1 //===- HexagonSplitDouble.cpp ---------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "hsdr"
11
12 #include "HexagonInstrInfo.h"
13 #include "HexagonRegisterInfo.h"
14 #include "HexagonSubtarget.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <limits>
41 #include <map>
42 #include <set>
43 #include <utility>
44 #include <vector>
45
46 using namespace llvm;
47
48 namespace llvm {
49
50 FunctionPass *createHexagonSplitDoubleRegs();
51 void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
52
53 } // end namespace llvm
54
55 static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
56 cl::desc("Maximum number of split partitions"));
57 static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
58 cl::desc("Do not split loads or stores"));
59 static cl::opt<bool> SplitAll("hsdr-split-all", cl::Hidden, cl::init(false),
60 cl::desc("Split all partitions"));
61
62 namespace {
63
64 class HexagonSplitDoubleRegs : public MachineFunctionPass {
65 public:
66 static char ID;
67
HexagonSplitDoubleRegs()68 HexagonSplitDoubleRegs() : MachineFunctionPass(ID) {}
69
getPassName() const70 StringRef getPassName() const override {
71 return "Hexagon Split Double Registers";
72 }
73
getAnalysisUsage(AnalysisUsage & AU) const74 void getAnalysisUsage(AnalysisUsage &AU) const override {
75 AU.addRequired<MachineLoopInfo>();
76 AU.addPreserved<MachineLoopInfo>();
77 MachineFunctionPass::getAnalysisUsage(AU);
78 }
79
80 bool runOnMachineFunction(MachineFunction &MF) override;
81
82 private:
83 static const TargetRegisterClass *const DoubleRC;
84
85 const HexagonRegisterInfo *TRI = nullptr;
86 const HexagonInstrInfo *TII = nullptr;
87 const MachineLoopInfo *MLI;
88 MachineRegisterInfo *MRI;
89
90 using USet = std::set<unsigned>;
91 using UUSetMap = std::map<unsigned, USet>;
92 using UUPair = std::pair<unsigned, unsigned>;
93 using UUPairMap = std::map<unsigned, UUPair>;
94 using LoopRegMap = std::map<const MachineLoop *, USet>;
95
96 bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
97 bool isVolatileInstr(const MachineInstr *MI) const;
98 bool isFixedInstr(const MachineInstr *MI) const;
99 void partitionRegisters(UUSetMap &P2Rs);
100 int32_t profit(const MachineInstr *MI) const;
101 int32_t profit(unsigned Reg) const;
102 bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
103
104 void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
105 void collectIndRegs(LoopRegMap &IRM);
106
107 void createHalfInstr(unsigned Opc, MachineInstr *MI,
108 const UUPairMap &PairMap, unsigned SubR);
109 void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
110 void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
111 void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
112 void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
113 void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
114 void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
115 bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
116 void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
117 void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
118 bool splitPartition(const USet &Part);
119
120 static int Counter;
121
122 static void dump_partition(raw_ostream&, const USet&,
123 const TargetRegisterInfo&);
124 };
125
126 } // end anonymous namespace
127
128 char HexagonSplitDoubleRegs::ID;
129 int HexagonSplitDoubleRegs::Counter = 0;
130 const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC =
131 &Hexagon::DoubleRegsRegClass;
132
133 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
134 "Hexagon Split Double Registers", false, false)
135
136 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump_partition(raw_ostream & os,const USet & Part,const TargetRegisterInfo & TRI)137 LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
138 const USet &Part, const TargetRegisterInfo &TRI) {
139 dbgs() << '{';
140 for (auto I : Part)
141 dbgs() << ' ' << printReg(I, &TRI);
142 dbgs() << " }";
143 }
144 #endif
145
isInduction(unsigned Reg,LoopRegMap & IRM) const146 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
147 for (auto I : IRM) {
148 const USet &Rs = I.second;
149 if (Rs.find(Reg) != Rs.end())
150 return true;
151 }
152 return false;
153 }
154
isVolatileInstr(const MachineInstr * MI) const155 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
156 for (auto &I : MI->memoperands())
157 if (I->isVolatile())
158 return true;
159 return false;
160 }
161
isFixedInstr(const MachineInstr * MI) const162 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
163 if (MI->mayLoad() || MI->mayStore())
164 if (MemRefsFixed || isVolatileInstr(MI))
165 return true;
166 if (MI->isDebugInstr())
167 return false;
168
169 unsigned Opc = MI->getOpcode();
170 switch (Opc) {
171 default:
172 return true;
173
174 case TargetOpcode::PHI:
175 case TargetOpcode::COPY:
176 break;
177
178 case Hexagon::L2_loadrd_io:
179 // Not handling stack stores (only reg-based addresses).
180 if (MI->getOperand(1).isReg())
181 break;
182 return true;
183 case Hexagon::S2_storerd_io:
184 // Not handling stack stores (only reg-based addresses).
