1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file defines the MIPS-specific support for the FastISel class.
12 /// Some of the target-specific code is generated by tablegen in the file
13 /// MipsGenFastISel.inc, which is #included here.
14 ///
15 //===----------------------------------------------------------------------===//
16
17 #include "MCTargetDesc/MipsABIInfo.h"
18 #include "MCTargetDesc/MipsBaseInfo.h"
19 #include "MipsCCState.h"
20 #include "MipsISelLowering.h"
21 #include "MipsInstrInfo.h"
22 #include "MipsMachineFunction.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetLowering.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/CallingConv.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include <algorithm>
70 #include <array>
71 #include <cassert>
72 #include <cstdint>
73
74 #define DEBUG_TYPE "mips-fastisel"
75
76 using namespace llvm;
77
78 namespace {
79
80 class MipsFastISel final : public FastISel {
81
82 // All possible address modes.
83 class Address {
84 public:
85 using BaseKind = enum { RegBase, FrameIndexBase };
86
87 private:
88 BaseKind Kind = RegBase;
89 union {
90 unsigned Reg;
91 int FI;
92 } Base;
93
94 int64_t Offset = 0;
95
96 const GlobalValue *GV = nullptr;
97
98 public:
99 // Innocuous defaults for our address.
Address()100 Address() { Base.Reg = 0; }
101
setKind(BaseKind K)102 void setKind(BaseKind K) { Kind = K; }
getKind() const103 BaseKind getKind() const { return Kind; }
isRegBase() const104 bool isRegBase() const { return Kind == RegBase; }
isFIBase() const105 bool isFIBase() const { return Kind == FrameIndexBase; }
106
setReg(unsigned Reg)107 void setReg(unsigned Reg) {
108 assert(isRegBase() && "Invalid base register access!");
109 Base.Reg = Reg;
110 }
111
getReg() const112 unsigned getReg() const {
113 assert(isRegBase() && "Invalid base register access!");
114 return Base.Reg;
115 }
116
setFI(unsigned FI)117 void setFI(unsigned FI) {
118 assert(isFIBase() && "Invalid base frame index access!");
119 Base.FI = FI;
120 }
121
getFI() const122 unsigned getFI() const {
123 assert(isFIBase() && "Invalid base frame index access!");
124 return Base.FI;
125 }
126
setOffset(int64_t Offset_)127 void setOffset(int64_t Offset_) { Offset = Offset_; }
getOffset() const128 int64_t getOffset() const { return Offset; }
setGlobalValue(const GlobalValue * G)129 void setGlobalValue(const GlobalValue *G) { GV = G; }
getGlobalValue()130 const GlobalValue *getGlobalValue() { return GV; }
131 };
132
133 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
134 /// make the right decision when generating code for different targets.
135 const TargetMachine &TM;
136 const MipsSubtarget *Subtarget;
137 const TargetInstrInfo &TII;
138 const TargetLowering &TLI;
139 MipsFunctionInfo *MFI;
140
141 // Convenience variables to avoid some queries.
142 LLVMContext *Context;
143
144 bool fastLowerArguments() override;
145 bool fastLowerCall(CallLoweringInfo &CLI) override;
146 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
147
148 bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
149 // floating point but not reject doing fast-isel in other
150 // situations
151
152 private:
153 // Selection routines.
154 bool selectLogicalOp(const Instruction *I);
155 bool selectLoad(const Instruction *I);
156 bool selectStore(const Instruction *I);
157 bool selectBranch(const Instruction *I);
158 bool selectSelect(const Instruction *I);
159 bool selectCmp(const Instruction *I);
160 bool selectFPExt(const Instruction *I);
161 bool selectFPTrunc(const Instruction *I);
162 bool selectFPToInt(const Instruction *I, bool IsSigned);
163 bool selectRet(const Instruction *I);
164 bool selectTrunc(const Instruction *I);
165 bool selectIntExt(const Instruction *I);
166 bool selectShift(const Instruction *I);
167 bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
168
169 // Utility helper routines.
170 bool isTypeLegal(Type *Ty, MVT &VT);
171 bool isTypeSupported(Type *Ty, MVT &VT);
172 bool isLoadTypeLegal(Type *Ty, MVT &VT);
173 bool computeAddress(const Value *Obj, Address &Addr);
174 bool computeCallAddress(const Value *V, Address &Addr);
175 void simplifyAddress(Address &Addr);
176
177 // Emit helper routines.
