to do about this.
2388           if (!VA.isRegLoc())
2389             return false;
2390           if (!ArgLocs[++i].isRegLoc())
2391             return false;
2392           if (RegVT == MVT::v2f64) {
2393             if (!ArgLocs[++i].isRegLoc())
2394               return false;
2395             if (!ArgLocs[++i].isRegLoc())
2396               return false;
2397           }
2398         } else if (!VA.isRegLoc()) {
2399           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2400                                    MFI, MRI, TII))
2401             return false;
2402         }
2403       }
2404     }
2405 
2406     const MachineRegisterInfo &MRI = MF.getRegInfo();
2407     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2408       return false;
2409   }
2410 
2411   return true;
2412 }
2413 
2414 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const2415 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2416                                   MachineFunction &MF, bool isVarArg,
2417                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2418                                   LLVMContext &Context) const {
2419   SmallVector<CCValAssign, 16> RVLocs;
2420   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2421   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2422 }
2423 
LowerInterruptReturn(SmallVectorImpl<SDValue> & RetOps,const SDLoc & DL,SelectionDAG & DAG)2424 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2425                                     const SDLoc &DL, SelectionDAG &DAG) {
2426   const MachineFunction &MF = DAG.getMachineFunction();
2427   const Function &F = MF.getFunction();
2428 
2429   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2430 
2431   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2432   // version of the "preferred return address". These offsets affect the return
2433   // instruction if this is a return from PL1 without hypervisor extensions.
2434   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2435   //    SWI:     0      "subs pc, lr, #0"
2436   //    ABORT:   +4     "subs pc, lr, #4"
2437   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2438   // UNDEF varies depending on where the exception came from ARM or Thumb
2439   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2440 
2441   int64_t LROffset;
2442   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2443       IntKind == "ABORT")
2444     LROffset = 4;
2445   else if (IntKind == "SWI" || IntKind == "UNDEF")
2446     LROffset = 0;
2447   else
2448     report_fatal_error("Unsupported interrupt attribute. If present, value "
2449                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2450 
2451   RetOps.insert(RetOps.begin() + 1,
2452                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2453 
2454   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2455 }
2456 
2457 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const2458 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2459                                bool isVarArg,
2460                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2461                                const SmallVectorImpl<SDValue> &OutVals,
2462                                const SDLoc &dl, SelectionDAG &DAG) const {
2463   // CCValAssign - represent the assignment of the return value to a location.
2464   SmallVector<CCValAssign, 16> RVLocs;
2465 
2466   // CCState - Info about the registers and stack slots.
2467   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2468                  *DAG.getContext());
2469 
2470   // Analyze outgoing return values.
2471   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2472 
2473   SDValue Flag;
2474   SmallVector<SDValue, 4> RetOps;
2475   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2476   bool isLittleEndian = Subtarget->isLittle();
2477 
2478   MachineFunction &MF = DAG.getMachineFunction();
2479   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2480   AFI->setReturnRegsCount(RVLocs.size());
2481 
2482   // Copy the result values into the output registers.
2483   for (unsigned i = 0, realRVLocIdx = 0;
2484        i != RVLocs.size();
2485        ++i, ++realRVLocIdx) {
2486     CCValAssign &VA = RVLocs[i];
2487     assert(VA.isRegLoc() && "Can only return in registers!");
2488 
2489     SDValue Arg = OutVals[realRVLocIdx];
2490     bool ReturnF16 = false;
2491 
2492     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2493       // Half-precision return values can be returned like this:
2494       //
2495       // t11 f16 = fadd ...
2496       // t12: i16 = bitcast t11
2497       //   t13: i32 = zero_extend t12
2498       // t14: f32 = bitcast t13  <~~~~~~~ Arg
2499       //
2500       // to avoid code generation for bitcasts, we simply set Arg to the node
2501       // that produces the f16 value, t11 in this case.
2502       //
2503       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
2504         SDValue ZE = Arg.getOperand(0);
2505         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
2506           SDValue BC = ZE.getOperand(0);
2507           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
2508             Arg = BC.getOperand(0);
2509             ReturnF16 = true;
2510           }
2511         }
2512       }
2513     }
2514 
2515     switch (VA.getLocInfo()) {
2516     default: llvm_unreachable("Unknown loc info!");
2517     case CCValAssign::Full: break;
2518     case CCValAssign::BCvt:
2519       if (!ReturnF16)
2520         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2521       break;
2522     }
2523 
2524     if (VA.needsCustom()) {
2525       if (VA.getLocVT() == MVT::v2f64) {
2526         // Extract the first half and return it in two registers.
2527         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2528                                    DAG.getConstant(0, dl, MVT::i32));
2529         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2530                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
2531 
2532         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2533                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2534                                  Flag);
2535         Flag = Chain.getValue(1);
2536         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2537         VA = RVLocs[++i]; // skip ahead to next loc
2538         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2539                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2540                                  Flag);
2541         Flag = Chain.getValue(1);
2542         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2543         VA = RVLocs[++i]; // skip ahead to next loc
2544 
2545         // Extract the 2nd half and fall through to handle it as an f64 value.
2546         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2547                           DAG.getConstant(1, dl, MVT::i32));
2548       }
2549       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2550       // available.
2551       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2552                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
2553       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2554                                fmrrd.getValue(isLittleEndian ? 0 : 1),
2555                                Flag);
2556       Flag = Chain.getValue(1);
2557       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2558       VA = RVLocs[++i]; // skip ahead to next loc
2559       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2560                                fmrrd.getValue(isLittleEndian ? 1 : 0),
2561                                Flag);
2562     } else
2563       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2564 
2565     // Guarantee that all emitted copies are
2566     // stuck together, avoiding something bad.
2567     Flag = Chain.getValue(1);
2568     RetOps.push_back(DAG.getRegister(VA.getLocReg(),
2569                                      ReturnF16 ? MVT::f16 : VA.getLocVT()));
2570   }
2571   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2572   const MCPhysReg *I =
2573       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2574   if (I) {
2575     for (; *I; ++I) {
2576       if (ARM::GPRRegClass.contains(*I))
2577         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2578       else if (ARM::DPRRegClass.contains(*I))
2579         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2580       else
2581         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2582     }
2583   }
2584 
2585   // Update chain and glue.
2586   RetOps[0] = Chain;
2587   if (Flag.getNode())
2588     RetOps.push_back(Flag);
2589 
2590   // CPUs which aren't M-class use a special sequence to return from
2591   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2592   // though we use "subs pc, lr, #N").
2593   //
2594   // M-class CPUs actually use a normal return sequence with a special
2595   // (hardware-provided) value in LR, so the normal code path works.
2596   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2597       !Subtarget->isMClass()) {
2598     if (Subtarget->isThumb1Only())
2599       report_fatal_error("interrupt attribute is not supported in Thumb1");
2600     return LowerInterruptReturn(RetOps, dl, DAG);
2601   }
2602 
2603   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2604 }
2605 
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const2606 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2607   if (N->getNumValues() != 1)
2608     return false;
2609   if (!N->hasNUsesOfValue(1, 0))
2610     return false;
2611 
2612   SDValue TCChain = Chain;
2613   SDNode *Copy = *N->use_begin();
2614   if (Copy->getOpcode() == ISD::CopyToReg) {
2615     // If the copy has a glue operand, we conservatively assume it isn't safe to
2616     // perform a tail call.
2617     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2618       return false;
2619     TCChain = Copy->getOperand(0);
2620   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2621     SDNode *VMov = Copy;
2622     // f64 returned in a pair of GPRs.
2623     SmallPtrSet<SDNode*, 2> Copies;
2624     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2625          UI != UE; ++UI) {
2626       if (UI->getOpcode() != ISD::CopyToReg)
2627         return false;
2628       Copies.insert(*UI);
2629     }
2630     if (Copies.size() > 2)
2631       return false;
2632 
2633     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2634          UI != UE; ++UI) {
2635       SDValue UseChain = UI->getOperand(0);
2636       if (Copies.count(UseChain.getNode()))
2637         // Second CopyToReg
2638         Copy = *UI;
2639       else {
2640         // We are at the top of this chain.
2641         // If the copy has a glue operand, we conservatively assume it
2642         // isn't safe to perform a tail call.
2643         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2644           return false;
2645         // First CopyToReg
2646         TCChain = UseChain;
2647       }
2648     }
2649   } else if (Copy->getOpcode() == ISD::BITCAST) {
2650     // f32 returned in a single GPR.
2651     if (!Copy->hasOneUse())
2652       return false;
2653     Copy = *Copy->use_begin();
2654     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2655       return false;
2656     // If the copy has a glue operand, we conservatively assume it isn't safe to
2657     // perform a tail call.
2658     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2659       return false;
2660     TCChain = Copy->getOperand(0);
2661   } else {
2662     return false;
2663   }
2664 
2665   bool HasRet = false;
2666   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2667        UI != UE; ++UI) {
2668     if (UI->getOpcode() != ARMISD::RET_FLAG &&
2669         UI->getOpcode() != ARMISD::INTRET_FLAG)
2670       return false;
2671     HasRet = true;
2672   }
2673 
2674   if (!HasRet)
2675     return false;
2676 
2677   Chain = TCChain;
2678   return true;
2679 }
2680 
mayBeEmittedAsTailCall(const CallInst * CI) const2681 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2682   if (!Subtarget->supportsTailCall())
2683     return false;
2684 
2685   auto Attr =
2686       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2687   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2688     return false;
2689 
2690   return true;
2691 }
2692 
2693 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2694 // and pass the lower and high parts through.
LowerWRITE_REGISTER(SDValue Op,SelectionDAG & DAG)2695 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2696   SDLoc DL(Op);
2697   SDValue WriteValue = Op->getOperand(2);
2698 
2699   // This function is only supposed to be called for i64 type argument.
2700   assert(WriteValue.getValueType() == MVT::i64
2701           && "LowerWRITE_REGISTER called for non-i64 type argument.");
2702 
2703   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2704                            DAG.getConstant(0, DL, MVT::i32));
2705   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2706                            DAG.getConstant(1, DL, MVT::i32));
2707   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2708   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2709 }
2710 
2711 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2712 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2713 // one of the above mentioned nodes. It has to be wrapped because otherwise
2714 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2715 // be used to form addressing mode. These wrapped nodes will be selected
2716 // into MOVi.
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const2717 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
2718                                              SelectionDAG &DAG) const {
2719   EVT PtrVT = Op.getValueType();
2720   // FIXME there is no actual debug info here
2721   SDLoc dl(Op);
2722   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2723   SDValue Res;
2724 
2725   // When generating execute-only code Constant Pools must be promoted to the
2726   // global data section. It's a bit ugly that we can't share them across basic
2727   // blocks, but this way we guarantee that execute-only behaves correct with
2728   // position-independent addressing modes.
2729   if (Subtarget->genExecuteOnly()) {
2730     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2731     auto T = const_cast<Type*>(CP->getType());
2732     auto C = const_cast<Constant*>(CP->getConstVal());
2733     auto M = const_cast<Module*>(DAG.getMachineFunction().
2734                                  getFunction().getParent());
2735     auto GV = new GlobalVariable(
2736                     *M, T, /*isConst=*/true, GlobalVariable::InternalLinkage, C,
2737                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2738                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
2739                     Twine(AFI->createPICLabelUId())
2740                   );
2741     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
2742                                             dl, PtrVT);
2743     return LowerGlobalAddress(GA, DAG);
2744   }
2745 
2746   if (CP->isMachineConstantPoolEntry())
2747     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2748                                     CP->getAlignment());
2749   else
2750     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2751                                     CP->getAlignment());
2752   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2753 }
2754 
getJumpTableEncoding() const2755 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2756   return MachineJumpTableInfo::EK_Inline;
2757 }
2758 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2759 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2760                                              SelectionDAG &DAG) const {
2761   MachineFunction &MF = DAG.getMachineFunction();
2762   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2763   unsigned ARMPCLabelIndex = 0;
2764   SDLoc DL(Op);
2765   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2766   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2767   SDValue CPAddr;
2768   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
2769   if (!IsPositionIndependent) {
2770     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2771   } else {
2772     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2773     ARMPCLabelIndex = AFI->createPICLabelUId();
2774     ARMConstantPoolValue *CPV =
2775       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2776                                       ARMCP::CPBlockAddress, PCAdj);
2777     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2778   }
2779   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2780   SDValue Result = DAG.getLoad(
2781       PtrVT, DL, DAG.getEntryNode(), CPAddr,
2782       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2783   if (!IsPositionIndependent)
2784     return Result;
2785   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2786   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2787 }
2788 
2789 /// Convert a TLS address reference into the correct sequence of loads
2790 /// and calls to compute the variable's address for Darwin, and return an
2791 /// SDValue containing the final node.
2792 
2793 /// Darwin only has one TLS scheme which must be capable of dealing with the
2794 /// fully general situation, in the worst case. This means:
2795 ///     + "extern __thread" declaration.
2796 ///     + Defined in a possibly unknown dynamic library.
2797 ///
2798 /// The general system is that each __thread variable has a [3 x i32] descriptor
2799 /// which contains information used by the runtime to calculate the address. The
2800 /// only part of this the compiler needs to know about is the first word, which
2801 /// contains a function pointer that must be called with the address of the
2802 /// entire descriptor in "r0".
2803 ///
2804 /// Since this descriptor may be in a different unit, in general access must
2805 /// proceed along the usual ARM rules. A common sequence to produce is:
2806 ///
2807 ///     movw rT1, :lower16:_var$non_lazy_ptr
2808 ///     movt rT1, :upper16:_var$non_lazy_ptr
2809 ///     ldr r0, [rT1]
2810 ///     ldr rT2, [r0]
2811 ///     blx rT2
2812 ///     [...address now in r0...]
2813 SDValue
LowerGlobalTLSAddressDarwin(SDValue Op,SelectionDAG & DAG) const2814 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2815                                                SelectionDAG &DAG) const {
2816   assert(Subtarget->isTargetDarwin() &&
2817          "This function expects a Darwin target");
2818   SDLoc DL(Op);
2819 
2820   // First step is to get the address of the actua global symbol. This is where
2821   // the TLS descriptor lives.
2822   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2823 
2824   // The first entry in the descriptor is a function pointer that we must call
2825   // to obtain the address of the variable.
2826   SDValue Chain = DAG.getEntryNode();
2827   SDValue FuncTLVGet = DAG.getLoad(
2828       MVT::i32, DL, Chain, DescAddr,
2829       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2830       /* Alignment = */ 4,
2831       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
2832           MachineMemOperand::MOInvariant);
2833   Chain = FuncTLVGet.getValue(1);
2834 
2835   MachineFunction &F = DAG.getMachineFunction();
2836   MachineFrameInfo &MFI = F.getFrameInfo();
2837   MFI.setAdjustsStack(true);
2838 
2839   // TLS calls preserve all registers except those that absolutely must be
2840   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2841   // silly).
2842   auto TRI =
2843       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
2844   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2845   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2846 
2847   // Finally, we can make the call. This is just a degenerate version of a
2848   // normal AArch64 call node: r0 takes the address of the descriptor, and
2849   // returns the address of the variable in this thread.
2850   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2851   Chain =
2852       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2853                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
2854                   DAG.getRegisterMask(Mask), Chain.getValue(1));
2855   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
2856 }
2857 
2858 SDValue
LowerGlobalTLSAddressWindows(SDValue Op,SelectionDAG & DAG) const2859 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
2860                                                 SelectionDAG &DAG) const {
2861   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
2862 
2863   SDValue Chain = DAG.getEntryNode();
2864   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2865   SDLoc DL(Op);
2866 
2867   // Load the current TEB (thread environment block)
2868   SDValue Ops[] = {Chain,
2869                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
2870                    DAG.getConstant(15, DL, MVT::i32),
2871                    DAG.getConstant(0, DL, MVT::i32),
2872                    DAG.getConstant(13, DL, MVT::i32),
2873                    DAG.getConstant(0, DL, MVT::i32),
2874                    DAG.getConstant(2, DL, MVT::i32)};
2875   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
2876                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
2877 
2878   SDValue TEB = CurrentTEB.getValue(0);
2879   Chain = CurrentTEB.getValue(1);
2880 
2881   // Load the ThreadLocalStoragePointer from the TEB
2882   // A pointer to the TLS array is located at offset 0x2c from the TEB.
2883   SDValue TLSArray =
2884       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
2885   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
2886 
2887   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
2888   // offset into the TLSArray.
2889 
2890   // Load the TLS index from the C runtime
2891   SDValue TLSIndex =
2892       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
2893   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
2894   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
2895 
2896   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
2897                               DAG.getConstant(2, DL, MVT::i32));
2898   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
2899                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
2900                             MachinePointerInfo());
2901 
2902   // Get the offset of the start of the .tls section (section base)
2903   const auto *GA = cast<GlobalAddressSDNode>(Op);
2904   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
2905   SDValue Offset = DAG.getLoad(
2906       PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
2907                                     DAG.getTargetConstantPool(CPV, PtrVT, 4)),
2908       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2909 
2910   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
2911 }
2912 
2913 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2914 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const2915 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2916                                                  SelectionDAG &DAG) const {
2917   SDLoc dl(GA);
2918   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2919   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2920   MachineFunction &MF = DAG.getMachineFunction();
2921   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2922   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2923   ARMConstantPoolValue *CPV =
2924     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2925                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2926   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2927   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2928   Argument = DAG.getLoad(
2929       PtrVT, dl, DAG.getEntryNode(), Argument,
2930       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2931   SDValue Chain = Argument.getValue(1);
2932 
2933   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2934   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2935 
2936   // call __tls_get_addr.
2937   ArgListTy Args;
2938   ArgListEntry Entry;
2939   Entry.Node = Argument;
2940   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2941   Args.push_back(Entry);
2942 
2943   // FIXME: is there useful debug info available here?
2944   TargetLowering::CallLoweringInfo CLI(DAG);
2945   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
2946       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2947       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
2948 
2949   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2950   return CallResult.first;
2951 }
2952 
2953 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2954 // "local exec" model.
2955 SDValue
LowerToTLSExecModels(GlobalAddressSDNode * GA,SelectionDAG & DAG,TLSModel::Model model) const2956 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2957                                         SelectionDAG &DAG,
2958                                         TLSModel::Model model) const {
2959   const GlobalValue *GV = GA->getGlobal();
2960   SDLoc dl(GA);
2961   SDValue Offset;
2962   SDValue Chain = DAG.getEntryNode();
2963   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2964   // Get the Thread Pointer
2965   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2966 
2967   if (model == TLSModel::InitialExec) {
2968     MachineFunction &MF = DAG.getMachineFunction();
2969     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2970     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2971     // Initial exec model.
2972     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2973     ARMConstantPoolValue *CPV =
2974       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2975                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2976                                       true);
2977     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2978     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2979     Offset = DAG.getLoad(
2980         PtrVT, dl, Chain, Offset,
2981         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2982     Chain = Offset.getValue(1);
2983 
2984     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2985     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2986 
2987     Offset = DAG.getLoad(
2988         PtrVT, dl, Chain, Offset,
2989         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2990   } else {
2991     // local exec model
2992     assert(model == TLSModel::LocalExec);
2993     ARMConstantPoolValue *CPV =
2994       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2995     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2996     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2997     Offset = DAG.getLoad(
2998         PtrVT, dl, Chain, Offset,
2999         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3000   }
3001 
3002   // The address of the thread local variable is the add of the thread
3003   // pointer with the offset of the variable.
3004   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3005 }
3006 
3007 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3008 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3009   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3010   if (DAG.getTarget().useEmulatedTLS())
3011     return LowerToTLSEmulatedModel(GA, DAG);
3012 
3013   if (Subtarget->isTargetDarwin())
3014     return LowerGlobalTLSAddressDarwin(Op, DAG);
3015 
3016   if (Subtarget->isTargetWindows())
3017     return LowerGlobalTLSAddressWindows(Op, DAG);
3018 
3019   // TODO: implement the "local dynamic" model
3020   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3021   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3022 
3023   switch (model) {
3024     case TLSModel::GeneralDynamic:
3025     case TLSModel::LocalDynamic:
3026       return LowerToTLSGeneralDynamicModel(GA, DAG);
3027     case TLSModel::InitialExec:
3028     case TLSModel::LocalExec:
3029       return LowerToTLSExecModels(GA, DAG, model);
3030   }
3031   llvm_unreachable("bogus TLS model");
3032 }
3033 
3034 /// Return true if all users of V are within function F, looking through
3035 /// ConstantExprs.
allUsersAreInFunction(const Value * V,const Function * F)3036 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3037   SmallVector<const User*,4> Worklist;
3038   for (auto *U : V->users())
3039     Worklist.push_back(U);
3040   while (!Worklist.empty()) {
3041     auto *U = Worklist.pop_back_val();
3042     if (isa<ConstantExpr>(U)) {
3043       for (auto *UU : U->users())
3044         Worklist.push_back(UU);
3045       continue;
3046     }
3047 
3048     auto *I = dyn_cast<Instruction>(U);
3049     if (!I || I->getParent()->getParent() != F)
3050       return false;
3051   }
3052   return true;
3053 }
3054 
3055 /// Return true if all users of V are within some (any) function, looking through
3056 /// ConstantExprs. In other words, are there any global constant users?
allUsersAreInFunctions(const Value * V)3057 static bool allUsersAreInFunctions(const Value *V) {
3058   SmallVector<const User*,4> Worklist;
3059   for (auto *U : V->users())
3060     Worklist.push_back(U);
3061   while (!Worklist.empty()) {
3062     auto *U = Worklist.pop_back_val();
3063     if (isa<ConstantExpr>(U)) {
3064       for (auto *UU : U->users())
3065         Worklist.push_back(UU);
3066       continue;
3067     }
3068 
3069     if (!isa<Instruction>(U))
3070       return false;
3071   }
3072   return true;
3073 }
3074 
3075 // Return true if T is an integer, float or an array/vector of either.
isSimpleType(Type * T)3076 static bool isSimpleType(Type *T) {
3077   if (T->isIntegerTy() || T->isFloatingPointTy())
3078     return true;
3079   Type *SubT = nullptr;
3080   if (T->isArrayTy())
3081     SubT = T->getArrayElementType();
3082   else if (T->isVectorTy())
3083     SubT = T->getVectorElementType();
3084   else
3085     return false;
3086   return SubT->isIntegerTy() || SubT->isFloatingPointTy();
3087 }
3088 
promoteToConstantPool(const GlobalValue * GV,SelectionDAG & DAG,EVT PtrVT,const SDLoc & dl)3089 static SDValue promoteToConstantPool(const GlobalValue *GV, SelectionDAG &DAG,
3090                                      EVT PtrVT, const SDLoc &dl) {
3091   // If we're creating a pool entry for a constant global with unnamed address,
3092   // and the global is small enough, we can emit it inline into the constant pool
3093   // to save ourselves an indirection.
3094   //
3095   // This is a win if the constant is only used in one function (so it doesn't
3096   // need to be duplicated) or duplicating the constant wouldn't increase code
3097   // size (implying the constant is no larger than 4 bytes).
3098   const Function &F = DAG.getMachineFunction().getFunction();
3099 
3100   // We rely on this decision to inline being idemopotent and unrelated to the
3101   // use-site. We know that if we inline a variable at one use site, we'll
3102   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3103   // doesn't know about this optimization, so bail out if it's enabled else
3104   // we could decide to inline here (and thus never emit the GV) but require
3105   // the GV from fast-isel generated code.
3106   if (!EnableConstpoolPromotion ||
3107       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3108       return SDValue();
3109 
3110   auto *GVar = dyn_cast<GlobalVariable>(GV);
3111   if (!GVar || !GVar->hasInitializer() ||
3112       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3113       !GVar->hasLocalLinkage())
3114     return SDValue();
3115 
3116   // Ensure that we don't try and inline any type that contains pointers. If
3117   // we inline a value that contains relocations, we move the relocations from
3118   // .data to .text which is not ideal.
3119   auto *Init = GVar->getInitializer();
3120   if (!isSimpleType(Init->getType()))
3121     return SDValue();
3122 
3123   // The constant islands pass can only really deal with alignment requests
3124   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3125   // any type wanting greater alignment requirements than 4 bytes. We also
3126   // can only promote constants that are multiples of 4 bytes in size or
3127   // are paddable to a multiple of 4. Currently we only try and pad constants
3128   // that are strings for simplicity.
3129   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3130   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3131   unsigned Align = GVar->getAlignment();
3132   unsigned RequiredPadding = 4 - (Size % 4);
3133   bool PaddingPossible =
3134     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3135   if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
3136       Size == 0)
3137     return SDValue();
3138 
3139   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3140   MachineFunction &MF = DAG.getMachineFunction();
3141   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3142 
3143   // We can't bloat the constant pool too much, else the ConstantIslands pass
3144   // may fail to converge. If we haven't promoted this global yet (it may have
3145   // multiple uses), and promoting it would increase the constant pool size (Sz
3146   // > 4), ensure we have space to do so up to MaxTotal.
3147   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3148     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3149         ConstpoolPromotionMaxTotal)
3150       return SDValue();
3151 
3152   // This is only valid if all users are in a single function OR it has users
3153   // in multiple functions but it no larger than a pointer. We also check if
3154   // GVar has constant (non-ConstantExpr) users. If so, it essentially has its
3155   // address taken.
3156   if (!allUsersAreInFunction(GVar, &F) &&
3157       !(Size <= 4 && allUsersAreInFunctions(GVar)))
3158     return SDValue();
3159 
3160   // We're going to inline this global. Pad it out if needed.
3161   if (RequiredPadding != 4) {
3162     StringRef S = CDAInit->getAsString();
3163 
3164     SmallVector<uint8_t,16> V(S.size());
3165     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3166     while (RequiredPadding--)
3167       V.push_back(0);
3168     Init = ConstantDataArray::get(*DAG.getContext(), V);
3169   }
3170 
3171   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3172   SDValue CPAddr =
3173     DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3174   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3175     AFI->markGlobalAsPromotedToConstantPool(GVar);
3176     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3177                                       PaddedSize - 4);
3178   }
3179   ++NumConstpoolPromoted;
3180   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3181 }
3182 
isReadOnly(const GlobalValue * GV) const3183 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3184   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3185     GV = GA->getBaseObject();
3186   return (isa<GlobalVariable>(GV) && cast<GlobalVariable>(GV)->isConstant()) ||
3187          isa<Function>(GV);
3188 }
3189 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3190 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3191                                               SelectionDAG &DAG) const {
3192   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3193   default: llvm_unreachable("unknown object format");
3194   case Triple::COFF:
3195     return LowerGlobalAddressWindows(Op, DAG);
3196   case Triple::ELF:
3197     return LowerGlobalAddressELF(Op, DAG);
3198   case Triple::MachO:
3199     return LowerGlobalAddressDarwin(Op, DAG);
3200   }
3201 }
3202 
LowerGlobalAddressELF(SDValue Op,SelectionDAG & DAG) const3203 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3204                                                  SelectionDAG &DAG) const {
3205   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3206   SDLoc dl(Op);
3207   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3208   const TargetMachine &TM = getTargetMachine();
3209   bool IsRO = isReadOnly(GV);
3210 
3211   // promoteToConstantPool only if not generating XO text section
3212   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3213     if (SDValue V = promoteToConstantPool(GV, DAG, PtrVT, dl))
3214       return V;
3215 
3216   if (isPositionIndependent()) {
3217     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3218     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3219                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3220     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3221     if (UseGOT_PREL)
3222       Result =
3223           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3224                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3225     return Result;
3226   } else if (Subtarget->isROPI() && IsRO) {
3227     // PC-relative.
3228     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3229     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3230     return Result;
3231   } else if (Subtarget->isRWPI() && !IsRO) {
3232     // SB-relative.
3233     SDValue RelAddr;
3234     if (Subtarget->useMovt(DAG.getMachineFunction())) {
3235       ++NumMovwMovt;
3236       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3237       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3238     } else { // use literal pool for address constant
3239       ARMConstantPoolValue *CPV =
3240         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3241       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3242       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3243       RelAddr = DAG.getLoad(
3244           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3245           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3246     }
3247     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3248     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3249     return Result;
3250   }
3251 
3252   // If we have T2 ops, we can materialize the address directly via movt/movw
3253   // pair. This is always cheaper.
3254   if (Subtarget->useMovt(DAG.getMachineFunction())) {
3255     ++NumMovwMovt;
3256     // FIXME: Once remat is capable of dealing with instructions with register
3257     // operands, expand this into two nodes.
3258     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3259                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3260   } else {
3261     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3262     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3263     return DAG.getLoad(
3264         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3265         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3266   }
3267 }
3268 
LowerGlobalAddressDarwin(SDValue Op,SelectionDAG & DAG) const3269 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3270                                                     SelectionDAG &DAG) const {
3271   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3272          "ROPI/RWPI not currently supported for Darwin");
3273   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3274   SDLoc dl(Op);
3275   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3276 
3277   if (Subtarget->useMovt(DAG.getMachineFunction()))
3278     ++NumMovwMovt;
3279 
3280   // FIXME: Once remat is capable of dealing with instructions with register
3281   // operands, expand this into multiple nodes
3282   unsigned Wrapper =
3283       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3284 
3285   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3286   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3287 
3288   if (Subtarget->isGVIndirectSymbol(GV))
3289     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3290                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3291   return Result;
3292 }
3293 
LowerGlobalAddressWindows(SDValue Op,SelectionDAG & DAG) const3294 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3295                                                      SelectionDAG &DAG) const {
3296   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3297   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
3298          "Windows on ARM expects to use movw/movt");
3299   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3300          "ROPI/RWPI not currently supported for Windows");
3301 
3302   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3303   const ARMII::TOF TargetFlags =
3304     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
3305   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3306   SDValue Result;
3307   SDLoc DL(Op);
3308 
3309   ++NumMovwMovt;
3310 
3311   // FIXME: Once remat is capable of dealing with instructions with register
3312   // operands, expand this into two nodes.
3313   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3314                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
3315                                                   TargetFlags));
3316   if (GV->hasDLLImportStorageClass())
3317     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3318                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3319   return Result;
3320 }
3321 
3322 SDValue
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const3323 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3324   SDLoc dl(Op);
3325   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3326   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3327                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3328                      Op.getOperand(1), Val);
3329 }
3330 
3331 SDValue
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const3332 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3333   SDLoc dl(Op);
3334   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3335                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3336 }
3337 
LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,SelectionDAG & DAG) const3338 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3339                                                       SelectionDAG &DAG) const {
3340   SDLoc dl(Op);
3341   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3342                      Op.getOperand(0));
3343 }
3344 
3345 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const3346 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3347                                           const ARMSubtarget *Subtarget) const {
3348   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3349   SDLoc dl(Op);
3350   switch (IntNo) {
3351   default: return SDValue();    // Don't custom lower most intrinsics.
3352   case Intrinsic::thread_pointer: {
3353     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3354     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3355   }
3356   case Intrinsic::eh_sjlj_lsda: {
3357     MachineFunction &MF = DAG.getMachineFunction();
3358     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3359     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3360     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3361     SDValue CPAddr;
3362     bool IsPositionIndependent = isPositionIndependent();
3363     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3364     ARMConstantPoolValue *CPV =
3365       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3366                                       ARMCP::CPLSDA, PCAdj);
3367     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3368     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3369     SDValue Result = DAG.getLoad(
3370         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3371         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3372 
3373     if (IsPositionIndependent) {
3374       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3375       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3376     }
3377     return Result;
3378   }
3379   case Intrinsic::arm_neon_vabs:
3380     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3381                         Op.getOperand(1));
3382   case Intrinsic::arm_neon_vmulls:
3383   case Intrinsic::arm_neon_vmullu: {
3384     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3385       ? ARMISD::VMULLs : ARMISD::VMULLu;
3386     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3387                        Op.getOperand(1), Op.getOperand(2));
3388   }
3389   case Intrinsic::arm_neon_vminnm:
3390   case Intrinsic::arm_neon_vmaxnm: {
3391     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3392       ? ISD::FMINNUM : ISD::FMAXNUM;
3393     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3394                        Op.getOperand(1), Op.getOperand(2));
3395   }
3396   case Intrinsic::arm_neon_vminu:
3397   case Intrinsic::arm_neon_vmaxu: {
3398     if (Op.getValueType().isFloatingPoint())
3399       return SDValue();
3400     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3401       ? ISD::UMIN : ISD::UMAX;
3402     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3403                          Op.getOperand(1), Op.getOperand(2));
3404   }
3405   case Intrinsic::arm_neon_vmins:
3406   case Intrinsic::arm_neon_vmaxs: {
3407     // v{min,max}s is overloaded between signed integers and floats.
3408     if (!Op.getValueType().isFloatingPoint()) {
3409       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3410         ? ISD::SMIN : ISD::SMAX;
3411       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3412                          Op.getOperand(1), Op.getOperand(2));
3413     }
3414     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3415       ? ISD::FMINNAN : ISD::FMAXNAN;
3416     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3417                        Op.getOperand(1), Op.getOperand(2));
3418   }
3419   case Intrinsic::arm_neon_vtbl1:
3420     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3421                        Op.getOperand(1), Op.getOperand(2));
3422   case Intrinsic::arm_neon_vtbl2:
3423     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3424                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3425   }
3426 }
3427 
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)3428 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3429                                  const ARMSubtarget *Subtarget) {
3430   SDLoc dl(Op);
3431   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
3432   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
3433   if (SSID == SyncScope::SingleThread)
3434     return Op;
3435 
3436   if (!Subtarget->hasDataBarrier()) {
3437     // Some ARMv6 cpus can support data barriers with an mcr instruction.
3438     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3439     // here.
3440     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3441            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3442     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3443                        DAG.getConstant(0, dl, MVT::i32));
3444   }
3445 
3446   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3447   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3448   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3449   if (Subtarget->isMClass()) {
3450     // Only a full system barrier exists in the M-class architectures.
3451     Domain = ARM_MB::SY;
3452   } else if (Subtarget->preferISHSTBarriers() &&
3453              Ord == AtomicOrdering::Release) {
3454     // Swift happens to implement ISHST barriers in a way that's compatible with
3455     // Release semantics but weaker than ISH so we'd be fools not to use
3456     // it. Beware: other processors probably don't!
3457     Domain = ARM_MB::ISHST;
3458   }
3459 
3460   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3461                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3462                      DAG.getConstant(Domain, dl, MVT::i32));
3463 }
3464 
LowerPREFETCH(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)3465 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3466                              const ARMSubtarget *Subtarget) {
3467   // ARM pre v5TE and Thumb1 does not have preload instructions.
3468   if (!(Subtarget->isThumb2() ||
3469         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3470     // Just preserve the chain.
3471     return Op.getOperand(0);
3472 
3473   SDLoc dl(Op);
3474   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3475   if (!isRead &&
3476       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3477     // ARMv7 with MP extension has PLDW.
3478     return Op.getOperand(0);
3479 
3480   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3481   if (Subtarget->isThumb()) {
3482     // Invert the bits.
3483     isRead = ~isRead & 1;
3484     isData = ~isData & 1;
3485   }
3486 
3487   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3488                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3489                      DAG.getConstant(isData, dl, MVT::i32));
3490 }
3491 
LowerVASTART(SDValue Op,SelectionDAG & DAG)3492 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3493   MachineFunction &MF = DAG.getMachineFunction();
3494   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3495 
3496   // vastart just stores the address of the VarArgsFrameIndex slot into the
3497   // memory location argument.
3498   SDLoc dl(Op);
3499   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3500   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3501   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3502   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3503                       MachinePointerInfo(SV));
3504 }
3505 
GetF64FormalArgument(CCValAssign & VA,CCValAssign & NextVA,SDValue & Root,SelectionDAG & DAG,const SDLoc & dl) const3506 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3507                                                 CCValAssign &NextVA,
3508                                                 SDValue &Root,
3509                                                 SelectionDAG &DAG,
3510                                                 const SDLoc &dl) const {
3511   MachineFunction &MF = DAG.getMachineFunction();
3512   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3513 
3514   const TargetRegisterClass *RC;
3515   if (AFI->isThumb1OnlyFunction())
3516     RC = &ARM::tGPRRegClass;
3517   else
3518     RC = &ARM::GPRRegClass;
3519 
3520   // Transform the arguments stored in physical registers into virtual ones.
3521   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3522   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3523 
3524   SDValue ArgValue2;
3525   if (NextVA.isMemLoc()) {
3526     MachineFrameInfo &MFI = MF.getFrameInfo();
3527     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3528 
3529     // Create load node to retrieve arguments from the stack.
3530     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3531     ArgValue2 = DAG.getLoad(
3532         MVT::i32, dl, Root, FIN,
3533         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3534   } else {
3535     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3536     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3537   }
3538   if (!Subtarget->isLittle())
3539     std::swap (ArgValue, ArgValue2);
3540   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3541 }
3542 
3543 // The remaining GPRs hold either the beginning of variable-argument
3544 // data, or the beginning of an aggregate passed by value (usually
3545 // byval).  Either way, we allocate stack slots adjacent to the data
3546 // provided by our caller, and store the unallocated registers there.
3547 // If this is a variadic function, the va_list pointer will begin with
3548 // these values; otherwise, this reassembles a (byval) structure that
3549 // was split between registers and memory.
3550 // Return: The frame index registers were stored into.
StoreByValRegs(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,const Value * OrigArg,unsigned InRegsParamRecordIdx,int ArgOffset,unsigned ArgSize) const3551 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3552                                       const SDLoc &dl, SDValue &Chain,
3553                                       const Value *OrigArg,
3554                                       unsigned InRegsParamRecordIdx,
3555                                       int ArgOffset, unsigned ArgSize) const {
3556   // Currently, two use-cases possible:
3557   // Case #1. Non-var-args function, and we meet first byval parameter.
3558   //          Setup first unallocated register as first byval register;
3559   //          eat all remained registers
3560   //          (these two actions are performed by HandleByVal method).
3561   //          Then, here, we initialize stack frame with
3562   //          "store-reg" instructions.
3563   // Case #2. Var-args function, that doesn't contain byval parameters.
3564   //          The same: eat all remained unallocated registers,
3565   //          initialize stack frame.
3566 
3567   MachineFunction &MF = DAG.getMachineFunction();
3568   MachineFrameInfo &MFI = MF.getFrameInfo();
3569   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3570   unsigned RBegin, REnd;
3571   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3572     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3573   } else {
3574     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3575     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3576     REnd = ARM::R4;
3577   }
3578 
3579   if (REnd != RBegin)
3580     ArgOffset = -4 * (ARM::R4 - RBegin);
3581 
3582   auto PtrVT = getPointerTy(DAG.getDataLayout());
3583   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3584   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3585 
3586   SmallVector<SDValue, 4> MemOps;
3587   const TargetRegisterClass *RC =
3588       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3589 
3590   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3591     unsigned VReg = MF.addLiveIn(Reg, RC);
3592     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3593     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3594                                  MachinePointerInfo(OrigArg, 4 * i));
3595     MemOps.push_back(Store);
3596     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3597   }
3598 
3599   if (!MemOps.empty())
3600     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3601   return FrameIndex;
3602 }
3603 
3604 // Setup stack frame, the va_list pointer will start from.
VarArgStyleRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,unsigned ArgOffset,unsigned TotalArgRegsSaveSize,bool ForceMutable) const3605 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3606                                              const SDLoc &dl, SDValue &Chain,
3607                                              unsigned ArgOffset,
3608                                              unsigned TotalArgRegsSaveSize,
3609                                              bool ForceMutable) const {
3610   MachineFunction &MF = DAG.getMachineFunction();
3611   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3612 
3613   // Try to store any remaining integer argument regs
3614   // to their spots on the stack so that they may be loaded by dereferencing
3615   // the result of va_next.
3616   // If there is no regs to be stored, just point address after last
3617   // argument passed via stack.
3618   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3619                                   CCInfo.getInRegsParamsCount(),
3620                                   CCInfo.getNextStackOffset(), 4);
3621   AFI->setVarArgsFrameIndex(FrameIndex);
3622 }
3623 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3624 SDValue ARMTargetLowering::LowerFormalArguments(
3625     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3626     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3627     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3628   MachineFunction &MF = DAG.getMachineFunction();
3629   MachineFrameInfo &MFI = MF.getFrameInfo();
3630 
3631   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3632 
3633   // Assign locations to all of the incoming arguments.
3634   SmallVector<CCValAssign, 16> ArgLocs;
3635   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3636                  *DAG.getContext());
3637   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3638 
3639   SmallVector<SDValue, 16> ArgValues;
3640   SDValue ArgValue;
3641   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3642   unsigned CurArgIdx = 0;
3643 
3644   // Initially ArgRegsSaveSize is zero.
3645   // Then we increase this value each time we meet byval parameter.
3646   // We also increase this value in case of varargs function.
3647   AFI->setArgRegsSaveSize(0);
3648 
3649   // Calculate the amount of stack space that we need to allocate to store
3650   // byval and variadic arguments that are passed in registers.
3651   // We need to know this before we allocate the first byval or variadic
3652   // argument, as they will be allocated a stack slot below the CFA (Canonical
3653   // Frame Address, the stack pointer at entry to the function).
3654   unsigned ArgRegBegin = ARM::R4;
3655   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3656     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3657       break;
3658 
3659     CCValAssign &VA = ArgLocs[i];
3660     unsigned Index = VA.getValNo();
3661     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3662     if (!Flags.isByVal())
3663       continue;
3664 
3665     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3666     unsigned RBegin, REnd;
3667     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3668     ArgRegBegin = std::min(ArgRegBegin, RBegin);
3669 
3670     CCInfo.nextInRegsParam();
3671   }
3672   CCInfo.rewindByValRegsInfo();
3673 
3674   int lastInsIndex = -1;
3675   if (isVarArg && MFI.hasVAStart()) {
3676     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3677     if (RegIdx != array_lengthof(GPRArgRegs))
3678       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3679   }
3680 
3681   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3682   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3683   auto PtrVT = getPointerTy(DAG.getDataLayout());
3684 
3685   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3686     CCValAssign &VA = ArgLocs[i];
3687     if (Ins[VA.getValNo()].isOrigArg()) {
3688       std::advance(CurOrigArg,
3689                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3690       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3691     }
3692     // Arguments stored in registers.
3693     if (VA.isRegLoc()) {
3694       EVT RegVT = VA.getLocVT();
3695 
3696       if (VA.needsCustom()) {
3697         // f64 and vector types are split up into multiple registers or
3698         // combinations of registers and stack slots.
3699         if (VA.getLocVT() == MVT::v2f64) {
3700           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3701                                                    Chain, DAG, dl);
3702           VA = ArgLocs[++i]; // skip ahead to next loc
3703           SDValue ArgValue2;
3704           if (VA.isMemLoc()) {
3705             int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
3706             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3707             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3708                                     MachinePointerInfo::getFixedStack(
3709                                         DAG.getMachineFunction(), FI));
3710           } else {
3711             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3712                                              Chain, DAG, dl);
3713           }
3714           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3715           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3716                                  ArgValue, ArgValue1,
3717                                  DAG.getIntPtrConstant(0, dl));
3718           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3719                                  ArgValue, ArgValue2,
3720                                  DAG.getIntPtrConstant(1, dl));
3721         } else
3722           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3723       } else {
3724         const TargetRegisterClass *RC;
3725 
3726 
3727         if (RegVT == MVT::f16)
3728           RC = &ARM::HPRRegClass;
3729         else if (RegVT == MVT::f32)
3730           RC = &ARM::SPRRegClass;
3731         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
3732           RC = &ARM::DPRRegClass;
3733         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
3734           RC = &ARM::QPRRegClass;
3735         else if (RegVT == MVT::i32)
3736           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3737                                            : &ARM::GPRRegClass;
3738         else
3739           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3740 
3741         // Transform the arguments in physical registers into virtual ones.
3742         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3743         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3744       }
3745 
3746       // If this is an 8 or 16-bit value, it is really passed promoted
3747       // to 32 bits.  Insert an assert[sz]ext to capture this, then
3748       // truncate to the right size.
3749       switch (VA.getLocInfo()) {
3750       default: llvm_unreachable("Unknown loc info!");
3751       case CCValAssign::Full: break;
3752       case CCValAssign::BCvt:
3753         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3754         break;
3755       case CCValAssign::SExt:
3756         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3757                                DAG.getValueType(VA.getValVT()));
3758         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3759         break;
3760       case CCValAssign::ZExt:
3761         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3762                                DAG.getValueType(VA.getValVT()));
3763         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3764         break;
3765       }
3766 
3767       InVals.push_back(ArgValue);
3768     } else { // VA.isRegLoc()
3769       // sanity check
3770       assert(VA.isMemLoc());
3771       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3772 
3773       int index = VA.getValNo();
3774 
3775       // Some Ins[] entries become multiple ArgLoc[] entries.
3776       // Process them only once.
3777       if (index != lastInsIndex)
3778         {
3779           ISD::ArgFlagsTy Flags = Ins[index].Flags;
3780           // FIXME: For now, all byval parameter objects are marked mutable.
3781           // This can be changed with more analysis.
3782           // In case of tail call optimization mark all arguments mutable.
3783           // Since they could be overwritten by lowering of arguments in case of
3784           // a tail call.
3785           if (Flags.isByVal()) {
3786             assert(Ins[index].isOrigArg() &&
3787                    "Byval arguments cannot be implicit");
3788             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3789 
3790             int FrameIndex = StoreByValRegs(
3791                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3792                 VA.getLocMemOffset(), Flags.getByValSize());
3793             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3794             CCInfo.nextInRegsParam();
3795           } else {
3796             unsigned FIOffset = VA.getLocMemOffset();
3797             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3798                                            FIOffset, true);
3799 
3800             // Create load nodes to retrieve arguments from the stack.
3801             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3802             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3803                                          MachinePointerInfo::getFixedStack(
3804                                              DAG.getMachineFunction(), FI)));
3805           }
3806           lastInsIndex = index;
3807         }
3808     }
3809   }
3810 
3811   // varargs
3812   if (isVarArg && MFI.hasVAStart())
3813     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3814                          CCInfo.getNextStackOffset(),
3815                          TotalArgRegsSaveSize);
3816 
3817   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3818 
3819   return Chain;
3820 }
3821 
3822 /// isFloatingPointZero - Return true if this is +0.0.
isFloatingPointZero(SDValue Op)3823 static bool isFloatingPointZero(SDValue Op) {
3824   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3825     return CFP->getValueAPF().isPosZero();
3826   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3827     // Maybe this has already been legalized into the constant pool?
3828     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3829       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3830       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3831         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3832           return CFP->getValueAPF().isPosZero();
3833     }
3834   } else if (Op->getOpcode() == ISD::BITCAST &&
3835              Op->getValueType(0) == MVT::f64) {
3836     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3837     // created by LowerConstantFP().
3838     SDValue BitcastOp = Op->getOperand(0);
3839     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3840         isNullConstant(BitcastOp->getOperand(0)))
3841       return true;
3842   }
3843   return false;
3844 }
3845 
3846 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3847 /// the given operands.
getARMCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & ARMcc,SelectionDAG & DAG,const SDLoc & dl) const3848 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3849                                      SDValue &ARMcc, SelectionDAG &DAG,
3850                                      const SDLoc &dl) const {
3851   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3852     unsigned C = RHSC->getZExtValue();
3853     if (!isLegalICmpImmediate((int32_t)C)) {
3854       // Constant does not fit, try adjusting it by one.
3855       switch (CC) {
3856       default: break;
3857       case ISD::SETLT:
3858       case ISD::SETGE:
3859         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3860           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3861           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3862         }
3863         break;
3864       case ISD::SETULT:
3865       case ISD::SETUGE:
3866         if (C != 0 && isLegalICmpImmediate(C-1)) {
3867           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3868           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3869         }
3870         break;
3871       case ISD::SETLE:
3872       case ISD::SETGT:
3873         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3874           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3875           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3876         }
3877         break;
3878       case ISD::SETULE:
3879       case ISD::SETUGT:
3880         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3881           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3882           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3883         }
3884         break;
3885       }
3886     }
3887   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
3888              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
3889     // In ARM and Thumb-2, the compare instructions can shift their second
3890     // operand.
3891     CC = ISD::getSetCCSwappedOperands(CC);
3892     std::swap(LHS, RHS);
3893   }
3894 
3895   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3896   ARMISD::NodeType CompareType;
3897   switch (CondCode) {
3898   default:
3899     CompareType = ARMISD::CMP;
3900     break;
3901   case ARMCC::EQ:
3902   case ARMCC::NE:
3903     // Uses only Z Flag
3904     CompareType = ARMISD::CMPZ;
3905     break;
3906   }
3907   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3908   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3909 }
3910 
3911 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
getVFPCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,bool InvalidOnQNaN) const3912 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
3913                                      SelectionDAG &DAG, const SDLoc &dl,
3914                                      bool InvalidOnQNaN) const {
3915   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
3916   SDValue Cmp;
3917   SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
3918   if (!isFloatingPointZero(RHS))
3919     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
3920   else
3921     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
3922   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3923 }
3924 
3925 /// duplicateCmp - Glue values can have only one use, so this function
3926 /// duplicates a comparison node.
3927 SDValue
duplicateCmp(SDValue Cmp,SelectionDAG & DAG) const3928 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3929   unsigned Opc = Cmp.getOpcode();
3930   SDLoc DL(Cmp);
3931   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3932     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3933 
3934   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3935   Cmp = Cmp.getOperand(0);
3936   Opc = Cmp.getOpcode();
3937   if (Opc == ARMISD::CMPFP)
3938     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3939                       Cmp.getOperand(1), Cmp.getOperand(2));
3940   else {
3941     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3942     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3943                       Cmp.getOperand(1));
3944   }
3945   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3946 }
3947 
3948 // This function returns three things: the arithmetic computation itself
3949 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
3950 // comparison and the condition code define the case in which the arithmetic
3951 // computation *does not* overflow.
3952 std::pair<SDValue, SDValue>
getARMXALUOOp(SDValue Op,SelectionDAG & DAG,SDValue & ARMcc) const3953 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3954                                  SDValue &ARMcc) const {
3955   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
3956 
3957   SDValue Value, OverflowCmp;
3958   SDValue LHS = Op.getOperand(0);
3959   SDValue RHS = Op.getOperand(1);
3960   SDLoc dl(Op);
3961 
3962   // FIXME: We are currently always generating CMPs because we don't support
3963   // generating CMN through the backend. This is not as good as the natural
3964   // CMP case because it causes a register dependency and cannot be folded
3965   // later.
3966 
3967   switch (Op.getOpcode()) {
3968   default:
3969     llvm_unreachable("Unknown overflow instruction!");
3970   case ISD::SADDO:
3971     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3972     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3973     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3974     break;
3975   case ISD::UADDO:
3976     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3977     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
3978     // We do not use it in the USUBO case as Value may not be used.
3979     Value = DAG.getNode(ARMISD::ADDC, dl,
3980                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
3981                 .getValue(0);
3982     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3983     break;
3984   case ISD::SSUBO:
3985     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3986     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3987     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3988     break;
3989   case ISD::USUBO:
3990     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3991     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3992     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3993     break;
3994   case ISD::UMULO:
3995     // We generate a UMUL_LOHI and then check if the high word is 0.
3996     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
3997     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
3998                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
3999                         LHS, RHS);
4000     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4001                               DAG.getConstant(0, dl, MVT::i32));
4002     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4003     break;
4004   case ISD::SMULO:
4005     // We generate a SMUL_LOHI and then check if all the bits of the high word
4006     // are the same as the sign bit of the low word.