185 if (MI->getOperand(0).isReg())
186 break;
187 return true;
188 case Hexagon::L2_loadrd_pi:
189 case Hexagon::S2_storerd_pi:
190
191 case Hexagon::A2_tfrpi:
192 case Hexagon::A2_combineii:
193 case Hexagon::A4_combineir:
194 case Hexagon::A4_combineii:
195 case Hexagon::A4_combineri:
196 case Hexagon::A2_combinew:
197 case Hexagon::CONST64:
198
199 case Hexagon::A2_sxtw:
200
201 case Hexagon::A2_andp:
202 case Hexagon::A2_orp:
203 case Hexagon::A2_xorp:
204 case Hexagon::S2_asl_i_p_or:
205 case Hexagon::S2_asl_i_p:
206 case Hexagon::S2_asr_i_p:
207 case Hexagon::S2_lsr_i_p:
208 break;
209 }
210
211 for (auto &Op : MI->operands()) {
212 if (!Op.isReg())
213 continue;
214 unsigned R = Op.getReg();
215 if (!TargetRegisterInfo::isVirtualRegister(R))
216 return true;
217 }
218 return false;
219 }
220
partitionRegisters(UUSetMap & P2Rs)221 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
222 using UUMap = std::map<unsigned, unsigned>;
223 using UVect = std::vector<unsigned>;
224
225 unsigned NumRegs = MRI->getNumVirtRegs();
226 BitVector DoubleRegs(NumRegs);
227 for (unsigned i = 0; i < NumRegs; ++i) {
228 unsigned R = TargetRegisterInfo::index2VirtReg(i);
229 if (MRI->getRegClass(R) == DoubleRC)
230 DoubleRegs.set(i);
231 }
232
233 BitVector FixedRegs(NumRegs);
234 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
235 unsigned R = TargetRegisterInfo::index2VirtReg(x);
236 MachineInstr *DefI = MRI->getVRegDef(R);
237 // In some cases a register may exist, but never be defined or used.
238 // It should never appear anywhere, but mark it as "fixed", just to be
239 // safe.
240 if (!DefI || isFixedInstr(DefI))
241 FixedRegs.set(x);
242 }
243
244 UUSetMap AssocMap;
245 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
246 if (FixedRegs[x])
247 continue;
248 unsigned R = TargetRegisterInfo::index2VirtReg(x);
249 LLVM_DEBUG(dbgs() << printReg(R, TRI) << " ~~");
250 USet &Asc = AssocMap[R];
251 for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
252 U != Z; ++U) {
253 MachineOperand &Op = *U;
254 MachineInstr *UseI = Op.getParent();
255 if (isFixedInstr(UseI))
256 continue;
257 for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
258 MachineOperand &MO = UseI->getOperand(i);
259 // Skip non-registers or registers with subregisters.
260 if (&MO == &Op || !MO.isReg() || MO.getSubReg())
261 continue;
262 unsigned T = MO.getReg();
263 if (!TargetRegisterInfo::isVirtualRegister(T)) {
264 FixedRegs.set(x);
265 continue;
266 }
267 if (MRI->getRegClass(T) != DoubleRC)
268 continue;
269 unsigned u = TargetRegisterInfo::virtReg2Index(T);
270 if (FixedRegs[u])
271 continue;
272 LLVM_DEBUG(dbgs() << ' ' << printReg(T, TRI));
273 Asc.insert(T);
274 // Make it symmetric.
275 AssocMap[T].insert(R);
276 }
277 }
278 LLVM_DEBUG(dbgs() << '\n');
279 }
280
281 UUMap R2P;
282 unsigned NextP = 1;
283 USet Visited;
284 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
285 unsigned R = TargetRegisterInfo::index2VirtReg(x);
286 if (Visited.count(R))
287 continue;
288 // Create a new partition for R.
289 unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
290 UVect WorkQ;
291 WorkQ.push_back(R);
292 for (unsigned i = 0; i < WorkQ.size(); ++i) {
293 unsigned T = WorkQ[i];
294 if (Visited.count(T))
295 continue;
296 R2P[T] = ThisP;
297 Visited.insert(T);
298 // Add all registers associated with T.
299 USet &Asc = AssocMap[T];
300 for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
301 WorkQ.push_back(*J);
302 }
303 }
304
305 for (auto I : R2P)
306 P2Rs[I.second].insert(I.first);
307 }
308
profitImm(unsigned Imm)309 static inline int32_t profitImm(unsigned Imm) {
310 int32_t P = 0;
311 if (Imm == 0 || Imm == 0xFFFFFFFF)
312 P += 10;
313 return P;
314 }
315
profit(const MachineInstr * MI) const316 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
317 unsigned ImmX = 0;
318 unsigned Opc = MI->getOpcode();
319 switch (Opc) {
320 case TargetOpcode::PHI:
321 for (const auto &Op : MI->operands())
322 if (!Op.getSubReg())
323 return 0;
324 return 10;
325 case TargetOpcode::COPY:
326 if (MI->getOperand(1).getSubReg() != 0)
327 return 10;
328 return 0;
329
330 case Hexagon::L2_loadrd_io:
331 case Hexagon::S2_storerd_io:
332 return -1;
333 case Hexagon::L2_loadrd_pi:
334 case Hexagon::S2_storerd_pi:
335 return 2;
336
337 case Hexagon::A2_tfrpi:
338 case Hexagon::CONST64: {
339 uint64_t D = MI->getOperand(1).getImm();
340 unsigned Lo = D & 0xFFFFFFFFULL;
341 unsigned Hi = D >> 32;
342 return profitImm(Lo) + profitImm(Hi);
343 }
344 case Hexagon::A2_combineii:
345 case Hexagon::A4_combineii: {
346 const MachineOperand &Op1 = MI->getOperand(1);
347 const MachineOperand &Op2 = MI->getOperand(2);
348 int32_t Prof1 = Op1.isImm() ? profitImm(Op1.getImm()) : 0;
349 int32_t Prof2 = Op2.isImm() ? profitImm(Op2.getImm()) : 0;
350 return Prof1 + Prof2;
351 }
352 case Hexagon::A4_combineri:
353 ImmX++;
354 // Fall through into A4_combineir.