178 bool emitCmp(unsigned DestReg, const CmpInst *CI);
179 bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
180 unsigned Alignment = 0);
181 bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
182 MachineMemOperand *MMO = nullptr);
183 bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
184 unsigned Alignment = 0);
185 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
186 bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
187
188 bool IsZExt);
189 bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
190
191 bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
192 bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
193 unsigned DestReg);
194 bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
195 unsigned DestReg);
196
197 unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
198
199 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
200 const Value *RHS);
201
202 unsigned materializeFP(const ConstantFP *CFP, MVT VT);
203 unsigned materializeGV(const GlobalValue *GV, MVT VT);
204 unsigned materializeInt(const Constant *C, MVT VT);
205 unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
206 unsigned materializeExternalCallSym(MCSymbol *Syn);
207
emitInst(unsigned Opc)208 MachineInstrBuilder emitInst(unsigned Opc) {
209 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
210 }
211
emitInst(unsigned Opc,unsigned DstReg)212 MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
213 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
214 DstReg);
215 }
216
emitInstStore(unsigned Opc,unsigned SrcReg,unsigned MemReg,int64_t MemOffset)217 MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
218 unsigned MemReg, int64_t MemOffset) {
219 return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
220 }
221
emitInstLoad(unsigned Opc,unsigned DstReg,unsigned MemReg,int64_t MemOffset)222 MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
223 unsigned MemReg, int64_t MemOffset) {
224 return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
225 }
226
227 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
228 const TargetRegisterClass *RC,
229 unsigned Op0, bool Op0IsKill,
230 unsigned Op1, bool Op1IsKill);
231
232 // for some reason, this default is not generated by tablegen
233 // so we explicitly generate it here.
fastEmitInst_riir(uint64_t inst,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t imm1,uint64_t imm2,unsigned Op3,bool Op3IsKill)234 unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
235 unsigned Op0, bool Op0IsKill, uint64_t imm1,
236 uint64_t imm2, unsigned Op3, bool Op3IsKill) {
237 return 0;
238 }
239
240 // Call handling routines.
241 private:
242 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
243 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
244 unsigned &NumBytes);
245 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
246
getABI() const247 const MipsABIInfo &getABI() const {
248 return static_cast<const MipsTargetMachine &>(TM).getABI();
249 }
250
251 public:
252 // Backend specific FastISel code.
MipsFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)253 explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
254 const TargetLibraryInfo *libInfo)
255 : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
256 Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
257 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
258 MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
259 Context = &funcInfo.Fn->getContext();
260 UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
261 }
262
263 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
264 unsigned fastMaterializeConstant(const Constant *C) override;
265 bool fastSelectInstruction(const Instruction *I) override;
266
267 #include "MipsGenFastISel.inc"
268 };
269
270 } // end anonymous namespace
271
272 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
273 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
274 CCState &State) LLVM_ATTRIBUTE_UNUSED;
275
CC_MipsO32_FP32(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)276 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
277 CCValAssign::LocInfo LocInfo,
278 ISD::ArgFlagsTy ArgFlags, CCState &State) {
279 llvm_unreachable("should not be called");
280 }
281
CC_MipsO32_FP64(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)282 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
283 CCValAssign::LocInfo LocInfo,
284 ISD::ArgFlagsTy ArgFlags, CCState &State) {
285 llvm_unreachable("should not be called");
286 }
287
288 #include "MipsGenCallingConv.inc"
289
CCAssignFnForCall(CallingConv::ID CC) const290 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
291 return CC_MipsO32;
292 }
293
emitLogicalOp(unsigned ISDOpc,MVT RetVT,const Value * LHS,const Value * RHS)294 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
295 const Value *LHS, const Value *RHS) {
296 // Canonicalize immediates to the RHS first.