4007     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4008     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4009                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4010                         LHS, RHS);
4011     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4012                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4013                                           Value.getValue(0),
4014                                           DAG.getConstant(31, dl, MVT::i32)));
4015     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4016     break;
4017   } // switch (...)
4018 
4019   return std::make_pair(Value, OverflowCmp);
4020 }
4021 
4022 SDValue
LowerSignedALUO(SDValue Op,SelectionDAG & DAG) const4023 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4024   // Let legalize expand this if it isn't a legal type yet.
4025   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4026     return SDValue();
4027 
4028   SDValue Value, OverflowCmp;
4029   SDValue ARMcc;
4030   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4031   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4032   SDLoc dl(Op);
4033   // We use 0 and 1 as false and true values.
4034   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4035   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4036   EVT VT = Op.getValueType();
4037 
4038   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4039                                  ARMcc, CCR, OverflowCmp);
4040 
4041   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4042   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4043 }
4044 
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,SelectionDAG & DAG)4045 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4046                                               SelectionDAG &DAG) {
4047   SDLoc DL(BoolCarry);
4048   EVT CarryVT = BoolCarry.getValueType();
4049 
4050   // This converts the boolean value carry into the carry flag by doing
4051   // ARMISD::SUBC Carry, 1
4052   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4053                               DAG.getVTList(CarryVT, MVT::i32),
4054                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
4055   return Carry.getValue(1);
4056 }
4057 
ConvertCarryFlagToBooleanCarry(SDValue Flags,EVT VT,SelectionDAG & DAG)4058 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4059                                               SelectionDAG &DAG) {
4060   SDLoc DL(Flags);
4061 
4062   // Now convert the carry flag into a boolean carry. We do this
4063   // using ARMISD:ADDE 0, 0, Carry
4064   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4065                      DAG.getConstant(0, DL, MVT::i32),
4066                      DAG.getConstant(0, DL, MVT::i32), Flags);
4067 }
4068 
LowerUnsignedALUO(SDValue Op,SelectionDAG & DAG) const4069 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4070                                              SelectionDAG &DAG) const {
4071   // Let legalize expand this if it isn't a legal type yet.
4072   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4073     return SDValue();
4074 
4075   SDValue LHS = Op.getOperand(0);
4076   SDValue RHS = Op.getOperand(1);
4077   SDLoc dl(Op);
4078 
4079   EVT VT = Op.getValueType();
4080   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4081   SDValue Value;
4082   SDValue Overflow;
4083   switch (Op.getOpcode()) {
4084   default:
4085     llvm_unreachable("Unknown overflow instruction!");
4086   case ISD::UADDO:
4087     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4088     // Convert the carry flag into a boolean value.
4089     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4090     break;
4091   case ISD::USUBO: {
4092     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4093     // Convert the carry flag into a boolean value.
4094     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4095     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4096     // value. So compute 1 - C.
4097     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4098                            DAG.getConstant(1, dl, MVT::i32), Overflow);
4099     break;
4100   }
4101   }
4102 
4103   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4104 }
4105 
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4106 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4107   SDValue Cond = Op.getOperand(0);
4108   SDValue SelectTrue = Op.getOperand(1);
4109   SDValue SelectFalse = Op.getOperand(2);
4110   SDLoc dl(Op);
4111   unsigned Opc = Cond.getOpcode();
4112 
4113   if (Cond.getResNo() == 1 &&
4114       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4115        Opc == ISD::USUBO)) {
4116     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4117       return SDValue();
4118 
4119     SDValue Value, OverflowCmp;
4120     SDValue ARMcc;
4121     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4122     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4123     EVT VT = Op.getValueType();
4124 
4125     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4126                    OverflowCmp, DAG);
4127   }
4128 
4129   // Convert:
4130   //
4131   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4132   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4133   //
4134   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4135     const ConstantSDNode *CMOVTrue =
4136       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4137     const ConstantSDNode *CMOVFalse =
4138       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4139 
4140     if (CMOVTrue && CMOVFalse) {
4141       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4142       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4143 
4144       SDValue True;
4145       SDValue False;
4146       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4147         True = SelectTrue;
4148         False = SelectFalse;
4149       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4150         True = SelectFalse;
4151         False = SelectTrue;
4152       }
4153 
4154       if (True.getNode() && False.getNode()) {
4155         EVT VT = Op.getValueType();
4156         SDValue ARMcc = Cond.getOperand(2);
4157         SDValue CCR = Cond.getOperand(3);
4158         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4159         assert(True.getValueType() == VT);
4160         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4161       }
4162     }
4163   }
4164 
4165   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4166   // undefined bits before doing a full-word comparison with zero.
4167   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4168                      DAG.getConstant(1, dl, Cond.getValueType()));
4169 
4170   return DAG.getSelectCC(dl, Cond,
4171                          DAG.getConstant(0, dl, Cond.getValueType()),
4172                          SelectTrue, SelectFalse, ISD::SETNE);
4173 }
4174 
checkVSELConstraints(ISD::CondCode CC,ARMCC::CondCodes & CondCode,bool & swpCmpOps,bool & swpVselOps)4175 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4176                                  bool &swpCmpOps, bool &swpVselOps) {
4177   // Start by selecting the GE condition code for opcodes that return true for
4178   // 'equality'
4179   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4180       CC == ISD::SETULE)
4181     CondCode = ARMCC::GE;
4182 
4183   // and GT for opcodes that return false for 'equality'.
4184   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4185            CC == ISD::SETULT)
4186     CondCode = ARMCC::GT;
4187 
4188   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4189   // to swap the compare operands.
4190   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4191       CC == ISD::SETULT)
4192     swpCmpOps = true;
4193 
4194   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4195   // If we have an unordered opcode, we need to swap the operands to the VSEL
4196   // instruction (effectively negating the condition).
4197   //
4198   // This also has the effect of swapping which one of 'less' or 'greater'
4199   // returns true, so we also swap the compare operands. It also switches
4200   // whether we return true for 'equality', so we compensate by picking the
4201   // opposite condition code to our original choice.
4202   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4203       CC == ISD::SETUGT) {
4204     swpCmpOps = !swpCmpOps;
4205     swpVselOps = !swpVselOps;
4206     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4207   }
4208 
4209   // 'ordered' is 'anything but unordered', so use the VS condition code and
4210   // swap the VSEL operands.
4211   if (CC == ISD::SETO) {
4212     CondCode = ARMCC::VS;
4213     swpVselOps = true;
4214   }
4215 
4216   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4217   // code and swap the VSEL operands.
4218   if (CC == ISD::SETUNE) {
4219     CondCode = ARMCC::EQ;
4220     swpVselOps = true;
4221   }
4222 }
4223 
getCMOV(const SDLoc & dl,EVT VT,SDValue FalseVal,SDValue TrueVal,SDValue ARMcc,SDValue CCR,SDValue Cmp,SelectionDAG & DAG) const4224 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4225                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4226                                    SDValue Cmp, SelectionDAG &DAG) const {
4227   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
4228     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4229                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4230     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4231                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4232 
4233     SDValue TrueLow = TrueVal.getValue(0);
4234     SDValue TrueHigh = TrueVal.getValue(1);
4235     SDValue FalseLow = FalseVal.getValue(0);
4236     SDValue FalseHigh = FalseVal.getValue(1);
4237 
4238     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4239                               ARMcc, CCR, Cmp);
4240     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4241                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
4242 
4243     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4244   } else {
4245     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4246                        Cmp);
4247   }
4248 }
4249 
isGTorGE(ISD::CondCode CC)4250 static bool isGTorGE(ISD::CondCode CC) {
4251   return CC == ISD::SETGT || CC == ISD::SETGE;
4252 }
4253 
isLTorLE(ISD::CondCode CC)4254 static bool isLTorLE(ISD::CondCode CC) {
4255   return CC == ISD::SETLT || CC == ISD::SETLE;
4256 }
4257 
4258 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4259 // All of these conditions (and their <= and >= counterparts) will do:
4260 //          x < k ? k : x
4261 //          x > k ? x : k
4262 //          k < x ? x : k
4263 //          k > x ? k : x
isLowerSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)4264 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
4265                             const SDValue TrueVal, const SDValue FalseVal,
4266                             const ISD::CondCode CC, const SDValue K) {
4267   return (isGTorGE(CC) &&
4268           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
4269          (isLTorLE(CC) &&
4270           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
4271 }
4272 
4273 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
isUpperSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)4274 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4275                             const SDValue TrueVal, const SDValue FalseVal,
4276                             const ISD::CondCode CC, const SDValue K) {
4277   return (isGTorGE(CC) &&
4278           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4279          (isLTorLE(CC) &&
4280           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4281 }
4282 
4283 // Check if two chained conditionals could be converted into SSAT or USAT.
4284 //
4285 // SSAT can replace a set of two conditional selectors that bound a number to an
4286 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4287 //
4288 //     x < -k ? -k : (x > k ? k : x)
4289 //     x < -k ? -k : (x < k ? x : k)
4290 //     x > -k ? (x > k ? k : x) : -k
4291 //     x < k ? (x < -k ? -k : x) : k
4292 //     etc.
4293 //
4294 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4295 // a power of 2.
4296 //
4297 // It returns true if the conversion can be done, false otherwise.
4298 // Additionally, the variable is returned in parameter V, the constant in K and
4299 // usat is set to true if the conditional represents an unsigned saturation
isSaturatingConditional(const SDValue & Op,SDValue & V,uint64_t & K,bool & usat)4300 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4301                                     uint64_t &K, bool &usat) {
4302   SDValue LHS1 = Op.getOperand(0);
4303   SDValue RHS1 = Op.getOperand(1);
4304   SDValue TrueVal1 = Op.getOperand(2);
4305   SDValue FalseVal1 = Op.getOperand(3);
4306   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4307 
4308   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4309   if (Op2.getOpcode() != ISD::SELECT_CC)
4310     return false;
4311 
4312   SDValue LHS2 = Op2.getOperand(0);
4313   SDValue RHS2 = Op2.getOperand(1);
4314   SDValue TrueVal2 = Op2.getOperand(2);
4315   SDValue FalseVal2 = Op2.getOperand(3);
4316   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4317 
4318   // Find out which are the constants and which are the variables
4319   // in each conditional
4320   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4321                                                         ? &RHS1
4322                                                         : nullptr;
4323   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4324                                                         ? &RHS2
4325                                                         : nullptr;
4326   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4327   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4328   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4329   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4330 
4331   // We must detect cases where the original operations worked with 16- or
4332   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4333   // must work with sign-extended values but the select operations return
4334   // the original non-extended value.
4335   SDValue V2TmpReg = V2Tmp;
4336   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4337     V2TmpReg = V2Tmp->getOperand(0);
4338 
4339   // Check that the registers and the constants have the correct values
4340   // in both conditionals
4341   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4342       V2TmpReg != V2)
4343     return false;
4344 
4345   // Figure out which conditional is saturating the lower/upper bound.
4346   const SDValue *LowerCheckOp =
4347       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4348           ? &Op
4349           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4350                 ? &Op2
4351                 : nullptr;
4352   const SDValue *UpperCheckOp =
4353       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4354           ? &Op
4355           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4356                 ? &Op2
4357                 : nullptr;
4358 
4359   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4360     return false;
4361 
4362   // Check that the constant in the lower-bound check is
4363   // the opposite of the constant in the upper-bound check
4364   // in 1's complement.
4365   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4366   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4367   int64_t PosVal = std::max(Val1, Val2);
4368   int64_t NegVal = std::min(Val1, Val2);
4369 
4370   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4371        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4372       isPowerOf2_64(PosVal + 1)) {
4373 
4374     // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4375     if (Val1 == ~Val2)
4376       usat = false;
4377     else if (NegVal == 0)
4378       usat = true;
4379     else
4380       return false;
4381 
4382     V = V2;
4383     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4384 
4385     return true;
4386   }
4387 
4388   return false;
4389 }
4390 
4391 // Check if a condition of the type x < k ? k : x can be converted into a
4392 // bit operation instead of conditional moves.
4393 // Currently this is allowed given:
4394 // - The conditions and values match up
4395 // - k is 0 or -1 (all ones)
4396 // This function will not check the last condition, thats up to the caller
4397 // It returns true if the transformation can be made, and in such case
4398 // returns x in V, and k in SatK.
isLowerSaturatingConditional(const SDValue & Op,SDValue & V,SDValue & SatK)4399 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
4400                                          SDValue &SatK)
4401 {
4402   SDValue LHS = Op.getOperand(0);
4403   SDValue RHS = Op.getOperand(1);
4404   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4405   SDValue TrueVal = Op.getOperand(2);
4406   SDValue FalseVal = Op.getOperand(3);
4407 
4408   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
4409                                                ? &RHS
4410                                                : nullptr;
4411 
4412   // No constant operation in comparison, early out
4413   if (!K)
4414     return false;
4415 
4416   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
4417   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
4418   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
4419 
4420   // If the constant on left and right side, or variable on left and right,
4421   // does not match, early out
4422   if (*K != KTmp || V != VTmp)
4423     return false;
4424 
4425   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
4426     SatK = *K;
4427     return true;
4428   }
4429 
4430   return false;
4431 }
4432 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const4433 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4434   EVT VT = Op.getValueType();
4435   SDLoc dl(Op);
4436 
4437   // Try to convert two saturating conditional selects into a single SSAT
4438   SDValue SatValue;
4439   uint64_t SatConstant;
4440   bool SatUSat;
4441   if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4442       isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
4443     if (SatUSat)
4444       return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
4445                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4446     else
4447       return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4448                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4449   }
4450 
4451   // Try to convert expressions of the form x < k ? k : x (and similar forms)
4452   // into more efficient bit operations, which is possible when k is 0 or -1
4453   // On ARM and Thumb-2 which have flexible operand 2 this will result in
4454   // single instructions. On Thumb the shift and the bit operation will be two
4455   // instructions.
4456   // Only allow this transformation on full-width (32-bit) operations
4457   SDValue LowerSatConstant;
4458   if (VT == MVT::i32 &&
4459       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
4460     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
4461                                  DAG.getConstant(31, dl, VT));
4462     if (isNullConstant(LowerSatConstant)) {
4463       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
4464                                       DAG.getAllOnesConstant(dl, VT));
4465       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
4466     } else if (isAllOnesConstant(LowerSatConstant))
4467       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
4468   }
4469 
4470   SDValue LHS = Op.getOperand(0);
4471   SDValue RHS = Op.getOperand(1);
4472   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4473   SDValue TrueVal = Op.getOperand(2);
4474   SDValue FalseVal = Op.getOperand(3);
4475 
4476   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4477     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4478                                                     dl);
4479 
4480     // If softenSetCCOperands only returned one value, we should compare it to
4481     // zero.
4482     if (!RHS.getNode()) {
4483       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4484       CC = ISD::SETNE;
4485     }
4486   }
4487 
4488   if (LHS.getValueType() == MVT::i32) {
4489     // Try to generate VSEL on ARMv8.
4490     // The VSEL instruction can't use all the usual ARM condition
4491     // codes: it only has two bits to select the condition code, so it's
4492     // constrained to use only GE, GT, VS and EQ.
4493     //
4494     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4495     // swap the operands of the previous compare instruction (effectively
4496     // inverting the compare condition, swapping 'less' and 'greater') and
4497     // sometimes need to swap the operands to the VSEL (which inverts the
4498     // condition in the sense of firing whenever the previous condition didn't)
4499     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
4500                                     TrueVal.getValueType() == MVT::f64)) {
4501       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4502       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
4503           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
4504         CC = ISD::getSetCCInverse(CC, true);
4505         std::swap(TrueVal, FalseVal);
4506       }
4507     }
4508 
4509     SDValue ARMcc;
4510     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4511     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4512     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4513   }
4514 
4515   ARMCC::CondCodes CondCode, CondCode2;
4516   bool InvalidOnQNaN;
4517   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4518 
4519   // Normalize the fp compare. If RHS is zero we keep it there so we match
4520   // CMPFPw0 instead of CMPFP.
4521   if (Subtarget->hasFPARMv8() && !isFloatingPointZero(RHS) &&
4522      (TrueVal.getValueType() == MVT::f16 ||
4523       TrueVal.getValueType() == MVT::f32 ||
4524       TrueVal.getValueType() == MVT::f64)) {
4525     bool swpCmpOps = false;
4526     bool swpVselOps = false;
4527     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
4528 
4529     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
4530         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
4531       if (swpCmpOps)
4532         std::swap(LHS, RHS);
4533       if (swpVselOps)
4534         std::swap(TrueVal, FalseVal);
4535     }
4536   }
4537 
4538   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4539   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4540   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4541   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4542   if (CondCode2 != ARMCC::AL) {
4543     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
4544     // FIXME: Needs another CMP because flag can have but one use.
4545     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4546     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
4547   }
4548   return Result;
4549 }
4550 
4551 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4552 /// to morph to an integer compare sequence.
canChangeToInt(SDValue Op,bool & SeenZero,const ARMSubtarget * Subtarget)4553 static bool canChangeToInt(SDValue Op, bool &SeenZero,
4554                            const ARMSubtarget *Subtarget) {
4555   SDNode *N = Op.getNode();
4556   if (!N->hasOneUse())
4557     // Otherwise it requires moving the value from fp to integer registers.
4558     return false;
4559   if (!N->getNumValues())
4560     return false;
4561   EVT VT = Op.getValueType();
4562   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
4563     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4564     // vmrs are very slow, e.g. cortex-a8.
4565     return false;
4566 
4567   if (isFloatingPointZero(Op)) {
4568     SeenZero = true;
4569     return true;
4570   }
4571   return ISD::isNormalLoad(N);
4572 }
4573 
bitcastf32Toi32(SDValue Op,SelectionDAG & DAG)4574 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
4575   if (isFloatingPointZero(Op))
4576     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
4577 
4578   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
4579     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
4580                        Ld->getPointerInfo(), Ld->getAlignment(),
4581                        Ld->getMemOperand()->getFlags());
4582 
4583   llvm_unreachable("Unknown VFP cmp argument!");
4584 }
4585 
expandf64Toi32(SDValue Op,SelectionDAG & DAG,SDValue & RetVal1,SDValue & RetVal2)4586 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
4587                            SDValue &RetVal1, SDValue &RetVal2) {
4588   SDLoc dl(Op);
4589 
4590   if (isFloatingPointZero(Op)) {
4591     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
4592     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
4593     return;
4594   }
4595 
4596   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
4597     SDValue Ptr = Ld->getBasePtr();
4598     RetVal1 =
4599         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
4600                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
4601 
4602     EVT PtrType = Ptr.getValueType();
4603     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
4604     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
4605                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
4606     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
4607                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
4608                           Ld->getMemOperand()->getFlags());
4609     return;
4610   }
4611 
4612   llvm_unreachable("Unknown VFP cmp argument!");
4613 }
4614 
4615 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4616 /// f32 and even f64 comparisons to integer ones.
4617 SDValue
OptimizeVFPBrcond(SDValue Op,SelectionDAG & DAG) const4618 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4619   SDValue Chain = Op.getOperand(0);
4620   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4621   SDValue LHS = Op.getOperand(2);
4622   SDValue RHS = Op.getOperand(3);
4623   SDValue Dest = Op.getOperand(4);
4624   SDLoc dl(Op);
4625 
4626   bool LHSSeenZero = false;
4627   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4628   bool RHSSeenZero = false;
4629   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4630   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4631     // If unsafe fp math optimization is enabled and there are no other uses of
4632     // the CMP operands, and the condition code is EQ or NE, we can optimize it
4633     // to an integer comparison.
4634     if (CC == ISD::SETOEQ)
4635       CC = ISD::SETEQ;
4636     else if (CC == ISD::SETUNE)
4637       CC = ISD::SETNE;
4638 
4639     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4640     SDValue ARMcc;
4641     if (LHS.getValueType() == MVT::f32) {
4642       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4643                         bitcastf32Toi32(LHS, DAG), Mask);
4644       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4645                         bitcastf32Toi32(RHS, DAG), Mask);
4646       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4647       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4648       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4649                          Chain, Dest, ARMcc, CCR, Cmp);
4650     }
4651 
4652     SDValue LHS1, LHS2;
4653     SDValue RHS1, RHS2;
4654     expandf64Toi32(LHS, DAG, LHS1, LHS2);
4655     expandf64Toi32(RHS, DAG, RHS1, RHS2);
4656     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4657     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4658     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4659     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4660     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4661     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4662     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4663   }
4664 
4665   return SDValue();
4666 }
4667 
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const4668 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4669   SDValue Chain = Op.getOperand(0);
4670   SDValue Cond = Op.getOperand(1);
4671   SDValue Dest = Op.getOperand(2);
4672   SDLoc dl(Op);
4673 
4674   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4675   // instruction.
4676   unsigned Opc = Cond.getOpcode();
4677   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4678                       !Subtarget->isThumb1Only();
4679   if (Cond.getResNo() == 1 &&
4680       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4681        Opc == ISD::USUBO || OptimizeMul)) {
4682     // Only lower legal XALUO ops.
4683     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4684       return SDValue();
4685 
4686     // The actual operation with overflow check.
4687     SDValue Value, OverflowCmp;
4688     SDValue ARMcc;
4689     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4690 
4691     // Reverse the condition code.
4692     ARMCC::CondCodes CondCode =
4693         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4694     CondCode = ARMCC::getOppositeCondition(CondCode);
4695     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4696     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4697 
4698     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4699                        OverflowCmp);
4700   }
4701 
4702   return SDValue();
4703 }
4704 
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const4705 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4706   SDValue Chain = Op.getOperand(0);
4707   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4708   SDValue LHS = Op.getOperand(2);
4709   SDValue RHS = Op.getOperand(3);
4710   SDValue Dest = Op.getOperand(4);
4711   SDLoc dl(Op);
4712 
4713   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4714     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4715                                                     dl);
4716 
4717     // If softenSetCCOperands only returned one value, we should compare it to
4718     // zero.
4719     if (!RHS.getNode()) {
4720       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4721       CC = ISD::SETNE;
4722     }
4723   }
4724 
4725   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4726   // instruction.
4727   unsigned Opc = LHS.getOpcode();
4728   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4729                       !Subtarget->isThumb1Only();
4730   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
4731       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4732        Opc == ISD::USUBO || OptimizeMul) &&
4733       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4734     // Only lower legal XALUO ops.
4735     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4736       return SDValue();
4737 
4738     // The actual operation with overflow check.
4739     SDValue Value, OverflowCmp;
4740     SDValue ARMcc;
4741     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
4742 
4743     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
4744       // Reverse the condition code.
4745       ARMCC::CondCodes CondCode =
4746           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4747       CondCode = ARMCC::getOppositeCondition(CondCode);
4748       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4749     }
4750     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4751 
4752     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4753                        OverflowCmp);
4754   }
4755 
4756   if (LHS.getValueType() == MVT::i32) {
4757     SDValue ARMcc;
4758     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4759     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4760     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4761                        Chain, Dest, ARMcc, CCR, Cmp);
4762   }
4763 
4764   if (getTargetMachine().Options.UnsafeFPMath &&
4765       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
4766        CC == ISD::SETNE || CC == ISD::SETUNE)) {
4767     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
4768       return Result;
4769   }
4770 
4771   ARMCC::CondCodes CondCode, CondCode2;
4772   bool InvalidOnQNaN;
4773   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4774 
4775   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4776   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4777   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4778   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4779   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
4780   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4781   if (CondCode2 != ARMCC::AL) {
4782     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
4783     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
4784     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4785   }
4786   return Res;
4787 }
4788 
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const4789 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
4790   SDValue Chain = Op.getOperand(0);
4791   SDValue Table = Op.getOperand(1);
4792   SDValue Index = Op.getOperand(2);
4793   SDLoc dl(Op);
4794 
4795   EVT PTy = getPointerTy(DAG.getDataLayout());
4796   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
4797   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
4798   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
4799   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
4800   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
4801   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
4802     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
4803     // which does another jump to the destination. This also makes it easier
4804     // to translate it to TBB / TBH later (Thumb2 only).
4805     // FIXME: This might not work if the function is extremely large.
4806     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4807                        Addr, Op.getOperand(2), JTI);
4808   }
4809   if (isPositionIndependent() || Subtarget->isROPI()) {
4810     Addr =
4811         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4812                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4813     Chain = Addr.getValue(1);
4814     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
4815     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4816   } else {
4817     Addr =
4818         DAG.getLoad(PTy, dl, Chain, Addr,
4819                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4820     Chain = Addr.getValue(1);
4821     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4822   }
4823 }
4824 
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)4825 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4826   EVT VT = Op.getValueType();
4827   SDLoc dl(Op);
4828 
4829   if (Op.getValueType().getVectorElementType() == MVT::i32) {
4830     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4831       return Op;
4832     return DAG.UnrollVectorOp(Op.getNode());
4833   }
4834 
4835   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
4836          "Invalid type for custom lowering!");
4837   if (VT != MVT::v4i16)
4838     return DAG.UnrollVectorOp(Op.getNode());
4839 
4840   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
4841   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4842 }
4843 
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const4844 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4845   EVT VT = Op.getValueType();
4846   if (VT.isVector())
4847     return LowerVectorFP_TO_INT(Op, DAG);
4848   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
4849     RTLIB::Libcall LC;
4850     if (Op.getOpcode() == ISD::FP_TO_SINT)
4851       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
4852                               Op.getValueType());
4853     else
4854       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
4855                               Op.getValueType());
4856     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4857                        /*isSigned*/ false, SDLoc(Op)).first;
4858   }
4859 
4860   return Op;
4861 }
4862 
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)4863 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4864   EVT VT = Op.getValueType();
4865   SDLoc dl(Op);
4866 
4867   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
4868     if (VT.getVectorElementType() == MVT::f32)
4869       return Op;
4870     return DAG.UnrollVectorOp(Op.getNode());
4871   }
4872 
4873   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
4874          "Invalid type for custom lowering!");
4875   if (VT != MVT::v4f32)
4876     return DAG.UnrollVectorOp(Op.getNode());
4877 
4878   unsigned CastOpc;
4879   unsigned Opc;
4880   switch (Op.getOpcode()) {
4881   default: llvm_unreachable("Invalid opcode!");
4882   case ISD::SINT_TO_FP:
4883     CastOpc = ISD::SIGN_EXTEND;
4884     Opc = ISD::SINT_TO_FP;
4885     break;
4886   case ISD::UINT_TO_FP:
4887     CastOpc = ISD::ZERO_EXTEND;
4888     Opc = ISD::UINT_TO_FP;
4889     break;
4890   }
4891 
4892   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
4893   return DAG.getNode(Opc, dl, VT, Op);
4894 }
4895 
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const4896 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
4897   EVT VT = Op.getValueType();
4898   if (VT.isVector())
4899     return LowerVectorINT_TO_FP(Op, DAG);
4900   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
4901     RTLIB::Libcall LC;
4902     if (Op.getOpcode() == ISD::SINT_TO_FP)
4903       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
4904                               Op.getValueType());
4905     else
4906       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
4907                               Op.getValueType());
4908     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4909                        /*isSigned*/ false, SDLoc(Op)).first;
4910   }
4911 
4912   return Op;
4913 }
4914 
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const4915 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4916   // Implement fcopysign with a fabs and a conditional fneg.
4917   SDValue Tmp0 = Op.getOperand(0);
4918   SDValue Tmp1 = Op.getOperand(1);
4919   SDLoc dl(Op);
4920   EVT VT = Op.getValueType();
4921   EVT SrcVT = Tmp1.getValueType();
4922   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4923     Tmp0.getOpcode() == ARMISD::VMOVDRR;
4924   bool UseNEON = !InGPR && Subtarget->hasNEON();
4925 
4926   if (UseNEON) {
4927     // Use VBSL to copy the sign bit.
4928     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4929     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4930                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
4931     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4932     if (VT == MVT::f64)
4933       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4934                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4935                          DAG.getConstant(32, dl, MVT::i32));
4936     else /*if (VT == MVT::f32)*/
4937       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4938     if (SrcVT == MVT::f32) {
4939       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4940       if (VT == MVT::f64)
4941         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4942                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4943                            DAG.getConstant(32, dl, MVT::i32));
4944     } else if (VT == MVT::f32)
4945       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4946                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4947                          DAG.getConstant(32, dl, MVT::i32));
4948     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4949     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4950 
4951     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4952                                             dl, MVT::i32);
4953     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4954     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4955                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4956 
4957     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4958                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4959                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4960     if (VT == MVT::f32) {
4961       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4962       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4963                         DAG.getConstant(0, dl, MVT::i32));
4964     } else {
4965       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4966     }
4967 
4968     return Res;
4969   }
4970 
4971   // Bitcast operand 1 to i32.
4972   if (SrcVT == MVT::f64)
4973     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4974                        Tmp1).getValue(1);
4975   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
4976 
4977   // Or in the signbit with integer operations.
4978   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
4979   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4980   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
4981   if (VT == MVT::f32) {
4982     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
4983                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
4984     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4985                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
4986   }
4987 
4988   // f64: Or the high part with signbit and then combine two parts.
4989   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4990                      Tmp0);
4991   SDValue Lo = Tmp0.getValue(0);
4992   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
4993   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
4994   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
4995 }
4996 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const4997 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
4998   MachineFunction &MF = DAG.getMachineFunction();
4999   MachineFrameInfo &MFI = MF.getFrameInfo();
5000   MFI.setReturnAddressIsTaken(true);
5001 
5002   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5003     return SDValue();
5004 
5005   EVT VT = Op.getValueType();
5006   SDLoc dl(Op);
5007   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5008   if (Depth) {
5009     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5010     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5011     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5012                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5013                        MachinePointerInfo());
5014   }
5015 
5016   // Return LR, which contains the return address. Mark it an implicit live-in.
5017   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5018   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5019 }
5020 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const5021 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5022   const ARMBaseRegisterInfo &ARI =
5023     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5024   MachineFunction &MF = DAG.getMachineFunction();
5025   MachineFrameInfo &MFI = MF.getFrameInfo();
5026   MFI.setFrameAddressIsTaken(true);
5027 
5028   EVT VT = Op.getValueType();
5029   SDLoc dl(Op);  // FIXME probably not meaningful
5030   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5031   unsigned FrameReg = ARI.getFrameRegister(MF);
5032   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5033   while (Depth--)
5034     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5035                             MachinePointerInfo());
5036   return FrameAddr;
5037 }
5038 
5039 // FIXME? Maybe this could be a TableGen attribute on some registers and
5040 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const5041 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
5042                                               SelectionDAG &DAG) const {
5043   unsigned Reg = StringSwitch<unsigned>(RegName)
5044                        .Case("sp", ARM::SP)
5045                        .Default(0);
5046   if (Reg)
5047     return Reg;
5048   report_fatal_error(Twine("Invalid register name \""
5049                               + StringRef(RegName)  + "\"."));
5050 }
5051 
5052 // Result is 64 bit value so split into two 32 bit values and return as a
5053 // pair of values.
ExpandREAD_REGISTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)5054 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5055                                 SelectionDAG &DAG) {
5056   SDLoc DL(N);
5057 
5058   // This function is only supposed to be called for i64 type destination.
5059   assert(N->getValueType(0) == MVT::i64
5060           && "ExpandREAD_REGISTER called for non-i64 type result.");
5061 
5062   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5063                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5064                              N->getOperand(0),
5065                              N->getOperand(1));
5066 
5067   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5068                     Read.getValue(1)));
5069   Results.push_back(Read.getOperand(0));
5070 }
5071 
5072 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5073 /// When \p DstVT, the destination type of \p BC, is on the vector
5074 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5075 /// it might be possible to combine them, such that everything stays on the
5076 /// vector register bank.
5077 /// \p return The node that would replace \p BT, if the combine
5078 /// is possible.
CombineVMOVDRRCandidateWithVecOp(const SDNode * BC,SelectionDAG & DAG)5079 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5080                                                 SelectionDAG &DAG) {
5081   SDValue Op = BC->getOperand(0);
5082   EVT DstVT = BC->getValueType(0);
5083 
5084   // The only vector instruction that can produce a scalar (remember,
5085   // since the bitcast was about to be turned into VMOVDRR, the source
5086   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5087   // Moreover, we can do this combine only if there is one use.
5088   // Finally, if the destination type is not a vector, there is not
5089   // much point on forcing everything on the vector bank.
5090   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5091       !Op.hasOneUse())
5092     return SDValue();
5093 
5094   // If the index is not constant, we will introduce an additional
5095   // multiply that will stick.
5096   // Give up in that case.
5097   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5098   if (!Index)
5099     return SDValue();
5100   unsigned DstNumElt = DstVT.getVectorNumElements();
5101 
5102   // Compute the new index.
5103   const APInt &APIntIndex = Index->getAPIntValue();
5104   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5105   NewIndex *= APIntIndex;
5106   // Check if the new constant index fits into i32.
5107   if (NewIndex.getBitWidth() > 32)
5108     return SDValue();
5109 
5110   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5111   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5112   SDLoc dl(Op);
5113   SDValue ExtractSrc = Op.getOperand(0);
5114   EVT VecVT = EVT::getVectorVT(
5115       *DAG.getContext(), DstVT.getScalarType(),
5116       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5117   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5118   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5119                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5120 }
5121 
5122 /// ExpandBITCAST - If the target supports VFP, this function is called to
5123 /// expand a bit convert where either the source or destination type is i64 to
5124 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
5125 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5126 /// vectors), since the legalizer won't know what to do with that.
ExpandBITCAST(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)5127 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5128                              const ARMSubtarget *Subtarget) {
5129   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5130   SDLoc dl(N);
5131   SDValue Op = N->getOperand(0);
5132 
5133   // This function is only supposed to be called for i64 types, either as the
5134   // source or destination of the bit convert.
5135   EVT SrcVT = Op.getValueType();
5136   EVT DstVT = N->getValueType(0);
5137   const bool HasFullFP16 = Subtarget->hasFullFP16();
5138 
5139   if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
5140      // FullFP16: half values are passed in S-registers, and we don't
5141      // need any of the bitcast and moves:
5142      //
5143      // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5144      //   t5: i32 = bitcast t2
5145      // t18: f16 = ARMISD::VMOVhr t5
5146      if (Op.getOpcode() != ISD::CopyFromReg ||
5147          Op.getValueType() != MVT::f32)
5148        return SDValue();
5149 
5150      auto Move = N->use_begin();
5151      if (Move->getOpcode() != ARMISD::VMOVhr)
5152        return SDValue();
5153 
5154      SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
5155      SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
5156      DAG.ReplaceAllUsesWith(*Move, &Copy);
5157      return Copy;
5158   }
5159 
5160   if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
5161     if (!HasFullFP16)
5162       return SDValue();
5163     // SoftFP: read half-precision arguments:
5164     //
5165     // t2: i32,ch = ...
5166     //        t7: i16 = truncate t2 <~~~~ Op
5167     //      t8: f16 = bitcast t7    <~~~~ N
5168     //
5169     if (Op.getOperand(0).getValueType() == MVT::i32)
5170       return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
5171                          MVT::f16, Op.getOperand(0));
5172 
5173     return SDValue();
5174   }
5175 
5176   // Half-precision return values
5177   if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
5178     if (!HasFullFP16)
5179       return SDValue();
5180     //
5181     //          t11: f16 = fadd t8, t10
5182     //        t12: i16 = bitcast t11       <~~~ SDNode N
5183     //      t13: i32 = zero_extend t12
5184     //    t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5185     //  t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5186     //
5187     // transform this into:
5188     //
5189     //    t20: i32 = ARMISD::VMOVrh t11
5190     //  t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5191     //
5192     auto ZeroExtend = N->use_begin();
5193     if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
5194         ZeroExtend->getValueType(0) != MVT::i32)
5195       return SDValue();
5196 
5197     auto Copy = ZeroExtend->use_begin();
5198     if (Copy->getOpcode() == ISD::CopyToReg &&
5199         Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
5200       SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
5201       DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
5202       return Cvt;
5203     }
5204     return SDValue();
5205   }
5206 
5207   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5208     return SDValue();
5209 
5210   // Turn i64->f64 into VMOVDRR.
5211   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5212     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5213     // if we can combine the bitcast with its source.
5214     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5215       return Val;
5216 
5217     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5218                              DAG.getConstant(0, dl, MVT::i32));
5219     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5220                              DAG.getConstant(1, dl, MVT::i32));
5221     return DAG.getNode(ISD::BITCAST, dl, DstVT,
5222                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5223   }
5224 
5225   // Turn f64->i64 into VMOVRRD.
5226   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5227     SDValue Cvt;
5228     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5229         SrcVT.getVectorNumElements() > 1)
5230       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5231                         DAG.getVTList(MVT::i32, MVT::i32),
5232                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5233     else
5234       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5235                         DAG.getVTList(MVT::i32, MVT::i32), Op);
5236     // Merge the pieces into a single i64 value.
5237     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5238   }
5239 
5240   return SDValue();
5241 }
5242 
5243 /// getZeroVector - Returns a vector of specified type with all zero elements.
5244 /// Zero vectors are used to represent vector negation and in those cases
5245 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
5246 /// not support i64 elements, so sometimes the zero vectors will need to be
5247 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
5248 /// zero vector.
getZeroVector(EVT VT,SelectionDAG & DAG,const SDLoc & dl)5249 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5250   assert(VT.isVector() && "Expected a vector type");
5251   // The canonical modified immediate encoding of a zero vector is....0!
5252   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
5253   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5254   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
5255   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5256 }
5257 
5258 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5259 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const5260 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
5261                                                 SelectionDAG &DAG) const {
5262   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5263   EVT VT = Op.getValueType();
5264   unsigned VTBits = VT.getSizeInBits();
5265   SDLoc dl(Op);
5266   SDValue ShOpLo = Op.getOperand(0);
5267   SDValue ShOpHi = Op.getOperand(1);
5268   SDValue ShAmt  = Op.getOperand(2);
5269   SDValue ARMcc;
5270   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5271   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5272 
5273   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5274 
5275   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5276                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5277   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5278   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5279                                    DAG.getConstant(VTBits, dl, MVT::i32));
5280   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5281   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5282   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5283   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5284                             ISD::SETGE, ARMcc, DAG, dl);
5285   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
5286                            ARMcc, CCR, CmpLo);
5287 
5288   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5289   SDValue HiBigShift = Opc == ISD::SRA
5290                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
5291                                          DAG.getConstant(VTBits - 1, dl, VT))
5292                            : DAG.getConstant(0, dl, VT);
5293   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5294                             ISD::SETGE, ARMcc, DAG, dl);
5295   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5296                            ARMcc, CCR, CmpHi);
5297 
5298   SDValue Ops[2] = { Lo, Hi };
5299   return DAG.getMergeValues(Ops, dl);
5300 }
5301 
5302 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5303 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const5304 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
5305                                                SelectionDAG &DAG) const {
5306   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5307   EVT VT = Op.getValueType();
5308   unsigned VTBits = VT.getSizeInBits();
5309   SDLoc dl(Op);
5310   SDValue ShOpLo = Op.getOperand(0);
5311   SDValue ShOpHi = Op.getOperand(1);
5312   SDValue ShAmt  = Op.getOperand(2);
5313   SDValue ARMcc;
5314   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5315 
5316   assert(Op.getOpcode() == ISD::SHL_PARTS);
5317   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5318                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5319   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5320   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5321   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5322 
5323   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5324                                    DAG.getConstant(VTBits, dl, MVT::i32));
5325   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5326   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5327                             ISD::SETGE, ARMcc, DAG, dl);
5328   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5329                            ARMcc, CCR, CmpHi);
5330 
5331   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5332                           ISD::SETGE, ARMcc, DAG, dl);
5333   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5334   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
5335                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
5336 
5337   SDValue Ops[2] = { Lo, Hi };
5338   return DAG.getMergeValues(Ops, dl);
5339 }
5340 
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const5341 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5342                                             SelectionDAG &DAG) const {
5343   // The rounding mode is in bits 23:22 of the FPSCR.
5344   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5345   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5346   // so that the shift + and get folded into a bitfield extract.
5347   SDLoc dl(Op);
5348   SDValue Ops[] = { DAG.getEntryNode(),
5349                     DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
5350 
5351   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
5352   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
5353                                   DAG.getConstant(1U << 22, dl, MVT::i32));
5354   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
5355                               DAG.getConstant(22, dl, MVT::i32));
5356   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
5357                      DAG.getConstant(3, dl, MVT::i32));
5358 }
5359 
LowerCTTZ(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5360 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
5361                          const ARMSubtarget *ST) {
5362   SDLoc dl(N);
5363   EVT VT = N->getValueType(0);
5364   if (VT.isVector()) {
5365     assert(ST->hasNEON());
5366 
5367     // Compute the least significant set bit: LSB = X & -X
5368     SDValue X = N->getOperand(0);
5369     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
5370     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
5371 
5372     EVT ElemTy = VT.getVectorElementType();
5373 
5374     if (ElemTy == MVT::i8) {
5375       // Compute with: cttz(x) = ctpop(lsb - 1)
5376       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5377                                 DAG.getTargetConstant(1, dl, ElemTy));
5378       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5379       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5380     }
5381 
5382     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
5383         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
5384       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5385       unsigned NumBits = ElemTy.getSizeInBits();
5386       SDValue WidthMinus1 =
5387           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5388                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
5389       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
5390       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
5391     }
5392 
5393     // Compute with: cttz(x) = ctpop(lsb - 1)
5394 
5395     // Since we can only compute the number of bits in a byte with vcnt.8, we
5396     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
5397     // and i64.
5398 
5399     // Compute LSB - 1.
5400     SDValue Bits;
5401     if (ElemTy == MVT::i64) {
5402       // Load constant 0xffff'ffff'ffff'ffff to register.
5403       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5404                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
5405       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
5406     } else {
5407       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5408                                 DAG.getTargetConstant(1, dl, ElemTy));
5409       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5410     }
5411 
5412     // Count #bits with vcnt.8.
5413     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5414     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
5415     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
5416 
5417     // Gather the #bits with vpaddl (pairwise add.)
5418     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
5419     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
5420         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5421         Cnt8);
5422     if (ElemTy == MVT::i16)
5423       return Cnt16;
5424 
5425     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
5426     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
5427         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5428         Cnt16);
5429     if (ElemTy == MVT::i32)
5430       return Cnt32;
5431 
5432     assert(ElemTy == MVT::i64);
5433     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5434         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
5435         Cnt32);
5436     return Cnt64;
5437   }
5438 
5439   if (!ST->hasV6T2Ops())
5440     return SDValue();
5441 
5442   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
5443   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
5444 }
5445 
5446 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
5447 /// for each 16-bit element from operand, repeated.  The basic idea is to
5448 /// leverage vcnt to get the 8-bit counts, gather and add the results.
5449 ///
5450 /// Trace for v4i16:
5451 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
5452 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
5453 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
5454 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
5455 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
5456 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
5457 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
5458 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
getCTPOP16BitCounts(SDNode * N,SelectionDAG & DAG)5459 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
5460   EVT VT = N->getValueType(0);
5461   SDLoc DL(N);
5462 
5463   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5464   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
5465   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
5466   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
5467   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
5468   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
5469 }
5470 
5471 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
5472 /// bit-count for each 16-bit element from the operand.  We need slightly
5473 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
5474 /// 64/128-bit registers.
5475 ///
5476 /// Trace for v4i16:
5477 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
5478 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
5479 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
5480 /// v4i16:Extracted = [k0    k1    k2    k3    ]
lowerCTPOP16BitElements(SDNode * N,SelectionDAG & DAG)5481 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
5482   EVT VT = N->getValueType(0);
5483   SDLoc DL(N);
5484 
5485   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
5486   if (VT.is64BitVector()) {
5487     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
5488     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
5489                        DAG.getIntPtrConstant(0, DL));
5490   } else {
5491     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
5492                                     BitCounts, DAG.getIntPtrConstant(0, DL));
5493     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
5494   }
5495 }
5496 
5497 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
5498 /// bit-count for each 32-bit element from the operand.  The idea here is
5499 /// to split the vector into 16-bit elements, leverage the 16-bit count
5500 /// routine, and then combine the results.
5501 ///
5502 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
5503 /// input    = [v0    v1    ] (vi: 32-bit elements)
5504 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
5505 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
5506 /// vrev: N0 = [k1 k0 k3 k2 ]
5507 ///            [k0 k1 k2 k3 ]
5508 ///       N1 =+[k1 k0 k3 k2 ]
5509 ///            [k0 k2 k1 k3 ]
5510 ///       N2 =+[k1 k3 k0 k2 ]
5511 ///            [k0    k2    k1    k3    ]
5512 /// Extended =+[k1    k3    k0    k2    ]
5513 ///            [k0    k2    ]
5514 /// Extracted=+[k1    k3    ]
5515 ///
lowerCTPOP32BitElements(SDNode * N,SelectionDAG & DAG)5516 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
5517   EVT VT = N->getValueType(0);
5518   SDLoc DL(N);
5519 
5520   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
5521 
5522   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
5523   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
5524   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
5525   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
5526   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
5527 
5528   if (VT.is64BitVector()) {
5529     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
5530     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
5531                        DAG.getIntPtrConstant(0, DL));
5532   } else {
5533     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
5534                                     DAG.getIntPtrConstant(0, DL));
5535     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
5536   }
5537 }
5538 
LowerCTPOP(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5539 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
5540                           const ARMSubtarget *ST) {
5541   EVT VT = N->getValueType(0);
5542 
5543   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
5544   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
5545           VT == MVT::v4i16 || VT == MVT::v8i16) &&
5546          "Unexpected type for custom ctpop lowering");
5547 
5548   if (VT.getVectorElementType() == MVT::i32)
5549     return lowerCTPOP32BitElements(N, DAG);
5550   else
5551     return lowerCTPOP16BitElements(N, DAG);
5552 }
5553 
LowerShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5554 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
5555                           const ARMSubtarget *ST) {
5556   EVT VT = N->getValueType(0);
5557   SDLoc dl(N);
5558 
5559   if (!VT.isVector())
5560     return SDValue();
5561 
5562   // Lower vector shifts on NEON to use VSHL.
5563   assert(ST->hasNEON() && "unexpected vector shift");
5564 
5565   // Left shifts translate directly to the vshiftu intrinsic.
5566   if (N->getOpcode() == ISD::SHL)
5567     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5568                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
5569                                        MVT::i32),
5570                        N->getOperand(0), N->getOperand(1));
5571 
5572   assert((N->getOpcode() == ISD::SRA ||
5573           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
5574 
5575   // NEON uses the same intrinsics for both left and right shifts.  For
5576   // right shifts, the shift amounts are negative, so negate the vector of
5577   // shift amounts.
5578   EVT ShiftVT = N->getOperand(1).getValueType();
5579   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
5580                                      getZeroVector(ShiftVT, DAG, dl),
5581                                      N->getOperand(1));
5582   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
5583                              Intrinsic::arm_neon_vshifts :
5584                              Intrinsic::arm_neon_vshiftu);
5585   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5586                      DAG.getConstant(vshiftInt, dl, MVT::i32),
5587                      N->getOperand(0), NegatedCount);
5588 }
5589 
Expand64BitShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5590 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
5591                                 const ARMSubtarget *ST) {
5592   EVT VT = N->getValueType(0);
5593   SDLoc dl(N);
5594 
5595   // We can get here for a node like i32 = ISD::SHL i32, i64
5596   if (VT != MVT::i64)
5597     return SDValue();
5598 
5599   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
5600          "Unknown shift to lower!");
5601 
5602   // We only lower SRA, SRL of 1 here, all others use generic lowering.
5603   if (!isOneConstant(N->getOperand(1)))
5604     return SDValue();
5605 
5606   // If we are in thumb mode, we don't have RRX.
5607   if (ST->isThumb1Only()) return SDValue();
5608 
5609   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
5610   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5611                            DAG.getConstant(0, dl, MVT::i32));
5612   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5613                            DAG.getConstant(1, dl, MVT::i32));
5614 
5615   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5616   // captures the result into a carry flag.
5617   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
5618   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
5619 
5620   // The low part is an ARMISD::RRX operand, which shifts the carry in.
5621   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
5622 
5623   // Merge the pieces into a single i64 value.
5624  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5625 }
5626 
LowerVSETCC(SDValue Op,SelectionDAG & DAG)5627 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5628   SDValue TmpOp0, TmpOp1;
5629   bool Invert = false;
5630   bool Swap = false;
5631   unsigned Opc = 0;
5632 
5633   SDValue Op0 = Op.getOperand(0);
5634   SDValue Op1 = Op.getOperand(1);
5635   SDValue CC = Op.getOperand(2);
5636   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
5637   EVT VT = Op.getValueType();
5638   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5639   SDLoc dl(Op);
5640 
5641   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
5642       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
5643     // Special-case integer 64-bit equality comparisons. They aren't legal,
5644     // but they can be lowered with a few vector instructions.
5645     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
5646     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
5647     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
5648     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
5649     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
5650                               DAG.getCondCode(ISD::SETEQ));
5651     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
5652     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
5653     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
5654     if (SetCCOpcode == ISD::SETNE)
5655       Merged = DAG.getNOT(dl, Merged, CmpVT);
5656     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
5657     return Merged;
5658   }
5659 
5660   if (CmpVT.getVectorElementType() == MVT::i64)
5661     // 64-bit comparisons are not legal in general.
5662     return SDValue();
5663 
5664   if (Op1.getValueType().isFloatingPoint()) {
5665     switch (SetCCOpcode) {
5666     default: llvm_unreachable("Illegal FP comparison");
5667     case ISD::SETUNE:
5668     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5669     case ISD::SETOEQ:
5670     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5671     case ISD::SETOLT:
5672     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5673     case ISD::SETOGT:
5674     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5675     case ISD::SETOLE:
5676     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5677     case ISD::SETOGE:
5678     case ISD::SETGE: Opc = ARMISD::VCGE; break;
5679     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
5680     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
5681     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
5682     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
5683     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
5684     case ISD::SETONE:
5685       // Expand this to (OLT | OGT).
5686       TmpOp0 = Op0;
5687       TmpOp1 = Op1;
5688       Opc = ISD::OR;
5689       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5690       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
5691       break;
5692     case ISD::SETUO:
5693       Invert = true;
5694       LLVM_FALLTHROUGH;
5695     case ISD::SETO:
5696       // Expand this to (OLT | OGE).
5697       TmpOp0 = Op0;
5698       TmpOp1 = Op1;
5699       Opc = ISD::OR;
5700       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5701       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
5702       break;
5703     }
5704   } else {
5705     // Integer comparisons.
5706     switch (SetCCOpcode) {
5707     default: llvm_unreachable("Illegal integer comparison");
5708     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5709     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5710     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
5711     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5712     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5713     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
5714     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
5715     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
5716     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
5717     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
5718     }
5719 
5720     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
5721     if (Opc == ARMISD::VCEQ) {
5722       SDValue AndOp;
5723       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5724         AndOp = Op0;
5725       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
5726         AndOp = Op1;
5727 
5728       // Ignore bitconvert.
5729       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
5730         AndOp = AndOp.getOperand(0);
5731 
5732       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
5733         Opc = ARMISD::VTST;
5734         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
5735         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
5736         Invert = !Invert;
5737       }
5738     }
5739   }
5740 
5741   if (Swap)
5742     std::swap(Op0, Op1);
5743 
5744   // If one of the operands is a constant vector zero, attempt to fold the
5745   // comparison to a specialized compare-against-zero form.