355 LLVM_FALLTHROUGH;
356 case Hexagon::A4_combineir: {
357 ImmX++;
358 const MachineOperand &OpX = MI->getOperand(ImmX);
359 if (OpX.isImm()) {
360 int64_t V = OpX.getImm();
361 if (V == 0 || V == -1)
362 return 10;
363 }
364 // Fall through into A2_combinew.
365 LLVM_FALLTHROUGH;
366 }
367 case Hexagon::A2_combinew:
368 return 2;
369
370 case Hexagon::A2_sxtw:
371 return 3;
372
373 case Hexagon::A2_andp:
374 case Hexagon::A2_orp:
375 case Hexagon::A2_xorp: {
376 unsigned Rs = MI->getOperand(1).getReg();
377 unsigned Rt = MI->getOperand(2).getReg();
378 return profit(Rs) + profit(Rt);
379 }
380
381 case Hexagon::S2_asl_i_p_or: {
382 unsigned S = MI->getOperand(3).getImm();
383 if (S == 0 || S == 32)
384 return 10;
385 return -1;
386 }
387 case Hexagon::S2_asl_i_p:
388 case Hexagon::S2_asr_i_p:
389 case Hexagon::S2_lsr_i_p:
390 unsigned S = MI->getOperand(2).getImm();
391 if (S == 0 || S == 32)
392 return 10;
393 if (S == 16)
394 return 5;
395 if (S == 48)
396 return 7;
397 return -10;
398 }
399
400 return 0;
401 }
402
profit(unsigned Reg) const403 int32_t HexagonSplitDoubleRegs::profit(unsigned Reg) const {
404 assert(TargetRegisterInfo::isVirtualRegister(Reg));
405
406 const MachineInstr *DefI = MRI->getVRegDef(Reg);
407 switch (DefI->getOpcode()) {
408 case Hexagon::A2_tfrpi:
409 case Hexagon::CONST64:
410 case Hexagon::A2_combineii:
411 case Hexagon::A4_combineii:
412 case Hexagon::A4_combineri:
413 case Hexagon::A4_combineir:
414 case Hexagon::A2_combinew:
415 return profit(DefI);
416 default:
417 break;
418 }
419 return 0;
420 }
421
isProfitable(const USet & Part,LoopRegMap & IRM) const422 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
423 const {
424 unsigned FixedNum = 0, LoopPhiNum = 0;
425 int32_t TotalP = 0;
426
427 for (unsigned DR : Part) {
428 MachineInstr *DefI = MRI->getVRegDef(DR);
429 int32_t P = profit(DefI);
430 if (P == std::numeric_limits<int>::min())
431 return false;
432 TotalP += P;
433 // Reduce the profitability of splitting induction registers.
434 if (isInduction(DR, IRM))
435 TotalP -= 30;
436
437 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
438 U != W; ++U) {
439 MachineInstr *UseI = U->getParent();
440 if (isFixedInstr(UseI)) {
441 FixedNum++;
442 // Calculate the cost of generating REG_SEQUENCE instructions.
443 for (auto &Op : UseI->operands()) {
444 if (Op.isReg() && Part.count(Op.getReg()))
445 if (Op.getSubReg())
446 TotalP -= 2;
447 }
448 continue;
449 }
450 // If a register from this partition is used in a fixed instruction,
451 // and there is also a register in this partition that is used in
452 // a loop phi node, then decrease the splitting profit as this can
453 // confuse the modulo scheduler.
454 if (UseI->isPHI()) {
455 const MachineBasicBlock *PB = UseI->getParent();
456 const MachineLoop *L = MLI->getLoopFor(PB);
457 if (L && L->getHeader() == PB)
458 LoopPhiNum++;
459 }
460 // Splittable instruction.
461 int32_t P = profit(UseI);
462 if (P == std::numeric_limits<int>::min())
463 return false;
464 TotalP += P;
465 }
466 }
467
468 if (FixedNum > 0 && LoopPhiNum > 0)
469 TotalP -= 20*LoopPhiNum;
470
471 LLVM_DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
472 if (SplitAll)
473 return true;
474 return TotalP > 0;
475 }
476
collectIndRegsForLoop(const MachineLoop * L,USet & Rs)477 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
478 USet &Rs) {
479 const MachineBasicBlock *HB = L->getHeader();
480 const MachineBasicBlock *LB = L->getLoopLatch();
481 if (!HB || !LB)
482 return;
483
484 // Examine the latch branch. Expect it to be a conditional branch to
485 // the header (either "br-cond header" or "br-cond exit; br header").