297 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
298 std::swap(LHS, RHS);
299
300 unsigned Opc;
301 switch (ISDOpc) {
302 case ISD::AND:
303 Opc = Mips::AND;
304 break;
305 case ISD::OR:
306 Opc = Mips::OR;
307 break;
308 case ISD::XOR:
309 Opc = Mips::XOR;
310 break;
311 default:
312 llvm_unreachable("unexpected opcode");
313 }
314
315 unsigned LHSReg = getRegForValue(LHS);
316 if (!LHSReg)
317 return 0;
318
319 unsigned RHSReg;
320 if (const auto *C = dyn_cast<ConstantInt>(RHS))
321 RHSReg = materializeInt(C, MVT::i32);
322 else
323 RHSReg = getRegForValue(RHS);
324 if (!RHSReg)
325 return 0;
326
327 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
328 if (!ResultReg)
329 return 0;
330
331 emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
332 return ResultReg;
333 }
334
fastMaterializeAlloca(const AllocaInst * AI)335 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
336 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
337 "Alloca should always return a pointer.");
338
339 DenseMap<const AllocaInst *, int>::iterator SI =
340 FuncInfo.StaticAllocaMap.find(AI);
341
342 if (SI != FuncInfo.StaticAllocaMap.end()) {
343 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
344 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
345 ResultReg)
346 .addFrameIndex(SI->second)
347 .addImm(0);
348 return ResultReg;
349 }
350
351 return 0;
352 }
353
materializeInt(const Constant * C,MVT VT)354 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
355 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
356 return 0;
357 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
358 const ConstantInt *CI = cast<ConstantInt>(C);
359 return materialize32BitInt(CI->getZExtValue(), RC);
360 }
361
materialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)362 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
363 const TargetRegisterClass *RC) {
364 unsigned ResultReg = createResultReg(RC);
365
366 if (isInt<16>(Imm)) {
367 unsigned Opc = Mips::ADDiu;
368 emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
369 return ResultReg;
370 } else if (isUInt<16>(Imm)) {
371 emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
372 return ResultReg;
373 }
374 unsigned Lo = Imm & 0xFFFF;
375 unsigned Hi = (Imm >> 16) & 0xFFFF;
376 if (Lo) {
377 // Both Lo and Hi have nonzero bits.
378 unsigned TmpReg = createResultReg(RC);
379 emitInst(Mips::LUi, TmpReg).addImm(Hi);
380 emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
381 } else {
382 emitInst(Mips::LUi, ResultReg).addImm(Hi);
383 }
384 return ResultReg;
385 }
386
materializeFP(const ConstantFP * CFP,MVT VT)387 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
388 if (UnsupportedFPMode)
389 return 0;
390 int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
391 if (VT == MVT::f32) {
392 const TargetRegisterClass *RC = &Mips::FGR32RegClass;
393 unsigned DestReg = createResultReg(RC);
394 unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
395 emitInst(Mips::MTC1, DestReg).addReg(TempReg);
396 return DestReg;
397 } else if (VT == MVT::f64) {
398 const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
399 unsigned DestReg = createResultReg(RC);
400 unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
401 unsigned TempReg2 =
402 materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
403 emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
404 return DestReg;
405 }
406 return 0;
407 }
408
materializeGV(const GlobalValue * GV,MVT VT)409 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
410 // For now 32-bit only.
411 if (VT != MVT::i32)
412 return 0;
413 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
414 unsigned DestReg = createResultReg(RC);
415 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
416 bool IsThreadLocal = GVar && GVar->isThreadLocal();
417 // TLS not supported at this time.
418 if (IsThreadLocal)
419 return 0;
420 emitInst(Mips::LW, DestReg)
421 .addReg(MFI->getGlobalBaseReg())
422 .addGlobalAddress(GV, 0, MipsII::MO_GOT);
423 if ((GV->hasInternalLinkage() ||
424 (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
425 unsigned TempReg = createResultReg(RC);
426 emitInst(Mips::ADDiu, TempReg)
427 .addReg(DestReg)
428 .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
429 DestReg = TempReg;
430 }
431 return DestReg;
432 }
433
materializeExternalCallSym(MCSymbol * Sym)434 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
435 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
436 unsigned DestReg = createResultReg(RC);
437 emitInst(Mips::LW, DestReg)
438 .addReg(MFI->getGlobalBaseReg())
439 .addSym(Sym, MipsII::MO_GOT);
440 return DestReg;
441 }
442
443 // Materialize a constant into a register, and return the register
444 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)445 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
446 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
447
448 // Only handle simple types.
449 if (!CEVT.isSimple())
450 return 0;
451 MVT VT = CEVT.getSimpleVT();
452
453 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
454 return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
455 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
456 return materializeGV(GV, VT);
457 else if (isa<ConstantInt>(C))
458 return materializeInt(C, VT);
459
460 return 0;
461 }
462
computeAddress(const Value * Obj,Address & Addr)463 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
464 const User *U = nullptr;
465 unsigned Opcode = Instruction::UserOp1;
466 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
467 // Don't walk into other basic blocks unless the object is an alloca from
468 // another block, otherwise it may not have a virtual register assigned.
469 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
470 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
471 Opcode = I->getOpcode();
472 U = I;
473 }
474 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
475 Opcode = C->getOpcode();
476 U = C;
477 }
478 switch (Opcode) {
479 default:
480 break;
481 case Instruction::BitCast:
482 // Look through bitcasts.