5746   SDValue SingleOp;
5747   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5748     SingleOp = Op0;
5749   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5750     if (Opc == ARMISD::VCGE)
5751       Opc = ARMISD::VCLEZ;
5752     else if (Opc == ARMISD::VCGT)
5753       Opc = ARMISD::VCLTZ;
5754     SingleOp = Op1;
5755   }
5756 
5757   SDValue Result;
5758   if (SingleOp.getNode()) {
5759     switch (Opc) {
5760     case ARMISD::VCEQ:
5761       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
5762     case ARMISD::VCGE:
5763       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
5764     case ARMISD::VCLEZ:
5765       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
5766     case ARMISD::VCGT:
5767       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
5768     case ARMISD::VCLTZ:
5769       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
5770     default:
5771       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5772     }
5773   } else {
5774      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5775   }
5776 
5777   Result = DAG.getSExtOrTrunc(Result, dl, VT);
5778 
5779   if (Invert)
5780     Result = DAG.getNOT(dl, Result, VT);
5781 
5782   return Result;
5783 }
5784 
LowerSETCCCARRY(SDValue Op,SelectionDAG & DAG)5785 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
5786   SDValue LHS = Op.getOperand(0);
5787   SDValue RHS = Op.getOperand(1);
5788   SDValue Carry = Op.getOperand(2);
5789   SDValue Cond = Op.getOperand(3);
5790   SDLoc DL(Op);
5791 
5792   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
5793 
5794   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
5795   // have to invert the carry first.
5796   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
5797                       DAG.getConstant(1, DL, MVT::i32), Carry);
5798   // This converts the boolean value carry into the carry flag.
5799   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
5800 
5801   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
5802   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
5803 
5804   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
5805   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
5806   SDValue ARMcc = DAG.getConstant(
5807       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
5808   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5809   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
5810                                    Cmp.getValue(1), SDValue());
5811   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
5812                      CCR, Chain.getValue(1));
5813 }
5814 
5815 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
5816 /// valid vector constant for a NEON instruction with a "modified immediate"
5817 /// operand (e.g., VMOV).  If so, return the encoded value.
isNEONModifiedImm(uint64_t SplatBits,uint64_t SplatUndef,unsigned SplatBitSize,SelectionDAG & DAG,const SDLoc & dl,EVT & VT,bool is128Bits,NEONModImmType type)5818 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
5819                                  unsigned SplatBitSize, SelectionDAG &DAG,
5820                                  const SDLoc &dl, EVT &VT, bool is128Bits,
5821                                  NEONModImmType type) {
5822   unsigned OpCmode, Imm;
5823 
5824   // SplatBitSize is set to the smallest size that splats the vector, so a
5825   // zero vector will always have SplatBitSize == 8.  However, NEON modified
5826   // immediate instructions others than VMOV do not support the 8-bit encoding
5827   // of a zero vector, and the default encoding of zero is supposed to be the
5828   // 32-bit version.
5829   if (SplatBits == 0)
5830     SplatBitSize = 32;
5831 
5832   switch (SplatBitSize) {
5833   case 8:
5834     if (type != VMOVModImm)
5835       return SDValue();
5836     // Any 1-byte value is OK.  Op=0, Cmode=1110.
5837     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
5838     OpCmode = 0xe;
5839     Imm = SplatBits;
5840     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
5841     break;
5842 
5843   case 16:
5844     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
5845     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
5846     if ((SplatBits & ~0xff) == 0) {
5847       // Value = 0x00nn: Op=x, Cmode=100x.
5848       OpCmode = 0x8;
5849       Imm = SplatBits;
5850       break;
5851     }
5852     if ((SplatBits & ~0xff00) == 0) {
5853       // Value = 0xnn00: Op=x, Cmode=101x.
5854       OpCmode = 0xa;
5855       Imm = SplatBits >> 8;
5856       break;
5857     }
5858     return SDValue();
5859 
5860   case 32:
5861     // NEON's 32-bit VMOV supports splat values where:
5862     // * only one byte is nonzero, or
5863     // * the least significant byte is 0xff and the second byte is nonzero, or
5864     // * the least significant 2 bytes are 0xff and the third is nonzero.
5865     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
5866     if ((SplatBits & ~0xff) == 0) {
5867       // Value = 0x000000nn: Op=x, Cmode=000x.
5868       OpCmode = 0;
5869       Imm = SplatBits;
5870       break;
5871     }
5872     if ((SplatBits & ~0xff00) == 0) {
5873       // Value = 0x0000nn00: Op=x, Cmode=001x.
5874       OpCmode = 0x2;
5875       Imm = SplatBits >> 8;
5876       break;
5877     }
5878     if ((SplatBits & ~0xff0000) == 0) {
5879       // Value = 0x00nn0000: Op=x, Cmode=010x.
5880       OpCmode = 0x4;
5881       Imm = SplatBits >> 16;
5882       break;
5883     }
5884     if ((SplatBits & ~0xff000000) == 0) {
5885       // Value = 0xnn000000: Op=x, Cmode=011x.
5886       OpCmode = 0x6;
5887       Imm = SplatBits >> 24;
5888       break;
5889     }
5890 
5891     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
5892     if (type == OtherModImm) return SDValue();
5893 
5894     if ((SplatBits & ~0xffff) == 0 &&
5895         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
5896       // Value = 0x0000nnff: Op=x, Cmode=1100.
5897       OpCmode = 0xc;
5898       Imm = SplatBits >> 8;
5899       break;
5900     }
5901 
5902     if ((SplatBits & ~0xffffff) == 0 &&
5903         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
5904       // Value = 0x00nnffff: Op=x, Cmode=1101.
5905       OpCmode = 0xd;
5906       Imm = SplatBits >> 16;
5907       break;
5908     }
5909 
5910     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
5911     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
5912     // VMOV.I32.  A (very) minor optimization would be to replicate the value
5913     // and fall through here to test for a valid 64-bit splat.  But, then the
5914     // caller would also need to check and handle the change in size.
5915     return SDValue();
5916 
5917   case 64: {
5918     if (type != VMOVModImm)
5919       return SDValue();
5920     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
5921     uint64_t BitMask = 0xff;
5922     uint64_t Val = 0;
5923     unsigned ImmMask = 1;
5924     Imm = 0;
5925     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
5926       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
5927         Val |= BitMask;
5928         Imm |= ImmMask;
5929       } else if ((SplatBits & BitMask) != 0) {
5930         return SDValue();
5931       }
5932       BitMask <<= 8;
5933       ImmMask <<= 1;
5934     }
5935 
5936     if (DAG.getDataLayout().isBigEndian())
5937       // swap higher and lower 32 bit word
5938       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
5939 
5940     // Op=1, Cmode=1110.
5941     OpCmode = 0x1e;
5942     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
5943     break;
5944   }
5945 
5946   default:
5947     llvm_unreachable("unexpected size for isNEONModifiedImm");
5948   }
5949 
5950   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
5951   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
5952 }
5953 
LowerConstantFP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const5954 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
5955                                            const ARMSubtarget *ST) const {
5956   EVT VT = Op.getValueType();
5957   bool IsDouble = (VT == MVT::f64);
5958   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
5959   const APFloat &FPVal = CFP->getValueAPF();
5960 
5961   // Prevent floating-point constants from using literal loads
5962   // when execute-only is enabled.
5963   if (ST->genExecuteOnly()) {
5964     // If we can represent the constant as an immediate, don't lower it
5965     if (isFPImmLegal(FPVal, VT))
5966       return Op;
5967     // Otherwise, construct as integer, and move to float register
5968     APInt INTVal = FPVal.bitcastToAPInt();
5969     SDLoc DL(CFP);
5970     switch (VT.getSimpleVT().SimpleTy) {
5971       default:
5972         llvm_unreachable("Unknown floating point type!");
5973         break;
5974       case MVT::f64: {
5975         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
5976         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
5977         if (!ST->isLittle())
5978           std::swap(Lo, Hi);
5979         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
5980       }
5981       case MVT::f32:
5982           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
5983               DAG.getConstant(INTVal, DL, MVT::i32));
5984     }
5985   }
5986 
5987   if (!ST->hasVFP3())
5988     return SDValue();
5989 
5990   // Use the default (constant pool) lowering for double constants when we have
5991   // an SP-only FPU
5992   if (IsDouble && Subtarget->isFPOnlySP())
5993     return SDValue();
5994 
5995   // Try splatting with a VMOV.f32...
5996   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
5997 
5998   if (ImmVal != -1) {
5999     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
6000       // We have code in place to select a valid ConstantFP already, no need to
6001       // do any mangling.
6002       return Op;
6003     }
6004 
6005     // It's a float and we are trying to use NEON operations where
6006     // possible. Lower it to a splat followed by an extract.
6007     SDLoc DL(Op);
6008     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6009     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6010                                       NewVal);
6011     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6012                        DAG.getConstant(0, DL, MVT::i32));
6013   }
6014 
6015   // The rest of our options are NEON only, make sure that's allowed before
6016   // proceeding..
6017   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6018     return SDValue();
6019 
6020   EVT VMovVT;
6021   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6022 
6023   // It wouldn't really be worth bothering for doubles except for one very
6024   // important value, which does happen to match: 0.0. So make sure we don't do
6025   // anything stupid.
6026   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6027     return SDValue();
6028 
6029   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6030   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6031                                      VMovVT, false, VMOVModImm);
6032   if (NewVal != SDValue()) {
6033     SDLoc DL(Op);
6034     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6035                                       NewVal);
6036     if (IsDouble)
6037       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6038 
6039     // It's a float: cast and extract a vector element.
6040     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6041                                        VecConstant);
6042     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6043                        DAG.getConstant(0, DL, MVT::i32));
6044   }
6045 
6046   // Finally, try a VMVN.i32
6047   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6048                              false, VMVNModImm);
6049   if (NewVal != SDValue()) {
6050     SDLoc DL(Op);
6051     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6052 
6053     if (IsDouble)
6054       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6055 
6056     // It's a float: cast and extract a vector element.
6057     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6058                                        VecConstant);
6059     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6060                        DAG.getConstant(0, DL, MVT::i32));
6061   }
6062 
6063   return SDValue();
6064 }
6065 
6066 // check if an VEXT instruction can handle the shuffle mask when the
6067 // vector sources of the shuffle are the same.
isSingletonVEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)6068 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6069   unsigned NumElts = VT.getVectorNumElements();
6070 
6071   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6072   if (M[0] < 0)
6073     return false;
6074 
6075   Imm = M[0];
6076 
6077   // If this is a VEXT shuffle, the immediate value is the index of the first
6078   // element.  The other shuffle indices must be the successive elements after
6079   // the first one.
6080   unsigned ExpectedElt = Imm;
6081   for (unsigned i = 1; i < NumElts; ++i) {
6082     // Increment the expected index.  If it wraps around, just follow it
6083     // back to index zero and keep going.
6084     ++ExpectedElt;
6085     if (ExpectedElt == NumElts)
6086       ExpectedElt = 0;
6087 
6088     if (M[i] < 0) continue; // ignore UNDEF indices
6089     if (ExpectedElt != static_cast<unsigned>(M[i]))
6090       return false;
6091   }
6092 
6093   return true;
6094 }
6095 
isVEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseVEXT,unsigned & Imm)6096 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6097                        bool &ReverseVEXT, unsigned &Imm) {
6098   unsigned NumElts = VT.getVectorNumElements();
6099   ReverseVEXT = false;
6100 
6101   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6102   if (M[0] < 0)
6103     return false;
6104 
6105   Imm = M[0];
6106 
6107   // If this is a VEXT shuffle, the immediate value is the index of the first
6108   // element.  The other shuffle indices must be the successive elements after
6109   // the first one.
6110   unsigned ExpectedElt = Imm;
6111   for (unsigned i = 1; i < NumElts; ++i) {
6112     // Increment the expected index.  If it wraps around, it may still be
6113     // a VEXT but the source vectors must be swapped.
6114     ExpectedElt += 1;
6115     if (ExpectedElt == NumElts * 2) {
6116       ExpectedElt = 0;
6117       ReverseVEXT = true;
6118     }
6119 
6120     if (M[i] < 0) continue; // ignore UNDEF indices
6121     if (ExpectedElt != static_cast<unsigned>(M[i]))
6122       return false;
6123   }
6124 
6125   // Adjust the index value if the source operands will be swapped.
6126   if (ReverseVEXT)
6127     Imm -= NumElts;
6128 
6129   return true;
6130 }
6131 
6132 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6133 /// instruction with the specified blocksize.  (The order of the elements
6134 /// within each block of the vector is reversed.)
isVREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)6135 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6136   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6137          "Only possible block sizes for VREV are: 16, 32, 64");
6138 
6139   unsigned EltSz = VT.getScalarSizeInBits();
6140   if (EltSz == 64)
6141     return false;
6142 
6143   unsigned NumElts = VT.getVectorNumElements();
6144   unsigned BlockElts = M[0] + 1;
6145   // If the first shuffle index is UNDEF, be optimistic.
6146   if (M[0] < 0)
6147     BlockElts = BlockSize / EltSz;
6148 
6149   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6150     return false;
6151 
6152   for (unsigned i = 0; i < NumElts; ++i) {
6153     if (M[i] < 0) continue; // ignore UNDEF indices
6154     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6155       return false;
6156   }
6157 
6158   return true;
6159 }
6160 
isVTBLMask(ArrayRef<int> M,EVT VT)6161 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6162   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6163   // range, then 0 is placed into the resulting vector. So pretty much any mask
6164   // of 8 elements can work here.
6165   return VT == MVT::v8i8 && M.size() == 8;
6166 }
6167 
SelectPairHalf(unsigned Elements,ArrayRef<int> Mask,unsigned Index)6168 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6169                                unsigned Index) {
6170   if (Mask.size() == Elements * 2)
6171     return Index / Elements;
6172   return Mask[Index] == 0 ? 0 : 1;
6173 }
6174 
6175 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6176 // checking that pairs of elements in the shuffle mask represent the same index
6177 // in each vector, incrementing the expected index by 2 at each step.
6178 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6179 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6180 //  v2={e,f,g,h}
6181 // WhichResult gives the offset for each element in the mask based on which
6182 // of the two results it belongs to.
6183 //
6184 // The transpose can be represented either as:
6185 // result1 = shufflevector v1, v2, result1_shuffle_mask
6186 // result2 = shufflevector v1, v2, result2_shuffle_mask
6187 // where v1/v2 and the shuffle masks have the same number of elements
6188 // (here WhichResult (see below) indicates which result is being checked)
6189 //
6190 // or as:
6191 // results = shufflevector v1, v2, shuffle_mask
6192 // where both results are returned in one vector and the shuffle mask has twice
6193 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6194 // want to check the low half and high half of the shuffle mask as if it were
6195 // the other case
isVTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6196 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6197   unsigned EltSz = VT.getScalarSizeInBits();
6198   if (EltSz == 64)
6199     return false;
6200 
6201   unsigned NumElts = VT.getVectorNumElements();
6202   if (M.size() != NumElts && M.size() != NumElts*2)
6203     return false;
6204 
6205   // If the mask is twice as long as the input vector then we need to check the
6206   // upper and lower parts of the mask with a matching value for WhichResult
6207   // FIXME: A mask with only even values will be rejected in case the first
6208   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6209   // M[0] is used to determine WhichResult
6210   for (unsigned i = 0; i < M.size(); i += NumElts) {
6211     WhichResult = SelectPairHalf(NumElts, M, i);
6212     for (unsigned j = 0; j < NumElts; j += 2) {
6213       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6214           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
6215         return false;
6216     }
6217   }
6218 
6219   if (M.size() == NumElts*2)
6220     WhichResult = 0;
6221 
6222   return true;
6223 }
6224 
6225 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6226 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6227 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isVTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6228 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6229   unsigned EltSz = VT.getScalarSizeInBits();
6230   if (EltSz == 64)
6231     return false;
6232 
6233   unsigned NumElts = VT.getVectorNumElements();
6234   if (M.size() != NumElts && M.size() != NumElts*2)
6235     return false;
6236 
6237   for (unsigned i = 0; i < M.size(); i += NumElts) {
6238     WhichResult = SelectPairHalf(NumElts, M, i);
6239     for (unsigned j = 0; j < NumElts; j += 2) {
6240       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6241           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
6242         return false;
6243     }
6244   }
6245 
6246   if (M.size() == NumElts*2)
6247     WhichResult = 0;
6248 
6249   return true;
6250 }
6251 
6252 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6253 // that the mask elements are either all even and in steps of size 2 or all odd
6254 // and in steps of size 2.
6255 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6256 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6257 //  v2={e,f,g,h}
6258 // Requires similar checks to that of isVTRNMask with
6259 // respect the how results are returned.
isVUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6260 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6261   unsigned EltSz = VT.getScalarSizeInBits();
6262   if (EltSz == 64)
6263     return false;
6264 
6265   unsigned NumElts = VT.getVectorNumElements();
6266   if (M.size() != NumElts && M.size() != NumElts*2)
6267     return false;
6268 
6269   for (unsigned i = 0; i < M.size(); i += NumElts) {
6270     WhichResult = SelectPairHalf(NumElts, M, i);
6271     for (unsigned j = 0; j < NumElts; ++j) {
6272       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
6273         return false;
6274     }
6275   }
6276 
6277   if (M.size() == NumElts*2)
6278     WhichResult = 0;
6279 
6280   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6281   if (VT.is64BitVector() && EltSz == 32)
6282     return false;
6283 
6284   return true;
6285 }
6286 
6287 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6288 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6289 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isVUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6290 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6291   unsigned EltSz = VT.getScalarSizeInBits();
6292   if (EltSz == 64)
6293     return false;
6294 
6295   unsigned NumElts = VT.getVectorNumElements();
6296   if (M.size() != NumElts && M.size() != NumElts*2)
6297     return false;
6298 
6299   unsigned Half = NumElts / 2;
6300   for (unsigned i = 0; i < M.size(); i += NumElts) {
6301     WhichResult = SelectPairHalf(NumElts, M, i);
6302     for (unsigned j = 0; j < NumElts; j += Half) {
6303       unsigned Idx = WhichResult;
6304       for (unsigned k = 0; k < Half; ++k) {
6305         int MIdx = M[i + j + k];
6306         if (MIdx >= 0 && (unsigned) MIdx != Idx)
6307           return false;
6308         Idx += 2;
6309       }
6310     }
6311   }
6312 
6313   if (M.size() == NumElts*2)
6314     WhichResult = 0;
6315 
6316   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6317   if (VT.is64BitVector() && EltSz == 32)
6318     return false;
6319 
6320   return true;
6321 }
6322 
6323 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6324 // that pairs of elements of the shufflemask represent the same index in each
6325 // vector incrementing sequentially through the vectors.
6326 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6327 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6328 //  v2={e,f,g,h}
6329 // Requires similar checks to that of isVTRNMask with respect the how results
6330 // are returned.
isVZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6331 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6332   unsigned EltSz = VT.getScalarSizeInBits();
6333   if (EltSz == 64)
6334     return false;
6335 
6336   unsigned NumElts = VT.getVectorNumElements();
6337   if (M.size() != NumElts && M.size() != NumElts*2)
6338     return false;
6339 
6340   for (unsigned i = 0; i < M.size(); i += NumElts) {
6341     WhichResult = SelectPairHalf(NumElts, M, i);
6342     unsigned Idx = WhichResult * NumElts / 2;
6343     for (unsigned j = 0; j < NumElts; j += 2) {
6344       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6345           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
6346         return false;
6347       Idx += 1;
6348     }
6349   }
6350 
6351   if (M.size() == NumElts*2)
6352     WhichResult = 0;
6353 
6354   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6355   if (VT.is64BitVector() && EltSz == 32)
6356     return false;
6357 
6358   return true;
6359 }
6360 
6361 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6362 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6363 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isVZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6364 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6365   unsigned EltSz = VT.getScalarSizeInBits();
6366   if (EltSz == 64)
6367     return false;
6368 
6369   unsigned NumElts = VT.getVectorNumElements();
6370   if (M.size() != NumElts && M.size() != NumElts*2)
6371     return false;
6372 
6373   for (unsigned i = 0; i < M.size(); i += NumElts) {
6374     WhichResult = SelectPairHalf(NumElts, M, i);
6375     unsigned Idx = WhichResult * NumElts / 2;
6376     for (unsigned j = 0; j < NumElts; j += 2) {
6377       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6378           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
6379         return false;
6380       Idx += 1;
6381     }
6382   }
6383 
6384   if (M.size() == NumElts*2)
6385     WhichResult = 0;
6386 
6387   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6388   if (VT.is64BitVector() && EltSz == 32)
6389     return false;
6390 
6391   return true;
6392 }
6393 
6394 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6395 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask,EVT VT,unsigned & WhichResult,bool & isV_UNDEF)6396 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
6397                                            unsigned &WhichResult,
6398                                            bool &isV_UNDEF) {
6399   isV_UNDEF = false;
6400   if (isVTRNMask(ShuffleMask, VT, WhichResult))
6401     return ARMISD::VTRN;
6402   if (isVUZPMask(ShuffleMask, VT, WhichResult))
6403     return ARMISD::VUZP;
6404   if (isVZIPMask(ShuffleMask, VT, WhichResult))
6405     return ARMISD::VZIP;
6406 
6407   isV_UNDEF = true;
6408   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
6409     return ARMISD::VTRN;
6410   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6411     return ARMISD::VUZP;
6412   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6413     return ARMISD::VZIP;
6414 
6415   return 0;
6416 }
6417 
6418 /// \return true if this is a reverse operation on an vector.
isReverseMask(ArrayRef<int> M,EVT VT)6419 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
6420   unsigned NumElts = VT.getVectorNumElements();
6421   // Make sure the mask has the right size.
6422   if (NumElts != M.size())
6423       return false;
6424 
6425   // Look for <15, ..., 3, -1, 1, 0>.
6426   for (unsigned i = 0; i != NumElts; ++i)
6427     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
6428       return false;
6429 
6430   return true;
6431 }
6432 
6433 // If N is an integer constant that can be moved into a register in one
6434 // instruction, return an SDValue of such a constant (will become a MOV
6435 // instruction).  Otherwise return null.
IsSingleInstrConstant(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST,const SDLoc & dl)6436 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
6437                                      const ARMSubtarget *ST, const SDLoc &dl) {
6438   uint64_t Val;
6439   if (!isa<ConstantSDNode>(N))
6440     return SDValue();
6441   Val = cast<ConstantSDNode>(N)->getZExtValue();
6442 
6443   if (ST->isThumb1Only()) {
6444     if (Val <= 255 || ~Val <= 255)
6445       return DAG.getConstant(Val, dl, MVT::i32);
6446   } else {
6447     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
6448       return DAG.getConstant(Val, dl, MVT::i32);
6449   }
6450   return SDValue();
6451 }
6452 
6453 // If this is a case we can't handle, return null and let the default
6454 // expansion code take care of it.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const6455 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
6456                                              const ARMSubtarget *ST) const {
6457   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6458   SDLoc dl(Op);
6459   EVT VT = Op.getValueType();
6460 
6461   APInt SplatBits, SplatUndef;
6462   unsigned SplatBitSize;
6463   bool HasAnyUndefs;
6464   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6465     if (SplatUndef.isAllOnesValue())
6466       return DAG.getUNDEF(VT);
6467 
6468     if (SplatBitSize <= 64) {
6469       // Check if an immediate VMOV works.
6470       EVT VmovVT;
6471       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6472                                       SplatUndef.getZExtValue(), SplatBitSize,
6473                                       DAG, dl, VmovVT, VT.is128BitVector(),
6474                                       VMOVModImm);
6475       if (Val.getNode()) {
6476         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
6477         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6478       }
6479 
6480       // Try an immediate VMVN.
6481       uint64_t NegatedImm = (~SplatBits).getZExtValue();
6482       Val = isNEONModifiedImm(NegatedImm,
6483                                       SplatUndef.getZExtValue(), SplatBitSize,
6484                                       DAG, dl, VmovVT, VT.is128BitVector(),
6485                                       VMVNModImm);
6486       if (Val.getNode()) {
6487         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
6488         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6489       }
6490 
6491       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6492       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
6493         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
6494         if (ImmVal != -1) {
6495           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
6496           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
6497         }
6498       }
6499     }
6500   }
6501 
6502   // Scan through the operands to see if only one value is used.
6503   //
6504   // As an optimisation, even if more than one value is used it may be more
6505   // profitable to splat with one value then change some lanes.
6506   //
6507   // Heuristically we decide to do this if the vector has a "dominant" value,
6508   // defined as splatted to more than half of the lanes.
6509   unsigned NumElts = VT.getVectorNumElements();
6510   bool isOnlyLowElement = true;
6511   bool usesOnlyOneValue = true;
6512   bool hasDominantValue = false;
6513   bool isConstant = true;
6514 
6515   // Map of the number of times a particular SDValue appears in the
6516   // element list.
6517   DenseMap<SDValue, unsigned> ValueCounts;
6518   SDValue Value;
6519   for (unsigned i = 0; i < NumElts; ++i) {
6520     SDValue V = Op.getOperand(i);
6521     if (V.isUndef())
6522       continue;
6523     if (i > 0)
6524       isOnlyLowElement = false;
6525     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6526       isConstant = false;
6527 
6528     ValueCounts.insert(std::make_pair(V, 0));
6529     unsigned &Count = ValueCounts[V];
6530 
6531     // Is this value dominant? (takes up more than half of the lanes)
6532     if (++Count > (NumElts / 2)) {
6533       hasDominantValue = true;
6534       Value = V;
6535     }
6536   }
6537   if (ValueCounts.size() != 1)
6538     usesOnlyOneValue = false;
6539   if (!Value.getNode() && !ValueCounts.empty())
6540     Value = ValueCounts.begin()->first;
6541 
6542   if (ValueCounts.empty())
6543     return DAG.getUNDEF(VT);
6544 
6545   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6546   // Keep going if we are hitting this case.
6547   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
6548     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6549 
6550   unsigned EltSize = VT.getScalarSizeInBits();
6551 
6552   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
6553   // i32 and try again.
6554   if (hasDominantValue && EltSize <= 32) {
6555     if (!isConstant) {
6556       SDValue N;
6557 
6558       // If we are VDUPing a value that comes directly from a vector, that will
6559       // cause an unnecessary move to and from a GPR, where instead we could
6560       // just use VDUPLANE. We can only do this if the lane being extracted
6561       // is at a constant index, as the VDUP from lane instructions only have
6562       // constant-index forms.
6563       ConstantSDNode *constIndex;
6564       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6565           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
6566         // We need to create a new undef vector to use for the VDUPLANE if the
6567         // size of the vector from which we get the value is different than the
6568         // size of the vector that we need to create. We will insert the element
6569         // such that the register coalescer will remove unnecessary copies.
6570         if (VT != Value->getOperand(0).getValueType()) {
6571           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
6572                              VT.getVectorNumElements();
6573           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6574                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
6575                         Value, DAG.getConstant(index, dl, MVT::i32)),
6576                            DAG.getConstant(index, dl, MVT::i32));
6577         } else
6578           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6579                         Value->getOperand(0), Value->getOperand(1));
6580       } else
6581         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
6582 
6583       if (!usesOnlyOneValue) {
6584         // The dominant value was splatted as 'N', but we now have to insert
6585         // all differing elements.
6586         for (unsigned I = 0; I < NumElts; ++I) {
6587           if (Op.getOperand(I) == Value)
6588             continue;
6589           SmallVector<SDValue, 3> Ops;
6590           Ops.push_back(N);
6591           Ops.push_back(Op.getOperand(I));
6592           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
6593           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
6594         }
6595       }
6596       return N;
6597     }
6598     if (VT.getVectorElementType().isFloatingPoint()) {
6599       SmallVector<SDValue, 8> Ops;
6600       for (unsigned i = 0; i < NumElts; ++i)
6601         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
6602                                   Op.getOperand(i)));
6603       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
6604       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6605       Val = LowerBUILD_VECTOR(Val, DAG, ST);
6606       if (Val.getNode())
6607         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6608     }
6609     if (usesOnlyOneValue) {
6610       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
6611       if (isConstant && Val.getNode())
6612         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
6613     }
6614   }
6615 
6616   // If all elements are constants and the case above didn't get hit, fall back
6617   // to the default expansion, which will generate a load from the constant
6618   // pool.
6619   if (isConstant)
6620     return SDValue();
6621 
6622   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6623   if (NumElts >= 4) {
6624     SDValue shuffle = ReconstructShuffle(Op, DAG);
6625     if (shuffle != SDValue())
6626       return shuffle;
6627   }
6628 
6629   if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
6630     // If we haven't found an efficient lowering, try splitting a 128-bit vector
6631     // into two 64-bit vectors; we might discover a better way to lower it.
6632     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
6633     EVT ExtVT = VT.getVectorElementType();
6634     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
6635     SDValue Lower =
6636         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
6637     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
6638       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
6639     SDValue Upper = DAG.getBuildVector(
6640         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
6641     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
6642       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
6643     if (Lower && Upper)
6644       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
6645   }
6646 
6647   // Vectors with 32- or 64-bit elements can be built by directly assigning
6648   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
6649   // will be legalized.
6650   if (EltSize >= 32) {
6651     // Do the expansion with floating-point types, since that is what the VFP
6652     // registers are defined to use, and since i64 is not legal.
6653     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6654     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6655     SmallVector<SDValue, 8> Ops;
6656     for (unsigned i = 0; i < NumElts; ++i)
6657       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
6658     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6659     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6660   }
6661 
6662   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6663   // know the default expansion would otherwise fall back on something even
6664   // worse. For a vector with one or two non-undef values, that's
6665   // scalar_to_vector for the elements followed by a shuffle (provided the
6666   // shuffle is valid for the target) and materialization element by element
6667   // on the stack followed by a load for everything else.
6668   if (!isConstant && !usesOnlyOneValue) {
6669     SDValue Vec = DAG.getUNDEF(VT);
6670     for (unsigned i = 0 ; i < NumElts; ++i) {
6671       SDValue V = Op.getOperand(i);
6672       if (V.isUndef())
6673         continue;
6674       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
6675       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6676     }
6677     return Vec;
6678   }
6679 
6680   return SDValue();
6681 }
6682 
6683 // Gather data to see if the operation can be modelled as a
6684 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const6685 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
6686                                               SelectionDAG &DAG) const {
6687   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6688   SDLoc dl(Op);
6689   EVT VT = Op.getValueType();
6690   unsigned NumElts = VT.getVectorNumElements();
6691 
6692   struct ShuffleSourceInfo {
6693     SDValue Vec;
6694     unsigned MinElt = std::numeric_limits<unsigned>::max();
6695     unsigned MaxElt = 0;
6696 
6697     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6698     // be compatible with the shuffle we intend to construct. As a result
6699     // ShuffleVec will be some sliding window into the original Vec.
6700     SDValue ShuffleVec;
6701 
6702     // Code should guarantee that element i in Vec starts at element "WindowBase
6703     // + i * WindowScale in ShuffleVec".
6704     int WindowBase = 0;
6705     int WindowScale = 1;
6706 
6707     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
6708 
6709     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6710   };
6711 
6712   // First gather all vectors used as an immediate source for this BUILD_VECTOR
6713   // node.
6714   SmallVector<ShuffleSourceInfo, 2> Sources;
6715   for (unsigned i = 0; i < NumElts; ++i) {
6716     SDValue V = Op.getOperand(i);
6717     if (V.isUndef())
6718       continue;
6719     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
6720       // A shuffle can only come from building a vector from various
6721       // elements of other vectors.
6722       return SDValue();
6723     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
6724       // Furthermore, shuffles require a constant mask, whereas extractelts
6725       // accept variable indices.
6726       return SDValue();
6727     }
6728 
6729     // Add this element source to the list if it's not already there.
6730     SDValue SourceVec = V.getOperand(0);
6731     auto Source = llvm::find(Sources, SourceVec);
6732     if (Source == Sources.end())
6733       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6734 
6735     // Update the minimum and maximum lane number seen.
6736     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6737     Source->MinElt = std::min(Source->MinElt, EltNo);
6738     Source->MaxElt = std::max(Source->MaxElt, EltNo);
6739   }
6740 
6741   // Currently only do something sane when at most two source vectors
6742   // are involved.
6743   if (Sources.size() > 2)
6744     return SDValue();
6745 
6746   // Find out the smallest element size among result and two sources, and use
6747   // it as element size to build the shuffle_vector.
6748   EVT SmallestEltTy = VT.getVectorElementType();
6749   for (auto &Source : Sources) {
6750     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6751     if (SrcEltTy.bitsLT(SmallestEltTy))
6752       SmallestEltTy = SrcEltTy;
6753   }
6754   unsigned ResMultiplier =
6755       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6756   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6757   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6758 
6759   // If the source vector is too wide or too narrow, we may nevertheless be able
6760   // to construct a compatible shuffle either by concatenating it with UNDEF or
6761   // extracting a suitable range of elements.
6762   for (auto &Src : Sources) {
6763     EVT SrcVT = Src.ShuffleVec.getValueType();
6764 
6765     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6766       continue;
6767 
6768     // This stage of the search produces a source with the same element type as
6769     // the original, but with a total width matching the BUILD_VECTOR output.
6770     EVT EltVT = SrcVT.getVectorElementType();
6771     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6772     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6773 
6774     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6775       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
6776         return SDValue();
6777       // We can pad out the smaller vector for free, so if it's part of a
6778       // shuffle...
6779       Src.ShuffleVec =
6780           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6781                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6782       continue;
6783     }
6784 
6785     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
6786       return SDValue();
6787 
6788     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6789       // Span too large for a VEXT to cope
6790       return SDValue();
6791     }
6792 
6793     if (Src.MinElt >= NumSrcElts) {
6794       // The extraction can just take the second half
6795       Src.ShuffleVec =
6796           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6797                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6798       Src.WindowBase = -NumSrcElts;
6799     } else if (Src.MaxElt < NumSrcElts) {
6800       // The extraction can just take the first half
6801       Src.ShuffleVec =
6802           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6803                       DAG.getConstant(0, dl, MVT::i32));
6804     } else {
6805       // An actual VEXT is needed
6806       SDValue VEXTSrc1 =
6807           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6808                       DAG.getConstant(0, dl, MVT::i32));
6809       SDValue VEXTSrc2 =
6810           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6811                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6812 
6813       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
6814                                    VEXTSrc2,
6815                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
6816       Src.WindowBase = -Src.MinElt;
6817     }
6818   }
6819 
6820   // Another possible incompatibility occurs from the vector element types. We
6821   // can fix this by bitcasting the source vectors to the same type we intend
6822   // for the shuffle.
6823   for (auto &Src : Sources) {
6824     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6825     if (SrcEltTy == SmallestEltTy)
6826       continue;
6827     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6828     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6829     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6830     Src.WindowBase *= Src.WindowScale;
6831   }
6832 
6833   // Final sanity check before we try to actually produce a shuffle.
6834   LLVM_DEBUG(for (auto Src
6835                   : Sources)
6836                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
6837 
6838   // The stars all align, our next step is to produce the mask for the shuffle.
6839   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6840   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6841   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6842     SDValue Entry = Op.getOperand(i);
6843     if (Entry.isUndef())
6844       continue;
6845 
6846     auto Src = llvm::find(Sources, Entry.getOperand(0));
6847     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6848 
6849     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6850     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6851     // segment.
6852     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6853     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
6854                                VT.getScalarSizeInBits());
6855     int LanesDefined = BitsDefined / BitsPerShuffleLane;
6856 
6857     // This source is expected to fill ResMultiplier lanes of the final shuffle,
6858     // starting at the appropriate offset.
6859     int *LaneMask = &Mask[i * ResMultiplier];
6860 
6861     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6862     ExtractBase += NumElts * (Src - Sources.begin());
6863     for (int j = 0; j < LanesDefined; ++j)
6864       LaneMask[j] = ExtractBase + j;
6865   }
6866 
6867   // Final check before we try to produce nonsense...
6868   if (!isShuffleMaskLegal(Mask, ShuffleVT))
6869     return SDValue();
6870 
6871   // We can't handle more than two sources. This should have already
6872   // been checked before this point.
6873   assert(Sources.size() <= 2 && "Too many sources!");
6874 
6875   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6876   for (unsigned i = 0; i < Sources.size(); ++i)
6877     ShuffleOps[i] = Sources[i].ShuffleVec;
6878 
6879   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6880                                          ShuffleOps[1], Mask);
6881   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6882 }
6883 
6884 /// isShuffleMaskLegal - Targets can use this to indicate that they only
6885 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6886 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6887 /// are assumed to be legal.
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const6888 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
6889   if (VT.getVectorNumElements() == 4 &&
6890       (VT.is128BitVector() || VT.is64BitVector())) {
6891     unsigned PFIndexes[4];
6892     for (unsigned i = 0; i != 4; ++i) {
6893       if (M[i] < 0)
6894         PFIndexes[i] = 8;
6895       else
6896         PFIndexes[i] = M[i];
6897     }
6898 
6899     // Compute the index in the perfect shuffle table.
6900     unsigned PFTableIndex =
6901       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6902     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6903     unsigned Cost = (PFEntry >> 30);
6904 
6905     if (Cost <= 4)
6906       return true;
6907   }
6908 
6909   bool ReverseVEXT, isV_UNDEF;
6910   unsigned Imm, WhichResult;
6911 
6912   unsigned EltSize = VT.getScalarSizeInBits();
6913   return (EltSize >= 32 ||
6914           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6915           isVREVMask(M, VT, 64) ||
6916           isVREVMask(M, VT, 32) ||
6917           isVREVMask(M, VT, 16) ||
6918           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
6919           isVTBLMask(M, VT) ||
6920           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
6921           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
6922 }
6923 
6924 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6925 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)6926 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6927                                       SDValue RHS, SelectionDAG &DAG,
6928                                       const SDLoc &dl) {
6929   unsigned OpNum = (PFEntry >> 26) & 0x0F;
6930   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
6931   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
6932 
6933   enum {
6934     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6935     OP_VREV,
6936     OP_VDUP0,
6937     OP_VDUP1,
6938     OP_VDUP2,
6939     OP_VDUP3,
6940     OP_VEXT1,
6941     OP_VEXT2,
6942     OP_VEXT3,
6943     OP_VUZPL, // VUZP, left result
6944     OP_VUZPR, // VUZP, right result
6945     OP_VZIPL, // VZIP, left result
6946     OP_VZIPR, // VZIP, right result
6947     OP_VTRNL, // VTRN, left result
6948     OP_VTRNR  // VTRN, right result
6949   };
6950 
6951   if (OpNum == OP_COPY) {
6952     if (LHSID == (1*9+2)*9+3) return LHS;
6953     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6954     return RHS;
6955   }
6956 
6957   SDValue OpLHS, OpRHS;
6958   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6959   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6960   EVT VT = OpLHS.getValueType();
6961 
6962   switch (OpNum) {
6963   default: llvm_unreachable("Unknown shuffle opcode!");
6964   case OP_VREV:
6965     // VREV divides the vector in half and swaps within the half.
6966     if (VT.getVectorElementType() == MVT::i32 ||
6967         VT.getVectorElementType() == MVT::f32)
6968       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
6969     // vrev <4 x i16> -> VREV32
6970     if (VT.getVectorElementType() == MVT::i16)
6971       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
6972     // vrev <4 x i8> -> VREV16
6973     assert(VT.getVectorElementType() == MVT::i8);
6974     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
6975   case OP_VDUP0:
6976   case OP_VDUP1:
6977   case OP_VDUP2:
6978   case OP_VDUP3:
6979     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6980                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
6981   case OP_VEXT1:
6982   case OP_VEXT2:
6983   case OP_VEXT3:
6984     return DAG.getNode(ARMISD::VEXT, dl, VT,
6985                        OpLHS, OpRHS,
6986                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
6987   case OP_VUZPL:
6988   case OP_VUZPR:
6989     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
6990                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
6991   case OP_VZIPL:
6992   case OP_VZIPR:
6993     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
6994                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
6995   case OP_VTRNL:
6996   case OP_VTRNR:
6997     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
6998                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
6999   }
7000 }
7001 
LowerVECTOR_SHUFFLEv8i8(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)7002 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
7003                                        ArrayRef<int> ShuffleMask,
7004                                        SelectionDAG &DAG) {
7005   // Check to see if we can use the VTBL instruction.
7006   SDValue V1 = Op.getOperand(0);
7007   SDValue V2 = Op.getOperand(1);
7008   SDLoc DL(Op);
7009 
7010   SmallVector<SDValue, 8> VTBLMask;
7011   for (ArrayRef<int>::iterator
7012          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
7013     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
7014 
7015   if (V2.getNode()->isUndef())
7016     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
7017                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7018 
7019   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
7020                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7021 }
7022 
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,SelectionDAG & DAG)7023 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
7024                                                       SelectionDAG &DAG) {
7025   SDLoc DL(Op);
7026   SDValue OpLHS = Op.getOperand(0);
7027   EVT VT = OpLHS.getValueType();
7028 
7029   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
7030          "Expect an v8i16/v16i8 type");
7031   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
7032   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7033   // extract the first 8 bytes into the top double word and the last 8 bytes
7034   // into the bottom double word. The v8i16 case is similar.
7035   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
7036   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
7037                      DAG.getConstant(ExtractNum, DL, MVT::i32));
7038 }
7039 
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG)7040 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
7041   SDValue V1 = Op.getOperand(0);
7042   SDValue V2 = Op.getOperand(1);
7043   SDLoc dl(Op);
7044   EVT VT = Op.getValueType();
7045   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7046 
7047   // Convert shuffles that are directly supported on NEON to target-specific
7048   // DAG nodes, instead of keeping them as shuffles and matching them again
7049   // during code selection.  This is more efficient and avoids the possibility
7050   // of inconsistencies between legalization and selection.
7051   // FIXME: floating-point vectors should be canonicalized to integer vectors
7052   // of the same time so that they get CSEd properly.
7053   ArrayRef<int> ShuffleMask = SVN->getMask();
7054 
7055   unsigned EltSize = VT.getScalarSizeInBits();
7056   if (EltSize <= 32) {
7057     if (SVN->isSplat()) {
7058       int Lane = SVN->getSplatIndex();
7059       // If this is undef splat, generate it via "just" vdup, if possible.
7060       if (Lane == -1) Lane = 0;
7061 
7062       // Test if V1 is a SCALAR_TO_VECTOR.
7063       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
7064         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7065       }
7066       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7067       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7068       // reaches it).
7069       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
7070           !isa<ConstantSDNode>(V1.getOperand(0))) {
7071         bool IsScalarToVector = true;
7072         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
7073           if (!V1.getOperand(i).isUndef()) {
7074             IsScalarToVector = false;
7075             break;
7076           }
7077         if (IsScalarToVector)
7078           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7079       }
7080       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
7081                          DAG.getConstant(Lane, dl, MVT::i32));
7082     }
7083 
7084     bool ReverseVEXT;
7085     unsigned Imm;
7086     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
7087       if (ReverseVEXT)
7088         std::swap(V1, V2);
7089       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
7090                          DAG.getConstant(Imm, dl, MVT::i32));
7091     }
7092 
7093     if (isVREVMask(ShuffleMask, VT, 64))
7094       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
7095     if (isVREVMask(ShuffleMask, VT, 32))
7096       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
7097     if (isVREVMask(ShuffleMask, VT, 16))
7098       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
7099 
7100     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
7101       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
7102                          DAG.getConstant(Imm, dl, MVT::i32));
7103     }
7104 
7105     // Check for Neon shuffles that modify both input vectors in place.
7106     // If both results are used, i.e., if there are two shuffles with the same
7107     // source operands and with masks corresponding to both results of one of
7108     // these operations, DAG memoization will ensure that a single node is
7109     // used for both shuffles.
7110     unsigned WhichResult;
7111     bool isV_UNDEF;
7112     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7113             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
7114       if (isV_UNDEF)
7115         V2 = V1;
7116       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
7117           .getValue(WhichResult);
7118     }
7119 
7120     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7121     // shuffles that produce a result larger than their operands with:
7122     //   shuffle(concat(v1, undef), concat(v2, undef))
7123     // ->
7124     //   shuffle(concat(v1, v2), undef)
7125     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7126     //
7127     // This is useful in the general case, but there are special cases where
7128     // native shuffles produce larger results: the two-result ops.
7129     //
7130     // Look through the concat when lowering them:
7131     //   shuffle(concat(v1, v2), undef)
7132     // ->
7133     //   concat(VZIP(v1, v2):0, :1)
7134     //
7135     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
7136       SDValue SubV1 = V1->getOperand(0);
7137       SDValue SubV2 = V1->getOperand(1);
7138       EVT SubVT = SubV1.getValueType();
7139 
7140       // We expect these to have been canonicalized to -1.
7141       assert(llvm::all_of(ShuffleMask, [&](int i) {
7142         return i < (int)VT.getVectorNumElements();
7143       }) && "Unexpected shuffle index into UNDEF operand!");
7144 
7145       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7146               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
7147         if (isV_UNDEF)
7148           SubV2 = SubV1;
7149         assert((WhichResult == 0) &&
7150                "In-place shuffle of concat can only have one result!");
7151         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
7152                                   SubV1, SubV2);
7153         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
7154                            Res.getValue(1));
7155       }
7156     }
7157   }
7158 
7159   // If the shuffle is not directly supported and it has 4 elements, use
7160   // the PerfectShuffle-generated table to synthesize it from other shuffles.
7161   unsigned NumElts = VT.getVectorNumElements();
7162   if (NumElts == 4) {
7163     unsigned PFIndexes[4];
7164     for (unsigned i = 0; i != 4; ++i) {
7165       if (ShuffleMask[i] < 0)
7166         PFIndexes[i] = 8;
7167       else
7168         PFIndexes[i] = ShuffleMask[i];
7169     }
7170 
7171     // Compute the index in the perfect shuffle table.
7172     unsigned PFTableIndex =
7173       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7174     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7175     unsigned Cost = (PFEntry >> 30);
7176 
7177     if (Cost <= 4)
7178       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7179   }
7180 
7181   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7182   if (EltSize >= 32) {
7183     // Do the expansion with floating-point types, since that is what the VFP
7184     // registers are defined to use, and since i64 is not legal.
7185     EVT EltVT = EVT::getFloatingPointVT(EltSize);
7186     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7187     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
7188     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
7189     SmallVector<SDValue, 8> Ops;
7190     for (unsigned i = 0; i < NumElts; ++i) {
7191       if (ShuffleMask[i] < 0)
7192         Ops.push_back(DAG.getUNDEF(EltVT));
7193       else
7194         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
7195                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
7196                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
7197                                                   dl, MVT::i32)));
7198     }
7199     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7200     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7201   }
7202 
7203   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
7204     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
7205 
7206   if (VT == MVT::v8i8)
7207     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
7208       return NewOp;
7209 
7210   return SDValue();
7211 }
7212 
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)7213 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7214   // INSERT_VECTOR_ELT is legal only for immediate indexes.
7215   SDValue Lane = Op.getOperand(2);
7216   if (!isa<ConstantSDNode>(Lane))
7217     return SDValue();
7218 
7219   return Op;
7220 }
7221 
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)7222 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7223   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7224   SDValue Lane = Op.getOperand(1);
7225   if (!isa<ConstantSDNode>(Lane))
7226     return SDValue();
7227 
7228   SDValue Vec = Op.getOperand(0);
7229   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
7230     SDLoc dl(Op);
7231     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
7232   }
7233 
7234   return Op;
7235 }
7236 
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG)7237 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
7238   // The only time a CONCAT_VECTORS operation can have legal types is when
7239   // two 64-bit vectors are concatenated to a 128-bit vector.
7240   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
7241          "unexpected CONCAT_VECTORS");
7242   SDLoc dl(Op);
7243   SDValue Val = DAG.getUNDEF(MVT::v2f64);
7244   SDValue Op0 = Op.getOperand(0);
7245   SDValue Op1 = Op.getOperand(1);
7246   if (!Op0.isUndef())
7247     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7248                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
7249                       DAG.getIntPtrConstant(0, dl));
7250   if (!Op1.isUndef())
7251     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7252                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
7253                       DAG.getIntPtrConstant(1, dl));
7254   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
7255 }
7256 
7257 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7258 /// element has been zero/sign-extended, depending on the isSigned parameter,
7259 /// from an integer type half its size.
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)7260 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
7261                                    bool isSigned) {
7262   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7263   EVT VT = N->getValueType(0);
7264   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
7265     SDNode *BVN = N->getOperand(0).getNode();
7266     if (BVN->getValueType(0) != MVT::v4i32 ||
7267         BVN->getOpcode() != ISD::BUILD_VECTOR)
7268       return false;
7269     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7270     unsigned HiElt = 1 - LoElt;
7271     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
7272     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
7273     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
7274     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
7275     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
7276       return false;
7277     if (isSigned) {
7278       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
7279           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
7280         return true;
7281     } else {
7282       if (Hi0->isNullValue() && Hi1->isNullValue())
7283         return true;
7284     }
7285     return false;
7286   }
7287 
7288   if (N->getOpcode() != ISD::BUILD_VECTOR)
7289     return false;
7290 
7291   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
7292     SDNode *Elt = N->getOperand(i).getNode();
7293     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
7294       unsigned EltSize = VT.getScalarSizeInBits();
7295       unsigned HalfSize = EltSize / 2;
7296       if (isSigned) {
7297         if (!isIntN(HalfSize, C->getSExtValue()))
7298           return false;
7299       } else {
7300         if (!isUIntN(HalfSize, C->getZExtValue()))
7301           return false;
7302       }
7303       continue;
7304     }
7305     return false;
7306   }
7307 
7308   return true;
7309 }
7310 
7311 /// isSignExtended - Check if a node is a vector value that is sign-extended
7312 /// or a constant BUILD_VECTOR with sign-extended elements.
isSignExtended(SDNode * N,SelectionDAG & DAG)7313 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
7314   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
7315     return true;
7316   if (isExtendedBUILD_VECTOR(N, DAG, true))
7317     return true;
7318   return false;
7319 }
7320 
7321 /// isZeroExtended - Check if a node is a vector value that is zero-extended
7322 /// or a constant BUILD_VECTOR with zero-extended elements.
isZeroExtended(SDNode * N,SelectionDAG & DAG)7323 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
7324   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
7325     return true;
7326   if (isExtendedBUILD_VECTOR(N, DAG, false))
7327     return true;
7328   return false;
7329 }
7330 
getExtensionTo64Bits(const EVT & OrigVT)7331 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
7332   if (OrigVT.getSizeInBits() >= 64)
7333     return OrigVT;
7334 
7335   assert(OrigVT.isSimple() && "Expecting a simple value type");
7336 
7337   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
7338   switch (OrigSimpleTy) {
7339   default: llvm_unreachable("Unexpected Vector Type");
7340   case MVT::v2i8:
7341   case MVT::v2i16:
7342      return MVT::v2i32;
7343   case MVT::v4i8:
7344     return  MVT::v4i16;
7345   }
7346 }
7347 
7348 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
7349 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
7350 /// We insert the required extension here to get the vector to fill a D register.
AddRequiredExtensionForVMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)7351 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
7352                                             const EVT &OrigTy,
7353                                             const EVT &ExtTy,
7354                                             unsigned ExtOpcode) {
7355   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
7356   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
7357   // 64-bits we need to insert a new extension so that it will be 64-bits.
7358   assert(ExtTy.is128BitVector() && "Unexpected extension size");
7359   if (OrigTy.getSizeInBits() >= 64)
7360     return N;
7361 
7362   // Must extend size to at least 64 bits to be used as an operand for VMULL.
7363   EVT NewVT = getExtensionTo64Bits(OrigTy);
7364 
7365   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
7366 }
7367 
7368 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
7369 /// does not do any sign/zero extension. If the original vector is less
7370 /// than 64 bits, an appropriate extension will be added after the load to
7371 /// reach a total size of 64 bits. We have to add the extension separately
7372 /// because ARM does not have a sign/zero extending load for vectors.