486 MachineBasicBlock *TB = nullptr, *FB = nullptr;
487 MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
488 SmallVector<MachineOperand,2> Cond;
489 bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false);
490 // Only analyzable conditional branches. HII::analyzeBranch will put
491 // the branch opcode as the first element of Cond, and the predicate
492 // operand as the second.
493 if (BadLB || Cond.size() != 2)
494 return;
495 // Only simple jump-conditional (with or without negation).
496 if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
497 return;
498 // Must go to the header.
499 if (TB != HB && FB != HB)
500 return;
501 assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch");
502 // Expect a predicate register.
503 unsigned PR = Cond[1].getReg();
504 assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
505
506 // Get the registers on which the loop controlling compare instruction
507 // depends.
508 unsigned CmpR1 = 0, CmpR2 = 0;
509 const MachineInstr *CmpI = MRI->getVRegDef(PR);
510 while (CmpI->getOpcode() == Hexagon::C2_not)
511 CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
512
513 int Mask = 0, Val = 0;
514 bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val);
515 if (!OkCI)
516 return;
517 // Eliminate non-double input registers.
518 if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
519 CmpR1 = 0;
520 if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
521 CmpR2 = 0;
522 if (!CmpR1 && !CmpR2)
523 return;
524
525 // Now examine the top of the loop: the phi nodes that could poten-
526 // tially define loop induction registers. The registers defined by
527 // such a phi node would be used in a 64-bit add, which then would
528 // be used in the loop compare instruction.
529
530 // Get the set of all double registers defined by phi nodes in the
531 // loop header.
532 using UVect = std::vector<unsigned>;
533
534 UVect DP;
535 for (auto &MI : *HB) {
536 if (!MI.isPHI())
537 break;
538 const MachineOperand &MD = MI.getOperand(0);
539 unsigned R = MD.getReg();
540 if (MRI->getRegClass(R) == DoubleRC)
541 DP.push_back(R);
542 }
543 if (DP.empty())
544 return;
545
546 auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
547 for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
548 I != E; ++I) {
549 const MachineInstr *UseI = I->getParent();
550 if (UseI->getOpcode() != Hexagon::A2_addp)
551 continue;
552 // Get the output from the add. If it is one of the inputs to the
553 // loop-controlling compare instruction, then R is likely an induc-
554 // tion register.
555 unsigned T = UseI->getOperand(0).getReg();
556 if (T == CmpR1 || T == CmpR2)
557 return false;
558 }
559 return true;
560 };
561 UVect::iterator End = llvm::remove_if(DP, NoIndOp);
562 Rs.insert(DP.begin(), End);
563 Rs.insert(CmpR1);
564 Rs.insert(CmpR2);
565
566 LLVM_DEBUG({
567 dbgs() << "For loop at " << printMBBReference(*HB) << " ind regs: ";
568 dump_partition(dbgs(), Rs, *TRI);
569 dbgs() << '\n';
570 });
571 }
572
collectIndRegs(LoopRegMap & IRM)573 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
574 using LoopVector = std::vector<MachineLoop *>;
575
576 LoopVector WorkQ;
577
578 for (auto I : *MLI)
579 WorkQ.push_back(I);
580 for (unsigned i = 0; i < WorkQ.size(); ++i) {
581 for (auto I : *WorkQ[i])
582 WorkQ.push_back(I);
583 }
584
585 USet Rs;
586 for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
587 MachineLoop *L = WorkQ[i];
588 Rs.clear();
589 collectIndRegsForLoop(L, Rs);
590 if (!Rs.empty())
591 IRM.insert(std::make_pair(L, Rs));
592 }
593 }
594
createHalfInstr(unsigned Opc,MachineInstr * MI,const UUPairMap & PairMap,unsigned SubR)595 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
596 const UUPairMap &PairMap, unsigned SubR) {
597 MachineBasicBlock &B = *MI->getParent();
598 DebugLoc DL = MI->getDebugLoc();
599 MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
600
601 for (auto &Op : MI->operands()) {
602 if (!Op.isReg()) {
603 NewI->addOperand(Op);
604 continue;
605 }
606 // For register operands, set the subregister.
607 unsigned R = Op.getReg();
608 unsigned SR = Op.getSubReg();
609 bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R);
610 bool isKill = Op.isKill();
611 if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
612 isKill = false;
613 UUPairMap::const_iterator F = PairMap.find(R);
614 if (F == PairMap.end()) {
615 SR = SubR;
616 } else {
617 const UUPair &P = F->second;
618 R = (SubR == Hexagon::isub_lo) ? P.first : P.second;
619 SR = 0;
620 }
621 }
622 auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
623 Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
624 Op.isInternalRead());
625 NewI->addOperand(CO);
626 }
627 }
628
splitMemRef(MachineInstr * MI,const UUPairMap & PairMap)629 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
630 const UUPairMap &PairMap) {
631 bool Load = MI->mayLoad();
632 unsigned OrigOpc = MI->getOpcode();
633 bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
634 OrigOpc == Hexagon::S2_storerd_pi);
635 MachineInstr *LowI, *HighI;
636 MachineBasicBlock &B = *MI->getParent();
637 DebugLoc DL = MI->getDebugLoc();
638
639 // Index of the base-address-register operand.