483 return computeAddress(U->getOperand(0), Addr);
484 case Instruction::GetElementPtr: {
485 Address SavedAddr = Addr;
486 int64_t TmpOffset = Addr.getOffset();
487 // Iterate through the GEP folding the constants into offsets where
488 // we can.
489 gep_type_iterator GTI = gep_type_begin(U);
490 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
491 ++i, ++GTI) {
492 const Value *Op = *i;
493 if (StructType *STy = GTI.getStructTypeOrNull()) {
494 const StructLayout *SL = DL.getStructLayout(STy);
495 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
496 TmpOffset += SL->getElementOffset(Idx);
497 } else {
498 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
499 while (true) {
500 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
501 // Constant-offset addressing.
502 TmpOffset += CI->getSExtValue() * S;
503 break;
504 }
505 if (canFoldAddIntoGEP(U, Op)) {
506 // A compatible add with a constant operand. Fold the constant.
507 ConstantInt *CI =
508 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
509 TmpOffset += CI->getSExtValue() * S;
510 // Iterate on the other operand.
511 Op = cast<AddOperator>(Op)->getOperand(0);
512 continue;
513 }
514 // Unsupported
515 goto unsupported_gep;
516 }
517 }
518 }
519 // Try to grab the base operand now.
520 Addr.setOffset(TmpOffset);
521 if (computeAddress(U->getOperand(0), Addr))
522 return true;
523 // We failed, restore everything and try the other options.
524 Addr = SavedAddr;
525 unsupported_gep:
526 break;
527 }
528 case Instruction::Alloca: {
529 const AllocaInst *AI = cast<AllocaInst>(Obj);
530 DenseMap<const AllocaInst *, int>::iterator SI =
531 FuncInfo.StaticAllocaMap.find(AI);
532 if (SI != FuncInfo.StaticAllocaMap.end()) {
533 Addr.setKind(Address::FrameIndexBase);
534 Addr.setFI(SI->second);
535 return true;
536 }
537 break;
538 }
539 }
540 Addr.setReg(getRegForValue(Obj));
541 return Addr.getReg() != 0;
542 }
543
computeCallAddress(const Value * V,Address & Addr)544 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
545 const User *U = nullptr;
546 unsigned Opcode = Instruction::UserOp1;
547
548 if (const auto *I = dyn_cast<Instruction>(V)) {
549 // Check if the value is defined in the same basic block. This information
550 // is crucial to know whether or not folding an operand is valid.
551 if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
552 Opcode = I->getOpcode();
553 U = I;
554 }
555 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
556 Opcode = C->getOpcode();
557 U = C;
558 }
559
560 switch (Opcode) {
561 default:
562 break;
563 case Instruction::BitCast:
564 // Look past bitcasts if its operand is in the same BB.
565 return computeCallAddress(U->getOperand(0), Addr);
566 break;
567 case Instruction::IntToPtr:
568 // Look past no-op inttoptrs if its operand is in the same BB.
569 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
570 TLI.getPointerTy(DL))
571 return computeCallAddress(U->getOperand(0), Addr);
572 break;
573 case Instruction::PtrToInt:
574 // Look past no-op ptrtoints if its operand is in the same BB.
575 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
576 return computeCallAddress(U->getOperand(0), Addr);
577 break;
578 }
579
580 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
581 Addr.setGlobalValue(GV);
582 return true;
583 }
584
585 // If all else fails, try to materialize the value in a register.
586 if (!Addr.getGlobalValue()) {
587 Addr.setReg(getRegForValue(V));
588 return Addr.getReg() != 0;
589 }
590
591 return false;
592 }
593
isTypeLegal(Type * Ty,MVT & VT)594 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
595 EVT evt = TLI.getValueType(DL, Ty, true);
596 // Only handle simple types.
597 if (evt == MVT::Other || !evt.isSimple())
598 return false;
599 VT = evt.getSimpleVT();
600
601 // Handle all legal types, i.e. a register that will directly hold this
602 // value.
603 return TLI.isTypeLegal(VT);
604 }
605
isTypeSupported(Type * Ty,MVT & VT)606 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
607 if (Ty->isVectorTy())
608 return false;
609
610 if (isTypeLegal(Ty, VT))
611 return true;
612
613 // If this is a type than can be sign or zero-extended to a basic operation
614 // go ahead and accept it now.
615 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
616 return true;
617
618 return false;
619 }
620
isLoadTypeLegal(Type * Ty,MVT & VT)621 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
622 if (isTypeLegal(Ty, VT))
623 return true;
624 // We will extend this in a later patch:
625 // If this is a type than can be sign or zero-extended to a basic operation
626 // go ahead and accept it now.