SkipLoadExtensionForVMULL(LoadSDNode * LD,SelectionDAG & DAG)7373 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
7374   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
7375 
7376   // The load already has the right type.
7377   if (ExtendedTy == LD->getMemoryVT())
7378     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
7379                        LD->getBasePtr(), LD->getPointerInfo(),
7380                        LD->getAlignment(), LD->getMemOperand()->getFlags());
7381 
7382   // We need to create a zextload/sextload. We cannot just create a load
7383   // followed by a zext/zext node because LowerMUL is also run during normal
7384   // operation legalization where we can't create illegal types.
7385   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
7386                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
7387                         LD->getMemoryVT(), LD->getAlignment(),
7388                         LD->getMemOperand()->getFlags());
7389 }
7390 
7391 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
7392 /// extending load, or BUILD_VECTOR with extended elements, return the
7393 /// unextended value. The unextended vector should be 64 bits so that it can
7394 /// be used as an operand to a VMULL instruction. If the original vector size
7395 /// before extension is less than 64 bits we add a an extension to resize
7396 /// the vector to 64 bits.
SkipExtensionForVMULL(SDNode * N,SelectionDAG & DAG)7397 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
7398   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
7399     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
7400                                         N->getOperand(0)->getValueType(0),
7401                                         N->getValueType(0),
7402                                         N->getOpcode());
7403 
7404   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7405     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
7406            "Expected extending load");
7407 
7408     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
7409     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
7410     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
7411     SDValue extLoad =
7412         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
7413     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
7414 
7415     return newLoad;
7416   }
7417 
7418   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
7419   // have been legalized as a BITCAST from v4i32.
7420   if (N->getOpcode() == ISD::BITCAST) {
7421     SDNode *BVN = N->getOperand(0).getNode();
7422     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
7423            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
7424     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7425     return DAG.getBuildVector(
7426         MVT::v2i32, SDLoc(N),
7427         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
7428   }
7429   // Construct a new BUILD_VECTOR with elements truncated to half the size.
7430   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
7431   EVT VT = N->getValueType(0);
7432   unsigned EltSize = VT.getScalarSizeInBits() / 2;
7433   unsigned NumElts = VT.getVectorNumElements();
7434   MVT TruncVT = MVT::getIntegerVT(EltSize);
7435   SmallVector<SDValue, 8> Ops;
7436   SDLoc dl(N);
7437   for (unsigned i = 0; i != NumElts; ++i) {
7438     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
7439     const APInt &CInt = C->getAPIntValue();
7440     // Element types smaller than 32 bits are not legal, so use i32 elements.
7441     // The values are implicitly truncated so sext vs. zext doesn't matter.
7442     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
7443   }
7444   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
7445 }
7446 
isAddSubSExt(SDNode * N,SelectionDAG & DAG)7447 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
7448   unsigned Opcode = N->getOpcode();
7449   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7450     SDNode *N0 = N->getOperand(0).getNode();
7451     SDNode *N1 = N->getOperand(1).getNode();
7452     return N0->hasOneUse() && N1->hasOneUse() &&
7453       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
7454   }
7455   return false;
7456 }
7457 
isAddSubZExt(SDNode * N,SelectionDAG & DAG)7458 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
7459   unsigned Opcode = N->getOpcode();
7460   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7461     SDNode *N0 = N->getOperand(0).getNode();
7462     SDNode *N1 = N->getOperand(1).getNode();
7463     return N0->hasOneUse() && N1->hasOneUse() &&
7464       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
7465   }
7466   return false;
7467 }
7468 
LowerMUL(SDValue Op,SelectionDAG & DAG)7469 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
7470   // Multiplications are only custom-lowered for 128-bit vectors so that
7471   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
7472   EVT VT = Op.getValueType();
7473   assert(VT.is128BitVector() && VT.isInteger() &&
7474          "unexpected type for custom-lowering ISD::MUL");
7475   SDNode *N0 = Op.getOperand(0).getNode();
7476   SDNode *N1 = Op.getOperand(1).getNode();
7477   unsigned NewOpc = 0;
7478   bool isMLA = false;
7479   bool isN0SExt = isSignExtended(N0, DAG);
7480   bool isN1SExt = isSignExtended(N1, DAG);
7481   if (isN0SExt && isN1SExt)
7482     NewOpc = ARMISD::VMULLs;
7483   else {
7484     bool isN0ZExt = isZeroExtended(N0, DAG);
7485     bool isN1ZExt = isZeroExtended(N1, DAG);
7486     if (isN0ZExt && isN1ZExt)
7487       NewOpc = ARMISD::VMULLu;
7488     else if (isN1SExt || isN1ZExt) {
7489       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
7490       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
7491       if (isN1SExt && isAddSubSExt(N0, DAG)) {
7492         NewOpc = ARMISD::VMULLs;
7493         isMLA = true;
7494       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
7495         NewOpc = ARMISD::VMULLu;
7496         isMLA = true;
7497       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
7498         std::swap(N0, N1);
7499         NewOpc = ARMISD::VMULLu;
7500         isMLA = true;
7501       }
7502     }
7503 
7504     if (!NewOpc) {
7505       if (VT == MVT::v2i64)
7506         // Fall through to expand this.  It is not legal.
7507         return SDValue();
7508       else
7509         // Other vector multiplications are legal.
7510         return Op;
7511     }
7512   }
7513 
7514   // Legalize to a VMULL instruction.
7515   SDLoc DL(Op);
7516   SDValue Op0;
7517   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
7518   if (!isMLA) {
7519     Op0 = SkipExtensionForVMULL(N0, DAG);
7520     assert(Op0.getValueType().is64BitVector() &&
7521            Op1.getValueType().is64BitVector() &&
7522            "unexpected types for extended operands to VMULL");
7523     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
7524   }
7525 
7526   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
7527   // isel lowering to take advantage of no-stall back to back vmul + vmla.
7528   //   vmull q0, d4, d6
7529   //   vmlal q0, d5, d6
7530   // is faster than
7531   //   vaddl q0, d4, d5
7532   //   vmovl q1, d6
7533   //   vmul  q0, q0, q1
7534   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
7535   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
7536   EVT Op1VT = Op1.getValueType();
7537   return DAG.getNode(N0->getOpcode(), DL, VT,
7538                      DAG.getNode(NewOpc, DL, VT,
7539                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
7540                      DAG.getNode(NewOpc, DL, VT,
7541                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
7542 }
7543 
LowerSDIV_v4i8(SDValue X,SDValue Y,const SDLoc & dl,SelectionDAG & DAG)7544 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
7545                               SelectionDAG &DAG) {
7546   // TODO: Should this propagate fast-math-flags?
7547 
7548   // Convert to float
7549   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
7550   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
7551   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
7552   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
7553   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
7554   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
7555   // Get reciprocal estimate.
7556   // float4 recip = vrecpeq_f32(yf);
7557   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7558                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7559                    Y);
7560   // Because char has a smaller range than uchar, we can actually get away
7561   // without any newton steps.  This requires that we use a weird bias
7562   // of 0xb000, however (again, this has been exhaustively tested).
7563   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
7564   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
7565   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
7566   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
7567   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
7568   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
7569   // Convert back to short.
7570   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
7571   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
7572   return X;
7573 }
7574 
LowerSDIV_v4i16(SDValue N0,SDValue N1,const SDLoc & dl,SelectionDAG & DAG)7575 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
7576                                SelectionDAG &DAG) {
7577   // TODO: Should this propagate fast-math-flags?
7578 
7579   SDValue N2;
7580   // Convert to float.
7581   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
7582   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
7583   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
7584   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
7585   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7586   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7587 
7588   // Use reciprocal estimate and one refinement step.
7589   // float4 recip = vrecpeq_f32(yf);
7590   // recip *= vrecpsq_f32(yf, recip);
7591   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7592                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7593                    N1);
7594   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7595                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7596                    N1, N2);
7597   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7598   // Because short has a smaller range than ushort, we can actually get away
7599   // with only a single newton step.  This requires that we use a weird bias
7600   // of 89, however (again, this has been exhaustively tested).
7601   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
7602   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7603   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7604   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
7605   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7606   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7607   // Convert back to integer and return.
7608   // return vmovn_s32(vcvt_s32_f32(result));
7609   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7610   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7611   return N0;
7612 }
7613 
LowerSDIV(SDValue Op,SelectionDAG & DAG)7614 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
7615   EVT VT = Op.getValueType();
7616   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7617          "unexpected type for custom-lowering ISD::SDIV");
7618 
7619   SDLoc dl(Op);
7620   SDValue N0 = Op.getOperand(0);
7621   SDValue N1 = Op.getOperand(1);
7622   SDValue N2, N3;
7623 
7624   if (VT == MVT::v8i8) {
7625     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
7626     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
7627 
7628     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7629                      DAG.getIntPtrConstant(4, dl));
7630     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7631                      DAG.getIntPtrConstant(4, dl));
7632     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7633                      DAG.getIntPtrConstant(0, dl));
7634     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7635                      DAG.getIntPtrConstant(0, dl));
7636 
7637     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
7638     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
7639 
7640     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7641     N0 = LowerCONCAT_VECTORS(N0, DAG);
7642 
7643     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
7644     return N0;
7645   }
7646   return LowerSDIV_v4i16(N0, N1, dl, DAG);
7647 }
7648 
LowerUDIV(SDValue Op,SelectionDAG & DAG)7649 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
7650   // TODO: Should this propagate fast-math-flags?
7651   EVT VT = Op.getValueType();
7652   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7653          "unexpected type for custom-lowering ISD::UDIV");
7654 
7655   SDLoc dl(Op);
7656   SDValue N0 = Op.getOperand(0);
7657   SDValue N1 = Op.getOperand(1);
7658   SDValue N2, N3;
7659 
7660   if (VT == MVT::v8i8) {
7661     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
7662     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
7663 
7664     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7665                      DAG.getIntPtrConstant(4, dl));
7666     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7667                      DAG.getIntPtrConstant(4, dl));
7668     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7669                      DAG.getIntPtrConstant(0, dl));
7670     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7671                      DAG.getIntPtrConstant(0, dl));
7672 
7673     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
7674     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
7675 
7676     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7677     N0 = LowerCONCAT_VECTORS(N0, DAG);
7678 
7679     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
7680                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
7681                                      MVT::i32),
7682                      N0);
7683     return N0;
7684   }
7685 
7686   // v4i16 sdiv ... Convert to float.
7687   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
7688   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
7689   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
7690   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
7691   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7692   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7693 
7694   // Use reciprocal estimate and two refinement steps.
7695   // float4 recip = vrecpeq_f32(yf);
7696   // recip *= vrecpsq_f32(yf, recip);
7697   // recip *= vrecpsq_f32(yf, recip);
7698   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7699                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7700                    BN1);
7701   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7702                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7703                    BN1, N2);
7704   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7705   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7706                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7707                    BN1, N2);
7708   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7709   // Simply multiplying by the reciprocal estimate can leave us a few ulps
7710   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
7711   // and that it will never cause us to return an answer too large).
7712   // float4 result = as_float4(as_int4(xf*recip) + 2);
7713   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7714   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7715   N1 = DAG.getConstant(2, dl, MVT::v4i32);
7716   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7717   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7718   // Convert back to integer and return.
7719   // return vmovn_u32(vcvt_s32_f32(result));
7720   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7721   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7722   return N0;
7723 }
7724 
LowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG)7725 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
7726   SDNode *N = Op.getNode();
7727   EVT VT = N->getValueType(0);
7728   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
7729 
7730   SDValue Carry = Op.getOperand(2);
7731 
7732   SDLoc DL(Op);
7733 
7734   SDValue Result;
7735   if (Op.getOpcode() == ISD::ADDCARRY) {
7736     // This converts the boolean value carry into the carry flag.
7737     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7738 
7739     // Do the addition proper using the carry flag we wanted.
7740     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
7741                          Op.getOperand(1), Carry);
7742 
7743     // Now convert the carry flag into a boolean value.
7744     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7745   } else {
7746     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
7747     // have to invert the carry first.
7748     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7749                         DAG.getConstant(1, DL, MVT::i32), Carry);
7750     // This converts the boolean value carry into the carry flag.
7751     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7752 
7753     // Do the subtraction proper using the carry flag we wanted.
7754     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
7755                          Op.getOperand(1), Carry);
7756 
7757     // Now convert the carry flag into a boolean value.
7758     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7759     // But the carry returned by ARMISD::SUBE is not a borrow as expected
7760     // by ISD::SUBCARRY, so compute 1 - C.
7761     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7762                         DAG.getConstant(1, DL, MVT::i32), Carry);
7763   }
7764 
7765   // Return both values.
7766   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
7767 }
7768 
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const7769 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
7770   assert(Subtarget->isTargetDarwin());
7771 
7772   // For iOS, we want to call an alternative entry point: __sincos_stret,
7773   // return values are passed via sret.
7774   SDLoc dl(Op);
7775   SDValue Arg = Op.getOperand(0);
7776   EVT ArgVT = Arg.getValueType();
7777   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7778   auto PtrVT = getPointerTy(DAG.getDataLayout());
7779 
7780   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7782 
7783   // Pair of floats / doubles used to pass the result.
7784   Type *RetTy = StructType::get(ArgTy, ArgTy);
7785   auto &DL = DAG.getDataLayout();
7786 
7787   ArgListTy Args;
7788   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
7789   SDValue SRet;
7790   if (ShouldUseSRet) {
7791     // Create stack object for sret.
7792     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
7793     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
7794     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
7795     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
7796 
7797     ArgListEntry Entry;
7798     Entry.Node = SRet;
7799     Entry.Ty = RetTy->getPointerTo();
7800     Entry.IsSExt = false;
7801     Entry.IsZExt = false;
7802     Entry.IsSRet = true;
7803     Args.push_back(Entry);
7804     RetTy = Type::getVoidTy(*DAG.getContext());
7805   }
7806 
7807   ArgListEntry Entry;
7808   Entry.Node = Arg;
7809   Entry.Ty = ArgTy;
7810   Entry.IsSExt = false;
7811   Entry.IsZExt = false;
7812   Args.push_back(Entry);
7813 
7814   RTLIB::Libcall LC =
7815       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
7816   const char *LibcallName = getLibcallName(LC);
7817   CallingConv::ID CC = getLibcallCallingConv(LC);
7818   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
7819 
7820   TargetLowering::CallLoweringInfo CLI(DAG);
7821   CLI.setDebugLoc(dl)
7822       .setChain(DAG.getEntryNode())
7823       .setCallee(CC, RetTy, Callee, std::move(Args))
7824       .setDiscardResult(ShouldUseSRet);
7825   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7826 
7827   if (!ShouldUseSRet)
7828     return CallResult.first;
7829 
7830   SDValue LoadSin =
7831       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
7832 
7833   // Address of cos field.
7834   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
7835                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
7836   SDValue LoadCos =
7837       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
7838 
7839   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
7840   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
7841                      LoadSin.getValue(0), LoadCos.getValue(0));
7842 }
7843 
LowerWindowsDIVLibCall(SDValue Op,SelectionDAG & DAG,bool Signed,SDValue & Chain) const7844 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
7845                                                   bool Signed,
7846                                                   SDValue &Chain) const {
7847   EVT VT = Op.getValueType();
7848   assert((VT == MVT::i32 || VT == MVT::i64) &&
7849          "unexpected type for custom lowering DIV");
7850   SDLoc dl(Op);
7851 
7852   const auto &DL = DAG.getDataLayout();
7853   const auto &TLI = DAG.getTargetLoweringInfo();
7854 
7855   const char *Name = nullptr;
7856   if (Signed)
7857     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
7858   else
7859     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
7860 
7861   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
7862 
7863   ARMTargetLowering::ArgListTy Args;
7864 
7865   for (auto AI : {1, 0}) {
7866     ArgListEntry Arg;
7867     Arg.Node = Op.getOperand(AI);
7868     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
7869     Args.push_back(Arg);
7870   }
7871 
7872   CallLoweringInfo CLI(DAG);
7873   CLI.setDebugLoc(dl)
7874     .setChain(Chain)
7875     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
7876                ES, std::move(Args));
7877 
7878   return LowerCallTo(CLI).first;
7879 }
7880 
LowerDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed) const7881 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
7882                                             bool Signed) const {
7883   assert(Op.getValueType() == MVT::i32 &&
7884          "unexpected type for custom lowering DIV");
7885   SDLoc dl(Op);
7886 
7887   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
7888                                DAG.getEntryNode(), Op.getOperand(1));
7889 
7890   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7891 }
7892 
WinDBZCheckDenominator(SelectionDAG & DAG,SDNode * N,SDValue InChain)7893 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
7894   SDLoc DL(N);
7895   SDValue Op = N->getOperand(1);
7896   if (N->getValueType(0) == MVT::i32)
7897     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
7898   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7899                            DAG.getConstant(0, DL, MVT::i32));
7900   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7901                            DAG.getConstant(1, DL, MVT::i32));
7902   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
7903                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
7904 }
7905 
ExpandDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed,SmallVectorImpl<SDValue> & Results) const7906 void ARMTargetLowering::ExpandDIV_Windows(
7907     SDValue Op, SelectionDAG &DAG, bool Signed,
7908     SmallVectorImpl<SDValue> &Results) const {
7909   const auto &DL = DAG.getDataLayout();
7910   const auto &TLI = DAG.getTargetLoweringInfo();
7911 
7912   assert(Op.getValueType() == MVT::i64 &&
7913          "unexpected type for custom lowering DIV");
7914   SDLoc dl(Op);
7915 
7916   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
7917 
7918   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7919 
7920   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
7921   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
7922                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
7923   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
7924 
7925   Results.push_back(Lower);
7926   Results.push_back(Upper);
7927 }
7928 
LowerAtomicLoadStore(SDValue Op,SelectionDAG & DAG)7929 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
7930   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
7931     // Acquire/Release load/store is not legal for targets without a dmb or
7932     // equivalent available.
7933     return SDValue();
7934 
7935   // Monotonic load/store is legal for all targets.
7936   return Op;
7937 }
7938 
ReplaceREADCYCLECOUNTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const ARMSubtarget * Subtarget)7939 static void ReplaceREADCYCLECOUNTER(SDNode *N,
7940                                     SmallVectorImpl<SDValue> &Results,
7941                                     SelectionDAG &DAG,
7942                                     const ARMSubtarget *Subtarget) {
7943   SDLoc DL(N);
7944   // Under Power Management extensions, the cycle-count is:
7945   //    mrc p15, #0, <Rt>, c9, c13, #0
7946   SDValue Ops[] = { N->getOperand(0), // Chain
7947                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
7948                     DAG.getConstant(15, DL, MVT::i32),
7949                     DAG.getConstant(0, DL, MVT::i32),
7950                     DAG.getConstant(9, DL, MVT::i32),
7951                     DAG.getConstant(13, DL, MVT::i32),
7952                     DAG.getConstant(0, DL, MVT::i32)
7953   };
7954 
7955   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
7956                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
7957   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
7958                                 DAG.getConstant(0, DL, MVT::i32)));
7959   Results.push_back(Cycles32.getValue(1));
7960 }
7961 
createGPRPairNode(SelectionDAG & DAG,SDValue V)7962 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
7963   SDLoc dl(V.getNode());
7964   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
7965   SDValue VHi = DAG.getAnyExtOrTrunc(
7966       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
7967       dl, MVT::i32);
7968   bool isBigEndian = DAG.getDataLayout().isBigEndian();
7969   if (isBigEndian)
7970     std::swap (VLo, VHi);
7971   SDValue RegClass =
7972       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
7973   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
7974   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
7975   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
7976   return SDValue(
7977       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
7978 }
7979 
ReplaceCMP_SWAP_64Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)7980 static void ReplaceCMP_SWAP_64Results(SDNode *N,
7981                                        SmallVectorImpl<SDValue> & Results,
7982                                        SelectionDAG &DAG) {
7983   assert(N->getValueType(0) == MVT::i64 &&
7984          "AtomicCmpSwap on types less than 64 should be legal");
7985   SDValue Ops[] = {N->getOperand(1),
7986                    createGPRPairNode(DAG, N->getOperand(2)),
7987                    createGPRPairNode(DAG, N->getOperand(3)),
7988                    N->getOperand(0)};
7989   SDNode *CmpSwap = DAG.getMachineNode(
7990       ARM::CMP_SWAP_64, SDLoc(N),
7991       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
7992 
7993   MachineFunction &MF = DAG.getMachineFunction();
7994   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
7995   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
7996   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
7997 
7998   bool isBigEndian = DAG.getDataLayout().isBigEndian();
7999 
8000   Results.push_back(
8001       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
8002                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8003   Results.push_back(
8004       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
8005                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8006   Results.push_back(SDValue(CmpSwap, 2));
8007 }
8008 
LowerFPOWI(SDValue Op,const ARMSubtarget & Subtarget,SelectionDAG & DAG)8009 static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
8010                           SelectionDAG &DAG) {
8011   const auto &TLI = DAG.getTargetLoweringInfo();
8012 
8013   assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
8014          "Custom lowering is MSVCRT specific!");
8015 
8016   SDLoc dl(Op);
8017   SDValue Val = Op.getOperand(0);
8018   MVT Ty = Val->getSimpleValueType(0);
8019   SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
8020   SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
8021                                          TLI.getPointerTy(DAG.getDataLayout()));
8022 
8023   TargetLowering::ArgListTy Args;
8024   TargetLowering::ArgListEntry Entry;
8025 
8026   Entry.Node = Val;
8027   Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
8028   Entry.IsZExt = true;
8029   Args.push_back(Entry);
8030 
8031   Entry.Node = Exponent;
8032   Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
8033   Entry.IsZExt = true;
8034   Args.push_back(Entry);
8035 
8036   Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
8037 
8038   // In the in-chain to the call is the entry node  If we are emitting a
8039   // tailcall, the chain will be mutated if the node has a non-entry input
8040   // chain.
8041   SDValue InChain = DAG.getEntryNode();
8042   SDValue TCChain = InChain;
8043 
8044   const Function &F = DAG.getMachineFunction().getFunction();
8045   bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
8046               F.getReturnType() == LCRTy;
8047   if (IsTC)
8048     InChain = TCChain;
8049 
8050   TargetLowering::CallLoweringInfo CLI(DAG);
8051   CLI.setDebugLoc(dl)
8052       .setChain(InChain)
8053       .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
8054       .setTailCall(IsTC);
8055   std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
8056 
8057   // Return the chain (the DAG root) if it is a tail call
8058   return !CI.second.getNode() ? DAG.getRoot() : CI.first;
8059 }
8060 
LowerOperation(SDValue Op,SelectionDAG & DAG) const8061 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8062   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
8063   switch (Op.getOpcode()) {
8064   default: llvm_unreachable("Don't know how to custom lower this!");
8065   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
8066   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8067   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
8068   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8069   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8070   case ISD::SELECT:        return LowerSELECT(Op, DAG);
8071   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
8072   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
8073   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
8074   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
8075   case ISD::VASTART:       return LowerVASTART(Op, DAG);
8076   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
8077   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
8078   case ISD::SINT_TO_FP:
8079   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
8080   case ISD::FP_TO_SINT:
8081   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
8082   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
8083   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
8084   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
8085   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
8086   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
8087   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
8088   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
8089                                                                Subtarget);
8090   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
8091   case ISD::SHL:
8092   case ISD::SRL:
8093   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
8094   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
8095   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
8096   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
8097   case ISD::SRL_PARTS:
8098   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
8099   case ISD::CTTZ:
8100   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
8101   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
8102   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
8103   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
8104   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
8105   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
8106   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
8107   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
8108   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8109   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
8110   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
8111   case ISD::MUL:           return LowerMUL(Op, DAG);
8112   case ISD::SDIV:
8113     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8114       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
8115     return LowerSDIV(Op, DAG);
8116   case ISD::UDIV:
8117     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8118       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
8119     return LowerUDIV(Op, DAG);
8120   case ISD::ADDCARRY:
8121   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
8122   case ISD::SADDO:
8123   case ISD::SSUBO:
8124     return LowerSignedALUO(Op, DAG);
8125   case ISD::UADDO:
8126   case ISD::USUBO:
8127     return LowerUnsignedALUO(Op, DAG);
8128   case ISD::ATOMIC_LOAD:
8129   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
8130   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
8131   case ISD::SDIVREM:
8132   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
8133   case ISD::DYNAMIC_STACKALLOC:
8134     if (Subtarget->isTargetWindows())
8135       return LowerDYNAMIC_STACKALLOC(Op, DAG);
8136     llvm_unreachable("Don't know how to custom lower this!");
8137   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
8138   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
8139   case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
8140   case ARMISD::WIN__DBZCHK: return SDValue();
8141   }
8142 }
8143 
ReplaceLongIntrinsic(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)8144 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
8145                                  SelectionDAG &DAG) {
8146   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8147   unsigned Opc = 0;
8148   if (IntNo == Intrinsic::arm_smlald)
8149     Opc = ARMISD::SMLALD;
8150   else if (IntNo == Intrinsic::arm_smlaldx)
8151     Opc = ARMISD::SMLALDX;
8152   else if (IntNo == Intrinsic::arm_smlsld)
8153     Opc = ARMISD::SMLSLD;
8154   else if (IntNo == Intrinsic::arm_smlsldx)
8155     Opc = ARMISD::SMLSLDX;
8156   else
8157     return;
8158 
8159   SDLoc dl(N);
8160   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8161                            N->getOperand(3),
8162                            DAG.getConstant(0, dl, MVT::i32));
8163   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8164                            N->getOperand(3),
8165                            DAG.getConstant(1, dl, MVT::i32));
8166 
8167   SDValue LongMul = DAG.getNode(Opc, dl,
8168                                 DAG.getVTList(MVT::i32, MVT::i32),
8169                                 N->getOperand(1), N->getOperand(2),
8170                                 Lo, Hi);
8171   Results.push_back(LongMul.getValue(0));
8172   Results.push_back(LongMul.getValue(1));
8173 }
8174 
8175 /// ReplaceNodeResults - Replace the results of node with an illegal result
8176 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const8177 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
8178                                            SmallVectorImpl<SDValue> &Results,
8179                                            SelectionDAG &DAG) const {
8180   SDValue Res;
8181   switch (N->getOpcode()) {
8182   default:
8183     llvm_unreachable("Don't know how to custom expand this!");
8184   case ISD::READ_REGISTER:
8185     ExpandREAD_REGISTER(N, Results, DAG);
8186     break;
8187   case ISD::BITCAST:
8188     Res = ExpandBITCAST(N, DAG, Subtarget);
8189     break;
8190   case ISD::SRL:
8191   case ISD::SRA:
8192     Res = Expand64BitShift(N, DAG, Subtarget);
8193     break;
8194   case ISD::SREM:
8195   case ISD::UREM:
8196     Res = LowerREM(N, DAG);
8197     break;
8198   case ISD::SDIVREM:
8199   case ISD::UDIVREM:
8200     Res = LowerDivRem(SDValue(N, 0), DAG);
8201     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
8202     Results.push_back(Res.getValue(0));
8203     Results.push_back(Res.getValue(1));
8204     return;
8205   case ISD::READCYCLECOUNTER:
8206     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
8207     return;
8208   case ISD::UDIV:
8209   case ISD::SDIV:
8210     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
8211     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
8212                              Results);
8213   case ISD::ATOMIC_CMP_SWAP:
8214     ReplaceCMP_SWAP_64Results(N, Results, DAG);
8215     return;
8216   case ISD::INTRINSIC_WO_CHAIN:
8217     return ReplaceLongIntrinsic(N, Results, DAG);
8218   }
8219   if (Res.getNode())
8220     Results.push_back(Res);
8221 }
8222 
8223 //===----------------------------------------------------------------------===//
8224 //                           ARM Scheduler Hooks
8225 //===----------------------------------------------------------------------===//
8226 
8227 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8228 /// registers the function context.
SetupEntryBlockForSjLj(MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * DispatchBB,int FI) const8229 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
8230                                                MachineBasicBlock *MBB,
8231                                                MachineBasicBlock *DispatchBB,
8232                                                int FI) const {
8233   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
8234          "ROPI/RWPI not currently supported with SjLj");
8235   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8236   DebugLoc dl = MI.getDebugLoc();
8237   MachineFunction *MF = MBB->getParent();
8238   MachineRegisterInfo *MRI = &MF->getRegInfo();
8239   MachineConstantPool *MCP = MF->getConstantPool();
8240   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
8241   const Function &F = MF->getFunction();
8242 
8243   bool isThumb = Subtarget->isThumb();
8244   bool isThumb2 = Subtarget->isThumb2();
8245 
8246   unsigned PCLabelId = AFI->createPICLabelUId();
8247   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
8248   ARMConstantPoolValue *CPV =
8249     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
8250   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
8251 
8252   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
8253                                            : &ARM::GPRRegClass;
8254 
8255   // Grab constant pool and fixed stack memory operands.
8256   MachineMemOperand *CPMMO =
8257       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
8258                                MachineMemOperand::MOLoad, 4, 4);
8259 
8260   MachineMemOperand *FIMMOSt =
8261       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
8262                                MachineMemOperand::MOStore, 4, 4);
8263 
8264   // Load the address of the dispatch MBB into the jump buffer.
8265   if (isThumb2) {
8266     // Incoming value: jbuf
8267     //   ldr.n  r5, LCPI1_1
8268     //   orr    r5, r5, #1
8269     //   add    r5, pc
8270     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
8271     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8272     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
8273         .addConstantPoolIndex(CPI)
8274         .addMemOperand(CPMMO)
8275         .add(predOps(ARMCC::AL));
8276     // Set the low bit because of thumb mode.
8277     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8278     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
8279         .addReg(NewVReg1, RegState::Kill)
8280         .addImm(0x01)
8281         .add(predOps(ARMCC::AL))
8282         .add(condCodeOp());
8283     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8284     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
8285       .addReg(NewVReg2, RegState::Kill)
8286       .addImm(PCLabelId);
8287     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
8288         .addReg(NewVReg3, RegState::Kill)
8289         .addFrameIndex(FI)
8290         .addImm(36) // &jbuf[1] :: pc
8291         .addMemOperand(FIMMOSt)
8292         .add(predOps(ARMCC::AL));
8293   } else if (isThumb) {
8294     // Incoming value: jbuf
8295     //   ldr.n  r1, LCPI1_4
8296     //   add    r1, pc
8297     //   mov    r2, #1
8298     //   orrs   r1, r2
8299     //   add    r2, $jbuf, #+4 ; &jbuf[1]
8300     //   str    r1, [r2]
8301     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8302     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
8303         .addConstantPoolIndex(CPI)
8304         .addMemOperand(CPMMO)
8305         .add(predOps(ARMCC::AL));
8306     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8307     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
8308       .addReg(NewVReg1, RegState::Kill)
8309       .addImm(PCLabelId);
8310     // Set the low bit because of thumb mode.
8311     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8312     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
8313         .addReg(ARM::CPSR, RegState::Define)
8314         .addImm(1)
8315         .add(predOps(ARMCC::AL));
8316     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8317     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
8318         .addReg(ARM::CPSR, RegState::Define)
8319         .addReg(NewVReg2, RegState::Kill)
8320         .addReg(NewVReg3, RegState::Kill)
8321         .add(predOps(ARMCC::AL));
8322     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8323     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
8324             .addFrameIndex(FI)
8325             .addImm(36); // &jbuf[1] :: pc
8326     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
8327         .addReg(NewVReg4, RegState::Kill)
8328         .addReg(NewVReg5, RegState::Kill)
8329         .addImm(0)
8330         .addMemOperand(FIMMOSt)
8331         .add(predOps(ARMCC::AL));
8332   } else {
8333     // Incoming value: jbuf
8334     //   ldr  r1, LCPI1_1
8335     //   add  r1, pc, r1
8336     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
8337     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8338     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
8339         .addConstantPoolIndex(CPI)
8340         .addImm(0)
8341         .addMemOperand(CPMMO)
8342         .add(predOps(ARMCC::AL));
8343     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8344     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
8345         .addReg(NewVReg1, RegState::Kill)
8346         .addImm(PCLabelId)
8347         .add(predOps(ARMCC::AL));
8348     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
8349         .addReg(NewVReg2, RegState::Kill)
8350         .addFrameIndex(FI)
8351         .addImm(36) // &jbuf[1] :: pc
8352         .addMemOperand(FIMMOSt)
8353         .add(predOps(ARMCC::AL));
8354   }
8355 }
8356 
EmitSjLjDispatchBlock(MachineInstr & MI,MachineBasicBlock * MBB) const8357 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
8358                                               MachineBasicBlock *MBB) const {
8359   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8360   DebugLoc dl = MI.getDebugLoc();
8361   MachineFunction *MF = MBB->getParent();
8362   MachineRegisterInfo *MRI = &MF->getRegInfo();
8363   MachineFrameInfo &MFI = MF->getFrameInfo();
8364   int FI = MFI.getFunctionContextIndex();
8365 
8366   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
8367                                                         : &ARM::GPRnopcRegClass;
8368 
8369   // Get a mapping of the call site numbers to all of the landing pads they're
8370   // associated with.
8371   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
8372   unsigned MaxCSNum = 0;
8373   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
8374        ++BB) {
8375     if (!BB->isEHPad()) continue;
8376 
8377     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
8378     // pad.
8379     for (MachineBasicBlock::iterator
8380            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
8381       if (!II->isEHLabel()) continue;
8382 
8383       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
8384       if (!MF->hasCallSiteLandingPad(Sym)) continue;
8385 
8386       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
8387       for (SmallVectorImpl<unsigned>::iterator
8388              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
8389            CSI != CSE; ++CSI) {
8390         CallSiteNumToLPad[*CSI].push_back(&*BB);
8391         MaxCSNum = std::max(MaxCSNum, *CSI);
8392       }
8393       break;
8394     }
8395   }
8396 
8397   // Get an ordered list of the machine basic blocks for the jump table.
8398   std::vector<MachineBasicBlock*> LPadList;
8399   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
8400   LPadList.reserve(CallSiteNumToLPad.size());
8401   for (unsigned I = 1; I <= MaxCSNum; ++I) {
8402     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
8403     for (SmallVectorImpl<MachineBasicBlock*>::iterator
8404            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
8405       LPadList.push_back(*II);
8406       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
8407     }
8408   }
8409 
8410   assert(!LPadList.empty() &&
8411          "No landing pad destinations for the dispatch jump table!");
8412 
8413   // Create the jump table and associated information.
8414   MachineJumpTableInfo *JTI =
8415     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
8416   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
8417 
8418   // Create the MBBs for the dispatch code.
8419 
8420   // Shove the dispatch's address into the return slot in the function context.
8421   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
8422   DispatchBB->setIsEHPad();
8423 
8424   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8425   unsigned trap_opcode;
8426   if (Subtarget->isThumb())
8427     trap_opcode = ARM::tTRAP;
8428   else
8429     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
8430 
8431   BuildMI(TrapBB, dl, TII->get(trap_opcode));
8432   DispatchBB->addSuccessor(TrapBB);
8433 
8434   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
8435   DispatchBB->addSuccessor(DispContBB);
8436 
8437   // Insert and MBBs.
8438   MF->insert(MF->end(), DispatchBB);
8439   MF->insert(MF->end(), DispContBB);
8440   MF->insert(MF->end(), TrapBB);
8441 
8442   // Insert code into the entry block that creates and registers the function
8443   // context.
8444   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
8445 
8446   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
8447       MachinePointerInfo::getFixedStack(*MF, FI),
8448       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
8449 
8450   MachineInstrBuilder MIB;
8451   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
8452 
8453   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
8454   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
8455 
8456   // Add a register mask with no preserved registers.  This results in all
8457   // registers being marked as clobbered. This can't work if the dispatch block
8458   // is in a Thumb1 function and is linked with ARM code which uses the FP
8459   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
8460   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
8461 
8462   bool IsPositionIndependent = isPositionIndependent();
8463   unsigned NumLPads = LPadList.size();
8464   if (Subtarget->isThumb2()) {
8465     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8466     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
8467         .addFrameIndex(FI)
8468         .addImm(4)
8469         .addMemOperand(FIMMOLd)
8470         .add(predOps(ARMCC::AL));
8471 
8472     if (NumLPads < 256) {
8473       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
8474           .addReg(NewVReg1)
8475           .addImm(LPadList.size())
8476           .add(predOps(ARMCC::AL));
8477     } else {
8478       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8479       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
8480           .addImm(NumLPads & 0xFFFF)
8481           .add(predOps(ARMCC::AL));
8482 
8483       unsigned VReg2 = VReg1;
8484       if ((NumLPads & 0xFFFF0000) != 0) {
8485         VReg2 = MRI->createVirtualRegister(TRC);
8486         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
8487             .addReg(VReg1)
8488             .addImm(NumLPads >> 16)
8489             .add(predOps(ARMCC::AL));
8490       }
8491 
8492       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
8493           .addReg(NewVReg1)
8494           .addReg(VReg2)
8495           .add(predOps(ARMCC::AL));
8496     }
8497 
8498     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
8499       .addMBB(TrapBB)
8500       .addImm(ARMCC::HI)
8501       .addReg(ARM::CPSR);
8502 
8503     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8504     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
8505         .addJumpTableIndex(MJTI)
8506         .add(predOps(ARMCC::AL));
8507 
8508     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8509     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
8510         .addReg(NewVReg3, RegState::Kill)
8511         .addReg(NewVReg1)
8512         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8513         .add(predOps(ARMCC::AL))
8514         .add(condCodeOp());
8515 
8516     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
8517       .addReg(NewVReg4, RegState::Kill)
8518       .addReg(NewVReg1)
8519       .addJumpTableIndex(MJTI);
8520   } else if (Subtarget->isThumb()) {
8521     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8522     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
8523         .addFrameIndex(FI)
8524         .addImm(1)
8525         .addMemOperand(FIMMOLd)
8526         .add(predOps(ARMCC::AL));
8527 
8528     if (NumLPads < 256) {
8529       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
8530           .addReg(NewVReg1)
8531           .addImm(NumLPads)
8532           .add(predOps(ARMCC::AL));
8533     } else {
8534       MachineConstantPool *ConstantPool = MF->getConstantPool();
8535       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8536       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8537 
8538       // MachineConstantPool wants an explicit alignment.
8539       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8540       if (Align == 0)
8541         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8542       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8543 
8544       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8545       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
8546           .addReg(VReg1, RegState::Define)
8547           .addConstantPoolIndex(Idx)
8548           .add(predOps(ARMCC::AL));
8549       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
8550           .addReg(NewVReg1)
8551           .addReg(VReg1)
8552           .add(predOps(ARMCC::AL));
8553     }
8554 
8555     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
8556       .addMBB(TrapBB)
8557       .addImm(ARMCC::HI)
8558       .addReg(ARM::CPSR);
8559 
8560     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8561     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
8562         .addReg(ARM::CPSR, RegState::Define)
8563         .addReg(NewVReg1)
8564         .addImm(2)
8565         .add(predOps(ARMCC::AL));
8566 
8567     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8568     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
8569         .addJumpTableIndex(MJTI)
8570         .add(predOps(ARMCC::AL));
8571 
8572     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8573     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
8574         .addReg(ARM::CPSR, RegState::Define)
8575         .addReg(NewVReg2, RegState::Kill)
8576         .addReg(NewVReg3)
8577         .add(predOps(ARMCC::AL));
8578 
8579     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8580         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8581 
8582     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8583     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
8584         .addReg(NewVReg4, RegState::Kill)
8585         .addImm(0)
8586         .addMemOperand(JTMMOLd)
8587         .add(predOps(ARMCC::AL));
8588 
8589     unsigned NewVReg6 = NewVReg5;
8590     if (IsPositionIndependent) {
8591       NewVReg6 = MRI->createVirtualRegister(TRC);
8592       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
8593           .addReg(ARM::CPSR, RegState::Define)
8594           .addReg(NewVReg5, RegState::Kill)
8595           .addReg(NewVReg3)
8596           .add(predOps(ARMCC::AL));
8597     }
8598 
8599     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
8600       .addReg(NewVReg6, RegState::Kill)
8601       .addJumpTableIndex(MJTI);
8602   } else {
8603     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8604     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
8605         .addFrameIndex(FI)
8606         .addImm(4)
8607         .addMemOperand(FIMMOLd)
8608         .add(predOps(ARMCC::AL));
8609 
8610     if (NumLPads < 256) {
8611       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
8612           .addReg(NewVReg1)
8613           .addImm(NumLPads)
8614           .add(predOps(ARMCC::AL));
8615     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
8616       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8617       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
8618           .addImm(NumLPads & 0xFFFF)
8619           .add(predOps(ARMCC::AL));
8620 
8621       unsigned VReg2 = VReg1;
8622       if ((NumLPads & 0xFFFF0000) != 0) {
8623         VReg2 = MRI->createVirtualRegister(TRC);
8624         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
8625             .addReg(VReg1)
8626             .addImm(NumLPads >> 16)
8627             .add(predOps(ARMCC::AL));
8628       }
8629 
8630       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8631           .addReg(NewVReg1)
8632           .addReg(VReg2)
8633           .add(predOps(ARMCC::AL));
8634     } else {
8635       MachineConstantPool *ConstantPool = MF->getConstantPool();
8636       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8637       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8638 
8639       // MachineConstantPool wants an explicit alignment.
8640       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8641       if (Align == 0)
8642         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8643       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8644 
8645       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8646       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
8647           .addReg(VReg1, RegState::Define)
8648           .addConstantPoolIndex(Idx)
8649           .addImm(0)
8650           .add(predOps(ARMCC::AL));
8651       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8652           .addReg(NewVReg1)
8653           .addReg(VReg1, RegState::Kill)
8654           .add(predOps(ARMCC::AL));
8655     }
8656 
8657     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
8658       .addMBB(TrapBB)
8659       .addImm(ARMCC::HI)
8660       .addReg(ARM::CPSR);
8661 
8662     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8663     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
8664         .addReg(NewVReg1)
8665         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8666         .add(predOps(ARMCC::AL))
8667         .add(condCodeOp());
8668     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8669     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
8670         .addJumpTableIndex(MJTI)
8671         .add(predOps(ARMCC::AL));
8672 
8673     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8674         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8675     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8676     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
8677         .addReg(NewVReg3, RegState::Kill)
8678         .addReg(NewVReg4)
8679         .addImm(0)
8680         .addMemOperand(JTMMOLd)
8681         .add(predOps(ARMCC::AL));
8682 
8683     if (IsPositionIndependent) {
8684       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
8685         .addReg(NewVReg5, RegState::Kill)
8686         .addReg(NewVReg4)
8687         .addJumpTableIndex(MJTI);
8688     } else {
8689       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
8690         .addReg(NewVReg5, RegState::Kill)
8691         .addJumpTableIndex(MJTI);
8692     }
8693   }
8694 
8695   // Add the jump table entries as successors to the MBB.
8696   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
8697   for (std::vector<MachineBasicBlock*>::iterator
8698          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
8699     MachineBasicBlock *CurMBB = *I;
8700     if (SeenMBBs.insert(CurMBB).second)
8701       DispContBB->addSuccessor(CurMBB);
8702   }
8703 
8704   // N.B. the order the invoke BBs are processed in doesn't matter here.
8705   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
8706   SmallVector<MachineBasicBlock*, 64> MBBLPads;
8707   for (MachineBasicBlock *BB : InvokeBBs) {
8708 
8709     // Remove the landing pad successor from the invoke block and replace it
8710     // with the new dispatch block.
8711     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
8712                                                   BB->succ_end());
8713     while (!Successors.empty()) {
8714       MachineBasicBlock *SMBB = Successors.pop_back_val();
8715       if (SMBB->isEHPad()) {
8716         BB->removeSuccessor(SMBB);
8717         MBBLPads.push_back(SMBB);
8718       }
8719     }
8720 
8721     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
8722     BB->normalizeSuccProbs();
8723 
8724     // Find the invoke call and mark all of the callee-saved registers as
8725     // 'implicit defined' so that they're spilled. This prevents code from
8726     // moving instructions to before the EH block, where they will never be
8727     // executed.
8728     for (MachineBasicBlock::reverse_iterator
8729            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
8730       if (!II->isCall()) continue;
8731 
8732       DenseMap<unsigned, bool> DefRegs;
8733       for (MachineInstr::mop_iterator
8734              OI = II->operands_begin(), OE = II->operands_end();
8735            OI != OE; ++OI) {
8736         if (!OI->isReg()) continue;
8737         DefRegs[OI->getReg()] = true;
8738       }
8739 
8740       MachineInstrBuilder MIB(*MF, &*II);
8741 
8742       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
8743         unsigned Reg = SavedRegs[i];
8744         if (Subtarget->isThumb2() &&
8745             !ARM::tGPRRegClass.contains(Reg) &&
8746             !ARM::hGPRRegClass.contains(Reg))
8747           continue;
8748         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
8749           continue;
8750         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
8751           continue;
8752         if (!DefRegs[Reg])
8753           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
8754       }
8755 
8756       break;
8757     }
8758   }
8759 
8760   // Mark all former landing pads as non-landing pads. The dispatch is the only
8761   // landing pad now.
8762   for (SmallVectorImpl<MachineBasicBlock*>::iterator
8763          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
8764     (*I)->setIsEHPad(false);
8765 
8766   // The instruction is gone now.
8767   MI.eraseFromParent();
8768 }
8769 
8770 static
OtherSucc(MachineBasicBlock * MBB,MachineBasicBlock * Succ)8771 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
8772   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
8773        E = MBB->succ_end(); I != E; ++I)
8774     if (*I != Succ)
8775       return *I;
8776   llvm_unreachable("Expecting a BB with two successors!");
8777 }
8778 
8779 /// Return the load opcode for a given load size. If load size >= 8,
8780 /// neon opcode will be returned.
getLdOpcode(unsigned LdSize,bool IsThumb1,bool IsThumb2)8781 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
8782   if (LdSize >= 8)
8783     return LdSize == 16 ? ARM::VLD1q32wb_fixed
8784                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
8785   if (IsThumb1)
8786     return LdSize == 4 ? ARM::tLDRi
8787                        : LdSize == 2 ? ARM::tLDRHi
8788                                      : LdSize == 1 ? ARM::tLDRBi : 0;
8789   if (IsThumb2)
8790     return LdSize == 4 ? ARM::t2LDR_POST
8791                        : LdSize == 2 ? ARM::t2LDRH_POST
8792                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
8793   return LdSize == 4 ? ARM::LDR_POST_IMM
8794                      : LdSize == 2 ? ARM::LDRH_POST
8795                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
8796 }
8797 
8798 /// Return the store opcode for a given store size. If store size >= 8,
8799 /// neon opcode will be returned.
getStOpcode(unsigned StSize,bool IsThumb1,bool IsThumb2)8800 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
8801   if (StSize >= 8)
8802     return StSize == 16 ? ARM::VST1q32wb_fixed
8803                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
8804   if (IsThumb1)
8805     return StSize == 4 ? ARM::tSTRi
8806                        : StSize == 2 ? ARM::tSTRHi
8807                                      : StSize == 1 ? ARM::tSTRBi : 0;
8808   if (IsThumb2)
8809     return StSize == 4 ? ARM::t2STR_POST
8810                        : StSize == 2 ? ARM::t2STRH_POST
8811                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
8812   return StSize == 4 ? ARM::STR_POST_IMM
8813                      : StSize == 2 ? ARM::STRH_POST
8814                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
8815 }
8816 
8817 /// Emit a post-increment load operation with given size. The instructions
8818 /// will be added to BB at Pos.
emitPostLd(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned LdSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)8819 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8820                        const TargetInstrInfo *TII, const DebugLoc &dl,
8821                        unsigned LdSize, unsigned Data, unsigned AddrIn,
8822                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8823   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
8824   assert(LdOpc != 0 && "Should have a load opcode");
8825   if (LdSize >= 8) {
8826     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8827         .addReg(AddrOut, RegState::Define)
8828         .addReg(AddrIn)
8829         .addImm(0)
8830         .add(predOps(ARMCC::AL));
8831   } else if (IsThumb1) {
8832     // load + update AddrIn
8833     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8834         .addReg(AddrIn)
8835         .addImm(0)
8836         .add(predOps(ARMCC::AL));
8837     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8838         .add(t1CondCodeOp())
8839         .addReg(AddrIn)
8840         .addImm(LdSize)
8841         .add(predOps(ARMCC::AL));
8842   } else if (IsThumb2) {
8843     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8844         .addReg(AddrOut, RegState::Define)
8845         .addReg(AddrIn)
8846         .addImm(LdSize)
8847         .add(predOps(ARMCC::AL));
8848   } else { // arm
8849     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8850         .addReg(AddrOut, RegState::Define)
8851         .addReg(AddrIn)
8852         .addReg(0)
8853         .addImm(LdSize)
8854         .add(predOps(ARMCC::AL));
8855   }
8856 }
8857 
8858 /// Emit a post-increment store operation with given size. The instructions
8859 /// will be added to BB at Pos.
emitPostSt(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned StSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)8860 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8861                        const TargetInstrInfo *TII, const DebugLoc &dl,
8862                        unsigned StSize, unsigned Data, unsigned AddrIn,
8863                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8864   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
8865   assert(StOpc != 0 && "Should have a store opcode");
8866   if (StSize >= 8) {
8867     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8868         .addReg(AddrIn)
8869         .addImm(0)
8870         .addReg(Data)
8871         .add(predOps(ARMCC::AL));
8872   } else if (IsThumb1) {
8873     // store + update AddrIn
8874     BuildMI(*BB, Pos, dl, TII->get(StOpc))
8875         .addReg(Data)
8876         .addReg(AddrIn)
8877         .addImm(0)
8878         .add(predOps(ARMCC::AL));
8879     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8880         .add(t1CondCodeOp())
8881         .addReg(AddrIn)
8882         .addImm(StSize)
8883         .add(predOps(ARMCC::AL));
8884   } else if (IsThumb2) {
8885     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8886         .addReg(Data)
8887         .addReg(AddrIn)
8888         .addImm(StSize)
8889         .add(predOps(ARMCC::AL));
8890   } else { // arm
8891     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8892         .addReg(Data)
8893         .addReg(AddrIn)
8894         .addReg(0)
8895         .addImm(StSize)
8896         .add(predOps(ARMCC::AL));
8897   }
8898 }
8899 
8900 MachineBasicBlock *
EmitStructByval(MachineInstr & MI,MachineBasicBlock * BB) const8901 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
8902                                    MachineBasicBlock *BB) const {
8903   // This pseudo instruction has 3 operands: dst, src, size
8904   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
8905   // Otherwise, we will generate unrolled scalar copies.
8906   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8907   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8908   MachineFunction::iterator It = ++BB->getIterator();
8909 
8910   unsigned dest = MI.getOperand(0).getReg();
8911   unsigned src = MI.getOperand(1).getReg();
8912   unsigned SizeVal = MI.getOperand(2).getImm();
8913   unsigned Align = MI.getOperand(3).getImm();
8914   DebugLoc dl = MI.getDebugLoc();
8915 
8916   MachineFunction *MF = BB->getParent();
8917   MachineRegisterInfo &MRI = MF->getRegInfo();
8918   unsigned UnitSize = 0;
8919   const TargetRegisterClass *TRC = nullptr;
8920   const TargetRegisterClass *VecTRC = nullptr;
8921 
8922   bool IsThumb1 = Subtarget->isThumb1Only();
8923   bool IsThumb2 = Subtarget->isThumb2();
8924   bool IsThumb = Subtarget->isThumb();
8925 
8926   if (Align & 1) {
8927     UnitSize = 1;
8928   } else if (Align & 2) {
8929     UnitSize = 2;
8930   } else {
8931     // Check whether we can use NEON instructions.