640 unsigned AdrX = PostInc ? (Load ? 2 : 1)
641 : (Load ? 1 : 0);
642 MachineOperand &AdrOp = MI->getOperand(AdrX);
643 unsigned RSA = getRegState(AdrOp);
644 MachineOperand &ValOp = Load ? MI->getOperand(0)
645 : (PostInc ? MI->getOperand(3)
646 : MI->getOperand(2));
647 UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
648 assert(F != PairMap.end());
649
650 if (Load) {
651 const UUPair &P = F->second;
652 int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
653 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
654 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
655 .addImm(Off);
656 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
657 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
658 .addImm(Off+4);
659 } else {
660 const UUPair &P = F->second;
661 int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
662 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
663 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
664 .addImm(Off)
665 .addReg(P.first);
666 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
667 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
668 .addImm(Off+4)
669 .addReg(P.second);
670 }
671
672 if (PostInc) {
673 // Create the increment of the address register.
674 int64_t Inc = Load ? MI->getOperand(3).getImm()
675 : MI->getOperand(2).getImm();
676 MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
677 const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
678 unsigned NewR = MRI->createVirtualRegister(RC);
679 assert(!UpdOp.getSubReg() && "Def operand with subreg");
680 BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
681 .addReg(AdrOp.getReg(), RSA)
682 .addImm(Inc);
683 MRI->replaceRegWith(UpdOp.getReg(), NewR);
684 // The original instruction will be deleted later.
685 }
686
687 // Generate a new pair of memory-operands.
688 MachineFunction &MF = *B.getParent();
689 for (auto &MO : MI->memoperands()) {
690 const MachinePointerInfo &Ptr = MO->getPointerInfo();
691 MachineMemOperand::Flags F = MO->getFlags();
692 int A = MO->getAlignment();
693
694 auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A);
695 LowI->addMemOperand(MF, Tmp1);
696 auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4));
697 HighI->addMemOperand(MF, Tmp2);
698 }
699 }
700
splitImmediate(MachineInstr * MI,const UUPairMap & PairMap)701 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
702 const UUPairMap &PairMap) {
703 MachineOperand &Op0 = MI->getOperand(0);
704 MachineOperand &Op1 = MI->getOperand(1);
705 assert(Op0.isReg() && Op1.isImm());
706 uint64_t V = Op1.getImm();
707
708 MachineBasicBlock &B = *MI->getParent();
709 DebugLoc DL = MI->getDebugLoc();
710 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
711 assert(F != PairMap.end());
712 const UUPair &P = F->second;
713
714 // The operand to A2_tfrsi can only have 32 significant bits. Immediate
715 // values in MachineOperand are stored as 64-bit integers, and so the
716 // value -1 may be represented either as 64-bit -1, or 4294967295. Both
717 // will have the 32 higher bits truncated in the end, but -1 will remain
718 // as -1, while the latter may appear to be a large unsigned value
719 // requiring a constant extender. The casting to int32_t will select the
720 // former representation. (The same reasoning applies to all 32-bit
721 // values.)
722 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
723 .addImm(int32_t(V & 0xFFFFFFFFULL));
724 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
725 .addImm(int32_t(V >> 32));
726 }
727
splitCombine(MachineInstr * MI,const UUPairMap & PairMap)728 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
729 const UUPairMap &PairMap) {
730 MachineOperand &Op0 = MI->getOperand(0);
731 MachineOperand &Op1 = MI->getOperand(1);
732 MachineOperand &Op2 = MI->getOperand(2);
733 assert(Op0.isReg());
734
735 MachineBasicBlock &B = *MI->getParent();
736 DebugLoc DL = MI->getDebugLoc();
737 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
738 assert(F != PairMap.end());
739 const UUPair &P = F->second;
740
741 if (!Op1.isReg()) {
742 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
743 .add(Op1);
744 } else {
745 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
746 .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
747 }
748
749 if (!Op2.isReg()) {
750 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
751 .add(Op2);
752 } else {
753 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
754 .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
755 }
756 }
757
splitExt(MachineInstr * MI,const UUPairMap & PairMap)758 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
759 const UUPairMap &PairMap) {
760 MachineOperand &Op0 = MI->getOperand(0);
761 MachineOperand &Op1 = MI->getOperand(1);
762 assert(Op0.isReg() && Op1.isReg());
763
764 MachineBasicBlock &B = *MI->getParent();
765 DebugLoc DL = MI->getDebugLoc();
766 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
767 assert(F != PairMap.end());
768 const UUPair &P = F->second;
769 unsigned RS = getRegState(Op1);
770
771 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
772 .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
773 BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
774 .addReg(Op1.getReg(), RS, Op1.getSubReg())
775 .addImm(31);
776 }
777
splitShift(MachineInstr * MI,const UUPairMap & PairMap)778 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
779 const UUPairMap &PairMap) {
780 using namespace Hexagon;
781
782 MachineOperand &Op0 = MI->getOperand(0);
783 MachineOperand &Op1 = MI->getOperand(1);
784 MachineOperand &Op2 = MI->getOperand(2);
785 assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
786 int64_t Sh64 = Op2.getImm();
787 assert(Sh64 >= 0 && Sh64 < 64);
788 unsigned S = Sh64;
789
790 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
791 assert(F != PairMap.end());
792 const UUPair &P = F->second;
793 unsigned LoR = P.first;
794 unsigned HiR = P.second;
795
796 unsigned Opc = MI->getOpcode();
797 bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
798 bool Left = !Right;
799 bool Signed = (Opc == S2_asr_i_p);
800
801 MachineBasicBlock &B = *MI->getParent();
802 DebugLoc DL = MI->getDebugLoc();
803 unsigned RS = getRegState(Op1);
804 unsigned ShiftOpc = Left ? S2_asl_i_r
805 : (Signed ? S2_asr_i_r : S2_lsr_i_r);
806 unsigned LoSR = isub_lo;
807 unsigned HiSR = isub_hi;
808
809 if (S == 0) {
810 // No shift, subregister copy.