8932     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
8933         Subtarget->hasNEON()) {
8934       if ((Align % 16 == 0) && SizeVal >= 16)
8935         UnitSize = 16;
8936       else if ((Align % 8 == 0) && SizeVal >= 8)
8937         UnitSize = 8;
8938     }
8939     // Can't use NEON instructions.
8940     if (UnitSize == 0)
8941       UnitSize = 4;
8942   }
8943 
8944   // Select the correct opcode and register class for unit size load/store
8945   bool IsNeon = UnitSize >= 8;
8946   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
8947   if (IsNeon)
8948     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
8949                             : UnitSize == 8 ? &ARM::DPRRegClass
8950                                             : nullptr;
8951 
8952   unsigned BytesLeft = SizeVal % UnitSize;
8953   unsigned LoopSize = SizeVal - BytesLeft;
8954 
8955   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
8956     // Use LDR and STR to copy.
8957     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
8958     // [destOut] = STR_POST(scratch, destIn, UnitSize)
8959     unsigned srcIn = src;
8960     unsigned destIn = dest;
8961     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
8962       unsigned srcOut = MRI.createVirtualRegister(TRC);
8963       unsigned destOut = MRI.createVirtualRegister(TRC);
8964       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
8965       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
8966                  IsThumb1, IsThumb2);
8967       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
8968                  IsThumb1, IsThumb2);
8969       srcIn = srcOut;
8970       destIn = destOut;
8971     }
8972 
8973     // Handle the leftover bytes with LDRB and STRB.
8974     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
8975     // [destOut] = STRB_POST(scratch, destIn, 1)
8976     for (unsigned i = 0; i < BytesLeft; i++) {
8977       unsigned srcOut = MRI.createVirtualRegister(TRC);
8978       unsigned destOut = MRI.createVirtualRegister(TRC);
8979       unsigned scratch = MRI.createVirtualRegister(TRC);
8980       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
8981                  IsThumb1, IsThumb2);
8982       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
8983                  IsThumb1, IsThumb2);
8984       srcIn = srcOut;
8985       destIn = destOut;
8986     }
8987     MI.eraseFromParent(); // The instruction is gone now.
8988     return BB;
8989   }
8990 
8991   // Expand the pseudo op to a loop.
8992   // thisMBB:
8993   //   ...
8994   //   movw varEnd, # --> with thumb2
8995   //   movt varEnd, #
8996   //   ldrcp varEnd, idx --> without thumb2
8997   //   fallthrough --> loopMBB
8998   // loopMBB:
8999   //   PHI varPhi, varEnd, varLoop
9000   //   PHI srcPhi, src, srcLoop
9001   //   PHI destPhi, dst, destLoop
9002   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9003   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9004   //   subs varLoop, varPhi, #UnitSize
9005   //   bne loopMBB
9006   //   fallthrough --> exitMBB
9007   // exitMBB:
9008   //   epilogue to handle left-over bytes
9009   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9010   //   [destOut] = STRB_POST(scratch, destLoop, 1)
9011   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9012   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9013   MF->insert(It, loopMBB);
9014   MF->insert(It, exitMBB);
9015 
9016   // Transfer the remainder of BB and its successor edges to exitMBB.
9017   exitMBB->splice(exitMBB->begin(), BB,
9018                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9019   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9020 
9021   // Load an immediate to varEnd.
9022   unsigned varEnd = MRI.createVirtualRegister(TRC);
9023   if (Subtarget->useMovt(*MF)) {
9024     unsigned Vtmp = varEnd;
9025     if ((LoopSize & 0xFFFF0000) != 0)
9026       Vtmp = MRI.createVirtualRegister(TRC);
9027     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
9028         .addImm(LoopSize & 0xFFFF)
9029         .add(predOps(ARMCC::AL));
9030 
9031     if ((LoopSize & 0xFFFF0000) != 0)
9032       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
9033           .addReg(Vtmp)
9034           .addImm(LoopSize >> 16)
9035           .add(predOps(ARMCC::AL));
9036   } else {
9037     MachineConstantPool *ConstantPool = MF->getConstantPool();
9038     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9039     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
9040 
9041     // MachineConstantPool wants an explicit alignment.
9042     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9043     if (Align == 0)
9044       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9045     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9046 
9047     if (IsThumb)
9048       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
9049           .addReg(varEnd, RegState::Define)
9050           .addConstantPoolIndex(Idx)
9051           .add(predOps(ARMCC::AL));
9052     else
9053       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
9054           .addReg(varEnd, RegState::Define)
9055           .addConstantPoolIndex(Idx)
9056           .addImm(0)
9057           .add(predOps(ARMCC::AL));
9058   }
9059   BB->addSuccessor(loopMBB);
9060 
9061   // Generate the loop body:
9062   //   varPhi = PHI(varLoop, varEnd)
9063   //   srcPhi = PHI(srcLoop, src)
9064   //   destPhi = PHI(destLoop, dst)
9065   MachineBasicBlock *entryBB = BB;
9066   BB = loopMBB;
9067   unsigned varLoop = MRI.createVirtualRegister(TRC);
9068   unsigned varPhi = MRI.createVirtualRegister(TRC);
9069   unsigned srcLoop = MRI.createVirtualRegister(TRC);
9070   unsigned srcPhi = MRI.createVirtualRegister(TRC);
9071   unsigned destLoop = MRI.createVirtualRegister(TRC);
9072   unsigned destPhi = MRI.createVirtualRegister(TRC);
9073 
9074   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
9075     .addReg(varLoop).addMBB(loopMBB)
9076     .addReg(varEnd).addMBB(entryBB);
9077   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
9078     .addReg(srcLoop).addMBB(loopMBB)
9079     .addReg(src).addMBB(entryBB);
9080   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
9081     .addReg(destLoop).addMBB(loopMBB)
9082     .addReg(dest).addMBB(entryBB);
9083 
9084   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9085   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9086   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9087   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
9088              IsThumb1, IsThumb2);
9089   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
9090              IsThumb1, IsThumb2);
9091 
9092   // Decrement loop variable by UnitSize.
9093   if (IsThumb1) {
9094     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
9095         .add(t1CondCodeOp())
9096         .addReg(varPhi)
9097         .addImm(UnitSize)
9098         .add(predOps(ARMCC::AL));
9099   } else {
9100     MachineInstrBuilder MIB =
9101         BuildMI(*BB, BB->end(), dl,
9102                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
9103     MIB.addReg(varPhi)
9104         .addImm(UnitSize)
9105         .add(predOps(ARMCC::AL))
9106         .add(condCodeOp());
9107     MIB->getOperand(5).setReg(ARM::CPSR);
9108     MIB->getOperand(5).setIsDef(true);
9109   }
9110   BuildMI(*BB, BB->end(), dl,
9111           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
9112       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
9113 
9114   // loopMBB can loop back to loopMBB or fall through to exitMBB.
9115   BB->addSuccessor(loopMBB);
9116   BB->addSuccessor(exitMBB);
9117 
9118   // Add epilogue to handle BytesLeft.
9119   BB = exitMBB;
9120   auto StartOfExit = exitMBB->begin();
9121 
9122   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9123   //   [destOut] = STRB_POST(scratch, destLoop, 1)
9124   unsigned srcIn = srcLoop;
9125   unsigned destIn = destLoop;
9126   for (unsigned i = 0; i < BytesLeft; i++) {
9127     unsigned srcOut = MRI.createVirtualRegister(TRC);
9128     unsigned destOut = MRI.createVirtualRegister(TRC);
9129     unsigned scratch = MRI.createVirtualRegister(TRC);
9130     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
9131                IsThumb1, IsThumb2);
9132     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
9133                IsThumb1, IsThumb2);
9134     srcIn = srcOut;
9135     destIn = destOut;
9136   }
9137 
9138   MI.eraseFromParent(); // The instruction is gone now.
9139   return BB;
9140 }
9141 
9142 MachineBasicBlock *
EmitLowered__chkstk(MachineInstr & MI,MachineBasicBlock * MBB) const9143 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
9144                                        MachineBasicBlock *MBB) const {
9145   const TargetMachine &TM = getTargetMachine();
9146   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
9147   DebugLoc DL = MI.getDebugLoc();
9148 
9149   assert(Subtarget->isTargetWindows() &&
9150          "__chkstk is only supported on Windows");
9151   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9152 
9153   // __chkstk takes the number of words to allocate on the stack in R4, and
9154   // returns the stack adjustment in number of bytes in R4.  This will not
9155   // clober any other registers (other than the obvious lr).
9156   //
9157   // Although, technically, IP should be considered a register which may be
9158   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
9159   // thumb-2 environment, so there is no interworking required.  As a result, we
9160   // do not expect a veneer to be emitted by the linker, clobbering IP.
9161   //
9162   // Each module receives its own copy of __chkstk, so no import thunk is
9163   // required, again, ensuring that IP is not clobbered.
9164   //
9165   // Finally, although some linkers may theoretically provide a trampoline for
9166   // out of range calls (which is quite common due to a 32M range limitation of
9167   // branches for Thumb), we can generate the long-call version via
9168   // -mcmodel=large, alleviating the need for the trampoline which may clobber
9169   // IP.
9170 
9171   switch (TM.getCodeModel()) {
9172   case CodeModel::Small:
9173   case CodeModel::Medium:
9174   case CodeModel::Kernel:
9175     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
9176         .add(predOps(ARMCC::AL))
9177         .addExternalSymbol("__chkstk")
9178         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9179         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9180         .addReg(ARM::R12,
9181                 RegState::Implicit | RegState::Define | RegState::Dead)
9182         .addReg(ARM::CPSR,
9183                 RegState::Implicit | RegState::Define | RegState::Dead);
9184     break;
9185   case CodeModel::Large: {
9186     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9187     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
9188 
9189     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
9190       .addExternalSymbol("__chkstk");
9191     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
9192         .add(predOps(ARMCC::AL))
9193         .addReg(Reg, RegState::Kill)
9194         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9195         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9196         .addReg(ARM::R12,
9197                 RegState::Implicit | RegState::Define | RegState::Dead)
9198         .addReg(ARM::CPSR,
9199                 RegState::Implicit | RegState::Define | RegState::Dead);
9200     break;
9201   }
9202   }
9203 
9204   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
9205       .addReg(ARM::SP, RegState::Kill)
9206       .addReg(ARM::R4, RegState::Kill)
9207       .setMIFlags(MachineInstr::FrameSetup)
9208       .add(predOps(ARMCC::AL))
9209       .add(condCodeOp());
9210 
9211   MI.eraseFromParent();
9212   return MBB;
9213 }
9214 
9215 MachineBasicBlock *
EmitLowered__dbzchk(MachineInstr & MI,MachineBasicBlock * MBB) const9216 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
9217                                        MachineBasicBlock *MBB) const {
9218   DebugLoc DL = MI.getDebugLoc();
9219   MachineFunction *MF = MBB->getParent();
9220   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9221 
9222   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
9223   MF->insert(++MBB->getIterator(), ContBB);
9224   ContBB->splice(ContBB->begin(), MBB,
9225                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9226   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
9227   MBB->addSuccessor(ContBB);
9228 
9229   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9230   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
9231   MF->push_back(TrapBB);
9232   MBB->addSuccessor(TrapBB);
9233 
9234   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
9235       .addReg(MI.getOperand(0).getReg())
9236       .addImm(0)
9237       .add(predOps(ARMCC::AL));
9238   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
9239       .addMBB(TrapBB)
9240       .addImm(ARMCC::EQ)
9241       .addReg(ARM::CPSR);
9242 
9243   MI.eraseFromParent();
9244   return ContBB;
9245 }
9246 
9247 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const9248 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9249                                                MachineBasicBlock *BB) const {
9250   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9251   DebugLoc dl = MI.getDebugLoc();
9252   bool isThumb2 = Subtarget->isThumb2();
9253   switch (MI.getOpcode()) {
9254   default: {
9255     MI.print(errs());
9256     llvm_unreachable("Unexpected instr type to insert");
9257   }
9258 
9259   // Thumb1 post-indexed loads are really just single-register LDMs.
9260   case ARM::tLDR_postidx: {
9261     MachineOperand Def(MI.getOperand(1));
9262     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
9263         .add(Def)  // Rn_wb
9264         .add(MI.getOperand(2))  // Rn
9265         .add(MI.getOperand(3))  // PredImm
9266         .add(MI.getOperand(4))  // PredReg
9267         .add(MI.getOperand(0)); // Rt
9268     MI.eraseFromParent();
9269     return BB;
9270   }
9271 
9272   // The Thumb2 pre-indexed stores have the same MI operands, they just
9273   // define them differently in the .td files from the isel patterns, so
9274   // they need pseudos.
9275   case ARM::t2STR_preidx:
9276     MI.setDesc(TII->get(ARM::t2STR_PRE));
9277     return BB;
9278   case ARM::t2STRB_preidx:
9279     MI.setDesc(TII->get(ARM::t2STRB_PRE));
9280     return BB;
9281   case ARM::t2STRH_preidx:
9282     MI.setDesc(TII->get(ARM::t2STRH_PRE));
9283     return BB;
9284 
9285   case ARM::STRi_preidx:
9286   case ARM::STRBi_preidx: {
9287     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
9288                                                          : ARM::STRB_PRE_IMM;
9289     // Decode the offset.
9290     unsigned Offset = MI.getOperand(4).getImm();
9291     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
9292     Offset = ARM_AM::getAM2Offset(Offset);
9293     if (isSub)
9294       Offset = -Offset;
9295 
9296     MachineMemOperand *MMO = *MI.memoperands_begin();
9297     BuildMI(*BB, MI, dl, TII->get(NewOpc))
9298         .add(MI.getOperand(0)) // Rn_wb
9299         .add(MI.getOperand(1)) // Rt
9300         .add(MI.getOperand(2)) // Rn
9301         .addImm(Offset)        // offset (skip GPR==zero_reg)
9302         .add(MI.getOperand(5)) // pred
9303         .add(MI.getOperand(6))
9304         .addMemOperand(MMO);
9305     MI.eraseFromParent();
9306     return BB;
9307   }
9308   case ARM::STRr_preidx:
9309   case ARM::STRBr_preidx:
9310   case ARM::STRH_preidx: {
9311     unsigned NewOpc;
9312     switch (MI.getOpcode()) {
9313     default: llvm_unreachable("unexpected opcode!");
9314     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
9315     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
9316     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
9317     }
9318     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
9319     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
9320       MIB.add(MI.getOperand(i));
9321     MI.eraseFromParent();
9322     return BB;
9323   }
9324 
9325   case ARM::tMOVCCr_pseudo: {
9326     // To "insert" a SELECT_CC instruction, we actually have to insert the
9327     // diamond control-flow pattern.  The incoming instruction knows the
9328     // destination vreg to set, the condition code register to branch on, the
9329     // true/false values to select between, and a branch opcode to use.
9330     const BasicBlock *LLVM_BB = BB->getBasicBlock();
9331     MachineFunction::iterator It = ++BB->getIterator();
9332 
9333     //  thisMBB:
9334     //  ...
9335     //   TrueVal = ...
9336     //   cmpTY ccX, r1, r2
9337     //   bCC copy1MBB
9338     //   fallthrough --> copy0MBB
9339     MachineBasicBlock *thisMBB  = BB;
9340     MachineFunction *F = BB->getParent();
9341     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9342     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
9343     F->insert(It, copy0MBB);
9344     F->insert(It, sinkMBB);
9345 
9346     // Transfer the remainder of BB and its successor edges to sinkMBB.
9347     sinkMBB->splice(sinkMBB->begin(), BB,
9348                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9349     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9350 
9351     BB->addSuccessor(copy0MBB);
9352     BB->addSuccessor(sinkMBB);
9353 
9354     BuildMI(BB, dl, TII->get(ARM::tBcc))
9355         .addMBB(sinkMBB)
9356         .addImm(MI.getOperand(3).getImm())
9357         .addReg(MI.getOperand(4).getReg());
9358 
9359     //  copy0MBB:
9360     //   %FalseValue = ...
9361     //   # fallthrough to sinkMBB
9362     BB = copy0MBB;
9363 
9364     // Update machine-CFG edges
9365     BB->addSuccessor(sinkMBB);
9366 
9367     //  sinkMBB:
9368     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9369     //  ...
9370     BB = sinkMBB;
9371     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
9372         .addReg(MI.getOperand(1).getReg())
9373         .addMBB(copy0MBB)
9374         .addReg(MI.getOperand(2).getReg())
9375         .addMBB(thisMBB);
9376 
9377     MI.eraseFromParent(); // The pseudo instruction is gone now.
9378     return BB;
9379   }
9380 
9381   case ARM::BCCi64:
9382   case ARM::BCCZi64: {
9383     // If there is an unconditional branch to the other successor, remove it.
9384     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
9385 
9386     // Compare both parts that make up the double comparison separately for
9387     // equality.
9388     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
9389 
9390     unsigned LHS1 = MI.getOperand(1).getReg();
9391     unsigned LHS2 = MI.getOperand(2).getReg();
9392     if (RHSisZero) {
9393       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9394           .addReg(LHS1)
9395           .addImm(0)
9396           .add(predOps(ARMCC::AL));
9397       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9398         .addReg(LHS2).addImm(0)
9399         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9400     } else {
9401       unsigned RHS1 = MI.getOperand(3).getReg();
9402       unsigned RHS2 = MI.getOperand(4).getReg();
9403       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9404           .addReg(LHS1)
9405           .addReg(RHS1)
9406           .add(predOps(ARMCC::AL));
9407       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9408         .addReg(LHS2).addReg(RHS2)
9409         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9410     }
9411 
9412     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
9413     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
9414     if (MI.getOperand(0).getImm() == ARMCC::NE)
9415       std::swap(destMBB, exitMBB);
9416 
9417     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
9418       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
9419     if (isThumb2)
9420       BuildMI(BB, dl, TII->get(ARM::t2B))
9421           .addMBB(exitMBB)
9422           .add(predOps(ARMCC::AL));
9423     else
9424       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
9425 
9426     MI.eraseFromParent(); // The pseudo instruction is gone now.
9427     return BB;
9428   }
9429 
9430   case ARM::Int_eh_sjlj_setjmp:
9431   case ARM::Int_eh_sjlj_setjmp_nofp:
9432   case ARM::tInt_eh_sjlj_setjmp:
9433   case ARM::t2Int_eh_sjlj_setjmp:
9434   case ARM::t2Int_eh_sjlj_setjmp_nofp:
9435     return BB;
9436 
9437   case ARM::Int_eh_sjlj_setup_dispatch:
9438     EmitSjLjDispatchBlock(MI, BB);
9439     return BB;
9440 
9441   case ARM::ABS:
9442   case ARM::t2ABS: {
9443     // To insert an ABS instruction, we have to insert the
9444     // diamond control-flow pattern.  The incoming instruction knows the
9445     // source vreg to test against 0, the destination vreg to set,
9446     // the condition code register to branch on, the
9447     // true/false values to select between, and a branch opcode to use.
9448     // It transforms
9449     //     V1 = ABS V0
9450     // into
9451     //     V2 = MOVS V0
9452     //     BCC                      (branch to SinkBB if V0 >= 0)
9453     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
9454     //     SinkBB: V1 = PHI(V2, V3)
9455     const BasicBlock *LLVM_BB = BB->getBasicBlock();
9456     MachineFunction::iterator BBI = ++BB->getIterator();
9457     MachineFunction *Fn = BB->getParent();
9458     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
9459     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
9460     Fn->insert(BBI, RSBBB);
9461     Fn->insert(BBI, SinkBB);
9462 
9463     unsigned int ABSSrcReg = MI.getOperand(1).getReg();
9464     unsigned int ABSDstReg = MI.getOperand(0).getReg();
9465     bool ABSSrcKIll = MI.getOperand(1).isKill();
9466     bool isThumb2 = Subtarget->isThumb2();
9467     MachineRegisterInfo &MRI = Fn->getRegInfo();
9468     // In Thumb mode S must not be specified if source register is the SP or
9469     // PC and if destination register is the SP, so restrict register class
9470     unsigned NewRsbDstReg =
9471       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
9472 
9473     // Transfer the remainder of BB and its successor edges to sinkMBB.
9474     SinkBB->splice(SinkBB->begin(), BB,
9475                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
9476     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
9477 
9478     BB->addSuccessor(RSBBB);
9479     BB->addSuccessor(SinkBB);
9480 
9481     // fall through to SinkMBB
9482     RSBBB->addSuccessor(SinkBB);
9483 
9484     // insert a cmp at the end of BB
9485     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9486         .addReg(ABSSrcReg)
9487         .addImm(0)
9488         .add(predOps(ARMCC::AL));
9489 
9490     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
9491     BuildMI(BB, dl,
9492       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
9493       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
9494 
9495     // insert rsbri in RSBBB
9496     // Note: BCC and rsbri will be converted into predicated rsbmi
9497     // by if-conversion pass
9498     BuildMI(*RSBBB, RSBBB->begin(), dl,
9499             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
9500         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
9501         .addImm(0)
9502         .add(predOps(ARMCC::AL))
9503         .add(condCodeOp());
9504 
9505     // insert PHI in SinkBB,
9506     // reuse ABSDstReg to not change uses of ABS instruction
9507     BuildMI(*SinkBB, SinkBB->begin(), dl,
9508       TII->get(ARM::PHI), ABSDstReg)
9509       .addReg(NewRsbDstReg).addMBB(RSBBB)
9510       .addReg(ABSSrcReg).addMBB(BB);
9511 
9512     // remove ABS instruction
9513     MI.eraseFromParent();
9514 
9515     // return last added BB
9516     return SinkBB;
9517   }
9518   case ARM::COPY_STRUCT_BYVAL_I32:
9519     ++NumLoopByVals;
9520     return EmitStructByval(MI, BB);
9521   case ARM::WIN__CHKSTK:
9522     return EmitLowered__chkstk(MI, BB);
9523   case ARM::WIN__DBZCHK:
9524     return EmitLowered__dbzchk(MI, BB);
9525   }
9526 }
9527 
9528 /// Attaches vregs to MEMCPY that it will use as scratch registers
9529 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
9530 /// instead of as a custom inserter because we need the use list from the SDNode.
attachMEMCPYScratchRegs(const ARMSubtarget * Subtarget,MachineInstr & MI,const SDNode * Node)9531 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
9532                                     MachineInstr &MI, const SDNode *Node) {
9533   bool isThumb1 = Subtarget->isThumb1Only();
9534 
9535   DebugLoc DL = MI.getDebugLoc();
9536   MachineFunction *MF = MI.getParent()->getParent();
9537   MachineRegisterInfo &MRI = MF->getRegInfo();
9538   MachineInstrBuilder MIB(*MF, MI);
9539 
9540   // If the new dst/src is unused mark it as dead.
9541   if (!Node->hasAnyUseOfValue(0)) {
9542     MI.getOperand(0).setIsDead(true);
9543   }
9544   if (!Node->hasAnyUseOfValue(1)) {
9545     MI.getOperand(1).setIsDead(true);
9546   }
9547 
9548   // The MEMCPY both defines and kills the scratch registers.
9549   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
9550     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
9551                                                          : &ARM::GPRRegClass);
9552     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
9553   }
9554 }
9555 
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const9556 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9557                                                       SDNode *Node) const {
9558   if (MI.getOpcode() == ARM::MEMCPY) {
9559     attachMEMCPYScratchRegs(Subtarget, MI, Node);
9560     return;
9561   }
9562 
9563   const MCInstrDesc *MCID = &MI.getDesc();
9564   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
9565   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
9566   // operand is still set to noreg. If needed, set the optional operand's
9567   // register to CPSR, and remove the redundant implicit def.
9568   //
9569   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
9570 
9571   // Rename pseudo opcodes.
9572   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
9573   unsigned ccOutIdx;
9574   if (NewOpc) {
9575     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
9576     MCID = &TII->get(NewOpc);
9577 
9578     assert(MCID->getNumOperands() ==
9579            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
9580         && "converted opcode should be the same except for cc_out"
9581            " (and, on Thumb1, pred)");
9582 
9583     MI.setDesc(*MCID);
9584 
9585     // Add the optional cc_out operand
9586     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
9587 
9588     // On Thumb1, move all input operands to the end, then add the predicate
9589     if (Subtarget->isThumb1Only()) {
9590       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
9591         MI.addOperand(MI.getOperand(1));
9592         MI.RemoveOperand(1);
9593       }
9594 
9595       // Restore the ties
9596       for (unsigned i = MI.getNumOperands(); i--;) {
9597         const MachineOperand& op = MI.getOperand(i);
9598         if (op.isReg() && op.isUse()) {
9599           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
9600           if (DefIdx != -1)
9601             MI.tieOperands(DefIdx, i);
9602         }
9603       }
9604 
9605       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
9606       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
9607       ccOutIdx = 1;
9608     } else
9609       ccOutIdx = MCID->getNumOperands() - 1;
9610   } else
9611     ccOutIdx = MCID->getNumOperands() - 1;
9612 
9613   // Any ARM instruction that sets the 's' bit should specify an optional
9614   // "cc_out" operand in the last operand position.
9615   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
9616     assert(!NewOpc && "Optional cc_out operand required");
9617     return;
9618   }
9619   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
9620   // since we already have an optional CPSR def.
9621   bool definesCPSR = false;
9622   bool deadCPSR = false;
9623   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
9624        ++i) {
9625     const MachineOperand &MO = MI.getOperand(i);
9626     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
9627       definesCPSR = true;
9628       if (MO.isDead())
9629         deadCPSR = true;
9630       MI.RemoveOperand(i);
9631       break;
9632     }
9633   }
9634   if (!definesCPSR) {
9635     assert(!NewOpc && "Optional cc_out operand required");
9636     return;
9637   }
9638   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
9639   if (deadCPSR) {
9640     assert(!MI.getOperand(ccOutIdx).getReg() &&
9641            "expect uninitialized optional cc_out operand");
9642     // Thumb1 instructions must have the S bit even if the CPSR is dead.
9643     if (!Subtarget->isThumb1Only())
9644       return;
9645   }
9646 
9647   // If this instruction was defined with an optional CPSR def and its dag node
9648   // had a live implicit CPSR def, then activate the optional CPSR def.
9649   MachineOperand &MO = MI.getOperand(ccOutIdx);
9650   MO.setReg(ARM::CPSR);
9651   MO.setIsDef(true);
9652 }
9653 
9654 //===----------------------------------------------------------------------===//
9655 //                           ARM Optimization Hooks
9656 //===----------------------------------------------------------------------===//
9657 
9658 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)9659 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
9660   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
9661 }
9662 
9663 // Return true if N is conditionally 0 or all ones.
9664 // Detects these expressions where cc is an i1 value:
9665 //
9666 //   (select cc 0, y)   [AllOnes=0]
9667 //   (select cc y, 0)   [AllOnes=0]
9668 //   (zext cc)          [AllOnes=0]
9669 //   (sext cc)          [AllOnes=0/1]
9670 //   (select cc -1, y)  [AllOnes=1]
9671 //   (select cc y, -1)  [AllOnes=1]
9672 //
9673 // Invert is set when N is the null/all ones constant when CC is false.
9674 // OtherOp is set to the alternative value of N.
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)9675 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
9676                                        SDValue &CC, bool &Invert,
9677                                        SDValue &OtherOp,
9678                                        SelectionDAG &DAG) {
9679   switch (N->getOpcode()) {
9680   default: return false;
9681   case ISD::SELECT: {
9682     CC = N->getOperand(0);
9683     SDValue N1 = N->getOperand(1);
9684     SDValue N2 = N->getOperand(2);
9685     if (isZeroOrAllOnes(N1, AllOnes)) {
9686       Invert = false;
9687       OtherOp = N2;
9688       return true;
9689     }
9690     if (isZeroOrAllOnes(N2, AllOnes)) {
9691       Invert = true;
9692       OtherOp = N1;
9693       return true;
9694     }
9695     return false;
9696   }
9697   case ISD::ZERO_EXTEND:
9698     // (zext cc) can never be the all ones value.
9699     if (AllOnes)
9700       return false;
9701     LLVM_FALLTHROUGH;
9702   case ISD::SIGN_EXTEND: {
9703     SDLoc dl(N);
9704     EVT VT = N->getValueType(0);
9705     CC = N->getOperand(0);
9706     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
9707       return false;
9708     Invert = !AllOnes;
9709     if (AllOnes)
9710       // When looking for an AllOnes constant, N is an sext, and the 'other'
9711       // value is 0.
9712       OtherOp = DAG.getConstant(0, dl, VT);
9713     else if (N->getOpcode() == ISD::ZERO_EXTEND)
9714       // When looking for a 0 constant, N can be zext or sext.
9715       OtherOp = DAG.getConstant(1, dl, VT);
9716     else
9717       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
9718                                 VT);
9719     return true;
9720   }
9721   }
9722 }
9723 
9724 // Combine a constant select operand into its use:
9725 //
9726 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
9727 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
9728 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
9729 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
9730 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
9731 //
9732 // The transform is rejected if the select doesn't have a constant operand that
9733 // is null, or all ones when AllOnes is set.
9734 //
9735 // Also recognize sext/zext from i1:
9736 //
9737 //   (add (zext cc), x) -> (select cc (add x, 1), x)
9738 //   (add (sext cc), x) -> (select cc (add x, -1), x)
9739 //
9740 // These transformations eventually create predicated instructions.
9741 //
9742 // @param N       The node to transform.
9743 // @param Slct    The N operand that is a select.
9744 // @param OtherOp The other N operand (x above).
9745 // @param DCI     Context.
9746 // @param AllOnes Require the select constant to be all ones instead of null.
9747 // @returns The new node, or SDValue() on failure.
9748 static
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes=false)9749 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
9750                             TargetLowering::DAGCombinerInfo &DCI,
9751                             bool AllOnes = false) {
9752   SelectionDAG &DAG = DCI.DAG;
9753   EVT VT = N->getValueType(0);
9754   SDValue NonConstantVal;
9755   SDValue CCOp;
9756   bool SwapSelectOps;
9757   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
9758                                   NonConstantVal, DAG))
9759     return SDValue();
9760 
9761   // Slct is now know to be the desired identity constant when CC is true.
9762   SDValue TrueVal = OtherOp;
9763   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
9764                                  OtherOp, NonConstantVal);
9765   // Unless SwapSelectOps says CC should be false.
9766   if (SwapSelectOps)
9767     std::swap(TrueVal, FalseVal);
9768 
9769   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
9770                      CCOp, TrueVal, FalseVal);
9771 }
9772 
9773 // Attempt combineSelectAndUse on each operand of a commutative operator N.
9774 static
combineSelectAndUseCommutative(SDNode * N,bool AllOnes,TargetLowering::DAGCombinerInfo & DCI)9775 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
9776                                        TargetLowering::DAGCombinerInfo &DCI) {
9777   SDValue N0 = N->getOperand(0);
9778   SDValue N1 = N->getOperand(1);
9779   if (N0.getNode()->hasOneUse())
9780     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
9781       return Result;
9782   if (N1.getNode()->hasOneUse())
9783     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
9784       return Result;
9785   return SDValue();
9786 }
9787 
IsVUZPShuffleNode(SDNode * N)9788 static bool IsVUZPShuffleNode(SDNode *N) {
9789   // VUZP shuffle node.
9790   if (N->getOpcode() == ARMISD::VUZP)
9791     return true;
9792 
9793   // "VUZP" on i32 is an alias for VTRN.
9794   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
9795     return true;
9796 
9797   return false;
9798 }
9799 
AddCombineToVPADD(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9800 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
9801                                  TargetLowering::DAGCombinerInfo &DCI,
9802                                  const ARMSubtarget *Subtarget) {
9803   // Look for ADD(VUZP.0, VUZP.1).
9804   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
9805       N0 == N1)
9806    return SDValue();
9807 
9808   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
9809   if (!N->getValueType(0).is64BitVector())
9810     return SDValue();
9811 
9812   // Generate vpadd.
9813   SelectionDAG &DAG = DCI.DAG;
9814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9815   SDLoc dl(N);
9816   SDNode *Unzip = N0.getNode();
9817   EVT VT = N->getValueType(0);
9818 
9819   SmallVector<SDValue, 8> Ops;
9820   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
9821                                 TLI.getPointerTy(DAG.getDataLayout())));
9822   Ops.push_back(Unzip->getOperand(0));
9823   Ops.push_back(Unzip->getOperand(1));
9824 
9825   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9826 }
9827 
AddCombineVUZPToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9828 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9829                                       TargetLowering::DAGCombinerInfo &DCI,
9830                                       const ARMSubtarget *Subtarget) {
9831   // Check for two extended operands.
9832   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
9833         N1.getOpcode() == ISD::SIGN_EXTEND) &&
9834       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
9835         N1.getOpcode() == ISD::ZERO_EXTEND))
9836     return SDValue();
9837 
9838   SDValue N00 = N0.getOperand(0);
9839   SDValue N10 = N1.getOperand(0);
9840 
9841   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
9842   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
9843       N00 == N10)
9844     return SDValue();
9845 
9846   // We only recognize Q register paddl here; this can't be reached until
9847   // after type legalization.
9848   if (!N00.getValueType().is64BitVector() ||
9849       !N0.getValueType().is128BitVector())
9850     return SDValue();
9851 
9852   // Generate vpaddl.
9853   SelectionDAG &DAG = DCI.DAG;
9854   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9855   SDLoc dl(N);
9856   EVT VT = N->getValueType(0);
9857 
9858   SmallVector<SDValue, 8> Ops;
9859   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
9860   unsigned Opcode;
9861   if (N0.getOpcode() == ISD::SIGN_EXTEND)
9862     Opcode = Intrinsic::arm_neon_vpaddls;
9863   else
9864     Opcode = Intrinsic::arm_neon_vpaddlu;
9865   Ops.push_back(DAG.getConstant(Opcode, dl,
9866                                 TLI.getPointerTy(DAG.getDataLayout())));
9867   EVT ElemTy = N00.getValueType().getVectorElementType();
9868   unsigned NumElts = VT.getVectorNumElements();
9869   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
9870   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
9871                                N00.getOperand(0), N00.getOperand(1));
9872   Ops.push_back(Concat);
9873 
9874   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9875 }
9876 
9877 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
9878 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
9879 // much easier to match.
9880 static SDValue
AddCombineBUILD_VECTORToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9881 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9882                                TargetLowering::DAGCombinerInfo &DCI,
9883                                const ARMSubtarget *Subtarget) {
9884   // Only perform optimization if after legalize, and if NEON is available. We
9885   // also expected both operands to be BUILD_VECTORs.
9886   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
9887       || N0.getOpcode() != ISD::BUILD_VECTOR
9888       || N1.getOpcode() != ISD::BUILD_VECTOR)
9889     return SDValue();
9890 
9891   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
9892   EVT VT = N->getValueType(0);
9893   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
9894     return SDValue();
9895 
9896   // Check that the vector operands are of the right form.
9897   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
9898   // operands, where N is the size of the formed vector.
9899   // Each EXTRACT_VECTOR should have the same input vector and odd or even
9900   // index such that we have a pair wise add pattern.
9901 
9902   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
9903   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9904     return SDValue();
9905   SDValue Vec = N0->getOperand(0)->getOperand(0);
9906   SDNode *V = Vec.getNode();
9907   unsigned nextIndex = 0;
9908 
9909   // For each operands to the ADD which are BUILD_VECTORs,
9910   // check to see if each of their operands are an EXTRACT_VECTOR with
9911   // the same vector and appropriate index.
9912   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
9913     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
9914         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9915 
9916       SDValue ExtVec0 = N0->getOperand(i);
9917       SDValue ExtVec1 = N1->getOperand(i);
9918 
9919       // First operand is the vector, verify its the same.
9920       if (V != ExtVec0->getOperand(0).getNode() ||
9921           V != ExtVec1->getOperand(0).getNode())
9922         return SDValue();
9923 
9924       // Second is the constant, verify its correct.
9925       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
9926       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
9927 
9928       // For the constant, we want to see all the even or all the odd.
9929       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
9930           || C1->getZExtValue() != nextIndex+1)
9931         return SDValue();
9932 
9933       // Increment index.
9934       nextIndex+=2;
9935     } else
9936       return SDValue();
9937   }
9938 
9939   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
9940   // we're using the entire input vector, otherwise there's a size/legality
9941   // mismatch somewhere.
9942   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
9943       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
9944     return SDValue();
9945 
9946   // Create VPADDL node.
9947   SelectionDAG &DAG = DCI.DAG;
9948   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9949 
9950   SDLoc dl(N);
9951 
9952   // Build operand list.
9953   SmallVector<SDValue, 8> Ops;
9954   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
9955                                 TLI.getPointerTy(DAG.getDataLayout())));
9956 
9957   // Input is the vector.
9958   Ops.push_back(Vec);
9959 
9960   // Get widened type and narrowed type.
9961   MVT widenType;
9962   unsigned numElem = VT.getVectorNumElements();
9963 
9964   EVT inputLaneType = Vec.getValueType().getVectorElementType();
9965   switch (inputLaneType.getSimpleVT().SimpleTy) {
9966     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
9967     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
9968     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
9969     default:
9970       llvm_unreachable("Invalid vector element type for padd optimization.");
9971   }
9972 
9973   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
9974   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
9975   return DAG.getNode(ExtOp, dl, VT, tmp);
9976 }
9977 
findMUL_LOHI(SDValue V)9978 static SDValue findMUL_LOHI(SDValue V) {
9979   if (V->getOpcode() == ISD::UMUL_LOHI ||
9980       V->getOpcode() == ISD::SMUL_LOHI)
9981     return V;
9982   return SDValue();
9983 }
9984 
AddCombineTo64BitSMLAL16(SDNode * AddcNode,SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9985 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
9986                                         TargetLowering::DAGCombinerInfo &DCI,
9987                                         const ARMSubtarget *Subtarget) {
9988   if (Subtarget->isThumb()) {
9989     if (!Subtarget->hasDSP())
9990       return SDValue();
9991   } else if (!Subtarget->hasV5TEOps())
9992     return SDValue();
9993 
9994   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
9995   // accumulates the product into a 64-bit value. The 16-bit values will
9996   // be sign extended somehow or SRA'd into 32-bit values
9997   // (addc (adde (mul 16bit, 16bit), lo), hi)
9998   SDValue Mul = AddcNode->getOperand(0);
9999   SDValue Lo = AddcNode->getOperand(1);
10000   if (Mul.getOpcode() != ISD::MUL) {
10001     Lo = AddcNode->getOperand(0);
10002     Mul = AddcNode->getOperand(1);
10003     if (Mul.getOpcode() != ISD::MUL)
10004       return SDValue();
10005   }
10006 
10007   SDValue SRA = AddeNode->getOperand(0);
10008   SDValue Hi = AddeNode->getOperand(1);
10009   if (SRA.getOpcode() != ISD::SRA) {
10010     SRA = AddeNode->getOperand(1);
10011     Hi = AddeNode->getOperand(0);
10012     if (SRA.getOpcode() != ISD::SRA)
10013       return SDValue();
10014   }
10015   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
10016     if (Const->getZExtValue() != 31)
10017       return SDValue();
10018   } else
10019     return SDValue();
10020 
10021   if (SRA.getOperand(0) != Mul)
10022     return SDValue();
10023 
10024   SelectionDAG &DAG = DCI.DAG;
10025   SDLoc dl(AddcNode);
10026   unsigned Opcode = 0;
10027   SDValue Op0;
10028   SDValue Op1;
10029 
10030   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
10031     Opcode = ARMISD::SMLALBB;
10032     Op0 = Mul.getOperand(0);
10033     Op1 = Mul.getOperand(1);
10034   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
10035     Opcode = ARMISD::SMLALBT;
10036     Op0 = Mul.getOperand(0);
10037     Op1 = Mul.getOperand(1).getOperand(0);
10038   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
10039     Opcode = ARMISD::SMLALTB;
10040     Op0 = Mul.getOperand(0).getOperand(0);
10041     Op1 = Mul.getOperand(1);
10042   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
10043     Opcode = ARMISD::SMLALTT;
10044     Op0 = Mul->getOperand(0).getOperand(0);
10045     Op1 = Mul->getOperand(1).getOperand(0);
10046   }
10047 
10048   if (!Op0 || !Op1)
10049     return SDValue();
10050 
10051   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
10052                               Op0, Op1, Lo, Hi);
10053   // Replace the ADDs' nodes uses by the MLA node's values.
10054   SDValue HiMLALResult(SMLAL.getNode(), 1);
10055   SDValue LoMLALResult(SMLAL.getNode(), 0);
10056 
10057   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
10058   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
10059 
10060   // Return original node to notify the driver to stop replacing.
10061   SDValue resNode(AddcNode, 0);
10062   return resNode;
10063 }
10064 
AddCombineTo64bitMLAL(SDNode * AddeSubeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10065 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
10066                                      TargetLowering::DAGCombinerInfo &DCI,
10067                                      const ARMSubtarget *Subtarget) {
10068   // Look for multiply add opportunities.
10069   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10070   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10071   // a glue link from the first add to the second add.
10072   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10073   // a S/UMLAL instruction.
10074   //                  UMUL_LOHI
10075   //                 / :lo    \ :hi
10076   //                V          \          [no multiline comment]
10077   //    loAdd ->  ADDC         |
10078   //                 \ :carry /
10079   //                  V      V
10080   //                    ADDE   <- hiAdd
10081   //
10082   // In the special case where only the higher part of a signed result is used
10083   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10084   // a constant with the exact value of 0x80000000, we recognize we are dealing
10085   // with a "rounded multiply and add" (or subtract) and transform it into
10086   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10087 
10088   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
10089           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
10090          "Expect an ADDE or SUBE");
10091 
10092   assert(AddeSubeNode->getNumOperands() == 3 &&
10093          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
10094          "ADDE node has the wrong inputs");
10095 
10096   // Check that we are chained to the right ADDC or SUBC node.
10097   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
10098   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10099        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
10100       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
10101        AddcSubcNode->getOpcode() != ARMISD::SUBC))
10102     return SDValue();
10103 
10104   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
10105   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
10106 
10107   // Check if the two operands are from the same mul_lohi node.
10108   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
10109     return SDValue();
10110 
10111   assert(AddcSubcNode->getNumValues() == 2 &&
10112          AddcSubcNode->getValueType(0) == MVT::i32 &&
10113          "Expect ADDC with two result values. First: i32");
10114 
10115   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10116   // maybe a SMLAL which multiplies two 16-bit values.
10117   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10118       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
10119       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
10120       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
10121       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
10122     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
10123 
10124   // Check for the triangle shape.
10125   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
10126   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
10127 
10128   // Make sure that the ADDE/SUBE operands are not coming from the same node.
10129   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
10130     return SDValue();
10131 
10132   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10133   bool IsLeftOperandMUL = false;
10134   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
10135   if (MULOp == SDValue())
10136     MULOp = findMUL_LOHI(AddeSubeOp1);
10137   else
10138     IsLeftOperandMUL = true;
10139   if (MULOp == SDValue())
10140     return SDValue();
10141 
10142   // Figure out the right opcode.
10143   unsigned Opc = MULOp->getOpcode();
10144   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
10145 
10146   // Figure out the high and low input values to the MLAL node.
10147   SDValue *HiAddSub = nullptr;
10148   SDValue *LoMul = nullptr;
10149   SDValue *LowAddSub = nullptr;
10150 
10151   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10152   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
10153     return SDValue();
10154 
10155   if (IsLeftOperandMUL)
10156     HiAddSub = &AddeSubeOp1;
10157   else
10158     HiAddSub = &AddeSubeOp0;
10159 
10160   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10161   // whose low result is fed to the ADDC/SUBC we are checking.
10162 
10163   if (AddcSubcOp0 == MULOp.getValue(0)) {
10164     LoMul = &AddcSubcOp0;
10165     LowAddSub = &AddcSubcOp1;
10166   }
10167   if (AddcSubcOp1 == MULOp.getValue(0)) {
10168     LoMul = &AddcSubcOp1;
10169     LowAddSub = &AddcSubcOp0;
10170   }
10171 
10172   if (!LoMul)
10173     return SDValue();
10174 
10175   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10176   // the replacement below will create a cycle.
10177   if (AddcSubcNode == HiAddSub->getNode() ||
10178       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
10179     return SDValue();
10180 
10181   // Create the merged node.
10182   SelectionDAG &DAG = DCI.DAG;
10183 
10184   // Start building operand list.
10185   SmallVector<SDValue, 8> Ops;
10186   Ops.push_back(LoMul->getOperand(0));
10187   Ops.push_back(LoMul->getOperand(1));
10188 
10189   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
10190   // the case, we must be doing signed multiplication and only use the higher
10191   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10192   // addition or subtraction with the value of 0x800000.
10193   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
10194       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
10195       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
10196       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
10197           0x80000000) {
10198     Ops.push_back(*HiAddSub);
10199     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
10200       FinalOpc = ARMISD::SMMLSR;
10201     } else {
10202       FinalOpc = ARMISD::SMMLAR;
10203     }
10204     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
10205     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
10206 
10207     return SDValue(AddeSubeNode, 0);
10208   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
10209     // SMMLS is generated during instruction selection and the rest of this
10210     // function can not handle the case where AddcSubcNode is a SUBC.
10211     return SDValue();
10212 
10213   // Finish building the operand list for {U/S}MLAL
10214   Ops.push_back(*LowAddSub);
10215   Ops.push_back(*HiAddSub);
10216 
10217   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
10218                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
10219 
10220   // Replace the ADDs' nodes uses by the MLA node's values.
10221   SDValue HiMLALResult(MLALNode.getNode(), 1);
10222   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
10223 
10224   SDValue LoMLALResult(MLALNode.getNode(), 0);
10225   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
10226 
10227   // Return original node to notify the driver to stop replacing.
10228   return SDValue(AddeSubeNode, 0);
10229 }
10230 
AddCombineTo64bitUMAAL(SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10231 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
10232                                       TargetLowering::DAGCombinerInfo &DCI,
10233                                       const ARMSubtarget *Subtarget) {
10234   // UMAAL is similar to UMLAL except that it adds two unsigned values.
10235   // While trying to combine for the other MLAL nodes, first search for the
10236   // chance to use UMAAL. Check if Addc uses a node which has already
10237   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
10238   // as the addend, and it's handled in PerformUMLALCombine.
10239 
10240   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10241     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10242 
10243   // Check that we have a glued ADDC node.
10244   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
10245   if (AddcNode->getOpcode() != ARMISD::ADDC)
10246     return SDValue();
10247 
10248   // Find the converted UMAAL or quit if it doesn't exist.
10249   SDNode *UmlalNode = nullptr;
10250   SDValue AddHi;
10251   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
10252     UmlalNode = AddcNode->getOperand(0).getNode();
10253     AddHi = AddcNode->getOperand(1);
10254   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
10255     UmlalNode = AddcNode->getOperand(1).getNode();
10256     AddHi = AddcNode->getOperand(0);
10257   } else {
10258     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10259   }
10260 
10261   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
10262   // the ADDC as well as Zero.
10263   if (!isNullConstant(UmlalNode->getOperand(3)))
10264     return SDValue();
10265 
10266   if ((isNullConstant(AddeNode->getOperand(0)) &&
10267        AddeNode->getOperand(1).getNode() == UmlalNode) ||
10268       (AddeNode->getOperand(0).getNode() == UmlalNode &&
10269        isNullConstant(AddeNode->getOperand(1)))) {
10270     SelectionDAG &DAG = DCI.DAG;
10271     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
10272                       UmlalNode->getOperand(2), AddHi };
10273     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
10274                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
10275 
10276     // Replace the ADDs' nodes uses by the UMAAL node's values.
10277     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
10278     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
10279 
10280     // Return original node to notify the driver to stop replacing.
10281     return SDValue(AddeNode, 0);
10282   }
10283   return SDValue();
10284 }
10285 
PerformUMLALCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)10286 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
10287                                    const ARMSubtarget *Subtarget) {
10288   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10289     return SDValue();
10290 
10291   // Check that we have a pair of ADDC and ADDE as operands.
10292   // Both addends of the ADDE must be zero.
10293   SDNode* AddcNode = N->getOperand(2).getNode();
10294   SDNode* AddeNode = N->getOperand(3).getNode();
10295   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
10296       (AddeNode->getOpcode() == ARMISD::ADDE) &&
10297       isNullConstant(AddeNode->getOperand(0)) &&
10298       isNullConstant(AddeNode->getOperand(1)) &&
10299       (AddeNode->getOperand(2).getNode() == AddcNode))
10300     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
10301                        DAG.getVTList(MVT::i32, MVT::i32),
10302                        {N->getOperand(0), N->getOperand(1),
10303                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
10304   else
10305     return SDValue();
10306 }
10307 
PerformAddcSubcCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10308 static SDValue PerformAddcSubcCombine(SDNode *N,
10309                                       TargetLowering::DAGCombinerInfo &DCI,
10310                                       const ARMSubtarget *Subtarget) {
10311   SelectionDAG &DAG(DCI.DAG);
10312 
10313   if (N->getOpcode() == ARMISD::SUBC) {
10314     // (SUBC (ADDE 0, 0, C), 1) -> C
10315     SDValue LHS = N->getOperand(0);
10316     SDValue RHS = N->getOperand(1);
10317     if (LHS->getOpcode() == ARMISD::ADDE &&
10318         isNullConstant(LHS->getOperand(0)) &&
10319         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
10320       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
10321     }
10322   }
10323 
10324   if (Subtarget->isThumb1Only()) {
10325     SDValue RHS = N->getOperand(1);
10326     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10327       int32_t imm = C->getSExtValue();
10328       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
10329         SDLoc DL(N);
10330         RHS = DAG.getConstant(-imm, DL, MVT::i32);
10331         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
10332                                                            : ARMISD::ADDC;
10333         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
10334       }
10335     }
10336   }
10337 
10338   return SDValue();
10339 }
10340 
PerformAddeSubeCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10341 static SDValue PerformAddeSubeCombine(SDNode *N,
10342                                       TargetLowering::DAGCombinerInfo &DCI,
10343                                       const ARMSubtarget *Subtarget) {
10344   if (Subtarget->isThumb1Only()) {
10345     SelectionDAG &DAG = DCI.DAG;
10346     SDValue RHS = N->getOperand(1);
10347     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10348       int64_t imm = C->getSExtValue();
10349       if (imm < 0) {
10350         SDLoc DL(N);
10351 
10352         // The with-carry-in form matches bitwise not instead of the negation.
10353         // Effectively, the inverse interpretation of the carry flag already
10354         // accounts for part of the negation.
10355         RHS = DAG.getConstant(~imm, DL, MVT::i32);
10356 
10357         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
10358                                                            : ARMISD::ADDE;
10359         return DAG.getNode(Opcode, DL, N->getVTList(),
10360                            N->getOperand(0), RHS, N->getOperand(2));
10361       }
10362     }
10363   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
10364     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
10365   }
10366   return SDValue();
10367 }
10368 
10369 /// PerformADDECombine - Target-specific dag combine transform from
10370 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
10371 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
PerformADDECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10372 static SDValue PerformADDECombine(SDNode *N,
10373                                   TargetLowering::DAGCombinerInfo &DCI,
10374                                   const ARMSubtarget *Subtarget) {
10375   // Only ARM and Thumb2 support UMLAL/SMLAL.
10376   if (Subtarget->isThumb1Only())
10377     return PerformAddeSubeCombine(N, DCI, Subtarget);
10378 
10379   // Only perform the checks after legalize when the pattern is available.
10380   if (DCI.isBeforeLegalize()) return SDValue();
10381 
10382   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
10383 }
10384 
10385 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
10386 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
10387 /// called with the default operands, and if that fails, with commuted
10388 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10389 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
10390                                           TargetLowering::DAGCombinerInfo &DCI,
10391                                           const ARMSubtarget *Subtarget){
10392   // Attempt to create vpadd for this add.
10393   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
10394     return Result;
10395 
10396   // Attempt to create vpaddl for this add.
10397   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
10398     return Result;
10399   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
10400                                                       Subtarget))
10401     return Result;
10402 
10403   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10404   if (N0.getNode()->hasOneUse())
10405     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
10406       return Result;
10407   return SDValue();
10408 }
10409 
PerformSHLSimplify(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)10410 static SDValue PerformSHLSimplify(SDNode *N,
10411                                 TargetLowering::DAGCombinerInfo &DCI,
10412                                 const ARMSubtarget *ST) {
10413   // Allow the generic combiner to identify potential bswaps.
10414   if (DCI.isBeforeLegalize())
10415     return SDValue();
10416 
10417   // DAG combiner will fold:
10418   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
10419   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
10420   // Other code patterns that can be also be modified have the following form:
10421   // b + ((a << 1) | 510)
10422   // b + ((a << 1) & 510)
10423   // b + ((a << 1) ^ 510)
10424   // b + ((a << 1) + 510)
10425 
10426   // Many instructions can  perform the shift for free, but it requires both
10427   // the operands to be registers. If c1 << c2 is too large, a mov immediate
10428   // instruction will needed. So, unfold back to the original pattern if:
10429   // - if c1 and c2 are small enough that they don't require mov imms.
10430   // - the user(s) of the node can perform an shl
10431 
10432   // No shifted operands for 16-bit instructions.
10433   if (ST->isThumb() && ST->isThumb1Only())
10434     return SDValue();
10435 
10436   // Check that all the users could perform the shl themselves.
10437   for (auto U : N->uses()) {
10438     switch(U->getOpcode()) {
10439     default:
10440       return SDValue();
10441     case ISD::SUB:
10442     case ISD::ADD:
10443     case ISD::AND:
10444     case ISD::OR:
10445     case ISD::XOR:
10446     case ISD::SETCC:
10447     case ARMISD::CMP:
10448       // Check that the user isn't already using a constant because there
10449       // aren't any instructions that support an immediate operand and a
10450       // shifted operand.
10451       if (isa<ConstantSDNode>(U->getOperand(0)) ||
10452           isa<ConstantSDNode>(U->getOperand(1)))
10453         return SDValue();
10454 
10455       // Check that it's not already using a shift.
10456       if (U->getOperand(0).getOpcode() == ISD::SHL ||
10457           U->getOperand(1).getOpcode() == ISD::SHL)
10458         return SDValue();
10459       break;
10460     }
10461   }
10462 
10463   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
10464       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
10465     return SDValue();
10466 
10467   if (N->getOperand(0).getOpcode() != ISD::SHL)
10468     return SDValue();
10469 
10470   SDValue SHL = N->getOperand(0);
10471 
10472   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
10473   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
10474   if (!C1ShlC2 || !C2)
10475     return SDValue();
10476 
10477   APInt C2Int = C2->getAPIntValue();
10478   APInt C1Int = C1ShlC2->getAPIntValue();
10479 
10480   // Check that performing a lshr will not lose any information.
10481   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
10482                                      C2Int.getBitWidth() - C2->getZExtValue());
10483   if ((C1Int & Mask) != C1Int)
10484     return SDValue();
10485 
10486   // Shift the first constant.
10487   C1Int.lshrInPlace(C2Int);
10488 
10489   // The immediates are encoded as an 8-bit value that can be rotated.
10490   auto LargeImm = [](const APInt &Imm) {
10491     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
10492     return Imm.getBitWidth() - Zeros > 8;
10493   };
10494 
10495   if (LargeImm(C1Int) || LargeImm(C2Int))
10496     return SDValue();
10497 
10498   SelectionDAG &DAG = DCI.DAG;
10499   SDLoc dl(N);
10500   SDValue X = SHL.getOperand(0);
10501   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
10502                               DAG.getConstant(C1Int, dl, MVT::i32));
10503   // Shift left to compensate for the lshr of C1Int.
10504   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
10505 
10506   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
10507              SHL.dump(); N->dump());
10508   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
10509 
10510   DAG.ReplaceAllUsesWith(SDValue(N, 0), Res);
10511   return SDValue(N, 0);
10512 }
10513 
10514 
10515 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
10516 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10517 static SDValue PerformADDCombine(SDNode *N,
10518                                  TargetLowering::DAGCombinerInfo &DCI,
10519                                  const ARMSubtarget *Subtarget) {
10520   SDValue N0 = N->getOperand(0);
10521   SDValue N1 = N->getOperand(1);
10522 
10523   // Only works one way, because it needs an immediate operand.
10524   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10525     return Result;
10526 
10527   // First try with the default operand order.
10528   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
10529     return Result;
10530 
10531   // If that didn't work, try again with the operands commuted.
10532   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
10533 }
10534 
10535 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
10536 ///
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)10537 static SDValue PerformSUBCombine(SDNode *N,
10538                                  TargetLowering::DAGCombinerInfo &DCI) {
10539   SDValue N0 = N->getOperand(0);
10540   SDValue N1 = N->getOperand(1);
10541 
10542   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10543   if (N1.getNode()->hasOneUse())
10544     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
10545       return Result;
10546 
10547   return SDValue();
10548 }
10549 
10550 /// PerformVMULCombine
10551 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
10552 /// special multiplier accumulator forwarding.
10553 ///   vmul d3, d0, d2
10554 ///   vmla d3, d1, d2
10555 /// is faster than
10556 ///   vadd d3, d0, d1
10557 ///   vmul d3, d3, d2
10558 //  However, for (A + B) * (A + B),
10559 //    vadd d2, d0, d1
10560 //    vmul d3, d0, d2
10561 //    vmla d3, d1, d2
10562 //  is slower than
10563 //    vadd d2, d0, d1
10564 //    vmul d3, d2, d2
PerformVMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10565 static SDValue PerformVMULCombine(SDNode *N,
10566                                   TargetLowering::DAGCombinerInfo &DCI,
10567                                   const ARMSubtarget *Subtarget) {
10568   if (!Subtarget->hasVMLxForwarding())
10569     return SDValue();
10570 
10571   SelectionDAG &DAG = DCI.DAG;
10572   SDValue N0 = N->getOperand(0);
10573   SDValue N1 = N->getOperand(1);
10574   unsigned Opcode = N0.getOpcode();
10575   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10576       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
10577     Opcode = N1.getOpcode();
10578     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10579         Opcode != ISD::FADD && Opcode != ISD::FSUB)
10580       return SDValue();
10581     std::swap(N0, N1);
10582   }
10583 
10584   if (N0 == N1)
10585     return SDValue();
10586 
10587   EVT VT = N->getValueType(0);
10588   SDLoc DL(N);
10589   SDValue N00 = N0->getOperand(0);
10590   SDValue N01 = N0->getOperand(1);
10591   return DAG.getNode(Opcode, DL, VT,
10592                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
10593                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
10594 }
10595 
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10596 static SDValue PerformMULCombine(SDNode *N,
10597                                  TargetLowering::DAGCombinerInfo &DCI,
10598                                  const ARMSubtarget *Subtarget) {
10599   SelectionDAG &DAG = DCI.DAG;
10600 
10601   if (Subtarget->isThumb1Only())
10602     return SDValue();
10603 
10604   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10605     return SDValue();
10606 
10607   EVT VT = N->getValueType(0);
10608   if (VT.is64BitVector() || VT.is128BitVector())
10609     return PerformVMULCombine(N, DCI, Subtarget);
10610   if (VT != MVT::i32)
10611     return SDValue();
10612 
10613   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10614   if (!C)
10615     return SDValue();
10616 
10617   int64_t MulAmt = C->getSExtValue();
10618   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
10619 
10620   ShiftAmt = ShiftAmt & (32 - 1);
10621   SDValue V = N->getOperand(0);
10622   SDLoc DL(N);
10623 
10624   SDValue Res;
10625   MulAmt >>= ShiftAmt;
10626 
10627   if (MulAmt >= 0) {
10628     if (isPowerOf2_32(MulAmt - 1)) {
10629       // (mul x, 2^N + 1) => (add (shl x, N), x)
10630       Res = DAG.getNode(ISD::ADD, DL, VT,
10631                         V,
10632                         DAG.getNode(ISD::SHL, DL, VT,
10633                                     V,
10634                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
10635                                                     MVT::i32)));
10636     } else if (isPowerOf2_32(MulAmt + 1)) {
10637       // (mul x, 2^N - 1) => (sub (shl x, N), x)
10638       Res = DAG.getNode(ISD::SUB, DL, VT,
10639                         DAG.getNode(ISD::SHL, DL, VT,
10640                                     V,
10641                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
10642                                                     MVT::i32)),
10643                         V);
10644     } else
10645       return SDValue();
10646   } else {
10647     uint64_t MulAmtAbs = -MulAmt;
10648     if (isPowerOf2_32(MulAmtAbs + 1)) {
10649       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
10650       Res = DAG.getNode(ISD::SUB, DL, VT,
10651                         V,
10652                         DAG.getNode(ISD::SHL, DL, VT,
10653                                     V,
10654                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
10655                                                     MVT::i32)));
10656     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
10657       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
10658       Res = DAG.getNode(ISD::ADD, DL, VT,
10659                         V,
10660                         DAG.getNode(ISD::SHL, DL, VT,
10661                                     V,
10662                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
10663                                                     MVT::i32)));
10664       Res = DAG.getNode(ISD::SUB, DL, VT,
10665                         DAG.getConstant(0, DL, MVT::i32), Res);
10666     } else
10667       return SDValue();
10668   }
10669 
10670   if (ShiftAmt != 0)
10671     Res = DAG.getNode(ISD::SHL, DL, VT,
10672                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
10673 
10674   // Do not add new nodes to DAG combiner worklist.
10675   DCI.CombineTo(N, Res, false);
10676   return SDValue();
10677 }
10678 
CombineANDShift(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10679 static SDValue CombineANDShift(SDNode *N,
10680                                TargetLowering::DAGCombinerInfo &DCI,
10681                                const ARMSubtarget *Subtarget) {
10682   // Allow DAGCombine to pattern-match before we touch the canonical form.
10683   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10684     return SDValue();
10685 
10686   if (N->getValueType(0) != MVT::i32)
10687     return SDValue();
10688 
10689   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10690   if (!N1C)
10691     return SDValue();
10692 
10693   uint32_t C1 = (uint32_t)N1C->getZExtValue();
10694   // Don't transform uxtb/uxth.
10695   if (C1 == 255 || C1 == 65535)
10696     return SDValue();
10697 
10698   SDNode *N0 = N->getOperand(0).getNode();
10699   if (!N0->hasOneUse())
10700     return SDValue();
10701 
10702   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
10703     return SDValue();
10704 
10705   bool LeftShift = N0->getOpcode() == ISD::SHL;
10706 
10707   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10708   if (!N01C)
10709     return SDValue();
10710 
10711   uint32_t C2 = (uint32_t)N01C->getZExtValue();
10712   if (!C2 || C2 >= 32)
10713     return SDValue();
10714 
10715   SelectionDAG &DAG = DCI.DAG;
10716   SDLoc DL(N);
10717 
10718   // We have a pattern of the form "(and (shl x, c2) c1)" or
10719   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
10720   // transform to a pair of shifts, to save materializing c1.
10721 
10722   // First pattern: right shift, and c1+1 is a power of two.
10723   // FIXME: Also check reversed pattern (left shift, and ~c1+1 is a power
10724   // of two).
10725   // FIXME: Use demanded bits?
10726   if (!LeftShift && isMask_32(C1)) {
10727     uint32_t C3 = countLeadingZeros(C1);
10728     if (C2 < C3) {
10729       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
10730                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
10731       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
10732                          DAG.getConstant(C3, DL, MVT::i32));
10733     }
10734   }
10735 
10736   // Second pattern: left shift, and (c1>>c2)+1 is a power of two.
10737   // FIXME: Also check reversed pattern (right shift, and ~(c1<<c2)+1
10738   // is a power of two).
10739   // FIXME: Use demanded bits?
10740   if (LeftShift && isShiftedMask_32(C1)) {
10741     uint32_t C3 = countLeadingZeros(C1);
10742     if (C2 + C3 < 32 && C1 == ((-1U << (C2 + C3)) >> C3)) {
10743       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
10744                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
10745       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
10746                         DAG.getConstant(C3, DL, MVT::i32));
10747     }
10748   }
10749 
10750   // FIXME: Transform "(and (shl x, c2) c1)" ->
10751   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
10752   // c1.
10753   return SDValue();
10754 }
10755 
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10756 static SDValue PerformANDCombine(SDNode *N,
10757                                  TargetLowering::DAGCombinerInfo &DCI,
10758                                  const ARMSubtarget *Subtarget) {
10759   // Attempt to use immediate-form VBIC
10760   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
10761   SDLoc dl(N);
10762   EVT VT = N->getValueType(0);
10763   SelectionDAG &DAG = DCI.DAG;
10764 
10765   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10766     return SDValue();
10767 
10768   APInt SplatBits, SplatUndef;
10769   unsigned SplatBitSize;
10770   bool HasAnyUndefs;
10771   if (BVN &&
10772       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
10773     if (SplatBitSize <= 64) {
10774       EVT VbicVT;
10775       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
10776                                       SplatUndef.getZExtValue(), SplatBitSize,
10777                                       DAG, dl, VbicVT, VT.is128BitVector(),
10778                                       OtherModImm);
10779       if (Val.getNode()) {
10780         SDValue Input =
10781           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
10782         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
10783         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
10784       }
10785     }
10786   }
10787 
10788   if (!Subtarget->isThumb1Only()) {
10789     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
10790     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
10791       return Result;
10792 
10793     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10794       return Result;
10795   }
10796 
10797   if (Subtarget->isThumb1Only())
10798     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
10799       return Result;
10800 
10801   return SDValue();
10802 }
10803 
10804 // Try combining OR nodes to SMULWB, SMULWT.
PerformORCombineToSMULWBT(SDNode * OR,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10805 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
10806                                          TargetLowering::DAGCombinerInfo &DCI,
10807                                          const ARMSubtarget *Subtarget) {
10808   if (!Subtarget->hasV6Ops() ||
10809       (Subtarget->isThumb() &&
10810        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
10811     return SDValue();
10812 
10813   SDValue SRL = OR->getOperand(0);
10814   SDValue SHL = OR->getOperand(1);
10815 
10816   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
10817     SRL = OR->getOperand(1);
10818     SHL = OR->getOperand(0);
10819   }
10820   if (!isSRL16(SRL) || !isSHL16(SHL))
10821     return SDValue();
10822 
10823   // The first operands to the shifts need to be the two results from the
10824   // same smul_lohi node.
10825   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
10826        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
10827     return SDValue();
10828 
10829   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
10830   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
10831       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
10832     return SDValue();
10833 
10834   // Now we have:
10835   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
10836   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
10837   // For SMUWB the 16-bit value will signed extended somehow.
10838   // For SMULWT only the SRA is required.
10839   // Check both sides of SMUL_LOHI
10840   SDValue OpS16 = SMULLOHI->getOperand(0);
10841   SDValue OpS32 = SMULLOHI->getOperand(1);
10842 
10843   SelectionDAG &DAG = DCI.DAG;
10844   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
10845     OpS16 = OpS32;
10846     OpS32 = SMULLOHI->getOperand(0);
10847   }
10848 
10849   SDLoc dl(OR);
10850   unsigned Opcode = 0;
10851   if (isS16(OpS16, DAG))
10852     Opcode = ARMISD::SMULWB;
10853   else if (isSRA16(OpS16)) {
10854     Opcode = ARMISD::SMULWT;
10855     OpS16 = OpS16->getOperand(0);
10856   }
10857   else
10858     return SDValue();
10859 
10860   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
10861   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
10862   return SDValue(OR, 0);
10863 }
10864 
PerformORCombineToBFI(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10865 static SDValue PerformORCombineToBFI(SDNode *N,
10866                                      TargetLowering::DAGCombinerInfo &DCI,
10867                                      const ARMSubtarget *Subtarget) {
10868   // BFI is only available on V6T2+
10869   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
10870     return SDValue();
10871 
10872   EVT VT = N->getValueType(0);
10873   SDValue N0 = N->getOperand(0);
10874   SDValue N1 = N->getOperand(1);
10875   SelectionDAG &DAG = DCI.DAG;
10876   SDLoc DL(N);
10877   // 1) or (and A, mask), val => ARMbfi A, val, mask
10878   //      iff (val & mask) == val
10879   //
10880   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
10881   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
10882   //          && mask == ~mask2
10883   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
10884   //          && ~mask == mask2
10885   //  (i.e., copy a bitfield value into another bitfield of the same width)
10886 
10887   if (VT != MVT::i32)
10888     return SDValue();
10889 
10890   SDValue N00 = N0.getOperand(0);
10891 
10892   // The value and the mask need to be constants so we can verify this is
10893   // actually a bitfield set. If the mask is 0xffff, we can do better
10894   // via a movt instruction, so don't use BFI in that case.
10895   SDValue MaskOp = N0.getOperand(1);
10896   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
10897   if (!MaskC)
10898     return SDValue();
10899   unsigned Mask = MaskC->getZExtValue();
10900   if (Mask == 0xffff)
10901     return SDValue();
10902   SDValue Res;
10903   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
10904   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10905   if (N1C) {
10906     unsigned Val = N1C->getZExtValue();
10907     if ((Val & ~Mask) != Val)
10908       return SDValue();
10909 
10910     if (ARM::isBitFieldInvertedMask(Mask)) {
10911       Val >>= countTrailingZeros(~Mask);
10912 
10913       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
10914                         DAG.getConstant(Val, DL, MVT::i32),
10915                         DAG.getConstant(Mask, DL, MVT::i32));
10916 
10917       DCI.CombineTo(N, Res, false);
10918       // Return value from the original node to inform the combiner than N is
10919       // now dead.
10920       return SDValue(N, 0);
10921     }
10922   } else if (N1.getOpcode() == ISD::AND) {
10923     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
10924     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
10925     if (!N11C)
10926       return SDValue();
10927     unsigned Mask2 = N11C->getZExtValue();
10928 
10929     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
10930     // as is to match.
10931     if (ARM::isBitFieldInvertedMask(Mask) &&
10932         (Mask == ~Mask2)) {
10933       // The pack halfword instruction works better for masks that fit it,
10934       // so use that when it's available.
10935       if (Subtarget->hasDSP() &&
10936           (Mask == 0xffff || Mask == 0xffff0000))
10937         return SDValue();
10938       // 2a
10939       unsigned amt = countTrailingZeros(Mask2);
10940       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
10941                         DAG.getConstant(amt, DL, MVT::i32));
10942       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
10943                         DAG.getConstant(Mask, DL, MVT::i32));
10944       DCI.CombineTo(N, Res, false);
10945       // Return value from the original node to inform the combiner than N is
10946       // now dead.
10947       return SDValue(N, 0);
10948     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
10949                (~Mask == Mask2)) {
10950       // The pack halfword instruction works better for masks that fit it,
10951       // so use that when it's available.
10952       if (Subtarget->hasDSP() &&
10953           (Mask2 == 0xffff || Mask2 == 0xffff0000))
10954         return SDValue();
10955       // 2b
10956       unsigned lsb = countTrailingZeros(Mask);
10957       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
10958                         DAG.getConstant(lsb, DL, MVT::i32));
10959       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
10960                         DAG.getConstant(Mask2, DL, MVT::i32));
10961       DCI.CombineTo(N, Res, false);
10962       // Return value from the original node to inform the combiner than N is
10963       // now dead.
10964       return SDValue(N, 0);
10965     }
10966   }
10967 
10968   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
10969       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
10970       ARM::isBitFieldInvertedMask(~Mask)) {
10971     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
10972     // where lsb(mask) == #shamt and masked bits of B are known zero.
10973     SDValue ShAmt = N00.getOperand(1);
10974     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10975     unsigned LSB = countTrailingZeros(Mask);
10976     if (ShAmtC != LSB)
10977       return SDValue();
10978 
10979     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
10980                       DAG.getConstant(~Mask, DL, MVT::i32));
10981 
10982     DCI.CombineTo(N, Res, false);
10983     // Return value from the original node to inform the combiner than N is
10984     // now dead.
10985     return SDValue(N, 0);
10986   }
10987 
10988   return SDValue();
10989 }
10990 
10991 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
PerformORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)10992 static SDValue PerformORCombine(SDNode *N,
10993                                 TargetLowering::DAGCombinerInfo &DCI,
10994                                 const ARMSubtarget *Subtarget) {
10995   // Attempt to use immediate-form VORR
10996   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
10997   SDLoc dl(N);
10998   EVT VT = N->getValueType(0);
10999   SelectionDAG &DAG = DCI.DAG;
11000 
11001   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11002     return SDValue();
11003 
11004   APInt SplatBits, SplatUndef;
11005   unsigned SplatBitSize;
11006   bool HasAnyUndefs;
11007   if (BVN && Subtarget->hasNEON() &&
11008       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
11009     if (SplatBitSize <= 64) {
11010       EVT VorrVT;
11011       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
11012                                       SplatUndef.getZExtValue(), SplatBitSize,
11013                                       DAG, dl, VorrVT, VT.is128BitVector(),
11014                                       OtherModImm);
11015       if (Val.getNode()) {
11016         SDValue Input =
11017           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
11018         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
11019         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
11020       }
11021     }
11022   }
11023 
11024   if (!Subtarget->isThumb1Only()) {
11025     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
11026     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11027       return Result;
11028     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
11029       return Result;
11030   }
11031 
11032   SDValue N0 = N->getOperand(0);
11033   SDValue N1 = N->getOperand(1);
11034 
11035   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
11036   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
11037       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11038 
11039     // The code below optimizes (or (and X, Y), Z).
11040     // The AND operand needs to have a single user to make these optimizations
11041     // profitable.
11042     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
11043       return SDValue();
11044 
11045     APInt SplatUndef;
11046     unsigned SplatBitSize;
11047     bool HasAnyUndefs;
11048 
11049     APInt SplatBits0, SplatBits1;
11050     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
11051     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
11052     // Ensure that the second operand of both ands are constants
11053     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
11054                                       HasAnyUndefs) && !HasAnyUndefs) {
11055         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
11056                                           HasAnyUndefs) && !HasAnyUndefs) {
11057             // Ensure that the bit width of the constants are the same and that
11058             // the splat arguments are logical inverses as per the pattern we
11059             // are trying to simplify.
11060             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
11061                 SplatBits0 == ~SplatBits1) {
11062                 // Canonicalize the vector type to make instruction selection
11063                 // simpler.
11064                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
11065                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
11066                                              N0->getOperand(1),
11067                                              N0->getOperand(0),
11068                                              N1->getOperand(0));
11069                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
11070             }
11071         }
11072     }
11073   }
11074 
11075   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
11076   // reasonable.
11077   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
11078     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
11079       return Res;
11080   }
11081 
11082   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11083     return Result;
11084 
11085   return SDValue();
11086 }
11087 
PerformXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11088 static SDValue PerformXORCombine(SDNode *N,
11089                                  TargetLowering::DAGCombinerInfo &DCI,
11090                                  const ARMSubtarget *Subtarget) {
11091   EVT VT = N->getValueType(0);
11092   SelectionDAG &DAG = DCI.DAG;
11093 
11094   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11095     return SDValue();
11096 
11097   if (!Subtarget->isThumb1Only()) {
11098     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
11099     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11100       return Result;
11101 
11102     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11103       return Result;
11104   }
11105 
11106   return SDValue();
11107 }
11108 
11109 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
11110 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
11111 // their position in "to" (Rd).
ParseBFI(SDNode * N,APInt & ToMask,APInt & FromMask)11112 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
11113   assert(N->getOpcode() == ARMISD::BFI);
11114 
11115   SDValue From = N->getOperand(1);
11116   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
11117   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
11118 
11119   // If the Base came from a SHR #C, we can deduce that it is really testing bit
11120   // #C in the base of the SHR.
11121   if (From->getOpcode() == ISD::SRL &&
11122       isa<ConstantSDNode>(From->getOperand(1))) {
11123     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
11124     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
11125     FromMask <<= Shift.getLimitedValue(31);
11126     From = From->getOperand(0);
11127   }
11128 
11129   return From;
11130 }
11131 
11132 // If A and B contain one contiguous set of bits, does A | B == A . B?
11133 //
11134 // Neither A nor B must be zero.
BitsProperlyConcatenate(const APInt & A,const APInt & B)11135 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
11136   unsigned LastActiveBitInA =  A.countTrailingZeros();
11137   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
11138   return LastActiveBitInA - 1 == FirstActiveBitInB;
11139 }
11140 
FindBFIToCombineWith(SDNode * N)11141 static SDValue FindBFIToCombineWith(SDNode *N) {
11142   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
11143   // if one exists.
11144   APInt ToMask, FromMask;
11145   SDValue From = ParseBFI(N, ToMask, FromMask);
11146   SDValue To = N->getOperand(0);
11147 
11148   // Now check for a compatible BFI to merge with. We can pass through BFIs that
11149   // aren't compatible, but not if they set the same bit in their destination as
11150   // we do (or that of any BFI we're going to combine with).
11151   SDValue V = To;
11152   APInt CombinedToMask = ToMask;
11153   while (V.getOpcode() == ARMISD::BFI) {
11154     APInt NewToMask, NewFromMask;
11155     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
11156     if (NewFrom != From) {
11157       // This BFI has a different base. Keep going.
11158       CombinedToMask |= NewToMask;
11159       V = V.getOperand(0);
11160       continue;
11161     }
11162 
11163     // Do the written bits conflict with any we've seen so far?
11164     if ((NewToMask & CombinedToMask).getBoolValue())
11165       // Conflicting bits - bail out because going further is unsafe.
11166       return SDValue();
11167 
11168     // Are the new bits contiguous when combined with the old bits?
11169     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
11170         BitsProperlyConcatenate(FromMask, NewFromMask))
11171       return V;
11172     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
11173         BitsProperlyConcatenate(NewFromMask, FromMask))
11174       return V;
11175 
11176     // We've seen a write to some bits, so track it.
11177     CombinedToMask |= NewToMask;
11178     // Keep going...
11179     V = V.getOperand(0);
11180   }
11181 
11182   return SDValue();
11183 }
11184 
PerformBFICombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11185 static SDValue PerformBFICombine(SDNode *N,
11186                                  TargetLowering::DAGCombinerInfo &DCI) {
11187   SDValue N1 = N->getOperand(1);
11188   if (N1.getOpcode() == ISD::AND) {
11189     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
11190     // the bits being cleared by the AND are not demanded by the BFI.
11191     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
11192     if (!N11C)
11193       return SDValue();
11194     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
11195     unsigned LSB = countTrailingZeros(~InvMask);
11196     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
11197     assert(Width <
11198                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
11199            "undefined behavior");
11200     unsigned Mask = (1u << Width) - 1;
11201     unsigned Mask2 = N11C->getZExtValue();
11202     if ((Mask & (~Mask2)) == 0)
11203       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
11204                              N->getOperand(0), N1.getOperand(0),
11205                              N->getOperand(2));
11206   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
11207     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
11208     // Keep track of any consecutive bits set that all come from the same base
11209     // value. We can combine these together into a single BFI.
11210     SDValue CombineBFI = FindBFIToCombineWith(N);
11211     if (CombineBFI == SDValue())
11212       return SDValue();
11213 
11214     // We've found a BFI.
11215     APInt ToMask1, FromMask1;
11216     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
11217 
11218     APInt ToMask2, FromMask2;
11219     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
11220     assert(From1 == From2);
11221     (void)From2;
11222 
11223     // First, unlink CombineBFI.
11224     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
11225     // Then create a new BFI, combining the two together.
11226     APInt NewFromMask = FromMask1 | FromMask2;
11227     APInt NewToMask = ToMask1 | ToMask2;
11228 
11229     EVT VT = N->getValueType(0);
11230     SDLoc dl(N);
11231 
11232     if (NewFromMask[0] == 0)
11233       From1 = DCI.DAG.getNode(
11234         ISD::SRL, dl, VT, From1,
11235         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
11236     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
11237                            DCI.DAG.getConstant(~NewToMask, dl, VT));
11238   }
11239   return SDValue();
11240 }
11241 
11242 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
11243 /// ARMISD::VMOVRRD.
PerformVMOVRRDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11244 static SDValue PerformVMOVRRDCombine(SDNode *N,
11245                                      TargetLowering::DAGCombinerInfo &DCI,
11246                                      const ARMSubtarget *Subtarget) {
11247   // vmovrrd(vmovdrr x, y) -> x,y
11248   SDValue InDouble = N->getOperand(0);
11249   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
11250     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
11251 
11252   // vmovrrd(load f64) -> (load i32), (load i32)
11253   SDNode *InNode = InDouble.getNode();
11254   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
11255       InNode->getValueType(0) == MVT::f64 &&
11256       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
11257       !cast<LoadSDNode>(InNode)->isVolatile()) {
11258     // TODO: Should this be done for non-FrameIndex operands?
11259     LoadSDNode *LD = cast<LoadSDNode>(InNode);
11260 
11261     SelectionDAG &DAG = DCI.DAG;
11262     SDLoc DL(LD);
11263     SDValue BasePtr = LD->getBasePtr();
11264     SDValue NewLD1 =
11265         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
11266                     LD->getAlignment(), LD->getMemOperand()->getFlags());
11267 
11268     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
11269                                     DAG.getConstant(4, DL, MVT::i32));
11270     SDValue NewLD2 = DAG.getLoad(
11271         MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
11272         std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
11273 
11274     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
11275     if (DCI.DAG.getDataLayout().isBigEndian())
11276       std::swap (NewLD1, NewLD2);
11277     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
11278     return Result;
11279   }
11280 
11281   return SDValue();
11282 }
11283 
11284 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
11285 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
PerformVMOVDRRCombine(SDNode * N,SelectionDAG & DAG)11286 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
11287   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
11288   SDValue Op0 = N->getOperand(0);
11289   SDValue Op1 = N->getOperand(1);
11290   if (Op0.getOpcode() == ISD::BITCAST)
11291     Op0 = Op0.getOperand(0);
11292   if (Op1.getOpcode() == ISD::BITCAST)
11293     Op1 = Op1.getOperand(0);
11294   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
11295       Op0.getNode() == Op1.getNode() &&
11296       Op0.getResNo() == 0 && Op1.getResNo() == 1)
11297     return DAG.getNode(ISD::BITCAST, SDLoc(N),
11298                        N->getValueType(0), Op0.getOperand(0));
11299   return SDValue();
11300 }
11301 
11302 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
11303 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
11304 /// i64 vector to have f64 elements, since the value can then be loaded
11305 /// directly into a VFP register.
hasNormalLoadOperand(SDNode * N)11306 static bool hasNormalLoadOperand(SDNode *N) {
11307   unsigned NumElts = N->getValueType(0).getVectorNumElements();
11308   for (unsigned i = 0; i < NumElts; ++i) {
11309     SDNode *Elt = N->getOperand(i).getNode();
11310     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
11311       return true;
11312   }
11313   return false;
11314 }
11315 
11316 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
11317 /// ISD::BUILD_VECTOR.
PerformBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11318 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
11319                                           TargetLowering::DAGCombinerInfo &DCI,
11320                                           const ARMSubtarget *Subtarget) {
11321   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
11322   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
11323   // into a pair of GPRs, which is fine when the value is used as a scalar,
11324   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
11325   SelectionDAG &DAG = DCI.DAG;
11326   if (N->getNumOperands() == 2)
11327     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
11328       return RV;
11329 
11330   // Load i64 elements as f64 values so that type legalization does not split
11331   // them up into i32 values.
11332   EVT VT = N->getValueType(0);
11333   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
11334     return SDValue();
11335   SDLoc dl(N);
11336   SmallVector<SDValue, 8> Ops;
11337   unsigned NumElts = VT.getVectorNumElements();
11338   for (unsigned i = 0; i < NumElts; ++i) {
11339     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
11340     Ops.push_back(V);
11341     // Make the DAGCombiner fold the bitcast.
11342     DCI.AddToWorklist(V.getNode());
11343   }
11344   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
11345   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
11346   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
11347 }
11348 
11349 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
11350 static SDValue
PerformARMBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11351 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11352   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
11353   // At that time, we may have inserted bitcasts from integer to float.
11354   // If these bitcasts have survived DAGCombine, change the lowering of this
11355   // BUILD_VECTOR in something more vector friendly, i.e., that does not
11356   // force to use floating point types.
11357 
11358   // Make sure we can change the type of the vector.
11359   // This is possible iff:
11360   // 1. The vector is only used in a bitcast to a integer type. I.e.,
11361   //    1.1. Vector is used only once.
11362   //    1.2. Use is a bit convert to an integer type.
11363   // 2. The size of its operands are 32-bits (64-bits are not legal).
11364   EVT VT = N->getValueType(0);
11365   EVT EltVT = VT.getVectorElementType();
11366 
11367   // Check 1.1. and 2.
11368   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
11369     return SDValue();
11370 
11371   // By construction, the input type must be float.
11372   assert(EltVT == MVT::f32 && "Unexpected type!");
11373 
11374   // Check 1.2.
11375   SDNode *Use = *N->use_begin();
11376   if (Use->getOpcode() != ISD::BITCAST ||
11377       Use->getValueType(0).isFloatingPoint())
11378     return SDValue();
11379 
11380   // Check profitability.
11381   // Model is, if more than half of the relevant operands are bitcast from
11382   // i32, turn the build_vector into a sequence of insert_vector_elt.
11383   // Relevant operands are everything that is not statically
11384   // (i.e., at compile time) bitcasted.
11385   unsigned NumOfBitCastedElts = 0;
11386   unsigned NumElts = VT.getVectorNumElements();
11387   unsigned NumOfRelevantElts = NumElts;
11388   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
11389     SDValue Elt = N->getOperand(Idx);
11390     if (Elt->getOpcode() == ISD::BITCAST) {
11391       // Assume only bit cast to i32 will go away.
11392       if (Elt->getOperand(0).getValueType() == MVT::i32)
11393         ++NumOfBitCastedElts;
11394     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
11395       // Constants are statically casted, thus do not count them as
11396       // relevant operands.
11397       --NumOfRelevantElts;
11398   }
11399 
11400   // Check if more than half of the elements require a non-free bitcast.
11401   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
11402     return SDValue();
11403 
11404   SelectionDAG &DAG = DCI.DAG;
11405   // Create the new vector type.
11406   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
11407   // Check if the type is legal.
11408   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11409   if (!TLI.isTypeLegal(VecVT))
11410     return SDValue();
11411 
11412   // Combine:
11413   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
11414   // => BITCAST INSERT_VECTOR_ELT
11415   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
11416   //                      (BITCAST EN), N.
11417   SDValue Vec = DAG.getUNDEF(VecVT);
11418   SDLoc dl(N);
11419   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
11420     SDValue V = N->getOperand(Idx);
11421     if (V.isUndef())
11422       continue;
11423     if (V.getOpcode() == ISD::BITCAST &&
11424         V->getOperand(0).getValueType() == MVT::i32)
11425       // Fold obvious case.
11426       V = V.getOperand(0);
11427     else {
11428       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
11429       // Make the DAGCombiner fold the bitcasts.
11430       DCI.AddToWorklist(V.getNode());
11431     }
11432     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
11433     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
11434   }
11435   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
11436   // Make the DAGCombiner fold the bitcasts.
11437   DCI.AddToWorklist(Vec.getNode());
11438   return Vec;
11439 }
11440 
11441 /// PerformInsertEltCombine - Target-specific dag combine xforms for
11442 /// ISD::INSERT_VECTOR_ELT.
PerformInsertEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11443 static SDValue PerformInsertEltCombine(SDNode *N,
11444                                        TargetLowering::DAGCombinerInfo &DCI) {
11445   // Bitcast an i64 load inserted into a vector to f64.
11446   // Otherwise, the i64 value will be legalized to a pair of i32 values.
11447   EVT VT = N->getValueType(0);
11448   SDNode *Elt = N->getOperand(1).getNode();
11449   if (VT.getVectorElementType() != MVT::i64 ||
11450       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
11451     return SDValue();
11452 
11453   SelectionDAG &DAG = DCI.DAG;
11454   SDLoc dl(N);
11455   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
11456                                  VT.getVectorNumElements());
11457   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
11458   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
11459   // Make the DAGCombiner fold the bitcasts.
11460   DCI.AddToWorklist(Vec.getNode());
11461   DCI.AddToWorklist(V.getNode());
11462   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
11463                                Vec, V, N->getOperand(2));
11464   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
11465 }
11466 
11467 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
11468 /// ISD::VECTOR_SHUFFLE.
PerformVECTOR_SHUFFLECombine(SDNode * N,SelectionDAG & DAG)11469 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
11470   // The LLVM shufflevector instruction does not require the shuffle mask
11471   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
11472   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
11473   // operands do not match the mask length, they are extended by concatenating
11474   // them with undef vectors.  That is probably the right thing for other
11475   // targets, but for NEON it is better to concatenate two double-register
11476   // size vector operands into a single quad-register size vector.  Do that
11477   // transformation here:
11478   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
11479   //   shuffle(concat(v1, v2), undef)
11480   SDValue Op0 = N->getOperand(0);
11481   SDValue Op1 = N->getOperand(1);
11482   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
11483       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
11484       Op0.getNumOperands() != 2 ||
11485       Op1.getNumOperands() != 2)
11486     return SDValue();
11487   SDValue Concat0Op1 = Op0.getOperand(1);
11488   SDValue Concat1Op1 = Op1.getOperand(1);
11489   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
11490     return SDValue();
11491   // Skip the transformation if any of the types are illegal.
11492   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11493   EVT VT = N->getValueType(0);
11494   if (!TLI.isTypeLegal(VT) ||
11495       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
11496       !TLI.isTypeLegal(Concat1Op1.getValueType()))
11497     return SDValue();
11498 
11499   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
11500                                   Op0.getOperand(0), Op1.getOperand(0));
11501   // Translate the shuffle mask.
11502   SmallVector<int, 16> NewMask;
11503   unsigned NumElts = VT.getVectorNumElements();
11504   unsigned HalfElts = NumElts/2;
11505   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
11506   for (unsigned n = 0; n < NumElts; ++n) {
11507     int MaskElt = SVN->getMaskElt(n);
11508     int NewElt = -1;
11509     if (MaskElt < (int)HalfElts)
11510       NewElt = MaskElt;
11511     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
11512       NewElt = HalfElts + MaskElt - NumElts;
11513     NewMask.push_back(NewElt);
11514   }
11515   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
11516                               DAG.getUNDEF(VT), NewMask);
11517 }
11518 
11519 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
11520 /// NEON load/store intrinsics, and generic vector load/stores, to merge
11521 /// base address updates.
11522 /// For generic load/stores, the memory type is assumed to be a vector.
11523 /// The caller is assumed to have checked legality.
CombineBaseUpdate(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11524 static SDValue CombineBaseUpdate(SDNode *N,
11525                                  TargetLowering::DAGCombinerInfo &DCI) {
11526   SelectionDAG &DAG = DCI.DAG;
11527   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
11528                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
11529   const bool isStore = N->getOpcode() == ISD::STORE;
11530   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
11531   SDValue Addr = N->getOperand(AddrOpIdx);
11532   MemSDNode *MemN = cast<MemSDNode>(N);
11533   SDLoc dl(N);
11534 
11535   // Search for a use of the address operand that is an increment.
11536   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
11537          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
11538     SDNode *User = *UI;
11539     if (User->getOpcode() != ISD::ADD ||
11540         UI.getUse().getResNo() != Addr.getResNo())
11541       continue;
11542 
11543     // Check that the add is independent of the load/store.  Otherwise, folding
11544     // it would create a cycle.
11545     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
11546       continue;
11547 
11548     // Find the new opcode for the updating load/store.
11549     bool isLoadOp = true;
11550     bool isLaneOp = false;
11551     unsigned NewOpc = 0;
11552     unsigned NumVecs = 0;
11553     if (isIntrinsic) {
11554       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
11555       switch (IntNo) {
11556       default: llvm_unreachable("unexpected intrinsic for Neon base update");
11557       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
11558         NumVecs = 1; break;
11559       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
11560         NumVecs = 2; break;
11561       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
11562         NumVecs = 3; break;
11563       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
11564         NumVecs = 4; break;
11565       case Intrinsic::arm_neon_vld2dup:
11566       case Intrinsic::arm_neon_vld3dup:
11567       case Intrinsic::arm_neon_vld4dup:
11568         // TODO: Support updating VLDxDUP nodes. For now, we just skip
11569         // combining base updates for such intrinsics.
11570         continue;
11571       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
11572         NumVecs = 2; isLaneOp = true; break;
11573       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
11574         NumVecs = 3; isLaneOp = true; break;
11575       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
11576         NumVecs = 4; isLaneOp = true; break;
11577       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
11578         NumVecs = 1; isLoadOp = false; break;
11579       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
11580         NumVecs = 2; isLoadOp = false; break;
11581       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
11582         NumVecs = 3; isLoadOp = false; break;
11583       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
11584         NumVecs = 4; isLoadOp = false; break;
11585       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
11586         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
11587       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
11588         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
11589       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
11590         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
11591       }
11592     } else {
11593       isLaneOp = true;
11594       switch (N->getOpcode()) {
11595       default: llvm_unreachable("unexpected opcode for Neon base update");
11596       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
11597       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
11598       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
11599       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
11600       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
11601         NumVecs = 1; isLaneOp = false; break;
11602       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
11603         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
11604       }
11605     }
11606 
11607     // Find the size of memory referenced by the load/store.
11608     EVT VecTy;
11609     if (isLoadOp) {
11610       VecTy = N->getValueType(0);
11611     } else if (isIntrinsic) {
11612       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
11613     } else {
11614       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
11615       VecTy = N->getOperand(1).getValueType();
11616     }
11617 
11618     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
11619     if (isLaneOp)
11620       NumBytes /= VecTy.getVectorNumElements();
11621 
11622     // If the increment is a constant, it must match the memory ref size.
11623     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
11624     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
11625     if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
11626       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
11627       // separate instructions that make it harder to use a non-constant update.
11628       continue;
11629     }
11630 
11631     // OK, we found an ADD we can fold into the base update.
11632     // Now, create a _UPD node, taking care of not breaking alignment.
11633 
11634     EVT AlignedVecTy = VecTy;
11635     unsigned Alignment = MemN->getAlignment();
11636 
11637     // If this is a less-than-standard-aligned load/store, change the type to
11638     // match the standard alignment.
11639     // The alignment is overlooked when selecting _UPD variants; and it's
11640     // easier to introduce bitcasts here than fix that.
11641     // There are 3 ways to get to this base-update combine:
11642     // - intrinsics: they are assumed to be properly aligned (to the standard
11643     //   alignment of the memory type), so we don't need to do anything.
11644     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
11645     //   intrinsics, so, likewise, there's nothing to do.
11646     // - generic load/store instructions: the alignment is specified as an
11647     //   explicit operand, rather than implicitly as the standard alignment
11648     //   of the memory type (like the intrisics).  We need to change the
11649     //   memory type to match the explicit alignment.  That way, we don't
11650     //   generate non-standard-aligned ARMISD::VLDx nodes.
11651     if (isa<LSBaseSDNode>(N)) {
11652       if (Alignment == 0)
11653         Alignment = 1;
11654       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
11655         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
11656         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
11657         assert(!isLaneOp && "Unexpected generic load/store lane.");
11658         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
11659         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
11660       }
11661       // Don't set an explicit alignment on regular load/stores that we want
11662       // to transform to VLD/VST 1_UPD nodes.
11663       // This matches the behavior of regular load/stores, which only get an
11664       // explicit alignment if the MMO alignment is larger than the standard
11665       // alignment of the memory type.
11666       // Intrinsics, however, always get an explicit alignment, set to the
11667       // alignment of the MMO.
11668       Alignment = 1;
11669     }
11670 
11671     // Create the new updating load/store node.
11672     // First, create an SDVTList for the new updating node's results.
11673     EVT Tys[6];
11674     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
11675     unsigned n;
11676     for (n = 0; n < NumResultVecs; ++n)
11677       Tys[n] = AlignedVecTy;
11678     Tys[n++] = MVT::i32;
11679     Tys[n] = MVT::Other;
11680     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
11681 
11682     // Then, gather the new node's operands.
11683     SmallVector<SDValue, 8> Ops;
11684     Ops.push_back(N->getOperand(0)); // incoming chain
11685     Ops.push_back(N->getOperand(AddrOpIdx));
11686     Ops.push_back(Inc);
11687 
11688     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
11689       // Try to match the intrinsic's signature
11690       Ops.push_back(StN->getValue());
11691     } else {
11692       // Loads (and of course intrinsics) match the intrinsics' signature,
11693       // so just add all but the alignment operand.
11694       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
11695         Ops.push_back(N->getOperand(i));
11696     }
11697 
11698     // For all node types, the alignment operand is always the last one.
11699     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
11700 
11701     // If this is a non-standard-aligned STORE, the penultimate operand is the
11702     // stored value.  Bitcast it to the aligned type.
11703     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
11704       SDValue &StVal = Ops[Ops.size()-2];
11705       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
11706     }
11707 
11708     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
11709     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
11710                                            MemN->getMemOperand());
11711 
11712     // Update the uses.
11713     SmallVector<SDValue, 5> NewResults;
11714     for (unsigned i = 0; i < NumResultVecs; ++i)
11715       NewResults.push_back(SDValue(UpdN.getNode(), i));
11716 
11717     // If this is an non-standard-aligned LOAD, the first result is the loaded
11718     // value.  Bitcast it to the expected result type.
11719     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
11720       SDValue &LdVal = NewResults[0];
11721       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
11722     }
11723 
11724     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
11725     DCI.CombineTo(N, NewResults);
11726     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
11727 
11728     break;
11729   }
11730   return SDValue();
11731 }
11732 
PerformVLDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11733 static SDValue PerformVLDCombine(SDNode *N,
11734                                  TargetLowering::DAGCombinerInfo &DCI) {
11735   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11736     return SDValue();
11737 
11738   return CombineBaseUpdate(N, DCI);
11739 }
11740 
11741 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
11742 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
11743 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
11744 /// return true.
CombineVLDDUP(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11745 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11746   SelectionDAG &DAG = DCI.DAG;
11747   EVT VT = N->getValueType(0);
11748   // vldN-dup instructions only support 64-bit vectors for N > 1.
11749   if (!VT.is64BitVector())
11750     return false;
11751 
11752   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
11753   SDNode *VLD = N->getOperand(0).getNode();
11754   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
11755     return false;
11756   unsigned NumVecs = 0;
11757   unsigned NewOpc = 0;
11758   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
11759   if (IntNo == Intrinsic::arm_neon_vld2lane) {
11760     NumVecs = 2;
11761     NewOpc = ARMISD::VLD2DUP;
11762   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
11763     NumVecs = 3;
11764     NewOpc = ARMISD::VLD3DUP;
11765   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
11766     NumVecs = 4;
11767     NewOpc = ARMISD::VLD4DUP;
11768   } else {
11769     return false;
11770   }
11771 
11772   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
11773   // numbers match the load.
11774   unsigned VLDLaneNo =
11775     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
11776   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11777        UI != UE; ++UI) {
11778     // Ignore uses of the chain result.
11779     if (UI.getUse().getResNo() == NumVecs)
11780       continue;
11781     SDNode *User = *UI;
11782     if (User->getOpcode() != ARMISD::VDUPLANE ||
11783         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
11784       return false;
11785   }
11786 
11787   // Create the vldN-dup node.
11788   EVT Tys[5];
11789   unsigned n;
11790   for (n = 0; n < NumVecs; ++n)
11791     Tys[n] = VT;
11792   Tys[n] = MVT::Other;
11793   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
11794   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
11795   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
11796   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
11797                                            Ops, VLDMemInt->getMemoryVT(),
11798                                            VLDMemInt->getMemOperand());
11799 
11800   // Update the uses.
11801   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11802        UI != UE; ++UI) {
11803     unsigned ResNo = UI.getUse().getResNo();
11804     // Ignore uses of the chain result.
11805     if (ResNo == NumVecs)
11806       continue;
11807     SDNode *User = *UI;
11808     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
11809   }
11810 
11811   // Now the vldN-lane intrinsic is dead except for its chain result.
11812   // Update uses of the chain.
11813   std::vector<SDValue> VLDDupResults;
11814   for (unsigned n = 0; n < NumVecs; ++n)
11815     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
11816   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
11817   DCI.CombineTo(VLD, VLDDupResults);
11818 
11819   return true;
11820 }
11821 
11822 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
11823 /// ARMISD::VDUPLANE.
PerformVDUPLANECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11824 static SDValue PerformVDUPLANECombine(SDNode *N,
11825                                       TargetLowering::DAGCombinerInfo &DCI) {
11826   SDValue Op = N->getOperand(0);
11827 
11828   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
11829   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
11830   if (CombineVLDDUP(N, DCI))
11831     return SDValue(N, 0);
11832 
11833   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
11834   // redundant.  Ignore bit_converts for now; element sizes are checked below.
11835   while (Op.getOpcode() == ISD::BITCAST)
11836     Op = Op.getOperand(0);
11837   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
11838     return SDValue();
11839 
11840   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
11841   unsigned EltSize = Op.getScalarValueSizeInBits();
11842   // The canonical VMOV for a zero vector uses a 32-bit element size.
11843   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11844   unsigned EltBits;
11845   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
11846     EltSize = 8;
11847   EVT VT = N->getValueType(0);
11848   if (EltSize > VT.getScalarSizeInBits())
11849     return SDValue();
11850 
11851   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
11852 }
11853 
11854 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
PerformVDUPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11855 static SDValue PerformVDUPCombine(SDNode *N,
11856                                   TargetLowering::DAGCombinerInfo &DCI) {
11857   SelectionDAG &DAG = DCI.DAG;
11858   SDValue Op = N->getOperand(0);
11859 
11860   // Match VDUP(LOAD) -> VLD1DUP.
11861   // We match this pattern here rather than waiting for isel because the
11862   // transform is only legal for unindexed loads.
11863   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
11864   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
11865       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
11866     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
11867                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
11868     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
11869     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
11870                                              Ops, LD->getMemoryVT(),
11871                                              LD->getMemOperand());
11872     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
11873     return VLDDup;
11874   }
11875 
11876   return SDValue();
11877 }
11878 
PerformLOADCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11879 static SDValue PerformLOADCombine(SDNode *N,
11880                                   TargetLowering::DAGCombinerInfo &DCI) {
11881   EVT VT = N->getValueType(0);
11882 
11883   // If this is a legal vector load, try to combine it into a VLD1_UPD.
11884   if (ISD::isNormalLoad(N) && VT.isVector() &&
11885       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
11886     return CombineBaseUpdate(N, DCI);
11887 
11888   return SDValue();
11889 }
11890 
11891 /// PerformSTORECombine - Target-specific dag combine xforms for
11892 /// ISD::STORE.
PerformSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)11893 static SDValue PerformSTORECombine(SDNode *N,
11894                                    TargetLowering::DAGCombinerInfo &DCI) {
11895   StoreSDNode *St = cast<StoreSDNode>(N);
11896   if (St->isVolatile())
11897     return SDValue();
11898 
11899   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
11900   // pack all of the elements in one place.  Next, store to memory in fewer
11901   // chunks.
11902   SDValue StVal = St->getValue();
11903   EVT VT = StVal.getValueType();
11904   if (St->isTruncatingStore() && VT.isVector()) {
11905     SelectionDAG &DAG = DCI.DAG;
11906     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11907     EVT StVT = St->getMemoryVT();
11908     unsigned NumElems = VT.getVectorNumElements();
11909     assert(StVT != VT && "Cannot truncate to the same type");
11910     unsigned FromEltSz = VT.getScalarSizeInBits();
11911     unsigned ToEltSz = StVT.getScalarSizeInBits();
11912 
11913     // From, To sizes and ElemCount must be pow of two
11914     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
11915 
11916     // We are going to use the original vector elt for storing.
11917     // Accumulated smaller vector elements must be a multiple of the store size.
11918     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
11919 
11920     unsigned SizeRatio  = FromEltSz / ToEltSz;
11921     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
11922 
11923     // Create a type on which we perform the shuffle.
11924     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
11925                                      NumElems*SizeRatio);
11926     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
11927 
11928     SDLoc DL(St);
11929     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
11930     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
11931     for (unsigned i = 0; i < NumElems; ++i)
11932       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
11933                           ? (i + 1) * SizeRatio - 1
11934                           : i * SizeRatio;
11935 
11936     // Can't shuffle using an illegal type.
11937     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
11938 
11939     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
11940                                 DAG.getUNDEF(WideVec.getValueType()),
11941                                 ShuffleVec);
11942     // At this point all of the data is stored at the bottom of the
11943     // register. We now need to save it to mem.
11944 
11945     // Find the largest store unit
11946     MVT StoreType = MVT::i8;
11947     for (MVT Tp : MVT::integer_valuetypes()) {
11948       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
11949         StoreType = Tp;
11950     }
11951     // Didn't find a legal store type.
11952     if (!TLI.isTypeLegal(StoreType))
11953       return SDValue();
11954 
11955     // Bitcast the original vector into a vector of store-size units
11956     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
11957             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
11958     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
11959     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
11960     SmallVector<SDValue, 8> Chains;
11961     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
11962                                         TLI.getPointerTy(DAG.getDataLayout()));
11963     SDValue BasePtr = St->getBasePtr();
11964 
11965     // Perform one or more big stores into memory.
11966     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
11967     for (unsigned I = 0; I < E; I++) {
11968       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
11969                                    StoreType, ShuffWide,
11970                                    DAG.getIntPtrConstant(I, DL));
11971       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
11972                                 St->getPointerInfo(), St->getAlignment(),
11973                                 St->getMemOperand()->getFlags());
11974       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
11975                             Increment);
11976       Chains.push_back(Ch);
11977     }
11978     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
11979   }
11980 
11981   if (!ISD::isNormalStore(St))
11982     return SDValue();
11983 
11984   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
11985   // ARM stores of arguments in the same cache line.
11986   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
11987       StVal.getNode()->hasOneUse()) {
11988     SelectionDAG  &DAG = DCI.DAG;
11989     bool isBigEndian = DAG.getDataLayout().isBigEndian();
11990     SDLoc DL(St);
11991     SDValue BasePtr = St->getBasePtr();
11992     SDValue NewST1 = DAG.getStore(
11993         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
11994         BasePtr, St->getPointerInfo(), St->getAlignment(),
11995         St->getMemOperand()->getFlags());
11996 
11997     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
11998                                     DAG.getConstant(4, DL, MVT::i32));
11999     return DAG.getStore(NewST1.getValue(0), DL,
12000                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
12001                         OffsetPtr, St->getPointerInfo(),
12002                         std::min(4U, St->getAlignment() / 2),
12003                         St->getMemOperand()->getFlags());
12004   }
12005 
12006   if (StVal.getValueType() == MVT::i64 &&
12007       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12008 
12009     // Bitcast an i64 store extracted from a vector to f64.
12010     // Otherwise, the i64 value will be legalized to a pair of i32 values.
12011     SelectionDAG &DAG = DCI.DAG;
12012     SDLoc dl(StVal);
12013     SDValue IntVec = StVal.getOperand(0);
12014     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
12015                                    IntVec.getValueType().getVectorNumElements());
12016     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
12017     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
12018                                  Vec, StVal.getOperand(1));
12019     dl = SDLoc(N);
12020     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
12021     // Make the DAGCombiner fold the bitcasts.
12022     DCI.AddToWorklist(Vec.getNode());
12023     DCI.AddToWorklist(ExtElt.getNode());
12024     DCI.AddToWorklist(V.getNode());
12025     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
12026                         St->getPointerInfo(), St->getAlignment(),
12027                         St->getMemOperand()->getFlags(), St->getAAInfo());
12028   }
12029 
12030   // If this is a legal vector store, try to combine it into a VST1_UPD.
12031   if (ISD::isNormalStore(N) && VT.isVector() &&
12032       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
12033     return CombineBaseUpdate(N, DCI);
12034 
12035   return SDValue();
12036 }
12037 
12038 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
12039 /// can replace combinations of VMUL and VCVT (floating-point to integer)
12040 /// when the VMUL has a constant operand that is a power of 2.
12041 ///
12042 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12043 ///  vmul.f32        d16, d17, d16
12044 ///  vcvt.s32.f32    d16, d16
12045 /// becomes:
12046 ///  vcvt.s32.f32    d16, d16, #3
PerformVCVTCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)12047 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
12048                                   const ARMSubtarget *Subtarget) {
12049   if (!Subtarget->hasNEON())
12050     return SDValue();
12051 
12052   SDValue Op = N->getOperand(0);
12053   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
12054       Op.getOpcode() != ISD::FMUL)
12055     return SDValue();
12056 
12057   SDValue ConstVec = Op->getOperand(1);
12058   if (!isa<BuildVectorSDNode>(ConstVec))
12059     return SDValue();
12060 
12061   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
12062   uint32_t FloatBits = FloatTy.getSizeInBits();
12063   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
12064   uint32_t IntBits = IntTy.getSizeInBits();
12065   unsigned NumLanes = Op.getValueType().getVectorNumElements();
12066   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
12067     // These instructions only exist converting from f32 to i32. We can handle
12068     // smaller integers by generating an extra truncate, but larger ones would
12069     // be lossy. We also can't handle more then 4 lanes, since these intructions
12070     // only support v2i32/v4i32 types.
12071     return SDValue();
12072   }
12073 
12074   BitVector UndefElements;
12075   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12076   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12077   if (C == -1 || C == 0 || C > 32)
12078     return SDValue();
12079 
12080   SDLoc dl(N);
12081   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
12082   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
12083     Intrinsic::arm_neon_vcvtfp2fxu;
12084   SDValue FixConv = DAG.getNode(
12085       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12086       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
12087       DAG.getConstant(C, dl, MVT::i32));
12088 
12089   if (IntBits < FloatBits)
12090     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
12091 
12092   return FixConv;
12093 }
12094 
12095 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
12096 /// can replace combinations of VCVT (integer to floating-point) and VDIV
12097 /// when the VDIV has a constant operand that is a power of 2.
12098 ///
12099 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12100 ///  vcvt.f32.s32    d16, d16
12101 ///  vdiv.f32        d16, d17, d16
12102 /// becomes:
12103 ///  vcvt.f32.s32    d16, d16, #3
PerformVDIVCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)12104 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
12105                                   const ARMSubtarget *Subtarget) {
12106   if (!Subtarget->hasNEON())
12107     return SDValue();
12108 
12109   SDValue Op = N->getOperand(0);
12110   unsigned OpOpcode = Op.getNode()->getOpcode();
12111   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
12112       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
12113     return SDValue();
12114 
12115   SDValue ConstVec = N->getOperand(1);
12116   if (!isa<BuildVectorSDNode>(ConstVec))
12117     return SDValue();
12118 
12119   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
12120   uint32_t FloatBits = FloatTy.getSizeInBits();
12121   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
12122   uint32_t IntBits = IntTy.getSizeInBits();
12123   unsigned NumLanes = Op.getValueType().getVectorNumElements();
12124   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
12125     // These instructions only exist converting from i32 to f32. We can handle
12126     // smaller integers by generating an extra extend, but larger ones would
12127     // be lossy. We also can't handle more then 4 lanes, since these intructions
12128     // only support v2i32/v4i32 types.
12129     return SDValue();
12130   }
12131 
12132   BitVector UndefElements;
12133   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12134   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12135   if (C == -1 || C == 0 || C > 32)
12136     return SDValue();
12137 
12138   SDLoc dl(N);
12139   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
12140   SDValue ConvInput = Op.getOperand(0);
12141   if (IntBits < FloatBits)
12142     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
12143                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12144                             ConvInput);
12145 
12146   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
12147     Intrinsic::arm_neon_vcvtfxu2fp;
12148   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
12149                      Op.getValueType(),
12150                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
12151                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
12152 }
12153 
12154 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
12155 /// operand of a vector shift operation, where all the elements of the
12156 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)12157 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
12158   // Ignore bit_converts.
12159   while (Op.getOpcode() == ISD::BITCAST)
12160     Op = Op.getOperand(0);
12161   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
12162   APInt SplatBits, SplatUndef;
12163   unsigned SplatBitSize;
12164   bool HasAnyUndefs;
12165   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
12166                                       HasAnyUndefs, ElementBits) ||
12167       SplatBitSize > ElementBits)
12168     return false;
12169   Cnt = SplatBits.getSExtValue();
12170   return true;
12171 }
12172 
12173 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
12174 /// operand of a vector shift left operation.  That value must be in the range:
12175 ///   0 <= Value < ElementBits for a left shift; or
12176 ///   0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)12177 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
12178   assert(VT.isVector() && "vector shift count is not a vector type");
12179   int64_t ElementBits = VT.getScalarSizeInBits();
12180   if (! getVShiftImm(Op, ElementBits, Cnt))
12181     return false;
12182   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
12183 }
12184 
12185 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
12186 /// operand of a vector shift right operation.  For a shift opcode, the value
12187 /// is positive, but for an intrinsic the value count must be negative. The
12188 /// absolute value must be in the range:
12189 ///   1 <= |Value| <= ElementBits for a right shift; or
12190 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,bool isIntrinsic,int64_t & Cnt)12191 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
12192                          int64_t &Cnt) {
12193   assert(VT.isVector() && "vector shift count is not a vector type");
12194   int64_t ElementBits = VT.getScalarSizeInBits();
12195   if (! getVShiftImm(Op, ElementBits, Cnt))
12196     return false;
12197   if (!isIntrinsic)
12198     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
12199   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
12200     Cnt = -Cnt;
12201     return true;
12202   }
12203   return false;
12204 }
12205 
12206 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
PerformIntrinsicCombine(SDNode * N,SelectionDAG & DAG)12207 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
12208   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12209   switch (IntNo) {
12210   default:
12211     // Don't do anything for most intrinsics.
12212     break;
12213 
12214   // Vector shifts: check for immediate versions and lower them.
12215   // Note: This is done during DAG combining instead of DAG legalizing because
12216   // the build_vectors for 64-bit vector element shift counts are generally
12217   // not legal, and it is hard to see their values after they get legalized to
12218   // loads from a constant pool.
12219   case Intrinsic::arm_neon_vshifts:
12220   case Intrinsic::arm_neon_vshiftu:
12221   case Intrinsic::arm_neon_vrshifts:
12222   case Intrinsic::arm_neon_vrshiftu:
12223   case Intrinsic::arm_neon_vrshiftn:
12224   case Intrinsic::arm_neon_vqshifts:
12225   case Intrinsic::arm_neon_vqshiftu:
12226   case Intrinsic::arm_neon_vqshiftsu:
12227   case Intrinsic::arm_neon_vqshiftns:
12228   case Intrinsic::arm_neon_vqshiftnu:
12229   case Intrinsic::arm_neon_vqshiftnsu:
12230   case Intrinsic::arm_neon_vqrshiftns:
12231   case Intrinsic::arm_neon_vqrshiftnu:
12232   case Intrinsic::arm_neon_vqrshiftnsu: {
12233     EVT VT = N->getOperand(1).getValueType();
12234     int64_t Cnt;
12235     unsigned VShiftOpc = 0;
12236 
12237     switch (IntNo) {
12238     case Intrinsic::arm_neon_vshifts:
12239     case Intrinsic::arm_neon_vshiftu:
12240       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
12241         VShiftOpc = ARMISD::VSHL;
12242         break;
12243       }
12244       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
12245         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
12246                      ARMISD::VSHRs : ARMISD::VSHRu);
12247         break;
12248       }
12249       return SDValue();
12250 
12251     case Intrinsic::arm_neon_vrshifts:
12252     case Intrinsic::arm_neon_vrshiftu:
12253       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
12254         break;
12255       return SDValue();
12256 
12257     case Intrinsic::arm_neon_vqshifts:
12258     case Intrinsic::arm_neon_vqshiftu:
12259       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12260         break;
12261       return SDValue();
12262 
12263     case Intrinsic::arm_neon_vqshiftsu:
12264       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12265         break;
12266       llvm_unreachable("invalid shift count for vqshlu intrinsic");
12267 
12268     case Intrinsic::arm_neon_vrshiftn:
12269     case Intrinsic::arm_neon_vqshiftns:
12270     case Intrinsic::arm_neon_vqshiftnu:
12271     case Intrinsic::arm_neon_vqshiftnsu:
12272     case Intrinsic::arm_neon_vqrshiftns:
12273     case Intrinsic::arm_neon_vqrshiftnu:
12274     case Intrinsic::arm_neon_vqrshiftnsu:
12275       // Narrowing shifts require an immediate right shift.
12276       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
12277         break;
12278       llvm_unreachable("invalid shift count for narrowing vector shift "
12279                        "intrinsic");
12280 
12281     default:
12282       llvm_unreachable("unhandled vector shift");
12283     }
12284 
12285     switch (IntNo) {
12286     case Intrinsic::arm_neon_vshifts:
12287     case Intrinsic::arm_neon_vshiftu:
12288       // Opcode already set above.
12289       break;
12290     case Intrinsic::arm_neon_vrshifts:
12291       VShiftOpc = ARMISD::VRSHRs; break;
12292     case Intrinsic::arm_neon_vrshiftu:
12293       VShiftOpc = ARMISD::VRSHRu; break;
12294     case Intrinsic::arm_neon_vrshiftn:
12295       VShiftOpc = ARMISD::VRSHRN; break;
12296     case Intrinsic::arm_neon_vqshifts:
12297       VShiftOpc = ARMISD::VQSHLs; break;
12298     case Intrinsic::arm_neon_vqshiftu:
12299       VShiftOpc = ARMISD::VQSHLu; break;
12300     case Intrinsic::arm_neon_vqshiftsu:
12301       VShiftOpc = ARMISD::VQSHLsu; break;
12302     case Intrinsic::arm_neon_vqshiftns:
12303       VShiftOpc = ARMISD::VQSHRNs; break;
12304     case Intrinsic::arm_neon_vqshiftnu:
12305       VShiftOpc = ARMISD::VQSHRNu; break;
12306     case Intrinsic::arm_neon_vqshiftnsu:
12307       VShiftOpc = ARMISD::VQSHRNsu; break;
12308     case Intrinsic::arm_neon_vqrshiftns:
12309       VShiftOpc = ARMISD::VQRSHRNs; break;
12310     case Intrinsic::arm_neon_vqrshiftnu:
12311       VShiftOpc = ARMISD::VQRSHRNu; break;
12312     case Intrinsic::arm_neon_vqrshiftnsu:
12313       VShiftOpc = ARMISD::VQRSHRNsu; break;
12314     }
12315 
12316     SDLoc dl(N);
12317     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12318                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
12319   }
12320 
12321   case Intrinsic::arm_neon_vshiftins: {
12322     EVT VT = N->getOperand(1).getValueType();
12323     int64_t Cnt;
12324     unsigned VShiftOpc = 0;
12325 
12326     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
12327       VShiftOpc = ARMISD::VSLI;
12328     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
12329       VShiftOpc = ARMISD::VSRI;
12330     else {
12331       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
12332     }
12333 
12334     SDLoc dl(N);
12335     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12336                        N->getOperand(1), N->getOperand(2),
12337                        DAG.getConstant(Cnt, dl, MVT::i32));
12338   }
12339 
12340   case Intrinsic::arm_neon_vqrshifts:
12341   case Intrinsic::arm_neon_vqrshiftu:
12342     // No immediate versions of these to check for.
12343     break;
12344   }
12345 
12346   return SDValue();
12347 }
12348 
12349 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
12350 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
12351 /// combining instead of DAG legalizing because the build_vectors for 64-bit
12352 /// vector element shift counts are generally not legal, and it is hard to see
12353 /// their values after they get legalized to loads from a constant pool.
PerformShiftCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)12354 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
12355                                    const ARMSubtarget *ST) {
12356   EVT VT = N->getValueType(0);
12357   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
12358     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
12359     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
12360     SDValue N1 = N->getOperand(1);
12361     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
12362       SDValue N0 = N->getOperand(0);
12363       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
12364           DAG.MaskedValueIsZero(N0.getOperand(0),
12365                                 APInt::getHighBitsSet(32, 16)))
12366         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
12367     }
12368   }
12369 
12370   // Nothing to be done for scalar shifts.
12371   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12372   if (!VT.isVector() || !TLI.isTypeLegal(VT))
12373     return SDValue();
12374 
12375   assert(ST->hasNEON() && "unexpected vector shift");
12376   int64_t Cnt;
12377 
12378   switch (N->getOpcode()) {
12379   default: llvm_unreachable("unexpected shift opcode");
12380 
12381   case ISD::SHL:
12382     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
12383       SDLoc dl(N);
12384       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
12385                          DAG.getConstant(Cnt, dl, MVT::i32));
12386     }
12387     break;
12388 
12389   case ISD::SRA:
12390   case ISD::SRL:
12391     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
12392       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
12393                             ARMISD::VSHRs : ARMISD::VSHRu);
12394       SDLoc dl(N);
12395       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
12396                          DAG.getConstant(Cnt, dl, MVT::i32));
12397     }
12398   }
12399   return SDValue();
12400 }
12401 
12402 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
12403 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
PerformExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)12404 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
12405                                     const ARMSubtarget *ST) {
12406   SDValue N0 = N->getOperand(0);
12407 
12408   // Check for sign- and zero-extensions of vector extract operations of 8-
12409   // and 16-bit vector elements.  NEON supports these directly.  They are
12410   // handled during DAG combining because type legalization will promote them
12411   // to 32-bit types and it is messy to recognize the operations after that.
12412   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12413     SDValue Vec = N0.getOperand(0);
12414     SDValue Lane = N0.getOperand(1);
12415     EVT VT = N->getValueType(0);
12416     EVT EltVT = N0.getValueType();
12417     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12418 
12419     if (VT == MVT::i32 &&
12420         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
12421         TLI.isTypeLegal(Vec.getValueType()) &&
12422         isa<ConstantSDNode>(Lane)) {
12423 
12424       unsigned Opc = 0;
12425       switch (N->getOpcode()) {
12426       default: llvm_unreachable("unexpected opcode");
12427       case ISD::SIGN_EXTEND:
12428         Opc = ARMISD::VGETLANEs;
12429         break;
12430       case ISD::ZERO_EXTEND:
12431       case ISD::ANY_EXTEND:
12432         Opc = ARMISD::VGETLANEu;
12433         break;
12434       }
12435       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
12436     }
12437   }
12438 
12439   return SDValue();
12440 }
12441 
isPowerOf2Constant(SDValue V)12442 static const APInt *isPowerOf2Constant(SDValue V) {
12443   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
12444   if (!C)
12445     return nullptr;
12446   const APInt *CV = &C->getAPIntValue();
12447   return CV->isPowerOf2() ? CV : nullptr;
12448 }
12449 
PerformCMOVToBFICombine(SDNode * CMOV,SelectionDAG & DAG) const12450 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
12451   // If we have a CMOV, OR and AND combination such as:
12452   //   if (x & CN)
12453   //     y |= CM;
12454   //
12455   // And:
12456   //   * CN is a single bit;
12457   //   * All bits covered by CM are known zero in y
12458   //
12459   // Then we can convert this into a sequence of BFI instructions. This will
12460   // always be a win if CM is a single bit, will always be no worse than the
12461   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
12462   // three bits (due to the extra IT instruction).
12463 
12464   SDValue Op0 = CMOV->getOperand(0);
12465   SDValue Op1 = CMOV->getOperand(1);
12466   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
12467   auto CC = CCNode->getAPIntValue().getLimitedValue();
12468   SDValue CmpZ = CMOV->getOperand(4);
12469 
12470   // The compare must be against zero.
12471   if (!isNullConstant(CmpZ->getOperand(1)))
12472     return SDValue();
12473 
12474   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
12475   SDValue And = CmpZ->getOperand(0);
12476   if (And->getOpcode() != ISD::AND)
12477     return SDValue();
12478   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
12479   if (!AndC)
12480     return SDValue();
12481   SDValue X = And->getOperand(0);
12482 
12483   if (CC == ARMCC::EQ) {
12484     // We're performing an "equal to zero" compare. Swap the operands so we
12485     // canonicalize on a "not equal to zero" compare.
12486     std::swap(Op0, Op1);
12487   } else {
12488     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
12489   }
12490 
12491   if (Op1->getOpcode() != ISD::OR)
12492     return SDValue();
12493 
12494   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
12495   if (!OrC)
12496     return SDValue();
12497   SDValue Y = Op1->getOperand(0);
12498 
12499   if (Op0 != Y)
12500     return SDValue();
12501 
12502   // Now, is it profitable to continue?
12503   APInt OrCI = OrC->getAPIntValue();
12504   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
12505   if (OrCI.countPopulation() > Heuristic)
12506     return SDValue();
12507 
12508   // Lastly, can we determine that the bits defined by OrCI
12509   // are zero in Y?
12510   KnownBits Known;
12511   DAG.computeKnownBits(Y, Known);
12512   if ((OrCI & Known.Zero) != OrCI)
12513     return SDValue();
12514 
12515   // OK, we can do the combine.
12516   SDValue V = Y;
12517   SDLoc dl(X);
12518   EVT VT = X.getValueType();
12519   unsigned BitInX = AndC->logBase2();
12520 
12521   if (BitInX != 0) {
12522     // We must shift X first.
12523     X = DAG.getNode(ISD::SRL, dl, VT, X,
12524                     DAG.getConstant(BitInX, dl, VT));
12525   }
12526 
12527   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
12528        BitInY < NumActiveBits; ++BitInY) {
12529     if (OrCI[BitInY] == 0)
12530       continue;
12531     APInt Mask(VT.getSizeInBits(), 0);
12532     Mask.setBit(BitInY);
12533     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
12534                     // Confusingly, the operand is an *inverted* mask.
12535                     DAG.getConstant(~Mask, dl, VT));
12536   }
12537 
12538   return V;
12539 }
12540 
12541 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
12542 SDValue
PerformBRCONDCombine(SDNode * N,SelectionDAG & DAG) const12543 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
12544   SDValue Cmp = N->getOperand(4);
12545   if (Cmp.getOpcode() != ARMISD::CMPZ)
12546     // Only looking at NE cases.
12547     return SDValue();
12548 
12549   EVT VT = N->getValueType(0);
12550   SDLoc dl(N);
12551   SDValue LHS = Cmp.getOperand(0);
12552   SDValue RHS = Cmp.getOperand(1);
12553   SDValue Chain = N->getOperand(0);
12554   SDValue BB = N->getOperand(1);
12555   SDValue ARMcc = N->getOperand(2);
12556   ARMCC::CondCodes CC =
12557     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12558 
12559   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
12560   // -> (brcond Chain BB CC CPSR Cmp)
12561   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
12562       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
12563       LHS->getOperand(0)->hasOneUse()) {
12564     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
12565     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
12566     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12567     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12568     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
12569         (LHS01C && LHS01C->getZExtValue() == 1) &&
12570         (LHS1C && LHS1C->getZExtValue() == 1) &&
12571         (RHSC && RHSC->getZExtValue() == 0)) {
12572       return DAG.getNode(
12573           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
12574           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
12575     }
12576   }
12577 
12578   return SDValue();
12579 }
12580 
12581 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
12582 SDValue
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG) const12583 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
12584   SDValue Cmp = N->getOperand(4);
12585   if (Cmp.getOpcode() != ARMISD::CMPZ)
12586     // Only looking at EQ and NE cases.
12587     return SDValue();
12588 
12589   EVT VT = N->getValueType(0);
12590   SDLoc dl(N);
12591   SDValue LHS = Cmp.getOperand(0);
12592   SDValue RHS = Cmp.getOperand(1);
12593   SDValue FalseVal = N->getOperand(0);
12594   SDValue TrueVal = N->getOperand(1);
12595   SDValue ARMcc = N->getOperand(2);
12596   ARMCC::CondCodes CC =
12597     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12598 
12599   // BFI is only available on V6T2+.
12600   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
12601     SDValue R = PerformCMOVToBFICombine(N, DAG);
12602     if (R)
12603       return R;
12604   }
12605 
12606   // Simplify
12607   //   mov     r1, r0
12608   //   cmp     r1, x
12609   //   mov     r0, y
12610   //   moveq   r0, x
12611   // to
12612   //   cmp     r0, x
12613   //   movne   r0, y
12614   //
12615   //   mov     r1, r0
12616   //   cmp     r1, x
12617   //   mov     r0, x
12618   //   movne   r0, y
12619   // to
12620   //   cmp     r0, x
12621   //   movne   r0, y
12622   /// FIXME: Turn this into a target neutral optimization?
12623   SDValue Res;
12624   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
12625     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
12626                       N->getOperand(3), Cmp);
12627   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
12628     SDValue ARMcc;
12629     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
12630     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
12631                       N->getOperand(3), NewCmp);
12632   }
12633 
12634   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
12635   // -> (cmov F T CC CPSR Cmp)
12636   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
12637     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
12638     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12639     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12640     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
12641         (LHS1C && LHS1C->getZExtValue() == 1) &&
12642         (RHSC && RHSC->getZExtValue() == 0)) {
12643       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
12644                          LHS->getOperand(2), LHS->getOperand(3),
12645                          LHS->getOperand(4));
12646     }
12647   }
12648 
12649   if (!VT.isInteger())
12650       return SDValue();
12651 
12652   // Materialize a boolean comparison for integers so we can avoid branching.
12653   if (isNullConstant(FalseVal)) {
12654     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
12655       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
12656         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
12657         // right 5 bits will make that 32 be 1, otherwise it will be 0.
12658         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
12659         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12660         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
12661                           DAG.getConstant(5, dl, MVT::i32));
12662       } else {
12663         // CMOV 0, 1, ==, (CMPZ x, y) ->
12664         //     (ADDCARRY (SUB x, y), t:0, t:1)
12665         // where t = (SUBCARRY 0, (SUB x, y), 0)
12666         //
12667         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
12668         // x != y. In other words, a carry C == 1 when x == y, C == 0
12669         // otherwise.
12670         // The final ADDCARRY computes
12671         //     x - y + (0 - (x - y)) + C == C
12672         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12673         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12674         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
12675         // ISD::SUBCARRY returns a borrow but we want the carry here
12676         // actually.
12677         SDValue Carry =
12678             DAG.getNode(ISD::SUB, dl, MVT::i32,
12679                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
12680         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
12681       }
12682     } else if (CC == ARMCC::NE && LHS != RHS &&
12683                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
12684       // This seems pointless but will allow us to combine it further below.
12685       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
12686       SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12687       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
12688                         N->getOperand(3), Cmp);
12689     }
12690   } else if (isNullConstant(TrueVal)) {
12691     if (CC == ARMCC::EQ && LHS != RHS &&
12692         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
12693       // This seems pointless but will allow us to combine it further below
12694       // Note that we change == for != as this is the dual for the case above.
12695       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
12696       SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12697       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
12698                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
12699                         N->getOperand(3), Cmp);
12700     }
12701   }
12702 
12703   // On Thumb1, the DAG above may be further combined if z is a power of 2
12704   // (z == 2 ^ K).
12705   // CMOV (SUB x, y), z, !=, (CMPZ x, y) ->
12706   //       merge t3, t4
12707   // where t1 = (SUBCARRY (SUB x, y), z, 0)
12708   //       t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
12709   //       t3 = if K != 0 then (SHL t2:0, K) else t2:0
12710   //       t4 = (SUB 1, t2:1)   [ we want a carry, not a borrow ]
12711   const APInt *TrueConst;
12712   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
12713       (FalseVal.getOpcode() == ISD::SUB) && (FalseVal.getOperand(0) == LHS) &&
12714       (FalseVal.getOperand(1) == RHS) &&
12715       (TrueConst = isPowerOf2Constant(TrueVal))) {
12716     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12717     unsigned ShiftAmount = TrueConst->logBase2();
12718     if (ShiftAmount)
12719       TrueVal = DAG.getConstant(1, dl, VT);
12720     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
12721     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
12722     // Make it a carry, not a borrow.
12723     SDValue Carry = DAG.getNode(
12724         ISD::SUB, dl, VT, DAG.getConstant(1, dl, MVT::i32), Res.getValue(1));
12725     Res = DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Res, Carry);
12726 
12727     if (ShiftAmount)
12728       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
12729                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
12730   }
12731 
12732   if (Res.getNode()) {
12733     KnownBits Known;
12734     DAG.computeKnownBits(SDValue(N,0), Known);
12735     // Capture demanded bits information that would be otherwise lost.
12736     if (Known.Zero == 0xfffffffe)
12737       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12738                         DAG.getValueType(MVT::i1));
12739     else if (Known.Zero == 0xffffff00)
12740       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12741                         DAG.getValueType(MVT::i8));
12742     else if (Known.Zero == 0xffff0000)
12743       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12744                         DAG.getValueType(MVT::i16));
12745   }
12746 
12747   return Res;
12748 }
12749 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const12750 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
12751                                              DAGCombinerInfo &DCI) const {
12752   switch (N->getOpcode()) {
12753   default: break;
12754   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
12755   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
12756   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
12757   case ISD::SUB:        return PerformSUBCombine(N, DCI);
12758   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
12759   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
12760   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
12761   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
12762   case ARMISD::ADDC:
12763   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
12764   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
12765   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
12766   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
12767   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
12768   case ISD::STORE:      return PerformSTORECombine(N, DCI);
12769   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
12770   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
12771   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
12772   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
12773   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI);
12774   case ISD::FP_TO_SINT:
12775   case ISD::FP_TO_UINT:
12776     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
12777   case ISD::FDIV:
12778     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
12779   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
12780   case ISD::SHL:
12781   case ISD::SRA:
12782   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
12783   case ISD::SIGN_EXTEND:
12784   case ISD::ZERO_EXTEND:
12785   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
12786   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
12787   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
12788   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
12789   case ARMISD::VLD1DUP:
12790   case ARMISD::VLD2DUP:
12791   case ARMISD::VLD3DUP:
12792   case ARMISD::VLD4DUP:
12793     return PerformVLDCombine(N, DCI);
12794   case ARMISD::BUILD_VECTOR:
12795     return PerformARMBUILD_VECTORCombine(N, DCI);
12796   case ARMISD::SMULWB: {
12797     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12798     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12799     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12800       return SDValue();
12801     break;
12802   }
12803   case ARMISD::SMULWT: {
12804     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12805     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
12806     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12807       return SDValue();
12808     break;
12809   }
12810   case ARMISD::SMLALBB: {
12811     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12812     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12813     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
12814         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
12815       return SDValue();
12816     break;
12817   }
12818   case ARMISD::SMLALBT: {
12819     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
12820     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12821     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
12822     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12823     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
12824         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
12825       return SDValue();
12826     break;
12827   }
12828   case ARMISD::SMLALTB: {
12829     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
12830     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12831     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
12832     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12833     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
12834         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
12835       return SDValue();
12836     break;
12837   }
12838   case ARMISD::SMLALTT: {
12839     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12840     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
12841     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
12842         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
12843       return SDValue();
12844     break;
12845   }
12846   case ISD::INTRINSIC_VOID:
12847   case ISD::INTRINSIC_W_CHAIN:
12848     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12849     case Intrinsic::arm_neon_vld1:
12850     case Intrinsic::arm_neon_vld1x2:
12851     case Intrinsic::arm_neon_vld1x3:
12852     case Intrinsic::arm_neon_vld1x4:
12853     case Intrinsic::arm_neon_vld2:
12854     case Intrinsic::arm_neon_vld3:
12855     case Intrinsic::arm_neon_vld4:
12856     case Intrinsic::arm_neon_vld2lane:
12857     case Intrinsic::arm_neon_vld3lane:
12858     case Intrinsic::arm_neon_vld4lane:
12859     case Intrinsic::arm_neon_vld2dup:
12860     case Intrinsic::arm_neon_vld3dup:
12861     case Intrinsic::arm_neon_vld4dup:
12862     case Intrinsic::arm_neon_vst1:
12863     case Intrinsic::arm_neon_vst1x2:
12864     case Intrinsic::arm_neon_vst1x3:
12865     case Intrinsic::arm_neon_vst1x4:
12866     case Intrinsic::arm_neon_vst2:
12867     case Intrinsic::arm_neon_vst3:
12868     case Intrinsic::arm_neon_vst4:
12869     case Intrinsic::arm_neon_vst2lane:
12870     case Intrinsic::arm_neon_vst3lane:
12871     case Intrinsic::arm_neon_vst4lane:
12872       return PerformVLDCombine(N, DCI);
12873     default: break;
12874     }
12875     break;
12876   }
12877   return SDValue();
12878 }
12879 
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT) const12880 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
12881                                                           EVT VT) const {
12882   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
12883 }
12884 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const12885 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
12886                                                        unsigned,
12887                                                        unsigned,
12888                                                        bool *Fast) const {
12889   // Depends what it gets converted into if the type is weird.
12890   if (!VT.isSimple())
12891     return false;
12892 
12893   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
12894   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
12895 
12896   switch (VT.getSimpleVT().SimpleTy) {
12897   default:
12898     return false;
12899   case MVT::i8:
12900   case MVT::i16:
12901   case MVT::i32: {
12902     // Unaligned access can use (for example) LRDB, LRDH, LDR
12903     if (AllowsUnaligned) {
12904       if (Fast)
12905         *Fast = Subtarget->hasV7Ops();
12906       return true;
12907     }
12908     return false;
12909   }
12910   case MVT::f64:
12911   case MVT::v2f64: {
12912     // For any little-endian targets with neon, we can support unaligned ld/st
12913     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
12914     // A big-endian target may also explicitly support unaligned accesses
12915     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
12916       if (Fast)
12917         *Fast = true;
12918       return true;
12919     }
12920     return false;
12921   }
12922   }
12923 }
12924 
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)12925 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
12926                        unsigned AlignCheck) {
12927   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
12928           (DstAlign == 0 || DstAlign % AlignCheck == 0));
12929 }
12930 
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const12931 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
12932                                            unsigned DstAlign, unsigned SrcAlign,
12933                                            bool IsMemset, bool ZeroMemset,
12934                                            bool MemcpyStrSrc,
12935                                            MachineFunction &MF) const {
12936   const Function &F = MF.getFunction();
12937 
12938   // See if we can use NEON instructions for this...
12939   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
12940       !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
12941     bool Fast;
12942     if (Size >= 16 &&
12943         (memOpAlign(SrcAlign, DstAlign, 16) ||
12944          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
12945       return MVT::v2f64;
12946     } else if (Size >= 8 &&
12947                (memOpAlign(SrcAlign, DstAlign, 8) ||
12948                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
12949                  Fast))) {
12950       return MVT::f64;
12951     }
12952   }
12953 
12954   // Let the target-independent logic figure it out.
12955   return MVT::Other;
12956 }
12957 
12958 // 64-bit integers are split into their high and low parts and held in two
12959 // different registers, so the trunc is free since the low register can just
12960 // be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const12961 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
12962   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
12963     return false;
12964   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
12965   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
12966   return (SrcBits == 64 && DestBits == 32);
12967 }
12968 
isTruncateFree(EVT SrcVT,EVT DstVT) const12969 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
12970   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
12971       !DstVT.isInteger())
12972     return false;
12973   unsigned SrcBits = SrcVT.getSizeInBits();
12974   unsigned DestBits = DstVT.getSizeInBits();
12975   return (SrcBits == 64 && DestBits == 32);
12976 }
12977 
isZExtFree(SDValue Val,EVT VT2) const12978 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12979   if (Val.getOpcode() != ISD::LOAD)
12980     return false;
12981 
12982   EVT VT1 = Val.getValueType();
12983   if (!VT1.isSimple() || !VT1.isInteger() ||
12984       !VT2.isSimple() || !VT2.isInteger())
12985     return false;
12986 
12987   switch (VT1.getSimpleVT().SimpleTy) {
12988   default: break;
12989   case MVT::i1:
12990   case MVT::i8:
12991   case MVT::i16:
12992     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
12993     return true;
12994   }
12995 
12996   return false;
12997 }
12998 
isFNegFree(EVT VT) const12999 bool ARMTargetLowering::isFNegFree(EVT VT) const {
13000   if (!VT.isSimple())
13001     return false;
13002 
13003   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
13004   // negate values directly (fneg is free). So, we don't want to let the DAG
13005   // combiner rewrite fneg into xors and some other instructions.  For f16 and
13006   // FullFP16 argument passing, some bitcast nodes may be introduced,
13007   // triggering this DAG combine rewrite, so we are avoiding that with this.
13008   switch (VT.getSimpleVT().SimpleTy) {
13009   default: break;
13010   case MVT::f16:
13011     return Subtarget->hasFullFP16();
13012   }
13013 
13014   return false;
13015 }
13016 
isVectorLoadExtDesirable(SDValue ExtVal) const13017 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
13018   EVT VT = ExtVal.getValueType();
13019 
13020   if (!isTypeLegal(VT))
13021     return false;
13022 
13023   // Don't create a loadext if we can fold the extension into a wide/long
13024   // instruction.
13025   // If there's more than one user instruction, the loadext is desirable no
13026   // matter what.  There can be two uses by the same instruction.
13027   if (ExtVal->use_empty() ||
13028       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
13029     return true;
13030 
13031   SDNode *U = *ExtVal->use_begin();
13032   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
13033        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
13034     return false;
13035 
13036   return true;
13037 }
13038 
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const13039 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
13040   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13041     return false;
13042 
13043   if (!isTypeLegal(EVT::getEVT(Ty1)))
13044     return false;
13045 
13046   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
13047 
13048   // Assuming the caller doesn't have a zeroext or signext return parameter,
13049   // truncation all the way down to i1 is valid.
13050   return true;
13051 }
13052 
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const13053 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
13054                                                 const AddrMode &AM, Type *Ty,
13055                                                 unsigned AS) const {
13056   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
13057     if (Subtarget->hasFPAO())
13058       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
13059     return 0;
13060   }
13061   return -1;
13062 }
13063 
isLegalT1AddressImmediate(int64_t V,EVT VT)13064 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
13065   if (V < 0)
13066     return false;
13067 
13068   unsigned Scale = 1;
13069   switch (VT.getSimpleVT().SimpleTy) {
13070   default: return false;
13071   case MVT::i1:
13072   case MVT::i8:
13073     // Scale == 1;
13074     break;
13075   case MVT::i16:
13076     // Scale == 2;
13077     Scale = 2;
13078     break;
13079   case MVT::i32:
13080     // Scale == 4;
13081     Scale = 4;
13082     break;
13083   }
13084 
13085   if ((V & (Scale - 1)) != 0)
13086     return false;
13087   V /= Scale;
13088   return V == (V & ((1LL << 5) - 1));
13089 }
13090 
isLegalT2AddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)13091 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
13092                                       const ARMSubtarget *Subtarget) {
13093   bool isNeg = false;
13094   if (V < 0) {
13095     isNeg = true;
13096     V = - V;
13097   }
13098 
13099   switch (VT.getSimpleVT().SimpleTy) {
13100   default: return false;
13101   case MVT::i1:
13102   case MVT::i8:
13103   case MVT::i16:
13104   case MVT::i32:
13105     // + imm12 or - imm8
13106     if (isNeg)
13107       return V == (V & ((1LL << 8) - 1));
13108     return V == (V & ((1LL << 12) - 1));
13109   case MVT::f32:
13110   case MVT::f64:
13111     // Same as ARM mode. FIXME: NEON?
13112     if (!Subtarget->hasVFP2())
13113       return false;
13114     if ((V & 3) != 0)
13115       return false;
13116     V >>= 2;
13117     return V == (V & ((1LL << 8) - 1));
13118   }
13119 }
13120 
13121 /// isLegalAddressImmediate - Return true if the integer value can be used
13122 /// as the offset of the target addressing mode for load / store of the
13123 /// given type.
isLegalAddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)13124 static bool isLegalAddressImmediate(int64_t V, EVT VT,
13125                                     const ARMSubtarget *Subtarget) {
13126   if (V == 0)
13127     return true;
13128 
13129   if (!VT.isSimple())
13130     return false;
13131 
13132   if (Subtarget->isThumb1Only())
13133     return isLegalT1AddressImmediate(V, VT);
13134   else if (Subtarget->isThumb2())
13135     return isLegalT2AddressImmediate(V, VT, Subtarget);
13136 
13137   // ARM mode.
13138   if (V < 0)
13139     V = - V;
13140   switch (VT.getSimpleVT().SimpleTy) {
13141   default: return false;
13142   case MVT::i1:
13143   case MVT::i8:
13144   case MVT::i32:
13145     // +- imm12
13146     return V == (V & ((1LL << 12) - 1));
13147   case MVT::i16:
13148     // +- imm8
13149     return V == (V & ((1LL << 8) - 1));
13150   case MVT::f32:
13151   case MVT::f64:
13152     if (!Subtarget->hasVFP2()) // FIXME: NEON?
13153       return false;
13154     if ((V & 3) != 0)
13155       return false;
13156     V >>= 2;
13157     return V == (V & ((1LL << 8) - 1));
13158   }
13159 }
13160 
isLegalT2ScaledAddressingMode(const AddrMode & AM,EVT VT) const13161 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
13162                                                       EVT VT) const {
13163   int Scale = AM.Scale;
13164   if (Scale < 0)
13165     return false;
13166 
13167   switch (VT.getSimpleVT().SimpleTy) {
13168   default: return false;
13169   case MVT::i1:
13170   case MVT::i8:
13171   case MVT::i16:
13172   case MVT::i32:
13173     if (Scale == 1)
13174       return true;
13175     // r + r << imm
13176     Scale = Scale & ~1;
13177     return Scale == 2 || Scale == 4 || Scale == 8;
13178   case MVT::i64:
13179     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
13180     // version in Thumb mode.
13181     // r + r
13182     if (Scale == 1)
13183       return true;
13184     // r * 2 (this can be lowered to r + r).
13185     if (!AM.HasBaseReg && Scale == 2)
13186       return true;
13187     return false;
13188   case MVT::isVoid:
13189     // Note, we allow "void" uses (basically, uses that aren't loads or
13190     // stores), because arm allows folding a scale into many arithmetic
13191     // operations.  This should be made more precise and revisited later.
13192 
13193     // Allow r << imm, but the imm has to be a multiple of two.
13194     if (Scale & 1) return false;
13195     return isPowerOf2_32(Scale);
13196   }
13197 }
13198 
isLegalT1ScaledAddressingMode(const AddrMode & AM,EVT VT) const13199 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
13200                                                       EVT VT) const {
13201   const int Scale = AM.Scale;
13202 
13203   // Negative scales are not supported in Thumb1.
13204   if (Scale < 0)
13205     return false;
13206 
13207   // Thumb1 addressing modes do not support register scaling excepting the
13208   // following cases:
13209   // 1. Scale == 1 means no scaling.
13210   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
13211   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
13212 }
13213 
13214 /// isLegalAddressingMode - Return true if the addressing mode represented
13215 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const13216 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13217                                               const AddrMode &AM, Type *Ty,
13218                                               unsigned AS, Instruction *I) const {
13219   EVT VT = getValueType(DL, Ty, true);
13220   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
13221     return false;
13222 
13223   // Can never fold addr of global into load/store.
13224   if (AM.BaseGV)
13225     return false;
13226 
13227   switch (AM.Scale) {
13228   case 0:  // no scale reg, must be "r+i" or "r", or "i".
13229     break;
13230   default:
13231     // ARM doesn't support any R+R*scale+imm addr modes.
13232     if (AM.BaseOffs)
13233       return false;
13234 
13235     if (!VT.isSimple())
13236       return false;
13237 
13238     if (Subtarget->isThumb1Only())
13239       return isLegalT1ScaledAddressingMode(AM, VT);
13240 
13241     if (Subtarget->isThumb2())
13242       return isLegalT2ScaledAddressingMode(AM, VT);
13243 
13244     int Scale = AM.Scale;
13245     switch (VT.getSimpleVT().SimpleTy) {
13246     default: return false;
13247     case MVT::i1:
13248     case MVT::i8:
13249     case MVT::i32:
13250       if (Scale < 0) Scale = -Scale;
13251       if (Scale == 1)
13252         return true;
13253       // r + r << imm
13254       return isPowerOf2_32(Scale & ~1);
13255     case MVT::i16:
13256     case MVT::i64:
13257       // r +/- r
13258       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
13259         return true;
13260       // r * 2 (this can be lowered to r + r).
13261       if (!AM.HasBaseReg && Scale == 2)
13262         return true;
13263       return false;
13264 
13265     case MVT::isVoid:
13266       // Note, we allow "void" uses (basically, uses that aren't loads or
13267       // stores), because arm allows folding a scale into many arithmetic
13268       // operations.  This should be made more precise and revisited later.
13269 
13270       // Allow r << imm, but the imm has to be a multiple of two.
13271       if (Scale & 1) return false;
13272       return isPowerOf2_32(Scale);
13273     }
13274   }
13275   return true;
13276 }
13277 
13278 /// isLegalICmpImmediate - Return true if the specified immediate is legal
13279 /// icmp immediate, that is the target has icmp instructions which can compare
13280 /// a register against the immediate without having to materialize the
13281 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const13282 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13283   // Thumb2 and ARM modes can use cmn for negative immediates.
13284   if (!Subtarget->isThumb())
13285     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
13286            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
13287   if (Subtarget->isThumb2())
13288     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
13289            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
13290   // Thumb1 doesn't have cmn, and only 8-bit immediates.
13291   return Imm >= 0 && Imm <= 255;
13292 }
13293 
13294 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
13295 /// *or sub* immediate, that is the target has add or sub instructions which can
13296 /// add a register with the immediate without having to materialize the
13297 /// immediate into a register.
isLegalAddImmediate(int64_t Imm) const13298 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13299   // Same encoding for add/sub, just flip the sign.
13300   int64_t AbsImm = std::abs(Imm);
13301   if (!Subtarget->isThumb())
13302     return ARM_AM::getSOImmVal(AbsImm) != -1;
13303   if (Subtarget->isThumb2())
13304     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
13305   // Thumb1 only has 8-bit unsigned immediate.
13306   return AbsImm >= 0 && AbsImm <= 255;
13307 }
13308 
getARMIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)13309 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
13310                                       bool isSEXTLoad, SDValue &Base,
13311                                       SDValue &Offset, bool &isInc,
13312                                       SelectionDAG &DAG) {
13313   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13314     return false;
13315 
13316   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
13317     // AddressingMode 3
13318     Base = Ptr->getOperand(0);
13319     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13320       int RHSC = (int)RHS->getZExtValue();
13321       if (RHSC < 0 && RHSC > -256) {
13322         assert(Ptr->getOpcode() == ISD::ADD);
13323         isInc = false;
13324         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13325         return true;
13326       }
13327     }
13328     isInc = (Ptr->getOpcode() == ISD::ADD);
13329     Offset = Ptr->getOperand(1);
13330     return true;
13331   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
13332     // AddressingMode 2
13333     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13334       int RHSC = (int)RHS->getZExtValue();
13335       if (RHSC < 0 && RHSC > -0x1000) {
13336         assert(Ptr->getOpcode() == ISD::ADD);
13337         isInc = false;
13338         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13339         Base = Ptr->getOperand(0);
13340         return true;
13341       }
13342     }
13343 
13344     if (Ptr->getOpcode() == ISD::ADD) {
13345       isInc = true;
13346       ARM_AM::ShiftOpc ShOpcVal=
13347         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
13348       if (ShOpcVal != ARM_AM::no_shift) {
13349         Base = Ptr->getOperand(1);
13350         Offset = Ptr->getOperand(0);
13351       } else {
13352         Base = Ptr->getOperand(0);
13353         Offset = Ptr->getOperand(1);
13354       }
13355       return true;
13356     }
13357 
13358     isInc = (Ptr->getOpcode() == ISD::ADD);
13359     Base = Ptr->getOperand(0);
13360     Offset = Ptr->getOperand(1);
13361     return true;
13362   }
13363 
13364   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
13365   return false;
13366 }
13367 
getT2IndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)13368 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
13369                                      bool isSEXTLoad, SDValue &Base,
13370                                      SDValue &Offset, bool &isInc,
13371                                      SelectionDAG &DAG) {
13372   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13373     return false;
13374 
13375   Base = Ptr->getOperand(0);
13376   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13377     int RHSC = (int)RHS->getZExtValue();
13378     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
13379       assert(Ptr->getOpcode() == ISD::ADD);
13380       isInc = false;
13381       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13382       return true;
13383     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
13384       isInc = Ptr->getOpcode() == ISD::ADD;
13385       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
13386       return true;
13387     }
13388   }
13389 
13390   return false;
13391 }
13392 
13393 /// getPreIndexedAddressParts - returns true by value, base pointer and
13394 /// offset pointer and addressing mode by reference if the node's address
13395 /// can be legally represented as pre-indexed load / store address.
13396 bool
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const13397 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
13398                                              SDValue &Offset,
13399                                              ISD::MemIndexedMode &AM,
13400                                              SelectionDAG &DAG) const {
13401   if (Subtarget->isThumb1Only())
13402     return false;
13403 
13404   EVT VT;
13405   SDValue Ptr;
13406   bool isSEXTLoad = false;
13407   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13408     Ptr = LD->getBasePtr();
13409     VT  = LD->getMemoryVT();
13410     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13411   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13412     Ptr = ST->getBasePtr();
13413     VT  = ST->getMemoryVT();
13414   } else
13415     return false;
13416 
13417   bool isInc;
13418   bool isLegal = false;
13419   if (Subtarget->isThumb2())
13420     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13421                                        Offset, isInc, DAG);
13422   else
13423     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13424                                         Offset, isInc, DAG);
13425   if (!isLegal)
13426     return false;
13427 
13428   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
13429   return true;
13430 }
13431 
13432 /// getPostIndexedAddressParts - returns true by value, base pointer and
13433 /// offset pointer and addressing mode by reference if this node can be
13434 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const13435 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
13436                                                    SDValue &Base,
13437                                                    SDValue &Offset,
13438                                                    ISD::MemIndexedMode &AM,
13439                                                    SelectionDAG &DAG) const {
13440   EVT VT;
13441   SDValue Ptr;
13442   bool isSEXTLoad = false, isNonExt;
13443   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13444     VT  = LD->getMemoryVT();
13445     Ptr = LD->getBasePtr();
13446     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13447     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
13448   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13449     VT  = ST->getMemoryVT();
13450     Ptr = ST->getBasePtr();
13451     isNonExt = !ST->isTruncatingStore();
13452   } else
13453     return false;
13454 
13455   if (Subtarget->isThumb1Only()) {
13456     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
13457     // must be non-extending/truncating, i32, with an offset of 4.