811 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
812 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
813 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
814 .addReg(Op1.getReg(), RS, HiSR);
815 } else if (S < 32) {
816 const TargetRegisterClass *IntRC = &IntRegsRegClass;
817 unsigned TmpR = MRI->createVirtualRegister(IntRC);
818 // Expansion:
819 // Shift left: DR = shl R, #s
820 // LoR = shl R.lo, #s
821 // TmpR = extractu R.lo, #s, #32-s
822 // HiR = or (TmpR, asl(R.hi, #s))
823 // Shift right: DR = shr R, #s
824 // HiR = shr R.hi, #s
825 // TmpR = shr R.lo, #s
826 // LoR = insert TmpR, R.hi, #s, #32-s
827
828 // Shift left:
829 // LoR = shl R.lo, #s
830 // Shift right:
831 // TmpR = shr R.lo, #s
832
833 // Make a special case for A2_aslh and A2_asrh (they are predicable as
834 // opposed to S2_asl_i_r/S2_asr_i_r).
835 if (S == 16 && Left)
836 BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
837 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
838 else if (S == 16 && Signed)
839 BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
840 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
841 else
842 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
843 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
844 .addImm(S);
845
846 if (Left) {
847 // TmpR = extractu R.lo, #s, #32-s
848 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
849 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
850 .addImm(S)
851 .addImm(32-S);
852 // HiR = or (TmpR, asl(R.hi, #s))
853 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
854 .addReg(TmpR)
855 .addReg(Op1.getReg(), RS, HiSR)
856 .addImm(S);
857 } else {
858 // HiR = shr R.hi, #s
859 BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
860 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
861 .addImm(S);
862 // LoR = insert TmpR, R.hi, #s, #32-s
863 BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
864 .addReg(TmpR)
865 .addReg(Op1.getReg(), RS, HiSR)
866 .addImm(S)
867 .addImm(32-S);
868 }
869 } else if (S == 32) {
870 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
871 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
872 if (!Signed)
873 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
874 .addImm(0);
875 else // Must be right shift.
876 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
877 .addReg(Op1.getReg(), RS, HiSR)
878 .addImm(31);
879 } else if (S < 64) {
880 S -= 32;
881 if (S == 16 && Left)
882 BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
883 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
884 else if (S == 16 && Signed)
885 BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
886 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
887 else
888 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
889 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
890 .addImm(S);
891
892 if (Signed)
893 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
894 .addReg(Op1.getReg(), RS, HiSR)
895 .addImm(31);
896 else
897 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
898 .addImm(0);
899 }
900 }
901
splitAslOr(MachineInstr * MI,const UUPairMap & PairMap)902 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
903 const UUPairMap &PairMap) {
904 using namespace Hexagon;
905
906 MachineOperand &Op0 = MI->getOperand(0);
907 MachineOperand &Op1 = MI->getOperand(1);
908 MachineOperand &Op2 = MI->getOperand(2);
909 MachineOperand &Op3 = MI->getOperand(3);
910 assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
911 int64_t Sh64 = Op3.getImm();
912 assert(Sh64 >= 0 && Sh64 < 64);
913 unsigned S = Sh64;
914
915 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
916 assert(F != PairMap.end());
917 const UUPair &P = F->second;
918 unsigned LoR = P.first;
919 unsigned HiR = P.second;
920
921 MachineBasicBlock &B = *MI->getParent();
922 DebugLoc DL = MI->getDebugLoc();
923 unsigned RS1 = getRegState(Op1);
924 unsigned RS2 = getRegState(Op2);
925 const TargetRegisterClass *IntRC = &IntRegsRegClass;
926
927 unsigned LoSR = isub_lo;
928 unsigned HiSR = isub_hi;
929
930 // Op0 = S2_asl_i_p_or Op1, Op2, Op3
931 // means: Op0 = or (Op1, asl(Op2, Op3))
932
933 // Expansion of
934 // DR = or (R1, asl(R2, #s))
935 //
936 // LoR = or (R1.lo, asl(R2.lo, #s))
937 // Tmp1 = extractu R2.lo, #s, #32-s
938 // Tmp2 = or R1.hi, Tmp1
939 // HiR = or (Tmp2, asl(R2.hi, #s))
940
941 if (S == 0) {