13458     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
13459     if (Op->getOpcode() != ISD::ADD || !isNonExt)
13460       return false;
13461     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
13462     if (!RHS || RHS->getZExtValue() != 4)
13463       return false;
13464 
13465     Offset = Op->getOperand(1);
13466     Base = Op->getOperand(0);
13467     AM = ISD::POST_INC;
13468     return true;
13469   }
13470 
13471   bool isInc;
13472   bool isLegal = false;
13473   if (Subtarget->isThumb2())
13474     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13475                                        isInc, DAG);
13476   else
13477     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13478                                         isInc, DAG);
13479   if (!isLegal)
13480     return false;
13481 
13482   if (Ptr != Base) {
13483     // Swap base ptr and offset to catch more post-index load / store when
13484     // it's legal. In Thumb2 mode, offset must be an immediate.
13485     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
13486         !Subtarget->isThumb2())
13487       std::swap(Base, Offset);
13488 
13489     // Post-indexed load / store update the base pointer.
13490     if (Ptr != Base)
13491       return false;
13492   }
13493 
13494   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
13495   return true;
13496 }
13497 
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const13498 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13499                                                       KnownBits &Known,
13500                                                       const APInt &DemandedElts,
13501                                                       const SelectionDAG &DAG,
13502                                                       unsigned Depth) const {
13503   unsigned BitWidth = Known.getBitWidth();
13504   Known.resetAll();
13505   switch (Op.getOpcode()) {
13506   default: break;
13507   case ARMISD::ADDC:
13508   case ARMISD::ADDE:
13509   case ARMISD::SUBC:
13510   case ARMISD::SUBE:
13511     // Special cases when we convert a carry to a boolean.
13512     if (Op.getResNo() == 0) {
13513       SDValue LHS = Op.getOperand(0);
13514       SDValue RHS = Op.getOperand(1);
13515       // (ADDE 0, 0, C) will give us a single bit.
13516       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
13517           isNullConstant(RHS)) {
13518         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13519         return;
13520       }
13521     }
13522     break;
13523   case ARMISD::CMOV: {
13524     // Bits are known zero/one if known on the LHS and RHS.
13525     DAG.computeKnownBits(Op.getOperand(0), Known, Depth+1);
13526     if (Known.isUnknown())
13527       return;
13528 
13529     KnownBits KnownRHS;
13530     DAG.computeKnownBits(Op.getOperand(1), KnownRHS, Depth+1);
13531     Known.Zero &= KnownRHS.Zero;
13532     Known.One  &= KnownRHS.One;
13533     return;
13534   }
13535   case ISD::INTRINSIC_W_CHAIN: {
13536     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
13537     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
13538     switch (IntID) {
13539     default: return;
13540     case Intrinsic::arm_ldaex:
13541     case Intrinsic::arm_ldrex: {
13542       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
13543       unsigned MemBits = VT.getScalarSizeInBits();
13544       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
13545       return;
13546     }
13547     }
13548   }
13549   case ARMISD::BFI: {
13550     // Conservatively, we can recurse down the first operand
13551     // and just mask out all affected bits.
13552     DAG.computeKnownBits(Op.getOperand(0), Known, Depth + 1);
13553 
13554     // The operand to BFI is already a mask suitable for removing the bits it
13555     // sets.
13556     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
13557     const APInt &Mask = CI->getAPIntValue();
13558     Known.Zero &= Mask;
13559     Known.One &= Mask;
13560     return;
13561   }
13562   }
13563 }
13564 
13565 //===----------------------------------------------------------------------===//
13566 //                           ARM Inline Assembly Support
13567 //===----------------------------------------------------------------------===//
13568 
ExpandInlineAsm(CallInst * CI) const13569 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
13570   // Looking for "rev" which is V6+.
13571   if (!Subtarget->hasV6Ops())
13572     return false;
13573 
13574   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13575   std::string AsmStr = IA->getAsmString();
13576   SmallVector<StringRef, 4> AsmPieces;
13577   SplitString(AsmStr, AsmPieces, ";\n");
13578 
13579   switch (AsmPieces.size()) {
13580   default: return false;
13581   case 1:
13582     AsmStr = AsmPieces[0];
13583     AsmPieces.clear();
13584     SplitString(AsmStr, AsmPieces, " \t,");
13585 
13586     // rev $0, $1
13587     if (AsmPieces.size() == 3 &&
13588         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
13589         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
13590       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13591       if (Ty && Ty->getBitWidth() == 32)
13592         return IntrinsicLowering::LowerToByteSwap(CI);
13593     }
13594     break;
13595   }
13596 
13597   return false;
13598 }
13599 
LowerXConstraint(EVT ConstraintVT) const13600 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
13601   // At this point, we have to lower this constraint to something else, so we
13602   // lower it to an "r" or "w". However, by doing this we will force the result
13603   // to be in register, while the X constraint is much more permissive.
13604   //
13605   // Although we are correct (we are free to emit anything, without
13606   // constraints), we might break use cases that would expect us to be more
13607   // efficient and emit something else.
13608   if (!Subtarget->hasVFP2())
13609     return "r";
13610   if (ConstraintVT.isFloatingPoint())
13611     return "w";
13612   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
13613      (ConstraintVT.getSizeInBits() == 64 ||
13614       ConstraintVT.getSizeInBits() == 128))
13615     return "w";
13616 
13617   return "r";
13618 }
13619 
13620 /// getConstraintType - Given a constraint letter, return the type of
13621 /// constraint it is for this target.
13622 ARMTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const13623 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
13624   if (Constraint.size() == 1) {
13625     switch (Constraint[0]) {
13626     default:  break;
13627     case 'l': return C_RegisterClass;
13628     case 'w': return C_RegisterClass;
13629     case 'h': return C_RegisterClass;
13630     case 'x': return C_RegisterClass;
13631     case 't': return C_RegisterClass;
13632     case 'j': return C_Other; // Constant for movw.
13633       // An address with a single base register. Due to the way we
13634       // currently handle addresses it is the same as an 'r' memory constraint.
13635     case 'Q': return C_Memory;
13636     }
13637   } else if (Constraint.size() == 2) {
13638     switch (Constraint[0]) {
13639     default: break;
13640     // All 'U+' constraints are addresses.
13641     case 'U': return C_Memory;
13642     }
13643   }
13644   return TargetLowering::getConstraintType(Constraint);
13645 }
13646 
13647 /// Examine constraint type and operand type and determine a weight value.
13648 /// This object must already have been set up with the operand type
13649 /// and the current alternative constraint selected.
13650 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const13651 ARMTargetLowering::getSingleConstraintMatchWeight(
13652     AsmOperandInfo &info, const char *constraint) const {
13653   ConstraintWeight weight = CW_Invalid;
13654   Value *CallOperandVal = info.CallOperandVal;
13655     // If we don't have a value, we can't do a match,
13656     // but allow it at the lowest weight.
13657   if (!CallOperandVal)
13658     return CW_Default;
13659   Type *type = CallOperandVal->getType();
13660   // Look at the constraint type.
13661   switch (*constraint) {
13662   default:
13663     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13664     break;
13665   case 'l':
13666     if (type->isIntegerTy()) {
13667       if (Subtarget->isThumb())
13668         weight = CW_SpecificReg;
13669       else
13670         weight = CW_Register;
13671     }
13672     break;
13673   case 'w':
13674     if (type->isFloatingPointTy())
13675       weight = CW_Register;
13676     break;
13677   }
13678   return weight;
13679 }
13680 
13681 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
13682 
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const13683 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
13684     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
13685   if (Constraint.size() == 1) {
13686     // GCC ARM Constraint Letters
13687     switch (Constraint[0]) {
13688     case 'l': // Low regs or general regs.
13689       if (Subtarget->isThumb())
13690         return RCPair(0U, &ARM::tGPRRegClass);
13691       return RCPair(0U, &ARM::GPRRegClass);
13692     case 'h': // High regs or no regs.
13693       if (Subtarget->isThumb())
13694         return RCPair(0U, &ARM::hGPRRegClass);
13695       break;
13696     case 'r':
13697       if (Subtarget->isThumb1Only())
13698         return RCPair(0U, &ARM::tGPRRegClass);
13699       return RCPair(0U, &ARM::GPRRegClass);
13700     case 'w':
13701       if (VT == MVT::Other)
13702         break;
13703       if (VT == MVT::f32)
13704         return RCPair(0U, &ARM::SPRRegClass);
13705       if (VT.getSizeInBits() == 64)
13706         return RCPair(0U, &ARM::DPRRegClass);
13707       if (VT.getSizeInBits() == 128)
13708         return RCPair(0U, &ARM::QPRRegClass);
13709       break;
13710     case 'x':
13711       if (VT == MVT::Other)
13712         break;
13713       if (VT == MVT::f32)
13714         return RCPair(0U, &ARM::SPR_8RegClass);
13715       if (VT.getSizeInBits() == 64)
13716         return RCPair(0U, &ARM::DPR_8RegClass);
13717       if (VT.getSizeInBits() == 128)
13718         return RCPair(0U, &ARM::QPR_8RegClass);
13719       break;
13720     case 't':
13721       if (VT == MVT::Other)
13722         break;
13723       if (VT == MVT::f32 || VT == MVT::i32)
13724         return RCPair(0U, &ARM::SPRRegClass);
13725       if (VT.getSizeInBits() == 64)
13726         return RCPair(0U, &ARM::DPR_VFP2RegClass);
13727       if (VT.getSizeInBits() == 128)
13728         return RCPair(0U, &ARM::QPR_VFP2RegClass);
13729       break;
13730     }
13731   }
13732   if (StringRef("{cc}").equals_lower(Constraint))
13733     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
13734 
13735   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13736 }
13737 
13738 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13739 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const13740 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13741                                                      std::string &Constraint,
13742                                                      std::vector<SDValue>&Ops,
13743                                                      SelectionDAG &DAG) const {
13744   SDValue Result;
13745 
13746   // Currently only support length 1 constraints.
13747   if (Constraint.length() != 1) return;
13748 
13749   char ConstraintLetter = Constraint[0];
13750   switch (ConstraintLetter) {
13751   default: break;
13752   case 'j':
13753   case 'I': case 'J': case 'K': case 'L':
13754   case 'M': case 'N': case 'O':
13755     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
13756     if (!C)
13757       return;
13758 
13759     int64_t CVal64 = C->getSExtValue();
13760     int CVal = (int) CVal64;
13761     // None of these constraints allow values larger than 32 bits.  Check
13762     // that the value fits in an int.
13763     if (CVal != CVal64)
13764       return;
13765 
13766     switch (ConstraintLetter) {
13767       case 'j':
13768         // Constant suitable for movw, must be between 0 and
13769         // 65535.
13770         if (Subtarget->hasV6T2Ops())
13771           if (CVal >= 0 && CVal <= 65535)
13772             break;
13773         return;
13774       case 'I':
13775         if (Subtarget->isThumb1Only()) {
13776           // This must be a constant between 0 and 255, for ADD
13777           // immediates.
13778           if (CVal >= 0 && CVal <= 255)
13779             break;
13780         } else if (Subtarget->isThumb2()) {
13781           // A constant that can be used as an immediate value in a
13782           // data-processing instruction.
13783           if (ARM_AM::getT2SOImmVal(CVal) != -1)
13784             break;
13785         } else {
13786           // A constant that can be used as an immediate value in a
13787           // data-processing instruction.
13788           if (ARM_AM::getSOImmVal(CVal) != -1)
13789             break;
13790         }
13791         return;
13792 
13793       case 'J':
13794         if (Subtarget->isThumb1Only()) {
13795           // This must be a constant between -255 and -1, for negated ADD
13796           // immediates. This can be used in GCC with an "n" modifier that
13797           // prints the negated value, for use with SUB instructions. It is
13798           // not useful otherwise but is implemented for compatibility.
13799           if (CVal >= -255 && CVal <= -1)
13800             break;
13801         } else {
13802           // This must be a constant between -4095 and 4095. It is not clear
13803           // what this constraint is intended for. Implemented for
13804           // compatibility with GCC.
13805           if (CVal >= -4095 && CVal <= 4095)
13806             break;
13807         }
13808         return;
13809 
13810       case 'K':
13811         if (Subtarget->isThumb1Only()) {
13812           // A 32-bit value where only one byte has a nonzero value. Exclude
13813           // zero to match GCC. This constraint is used by GCC internally for
13814           // constants that can be loaded with a move/shift combination.
13815           // It is not useful otherwise but is implemented for compatibility.
13816           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
13817             break;
13818         } else if (Subtarget->isThumb2()) {
13819           // A constant whose bitwise inverse can be used as an immediate
13820           // value in a data-processing instruction. This can be used in GCC
13821           // with a "B" modifier that prints the inverted value, for use with
13822           // BIC and MVN instructions. It is not useful otherwise but is
13823           // implemented for compatibility.
13824           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
13825             break;
13826         } else {
13827           // A constant whose bitwise inverse can be used as an immediate
13828           // value in a data-processing instruction. This can be used in GCC
13829           // with a "B" modifier that prints the inverted value, for use with
13830           // BIC and MVN instructions. It is not useful otherwise but is
13831           // implemented for compatibility.
13832           if (ARM_AM::getSOImmVal(~CVal) != -1)
13833             break;
13834         }
13835         return;
13836 
13837       case 'L':
13838         if (Subtarget->isThumb1Only()) {
13839           // This must be a constant between -7 and 7,
13840           // for 3-operand ADD/SUB immediate instructions.
13841           if (CVal >= -7 && CVal < 7)
13842             break;
13843         } else if (Subtarget->isThumb2()) {
13844           // A constant whose negation can be used as an immediate value in a
13845           // data-processing instruction. This can be used in GCC with an "n"
13846           // modifier that prints the negated value, for use with SUB
13847           // instructions. It is not useful otherwise but is implemented for
13848           // compatibility.
13849           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
13850             break;
13851         } else {
13852           // A constant whose negation can be used as an immediate value in a
13853           // data-processing instruction. This can be used in GCC with an "n"
13854           // modifier that prints the negated value, for use with SUB
13855           // instructions. It is not useful otherwise but is implemented for
13856           // compatibility.
13857           if (ARM_AM::getSOImmVal(-CVal) != -1)
13858             break;
13859         }
13860         return;
13861 
13862       case 'M':
13863         if (Subtarget->isThumb1Only()) {
13864           // This must be a multiple of 4 between 0 and 1020, for
13865           // ADD sp + immediate.
13866           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
13867             break;
13868         } else {
13869           // A power of two or a constant between 0 and 32.  This is used in
13870           // GCC for the shift amount on shifted register operands, but it is
13871           // useful in general for any shift amounts.
13872           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
13873             break;
13874         }
13875         return;
13876 
13877       case 'N':
13878         if (Subtarget->isThumb()) {  // FIXME thumb2
13879           // This must be a constant between 0 and 31, for shift amounts.
13880           if (CVal >= 0 && CVal <= 31)
13881             break;
13882         }
13883         return;
13884 
13885       case 'O':
13886         if (Subtarget->isThumb()) {  // FIXME thumb2
13887           // This must be a multiple of 4 between -508 and 508, for
13888           // ADD/SUB sp = sp + immediate.
13889           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
13890             break;
13891         }
13892         return;
13893     }
13894     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
13895     break;
13896   }
13897 
13898   if (Result.getNode()) {
13899     Ops.push_back(Result);
13900     return;
13901   }
13902   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13903 }
13904 
getDivRemLibcall(const SDNode * N,MVT::SimpleValueType SVT)13905 static RTLIB::Libcall getDivRemLibcall(
13906     const SDNode *N, MVT::SimpleValueType SVT) {
13907   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
13908           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
13909          "Unhandled Opcode in getDivRemLibcall");
13910   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
13911                   N->getOpcode() == ISD::SREM;
13912   RTLIB::Libcall LC;
13913   switch (SVT) {
13914   default: llvm_unreachable("Unexpected request for libcall!");
13915   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
13916   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
13917   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
13918   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
13919   }
13920   return LC;
13921 }
13922 
getDivRemArgList(const SDNode * N,LLVMContext * Context,const ARMSubtarget * Subtarget)13923 static TargetLowering::ArgListTy getDivRemArgList(
13924     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
13925   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
13926           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
13927          "Unhandled Opcode in getDivRemArgList");
13928   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
13929                   N->getOpcode() == ISD::SREM;
13930   TargetLowering::ArgListTy Args;
13931   TargetLowering::ArgListEntry Entry;
13932   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
13933     EVT ArgVT = N->getOperand(i).getValueType();
13934     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
13935     Entry.Node = N->getOperand(i);
13936     Entry.Ty = ArgTy;
13937     Entry.IsSExt = isSigned;
13938     Entry.IsZExt = !isSigned;
13939     Args.push_back(Entry);
13940   }
13941   if (Subtarget->isTargetWindows() && Args.size() >= 2)
13942     std::swap(Args[0], Args[1]);
13943   return Args;
13944 }
13945 
LowerDivRem(SDValue Op,SelectionDAG & DAG) const13946 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
13947   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
13948           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
13949           Subtarget->isTargetWindows()) &&
13950          "Register-based DivRem lowering only");
13951   unsigned Opcode = Op->getOpcode();
13952   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
13953          "Invalid opcode for Div/Rem lowering");
13954   bool isSigned = (Opcode == ISD::SDIVREM);
13955   EVT VT = Op->getValueType(0);
13956   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
13957   SDLoc dl(Op);
13958 
13959   // If the target has hardware divide, use divide + multiply + subtract:
13960   //     div = a / b
13961   //     rem = a - b * div
13962   //     return {div, rem}
13963   // This should be lowered into UDIV/SDIV + MLS later on.
13964   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
13965                                         : Subtarget->hasDivideInARMMode();
13966   if (hasDivide && Op->getValueType(0).isSimple() &&
13967       Op->getSimpleValueType(0) == MVT::i32) {
13968     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
13969     const SDValue Dividend = Op->getOperand(0);
13970     const SDValue Divisor = Op->getOperand(1);
13971     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
13972     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
13973     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
13974 
13975     SDValue Values[2] = {Div, Rem};
13976     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
13977   }
13978 
13979   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
13980                                        VT.getSimpleVT().SimpleTy);
13981   SDValue InChain = DAG.getEntryNode();
13982 
13983   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
13984                                                     DAG.getContext(),
13985                                                     Subtarget);
13986 
13987   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
13988                                          getPointerTy(DAG.getDataLayout()));
13989 
13990   Type *RetTy = StructType::get(Ty, Ty);
13991 
13992   if (Subtarget->isTargetWindows())
13993     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
13994 
13995   TargetLowering::CallLoweringInfo CLI(DAG);
13996   CLI.setDebugLoc(dl).setChain(InChain)
13997     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
13998     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
13999 
14000   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
14001   return CallInfo.first;
14002 }
14003 
14004 // Lowers REM using divmod helpers
14005 // see RTABI section 4.2/4.3
LowerREM(SDNode * N,SelectionDAG & DAG) const14006 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
14007   // Build return types (div and rem)
14008   std::vector<Type*> RetTyParams;
14009   Type *RetTyElement;
14010 
14011   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
14012   default: llvm_unreachable("Unexpected request for libcall!");
14013   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
14014   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
14015   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
14016   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
14017   }
14018 
14019   RetTyParams.push_back(RetTyElement);
14020   RetTyParams.push_back(RetTyElement);
14021   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
14022   Type *RetTy = StructType::get(*DAG.getContext(), ret);
14023 
14024   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
14025                                                              SimpleTy);
14026   SDValue InChain = DAG.getEntryNode();
14027   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
14028                                                     Subtarget);
14029   bool isSigned = N->getOpcode() == ISD::SREM;
14030   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
14031                                          getPointerTy(DAG.getDataLayout()));
14032 
14033   if (Subtarget->isTargetWindows())
14034     InChain = WinDBZCheckDenominator(DAG, N, InChain);
14035 
14036   // Lower call
14037   CallLoweringInfo CLI(DAG);
14038   CLI.setChain(InChain)
14039      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
14040      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
14041   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
14042 
14043   // Return second (rem) result operand (first contains div)
14044   SDNode *ResNode = CallResult.first.getNode();
14045   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
14046   return ResNode->getOperand(1);
14047 }
14048 
14049 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const14050 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
14051   assert(Subtarget->isTargetWindows() && "unsupported target platform");
14052   SDLoc DL(Op);
14053 
14054   // Get the inputs.
14055   SDValue Chain = Op.getOperand(0);
14056   SDValue Size  = Op.getOperand(1);
14057 
14058   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
14059           "no-stack-arg-probe")) {
14060     unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
14061     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14062     Chain = SP.getValue(1);
14063     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
14064     if (Align)
14065       SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
14066                        DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
14067     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
14068     SDValue Ops[2] = { SP, Chain };
14069     return DAG.getMergeValues(Ops, DL);
14070   }
14071 
14072   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
14073                               DAG.getConstant(2, DL, MVT::i32));
14074 
14075   SDValue Flag;
14076   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
14077   Flag = Chain.getValue(1);
14078 
14079   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
14080   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
14081 
14082   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14083   Chain = NewSP.getValue(1);
14084 
14085   SDValue Ops[2] = { NewSP, Chain };
14086   return DAG.getMergeValues(Ops, DL);
14087 }
14088 
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const14089 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
14090   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
14091          "Unexpected type for custom-lowering FP_EXTEND");
14092 
14093   RTLIB::Libcall LC;
14094   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
14095 
14096   SDValue SrcVal = Op.getOperand(0);
14097   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14098                      SDLoc(Op)).first;
14099 }
14100 
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const14101 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
14102   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
14103          Subtarget->isFPOnlySP() &&
14104          "Unexpected type for custom-lowering FP_ROUND");
14105 
14106   RTLIB::Libcall LC;
14107   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
14108 
14109   SDValue SrcVal = Op.getOperand(0);
14110   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14111                      SDLoc(Op)).first;
14112 }
14113 
14114 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const14115 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14116   // The ARM target isn't yet aware of offsets.
14117   return false;
14118 }
14119 
isBitFieldInvertedMask(unsigned v)14120 bool ARM::isBitFieldInvertedMask(unsigned v) {
14121   if (v == 0xffffffff)
14122     return false;
14123 
14124   // there can be 1's on either or both "outsides", all the "inside"
14125   // bits must be 0's
14126   return isShiftedMask_32(~v);
14127 }
14128 
14129 /// isFPImmLegal - Returns true if the target can instruction select the
14130 /// specified FP immediate natively. If false, the legalizer will
14131 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT) const14132 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
14133   if (!Subtarget->hasVFP3())
14134     return false;
14135   if (VT == MVT::f16 && Subtarget->hasFullFP16())
14136     return ARM_AM::getFP16Imm(Imm) != -1;
14137   if (VT == MVT::f32)
14138     return ARM_AM::getFP32Imm(Imm) != -1;
14139   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
14140     return ARM_AM::getFP64Imm(Imm) != -1;
14141   return false;
14142 }
14143 
14144 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
14145 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
14146 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const14147 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14148                                            const CallInst &I,
14149                                            MachineFunction &MF,
14150                                            unsigned Intrinsic) const {
14151   switch (Intrinsic) {
14152   case Intrinsic::arm_neon_vld1:
14153   case Intrinsic::arm_neon_vld2:
14154   case Intrinsic::arm_neon_vld3:
14155   case Intrinsic::arm_neon_vld4:
14156   case Intrinsic::arm_neon_vld2lane:
14157   case Intrinsic::arm_neon_vld3lane:
14158   case Intrinsic::arm_neon_vld4lane:
14159   case Intrinsic::arm_neon_vld2dup:
14160   case Intrinsic::arm_neon_vld3dup:
14161   case Intrinsic::arm_neon_vld4dup: {
14162     Info.opc = ISD::INTRINSIC_W_CHAIN;
14163     // Conservatively set memVT to the entire set of vectors loaded.
14164     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14165     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14166     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14167     Info.ptrVal = I.getArgOperand(0);
14168     Info.offset = 0;
14169     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14170     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14171     // volatile loads with NEON intrinsics not supported
14172     Info.flags = MachineMemOperand::MOLoad;
14173     return true;
14174   }
14175   case Intrinsic::arm_neon_vld1x2:
14176   case Intrinsic::arm_neon_vld1x3:
14177   case Intrinsic::arm_neon_vld1x4: {
14178     Info.opc = ISD::INTRINSIC_W_CHAIN;
14179     // Conservatively set memVT to the entire set of vectors loaded.
14180     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14181     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14182     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14183     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
14184     Info.offset = 0;
14185     Info.align = 0;
14186     // volatile loads with NEON intrinsics not supported
14187     Info.flags = MachineMemOperand::MOLoad;
14188     return true;
14189   }
14190   case Intrinsic::arm_neon_vst1:
14191   case Intrinsic::arm_neon_vst2:
14192   case Intrinsic::arm_neon_vst3:
14193   case Intrinsic::arm_neon_vst4:
14194   case Intrinsic::arm_neon_vst2lane:
14195   case Intrinsic::arm_neon_vst3lane:
14196   case Intrinsic::arm_neon_vst4lane: {
14197     Info.opc = ISD::INTRINSIC_VOID;
14198     // Conservatively set memVT to the entire set of vectors stored.
14199     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14200     unsigned NumElts = 0;
14201     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14202       Type *ArgTy = I.getArgOperand(ArgI)->getType();
14203       if (!ArgTy->isVectorTy())
14204         break;
14205       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14206     }
14207     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14208     Info.ptrVal = I.getArgOperand(0);
14209     Info.offset = 0;
14210     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14211     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14212     // volatile stores with NEON intrinsics not supported
14213     Info.flags = MachineMemOperand::MOStore;
14214     return true;
14215   }
14216   case Intrinsic::arm_neon_vst1x2:
14217   case Intrinsic::arm_neon_vst1x3:
14218   case Intrinsic::arm_neon_vst1x4: {
14219     Info.opc = ISD::INTRINSIC_VOID;
14220     // Conservatively set memVT to the entire set of vectors stored.
14221     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14222     unsigned NumElts = 0;
14223     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14224       Type *ArgTy = I.getArgOperand(ArgI)->getType();
14225       if (!ArgTy->isVectorTy())
14226         break;
14227       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14228     }
14229     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14230     Info.ptrVal = I.getArgOperand(0);
14231     Info.offset = 0;
14232     Info.align = 0;
14233     // volatile stores with NEON intrinsics not supported
14234     Info.flags = MachineMemOperand::MOStore;
14235     return true;
14236   }
14237   case Intrinsic::arm_ldaex:
14238   case Intrinsic::arm_ldrex: {
14239     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14240     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
14241     Info.opc = ISD::INTRINSIC_W_CHAIN;
14242     Info.memVT = MVT::getVT(PtrTy->getElementType());
14243     Info.ptrVal = I.getArgOperand(0);
14244     Info.offset = 0;
14245     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14246     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14247     return true;
14248   }
14249   case Intrinsic::arm_stlex:
14250   case Intrinsic::arm_strex: {
14251     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14252     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
14253     Info.opc = ISD::INTRINSIC_W_CHAIN;
14254     Info.memVT = MVT::getVT(PtrTy->getElementType());
14255     Info.ptrVal = I.getArgOperand(1);
14256     Info.offset = 0;
14257     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14258     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14259     return true;
14260   }
14261   case Intrinsic::arm_stlexd:
14262   case Intrinsic::arm_strexd:
14263     Info.opc = ISD::INTRINSIC_W_CHAIN;
14264     Info.memVT = MVT::i64;
14265     Info.ptrVal = I.getArgOperand(2);
14266     Info.offset = 0;
14267     Info.align = 8;
14268     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14269     return true;
14270 
14271   case Intrinsic::arm_ldaexd:
14272   case Intrinsic::arm_ldrexd:
14273     Info.opc = ISD::INTRINSIC_W_CHAIN;
14274     Info.memVT = MVT::i64;
14275     Info.ptrVal = I.getArgOperand(0);
14276     Info.offset = 0;
14277     Info.align = 8;
14278     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14279     return true;
14280 
14281   default:
14282     break;
14283   }
14284 
14285   return false;
14286 }
14287 
14288 /// Returns true if it is beneficial to convert a load of a constant
14289 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const14290 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14291                                                           Type *Ty) const {
14292   assert(Ty->isIntegerTy());
14293 
14294   unsigned Bits = Ty->getPrimitiveSizeInBits();
14295   if (Bits == 0 || Bits > 32)
14296     return false;
14297   return true;
14298 }
14299 
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const14300 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
14301                                                 unsigned Index) const {
14302   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
14303     return false;
14304 
14305   return (Index == 0 || Index == ResVT.getVectorNumElements());
14306 }
14307 
makeDMB(IRBuilder<> & Builder,ARM_MB::MemBOpt Domain) const14308 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
14309                                         ARM_MB::MemBOpt Domain) const {
14310   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14311 
14312   // First, if the target has no DMB, see what fallback we can use.
14313   if (!Subtarget->hasDataBarrier()) {
14314     // Some ARMv6 cpus can support data barriers with an mcr instruction.
14315     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
14316     // here.
14317     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
14318       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
14319       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
14320                         Builder.getInt32(0), Builder.getInt32(7),
14321                         Builder.getInt32(10), Builder.getInt32(5)};
14322       return Builder.CreateCall(MCR, args);
14323     } else {
14324       // Instead of using barriers, atomic accesses on these subtargets use
14325       // libcalls.
14326       llvm_unreachable("makeDMB on a target so old that it has no barriers");
14327     }
14328   } else {
14329     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
14330     // Only a full system barrier exists in the M-class architectures.
14331     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
14332     Constant *CDomain = Builder.getInt32(Domain);
14333     return Builder.CreateCall(DMB, CDomain);
14334   }
14335 }
14336 
14337 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const14338 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
14339                                                  Instruction *Inst,
14340                                                  AtomicOrdering Ord) const {
14341   switch (Ord) {
14342   case AtomicOrdering::NotAtomic:
14343   case AtomicOrdering::Unordered:
14344     llvm_unreachable("Invalid fence: unordered/non-atomic");
14345   case AtomicOrdering::Monotonic:
14346   case AtomicOrdering::Acquire:
14347     return nullptr; // Nothing to do
14348   case AtomicOrdering::SequentiallyConsistent:
14349     if (!Inst->hasAtomicStore())
14350       return nullptr; // Nothing to do
14351     LLVM_FALLTHROUGH;
14352   case AtomicOrdering::Release:
14353   case AtomicOrdering::AcquireRelease:
14354     if (Subtarget->preferISHSTBarriers())
14355       return makeDMB(Builder, ARM_MB::ISHST);
14356     // FIXME: add a comment with a link to documentation justifying this.
14357     else
14358       return makeDMB(Builder, ARM_MB::ISH);
14359   }
14360   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
14361 }
14362 
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const14363 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
14364                                                   Instruction *Inst,
14365                                                   AtomicOrdering Ord) const {
14366   switch (Ord) {
14367   case AtomicOrdering::NotAtomic:
14368   case AtomicOrdering::Unordered:
14369     llvm_unreachable("Invalid fence: unordered/not-atomic");
14370   case AtomicOrdering::Monotonic:
14371   case AtomicOrdering::Release:
14372     return nullptr; // Nothing to do
14373   case AtomicOrdering::Acquire:
14374   case AtomicOrdering::AcquireRelease:
14375   case AtomicOrdering::SequentiallyConsistent:
14376     return makeDMB(Builder, ARM_MB::ISH);
14377   }
14378   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
14379 }
14380 
14381 // Loads and stores less than 64-bits are already atomic; ones above that
14382 // are doomed anyway, so defer to the default libcall and blame the OS when
14383 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14384 // anything for those.
shouldExpandAtomicStoreInIR(StoreInst * SI) const14385 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
14386   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
14387   return (Size == 64) && !Subtarget->isMClass();
14388 }
14389 
14390 // Loads and stores less than 64-bits are already atomic; ones above that
14391 // are doomed anyway, so defer to the default libcall and blame the OS when
14392 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14393 // anything for those.
14394 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
14395 // guarantee, see DDI0406C ARM architecture reference manual,
14396 // sections A8.8.72-74 LDRD)
14397 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const14398 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
14399   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
14400   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
14401                                                   : AtomicExpansionKind::None;
14402 }
14403 
14404 // For the real atomic operations, we have ldrex/strex up to 32 bits,
14405 // and up to 64 bits on the non-M profiles
14406 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const14407 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
14408   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
14409   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14410   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
14411              ? AtomicExpansionKind::LLSC
14412              : AtomicExpansionKind::None;
14413 }
14414 
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const14415 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
14416     AtomicCmpXchgInst *AI) const {
14417   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
14418   // implement cmpxchg without spilling. If the address being exchanged is also
14419   // on the stack and close enough to the spill slot, this can lead to a
14420   // situation where the monitor always gets cleared and the atomic operation
14421   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
14422   bool hasAtomicCmpXchg =
14423       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14424   return getTargetMachine().getOptLevel() != 0 && hasAtomicCmpXchg;
14425 }
14426 
shouldInsertFencesForAtomic(const Instruction * I) const14427 bool ARMTargetLowering::shouldInsertFencesForAtomic(
14428     const Instruction *I) const {
14429   return InsertFencesForAtomic;
14430 }
14431 
14432 // This has so far only been implemented for MachO.
useLoadStackGuardNode() const14433 bool ARMTargetLowering::useLoadStackGuardNode() const {
14434   return Subtarget->isTargetMachO();
14435 }
14436 
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost) const14437 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
14438                                                   unsigned &Cost) const {
14439   // If we do not have NEON, vector types are not natively supported.
14440   if (!Subtarget->hasNEON())
14441     return false;
14442 
14443   // Floating point values and vector values map to the same register file.
14444   // Therefore, although we could do a store extract of a vector type, this is
14445   // better to leave at float as we have more freedom in the addressing mode for
14446   // those.
14447   if (VectorTy->isFPOrFPVectorTy())
14448     return false;
14449 
14450   // If the index is unknown at compile time, this is very expensive to lower
14451   // and it is not possible to combine the store with the extract.
14452   if (!isa<ConstantInt>(Idx))
14453     return false;
14454 
14455   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
14456   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
14457   // We can do a store + vector extract on any vector that fits perfectly in a D
14458   // or Q register.
14459   if (BitWidth == 64 || BitWidth == 128) {
14460     Cost = 0;
14461     return true;
14462   }
14463   return false;
14464 }
14465 
isCheapToSpeculateCttz() const14466 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
14467   return Subtarget->hasV6T2Ops();
14468 }
14469 
isCheapToSpeculateCtlz() const14470 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
14471   return Subtarget->hasV6T2Ops();
14472 }
14473 
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const14474 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
14475                                          AtomicOrdering Ord) const {
14476   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14477   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
14478   bool IsAcquire = isAcquireOrStronger(Ord);
14479 
14480   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
14481   // intrinsic must return {i32, i32} and we have to recombine them into a
14482   // single i64 here.
14483   if (ValTy->getPrimitiveSizeInBits() == 64) {
14484     Intrinsic::ID Int =
14485         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
14486     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
14487 
14488     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14489     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
14490 
14491     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
14492     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
14493     if (!Subtarget->isLittle())
14494       std::swap (Lo, Hi);
14495     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
14496     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
14497     return Builder.CreateOr(
14498         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
14499   }
14500 
14501   Type *Tys[] = { Addr->getType() };
14502   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
14503   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
14504 
14505   return Builder.CreateTruncOrBitCast(
14506       Builder.CreateCall(Ldrex, Addr),
14507       cast<PointerType>(Addr->getType())->getElementType());
14508 }
14509 
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const14510 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
14511     IRBuilder<> &Builder) const {
14512   if (!Subtarget->hasV7Ops())
14513     return;
14514   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14515   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
14516 }
14517 
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const14518 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
14519                                                Value *Addr,
14520                                                AtomicOrdering Ord) const {
14521   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14522   bool IsRelease = isReleaseOrStronger(Ord);
14523 
14524   // Since the intrinsics must have legal type, the i64 intrinsics take two
14525   // parameters: "i32, i32". We must marshal Val into the appropriate form
14526   // before the call.
14527   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
14528     Intrinsic::ID Int =
14529         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
14530     Function *Strex = Intrinsic::getDeclaration(M, Int);
14531     Type *Int32Ty = Type::getInt32Ty(M->getContext());
14532 
14533     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
14534     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
14535     if (!Subtarget->isLittle())
14536       std::swap(Lo, Hi);
14537     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14538     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
14539   }
14540 
14541   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
14542   Type *Tys[] = { Addr->getType() };
14543   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
14544 
14545   return Builder.CreateCall(
14546       Strex, {Builder.CreateZExtOrBitCast(
14547                   Val, Strex->getFunctionType()->getParamType(0)),
14548               Addr});
14549 }
14550 
14551 /// A helper function for determining the number of interleaved accesses we
14552 /// will generate when lowering accesses of the given type.
14553 unsigned
getNumInterleavedAccesses(VectorType * VecTy,const DataLayout & DL) const14554 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
14555                                              const DataLayout &DL) const {
14556   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
14557 }
14558 
isLegalInterleavedAccessType(VectorType * VecTy,const DataLayout & DL) const14559 bool ARMTargetLowering::isLegalInterleavedAccessType(
14560     VectorType *VecTy, const DataLayout &DL) const {
14561 
14562   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
14563   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
14564 
14565   // Ensure the vector doesn't have f16 elements. Even though we could do an
14566   // i16 vldN, we can't hold the f16 vectors and will end up converting via
14567   // f32.
14568   if (VecTy->getElementType()->isHalfTy())
14569     return false;
14570 
14571   // Ensure the number of vector elements is greater than 1.
14572   if (VecTy->getNumElements() < 2)
14573     return false;
14574 
14575   // Ensure the element type is legal.
14576   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
14577     return false;
14578 
14579   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
14580   // 128 will be split into multiple interleaved accesses.
14581   return VecSize == 64 || VecSize % 128 == 0;
14582 }
14583 
14584 /// Lower an interleaved load into a vldN intrinsic.
14585 ///
14586 /// E.g. Lower an interleaved load (Factor = 2):
14587 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
14588 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
14589 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
14590 ///
14591 ///      Into:
14592 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
14593 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
14594 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const14595 bool ARMTargetLowering::lowerInterleavedLoad(
14596     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
14597     ArrayRef<unsigned> Indices, unsigned Factor) const {
14598   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
14599          "Invalid interleave factor");
14600   assert(!Shuffles.empty() && "Empty shufflevector input");
14601   assert(Shuffles.size() == Indices.size() &&
14602          "Unmatched number of shufflevectors and indices");
14603 
14604   VectorType *VecTy = Shuffles[0]->getType();
14605   Type *EltTy = VecTy->getVectorElementType();
14606 
14607   const DataLayout &DL = LI->getModule()->getDataLayout();
14608 
14609   // Skip if we do not have NEON and skip illegal vector types. We can
14610   // "legalize" wide vector types into multiple interleaved accesses as long as
14611   // the vector types are divisible by 128.
14612   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
14613     return false;
14614 
14615   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
14616 
14617   // A pointer vector can not be the return type of the ldN intrinsics. Need to
14618   // load integer vectors first and then convert to pointer vectors.
14619   if (EltTy->isPointerTy())
14620     VecTy =
14621         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
14622 
14623   IRBuilder<> Builder(LI);
14624 
14625   // The base address of the load.
14626   Value *BaseAddr = LI->getPointerOperand();
14627 
14628   if (NumLoads > 1) {
14629     // If we're going to generate more than one load, reset the sub-vector type
14630     // to something legal.
14631     VecTy = VectorType::get(VecTy->getVectorElementType(),
14632                             VecTy->getVectorNumElements() / NumLoads);
14633 
14634     // We will compute the pointer operand of each load from the original base
14635     // address using GEPs. Cast the base address to a pointer to the scalar
14636     // element type.
14637     BaseAddr = Builder.CreateBitCast(
14638         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
14639                       LI->getPointerAddressSpace()));
14640   }
14641 
14642   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
14643 
14644   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
14645   Type *Tys[] = {VecTy, Int8Ptr};
14646   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
14647                                             Intrinsic::arm_neon_vld3,
14648                                             Intrinsic::arm_neon_vld4};
14649   Function *VldnFunc =
14650       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
14651 
14652   // Holds sub-vectors extracted from the load intrinsic return values. The
14653   // sub-vectors are associated with the shufflevector instructions they will
14654   // replace.
14655   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
14656 
14657   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
14658     // If we're generating more than one load, compute the base address of
14659     // subsequent loads as an offset from the previous.
14660     if (LoadCount > 0)
14661       BaseAddr = Builder.CreateConstGEP1_32(
14662           BaseAddr, VecTy->getVectorNumElements() * Factor);
14663 
14664     SmallVector<Value *, 2> Ops;
14665     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
14666     Ops.push_back(Builder.getInt32(LI->getAlignment()));
14667 
14668     CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
14669 
14670     // Replace uses of each shufflevector with the corresponding vector loaded
14671     // by ldN.
14672     for (unsigned i = 0; i < Shuffles.size(); i++) {
14673       ShuffleVectorInst *SV = Shuffles[i];
14674       unsigned Index = Indices[i];
14675 
14676       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
14677 
14678       // Convert the integer vector to pointer vector if the element is pointer.
14679       if (EltTy->isPointerTy())
14680         SubVec = Builder.CreateIntToPtr(
14681             SubVec, VectorType::get(SV->getType()->getVectorElementType(),
14682                                     VecTy->getVectorNumElements()));
14683 
14684       SubVecs[SV].push_back(SubVec);
14685     }
14686   }
14687 
14688   // Replace uses of the shufflevector instructions with the sub-vectors
14689   // returned by the load intrinsic. If a shufflevector instruction is
14690   // associated with more than one sub-vector, those sub-vectors will be
14691   // concatenated into a single wide vector.
14692   for (ShuffleVectorInst *SVI : Shuffles) {
14693     auto &SubVec = SubVecs[SVI];
14694     auto *WideVec =
14695         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
14696     SVI->replaceAllUsesWith(WideVec);
14697   }
14698 
14699   return true;
14700 }
14701 
14702 /// Lower an interleaved store into a vstN intrinsic.
14703 ///
14704 /// E.g. Lower an interleaved store (Factor = 3):
14705 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
14706 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
14707 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
14708 ///
14709 ///      Into:
14710 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
14711 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
14712 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
14713 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
14714 ///
14715 /// Note that the new shufflevectors will be removed and we'll only generate one
14716 /// vst3 instruction in CodeGen.
14717 ///
14718 /// Example for a more general valid mask (Factor 3). Lower:
14719 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
14720 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
14721 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
14722 ///
14723 ///      Into:
14724 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
14725 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
14726 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
14727 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const14728 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
14729                                               ShuffleVectorInst *SVI,
14730                                               unsigned Factor) const {
14731   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
14732          "Invalid interleave factor");
14733 
14734   VectorType *VecTy = SVI->getType();
14735   assert(VecTy->getVectorNumElements() % Factor == 0 &&
14736          "Invalid interleaved store");
14737 
14738   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
14739   Type *EltTy = VecTy->getVectorElementType();
14740   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
14741 
14742   const DataLayout &DL = SI->getModule()->getDataLayout();
14743 
14744   // Skip if we do not have NEON and skip illegal vector types. We can
14745   // "legalize" wide vector types into multiple interleaved accesses as long as
14746   // the vector types are divisible by 128.
14747   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
14748     return false;
14749 
14750   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
14751 
14752   Value *Op0 = SVI->getOperand(0);
14753   Value *Op1 = SVI->getOperand(1);
14754   IRBuilder<> Builder(SI);
14755 
14756   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
14757   // vectors to integer vectors.
14758   if (EltTy->isPointerTy()) {
14759     Type *IntTy = DL.getIntPtrType(EltTy);
14760 
14761     // Convert to the corresponding integer vector.
14762     Type *IntVecTy =
14763         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
14764     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
14765     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
14766 
14767     SubVecTy = VectorType::get(IntTy, LaneLen);
14768   }
14769 
14770   // The base address of the store.
14771   Value *BaseAddr = SI->getPointerOperand();
14772 
14773   if (NumStores > 1) {
14774     // If we're going to generate more than one store, reset the lane length
14775     // and sub-vector type to something legal.
14776     LaneLen /= NumStores;
14777     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
14778 
14779     // We will compute the pointer operand of each store from the original base
14780     // address using GEPs. Cast the base address to a pointer to the scalar
14781     // element type.
14782     BaseAddr = Builder.CreateBitCast(
14783         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
14784                       SI->getPointerAddressSpace()));
14785   }
14786 
14787   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
14788 
14789   auto Mask = SVI->getShuffleMask();
14790 
14791   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
14792   Type *Tys[] = {Int8Ptr, SubVecTy};
14793   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
14794                                              Intrinsic::arm_neon_vst3,
14795                                              Intrinsic::arm_neon_vst4};
14796 
14797   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
14798     // If we generating more than one store, we compute the base address of
14799     // subsequent stores as an offset from the previous.
14800     if (StoreCount > 0)
14801       BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
14802 
14803     SmallVector<Value *, 6> Ops;
14804     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
14805 
14806     Function *VstNFunc =
14807         Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
14808 
14809     // Split the shufflevector operands into sub vectors for the new vstN call.
14810     for (unsigned i = 0; i < Factor; i++) {
14811       unsigned IdxI = StoreCount * LaneLen * Factor + i;
14812       if (Mask[IdxI] >= 0) {
14813         Ops.push_back(Builder.CreateShuffleVector(
14814             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
14815       } else {
14816         unsigned StartMask = 0;
14817         for (unsigned j = 1; j < LaneLen; j++) {
14818           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
14819           if (Mask[IdxJ * Factor + IdxI] >= 0) {
14820             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
14821             break;
14822           }
14823         }
14824         // Note: If all elements in a chunk are undefs, StartMask=0!
14825         // Note: Filling undef gaps with random elements is ok, since
14826         // those elements were being written anyway (with undefs).
14827         // In the case of all undefs we're defaulting to using elems from 0
14828         // Note: StartMask cannot be negative, it's checked in
14829         // isReInterleaveMask
14830         Ops.push_back(Builder.CreateShuffleVector(
14831             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
14832       }
14833     }
14834 
14835     Ops.push_back(Builder.getInt32(SI->getAlignment()));
14836     Builder.CreateCall(VstNFunc, Ops);
14837   }
14838   return true;
14839 }
14840 
14841 enum HABaseType {
14842   HA_UNKNOWN = 0,
14843   HA_FLOAT,
14844   HA_DOUBLE,
14845   HA_VECT64,
14846   HA_VECT128
14847 };
14848 
isHomogeneousAggregate(Type * Ty,HABaseType & Base,uint64_t & Members)14849 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
14850                                    uint64_t &Members) {
14851   if (auto *ST = dyn_cast<StructType>(Ty)) {
14852     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
14853       uint64_t SubMembers = 0;
14854       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
14855         return false;
14856       Members += SubMembers;
14857     }
14858   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
14859     uint64_t SubMembers = 0;
14860     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
14861       return false;
14862     Members += SubMembers * AT->getNumElements();
14863   } else if (Ty->isFloatTy()) {
14864     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
14865       return false;
14866     Members = 1;
14867     Base = HA_FLOAT;
14868   } else if (Ty->isDoubleTy()) {
14869     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
14870       return false;
14871     Members = 1;
14872     Base = HA_DOUBLE;
14873   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
14874     Members = 1;
14875     switch (Base) {
14876     case HA_FLOAT:
14877     case HA_DOUBLE:
14878       return false;
14879     case HA_VECT64:
14880       return VT->getBitWidth() == 64;
14881     case HA_VECT128:
14882       return VT->getBitWidth() == 128;
14883     case HA_UNKNOWN:
14884       switch (VT->getBitWidth()) {
14885       case 64:
14886         Base = HA_VECT64;
14887         return true;
14888       case 128:
14889         Base = HA_VECT128;
14890         return true;
14891       default:
14892         return false;
14893       }
14894     }
14895   }
14896 
14897   return (Members > 0 && Members <= 4);
14898 }
14899 
14900 /// Return the correct alignment for the current calling convention.
14901 unsigned
getABIAlignmentForCallingConv(Type * ArgTy,DataLayout DL) const14902 ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
14903                                                  DataLayout DL) const {
14904   if (!ArgTy->isVectorTy())
14905     return DL.getABITypeAlignment(ArgTy);
14906 
14907   // Avoid over-aligning vector parameters. It would require realigning the
14908   // stack and waste space for no real benefit.
14909   return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment());
14910 }
14911 
14912 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
14913 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
14914 /// passing according to AAPCS rules.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const14915 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
14916     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
14917   if (getEffectiveCallingConv(CallConv, isVarArg) !=
14918       CallingConv::ARM_AAPCS_VFP)
14919     return false;
14920 
14921   HABaseType Base = HA_UNKNOWN;
14922   uint64_t Members = 0;
14923   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
14924   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
14925 
14926   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
14927   return IsHA || IsIntArray;
14928 }
14929 
getExceptionPointerRegister(const Constant * PersonalityFn) const14930 unsigned ARMTargetLowering::getExceptionPointerRegister(
14931     const Constant *PersonalityFn) const {
14932   // Platforms which do not use SjLj EH may return values in these registers
14933   // via the personality function.
14934   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
14935 }
14936 
getExceptionSelectorRegister(const Constant * PersonalityFn) const14937 unsigned ARMTargetLowering::getExceptionSelectorRegister(
14938     const Constant *PersonalityFn) const {
14939   // Platforms which do not use SjLj EH may return values in these registers
14940   // via the personality function.
14941   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
14942 }
14943 
initializeSplitCSR(MachineBasicBlock * Entry) const14944 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14945   // Update IsSplitCSR in ARMFunctionInfo.
14946   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
14947   AFI->setIsSplitCSR(true);
14948 }
14949 
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const14950 void ARMTargetLowering::insertCopiesSplitCSR(
14951     MachineBasicBlock *Entry,
14952     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14953   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
14954   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14955   if (!IStart)
14956     return;
14957 
14958   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
14959   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14960   MachineBasicBlock::iterator MBBI = Entry->begin();
14961   for (const MCPhysReg *I = IStart; *I; ++I) {
14962     const TargetRegisterClass *RC = nullptr;
14963     if (ARM::GPRRegClass.contains(*I))
14964       RC = &ARM::GPRRegClass;
14965     else if (ARM::DPRRegClass.contains(*I))
14966       RC = &ARM::DPRRegClass;
14967     else
14968       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14969 
14970     unsigned NewVR = MRI->createVirtualRegister(RC);
14971     // Create copy from CSR to a virtual register.
14972     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14973     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14974     // nounwind. If we want to generalize this later, we may need to emit
14975     // CFI pseudo-instructions.
14976     assert(Entry->getParent()->getFunction().hasFnAttribute(
14977                Attribute::NoUnwind) &&
14978            "Function should be nounwind in insertCopiesSplitCSR!");
14979     Entry->addLiveIn(*I);
14980     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14981         .addReg(*I);
14982 
14983     // Insert the copy-back instructions right before the terminator.
14984     for (auto *Exit : Exits)
14985       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14986               TII->get(TargetOpcode::COPY), *I)
14987           .addReg(NewVR);
14988   }
14989 }
14990 
finalizeLowering(MachineFunction & MF) const14991 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
14992   MF.getFrameInfo().computeMaxCallFrameSize(MF);
14993   TargetLoweringBase::finalizeLowering(MF);
14994 }
14995