942 // DR = or (R1, asl(R2, #0))
943 // -> or (R1, R2)
944 // i.e. LoR = or R1.lo, R2.lo
945 // HiR = or R1.hi, R2.hi
946 BuildMI(B, MI, DL, TII->get(A2_or), LoR)
947 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
948 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
949 BuildMI(B, MI, DL, TII->get(A2_or), HiR)
950 .addReg(Op1.getReg(), RS1, HiSR)
951 .addReg(Op2.getReg(), RS2, HiSR);
952 } else if (S < 32) {
953 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
954 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
955 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
956 .addImm(S);
957 unsigned TmpR1 = MRI->createVirtualRegister(IntRC);
958 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
959 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
960 .addImm(S)
961 .addImm(32-S);
962 unsigned TmpR2 = MRI->createVirtualRegister(IntRC);
963 BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
964 .addReg(Op1.getReg(), RS1, HiSR)
965 .addReg(TmpR1);
966 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
967 .addReg(TmpR2)
968 .addReg(Op2.getReg(), RS2, HiSR)
969 .addImm(S);
970 } else if (S == 32) {
971 // DR = or (R1, asl(R2, #32))
972 // -> or R1, R2.lo
973 // LoR = R1.lo
974 // HiR = or R1.hi, R2.lo
975 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
976 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
977 BuildMI(B, MI, DL, TII->get(A2_or), HiR)
978 .addReg(Op1.getReg(), RS1, HiSR)
979 .addReg(Op2.getReg(), RS2, LoSR);
980 } else if (S < 64) {
981 // DR = or (R1, asl(R2, #s))
982 //
983 // LoR = R1:lo
984 // HiR = or (R1:hi, asl(R2:lo, #s-32))
985 S -= 32;
986 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
987 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
988 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
989 .addReg(Op1.getReg(), RS1, HiSR)
990 .addReg(Op2.getReg(), RS2, LoSR)
991 .addImm(S);
992 }
993 }
994
splitInstr(MachineInstr * MI,const UUPairMap & PairMap)995 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
996 const UUPairMap &PairMap) {
997 using namespace Hexagon;
998
999 LLVM_DEBUG(dbgs() << "Splitting: " << *MI);
1000 bool Split = false;
1001 unsigned Opc = MI->getOpcode();
1002
1003 switch (Opc) {
1004 case TargetOpcode::PHI:
1005 case TargetOpcode::COPY: {
1006 unsigned DstR = MI->getOperand(0).getReg();
1007 if (MRI->getRegClass(DstR) == DoubleRC) {
1008 createHalfInstr(Opc, MI, PairMap, isub_lo);
1009 createHalfInstr(Opc, MI, PairMap, isub_hi);
1010 Split = true;
1011 }
1012 break;
1013 }
1014 case A2_andp:
1015 createHalfInstr(A2_and, MI, PairMap, isub_lo);
1016 createHalfInstr(A2_and, MI, PairMap, isub_hi);
1017 Split = true;
1018 break;
1019 case A2_orp:
1020 createHalfInstr(A2_or, MI, PairMap, isub_lo);
1021 createHalfInstr(A2_or, MI, PairMap, isub_hi);
1022 Split = true;
1023 break;
1024 case A2_xorp:
1025 createHalfInstr(A2_xor, MI, PairMap, isub_lo);
1026 createHalfInstr(A2_xor, MI, PairMap, isub_hi);
1027 Split = true;
1028 break;
1029
1030 case L2_loadrd_io:
1031 case L2_loadrd_pi:
1032 case S2_storerd_io:
1033 case S2_storerd_pi:
1034 splitMemRef(MI, PairMap);
1035 Split = true;
1036 break;
1037
1038 case A2_tfrpi:
1039 case CONST64:
1040 splitImmediate(MI, PairMap);
1041 Split = true;
1042 break;
1043
1044 case A2_combineii:
1045 case A4_combineir:
1046 case A4_combineii:
1047 case A4_combineri:
1048 case A2_combinew:
1049 splitCombine(MI, PairMap);
1050 Split = true;
1051 break;
1052
1053 case A2_sxtw:
1054 splitExt(MI, PairMap);
1055 Split = true;
1056 break;
1057
1058 case S2_asl_i_p:
1059 case S2_asr_i_p:
1060 case S2_lsr_i_p:
1061 splitShift(MI, PairMap);
1062 Split = true;
1063 break;
1064
1065 case S2_asl_i_p_or:
1066 splitAslOr(MI, PairMap);
1067 Split = true;
1068 break;
1069
1070 default:
1071 llvm_unreachable("Instruction not splitable");
1072 return false;
1073 }
1074
1075 return Split;
1076 }
1077
replaceSubregUses(MachineInstr * MI,const UUPairMap & PairMap)1078 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
1079 const UUPairMap &PairMap) {
1080 for (auto &Op : MI->operands()) {
1081 if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
1082 continue;
1083 unsigned R = Op.getReg();
1084 UUPairMap::const_iterator F = PairMap.find(R);
1085 if (F == PairMap.end())
1086 continue;
1087 const UUPair &P = F->second;
1088 switch (Op.getSubReg()) {
1089 case Hexagon::isub_lo:
1090 Op.setReg(P.first);
1091 break;
1092 case Hexagon::isub_hi:
1093 Op.setReg(P.second);
1094 break;
1095 }
1096 Op.setSubReg(0);
1097 }
1098 }
1099
collapseRegPairs(MachineInstr * MI,const UUPairMap & PairMap)1100 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
1101 const UUPairMap &PairMap) {
1102 MachineBasicBlock &B = *MI->getParent();
1103 DebugLoc DL = MI->getDebugLoc();
1104
1105 for (auto &Op : MI->operands()) {
1106 if (!Op.isReg() || !Op.isUse())
1107 continue;
1108 unsigned R = Op.getReg();
1109 if (!TargetRegisterInfo::isVirtualRegister(R))
1110 continue;
1111 if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
1112 continue;
1113 UUPairMap::const_iterator F = PairMap.find(R);
1114 if (F == PairMap.end())
1115 continue;
1116 const UUPair &Pr = F->second;
1117 unsigned NewDR = MRI->createVirtualRegister(DoubleRC);
1118 BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
1119 .addReg(Pr.first)
1120 .addImm(Hexagon::isub_lo)
1121 .addReg(Pr.second)
1122 .addImm(Hexagon::isub_hi);
1123 Op.setReg(NewDR);
1124 }
1125 }
1126
splitPartition(const USet & Part)1127 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
1128 using MISet = std::set<MachineInstr *>;
1129
1130 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
1131 bool Changed = false;
1132
1133 LLVM_DEBUG(dbgs() << "Splitting partition: ";
1134 dump_partition(dbgs(), Part, *TRI); dbgs() << '\n');
1135
1136 UUPairMap PairMap;
1137
1138 MISet SplitIns;
1139 for (unsigned DR : Part) {
1140 MachineInstr *DefI = MRI->getVRegDef(DR);
1141 SplitIns.insert(DefI);
1142
1143 // Collect all instructions, including fixed ones. We won't split them,
1144 // but we need to visit them again to insert the REG_SEQUENCE instructions.
1145 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1146 U != W; ++U)
1147 SplitIns.insert(U->getParent());
1148
1149 unsigned LoR = MRI->createVirtualRegister(IntRC);
1150 unsigned HiR = MRI->createVirtualRegister(IntRC);
1151 LLVM_DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> "
1152 << printReg(HiR, TRI) << ':' << printReg(LoR, TRI)
1153 << '\n');
1154 PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
1155 }
1156
1157 MISet Erase;
1158 for (auto MI : SplitIns) {
1159 if (isFixedInstr(MI)) {
1160 collapseRegPairs(MI, PairMap);
1161 } else {
1162 bool Done = splitInstr(MI, PairMap);
1163 if (Done)
1164 Erase.insert(MI);
1165 Changed |= Done;
1166 }
1167 }
1168
1169 for (unsigned DR : Part) {
1170 // Before erasing "double" instructions, revisit all uses of the double
1171 // registers in this partition, and replace all uses of them with subre-
1172 // gisters, with the corresponding single registers.
1173 MISet Uses;
1174 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1175 U != W; ++U)
1176 Uses.insert(U->getParent());
1177 for (auto M : Uses)
1178 replaceSubregUses(M, PairMap);
1179 }
1180
1181 for (auto MI : Erase) {
1182 MachineBasicBlock *B = MI->getParent();
1183 B->erase(MI);
1184 }
1185
1186 return Changed;
1187 }
1188
runOnMachineFunction(MachineFunction & MF)1189 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
1190 if (skipFunction(MF.getFunction()))
1191 return false;
1192
1193 LLVM_DEBUG(dbgs() << "Splitting double registers in function: "
1194 << MF.getName() << '\n');
1195
1196 auto &ST = MF.getSubtarget<HexagonSubtarget>();
1197 TRI = ST.getRegisterInfo();
1198 TII = ST.getInstrInfo();
1199 MRI = &MF.getRegInfo();
1200 MLI = &getAnalysis<MachineLoopInfo>();
1201
1202 UUSetMap P2Rs;
1203 LoopRegMap IRM;
1204
1205 collectIndRegs(IRM);
1206 partitionRegisters(P2Rs);
1207
1208 LLVM_DEBUG({
1209 dbgs() << "Register partitioning: (partition #0 is fixed)\n";
1210 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1211 dbgs() << '#' << I->first << " -> ";
1212 dump_partition(dbgs(), I->second, *TRI);
1213 dbgs() << '\n';
1214 }
1215 });
1216
1217 bool Changed = false;
1218 int Limit = MaxHSDR;
1219
1220 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1221 if (I->first == 0)
1222 continue;
1223 if (Limit >= 0 && Counter >= Limit)
1224 break;
1225 USet &Part = I->second;
1226 LLVM_DEBUG(dbgs() << "Calculating profit for partition #" << I->first
1227 << '\n');
1228 if (!isProfitable(Part, IRM))
1229 continue;
1230 Counter++;
1231 Changed |= splitPartition(Part);
1232 }
1233
1234 return Changed;
1235 }
1236
createHexagonSplitDoubleRegs()1237 FunctionPass *llvm::createHexagonSplitDoubleRegs() {
1238 return new HexagonSplitDoubleRegs();
1239 }
1240