627 if (VT == MVT::i8 || VT == MVT::i16)
628 return true;
629 return false;
630 }
631
632 // Because of how EmitCmp is called with fast-isel, you can
633 // end up with redundant "andi" instructions after the sequences emitted below.
634 // We should try and solve this issue in the future.
635 //
emitCmp(unsigned ResultReg,const CmpInst * CI)636 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
637 const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
638 bool IsUnsigned = CI->isUnsigned();
639 unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
640 if (LeftReg == 0)
641 return false;
642 unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
643 if (RightReg == 0)
644 return false;
645 CmpInst::Predicate P = CI->getPredicate();
646
647 switch (P) {
648 default:
649 return false;
650 case CmpInst::ICMP_EQ: {
651 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
652 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
653 emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
654 break;
655 }
656 case CmpInst::ICMP_NE: {
657 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
658 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
659 emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
660 break;
661 }
662 case CmpInst::ICMP_UGT:
663 emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
664 break;
665 case CmpInst::ICMP_ULT:
666 emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
667 break;
668 case CmpInst::ICMP_UGE: {
669 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
670 emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
671 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
672 break;
673 }
674 case CmpInst::ICMP_ULE: {
675 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
676 emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
677 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
678 break;
679 }
680 case CmpInst::ICMP_SGT:
681 emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
682 break;
683 case CmpInst::ICMP_SLT:
684 emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
685 break;
686 case CmpInst::ICMP_SGE: {
687 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
688 emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
689 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
690 break;
691 }
692 case CmpInst::ICMP_SLE: {
693 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
694 emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
695 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
696 break;
697 }
698 case CmpInst::FCMP_OEQ:
699 case CmpInst::FCMP_UNE:
700 case CmpInst::FCMP_OLT:
701 case CmpInst::FCMP_OLE:
702 case CmpInst::FCMP_OGT:
703 case CmpInst::FCMP_OGE: {
704 if (UnsupportedFPMode)
705 return false;
706 bool IsFloat = Left->getType()->isFloatTy();
707 bool IsDouble = Left->getType()->isDoubleTy();
708 if (!IsFloat && !IsDouble)
709 return false;
710 unsigned Opc, CondMovOpc;
711 switch (P) {
712 case CmpInst::FCMP_OEQ:
713 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
714 CondMovOpc = Mips::MOVT_I;
715 break;
716 case CmpInst::FCMP_UNE:
717 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
718 CondMovOpc = Mips::MOVF_I;
719 break;
720 case CmpInst::FCMP_OLT:
721 Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
722 CondMovOpc = Mips::MOVT_I;
723 break;
724 case CmpInst::FCMP_OLE:
725 Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
726 CondMovOpc = Mips::MOVT_I;
727 break;
728 case CmpInst::FCMP_OGT:
729 Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
730 CondMovOpc = Mips::MOVF_I;
731 break;
732 case CmpInst::FCMP_OGE:
733 Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
734 CondMovOpc = Mips::MOVF_I;
735 break;
736 default:
737 llvm_unreachable("Only switching of a subset of CCs.");
738 }
739 unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
740 unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
741 emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
742 emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
743 emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg)
744 .addReg(RightReg);
745 emitInst(CondMovOpc, ResultReg)
746 .addReg(RegWithOne)
747 .addReg(Mips::FCC0)
748 .addReg(RegWithZero);
749 break;
750 }
751 }
752 return true;
753 }
754
emitLoad(MVT VT,unsigned & ResultReg,Address & Addr,unsigned Alignment)755 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
756 unsigned Alignment) {
757 //
758 // more cases will be handled here in following patches.
759 //
760 unsigned Opc;
761 switch (VT.SimpleTy) {
762 case MVT::i32:
763 ResultReg = createResultReg(&Mips::GPR32RegClass);
764 Opc = Mips::LW;
765 break;
766 case MVT::i16:
767 ResultReg = createResultReg(&Mips::GPR32RegClass);
768 Opc = Mips::LHu;
769 break;
770 case MVT::i8:
771 ResultReg = createResultReg(&Mips::GPR32RegClass);
772 Opc = Mips::LBu;
773 break;
774 case MVT::f32:
775 if (UnsupportedFPMode)
776 return false;
777 ResultReg = createResultReg(&Mips::FGR32RegClass);
778 Opc = Mips::LWC1;
779 break;
780 case MVT::f64:
781 if (UnsupportedFPMode)
782 return false;
783 ResultReg = createResultReg(&Mips::AFGR64RegClass);
784 Opc = Mips::LDC1;
785 break;
786 default:
787 return false;
788 }
789 if (Addr.isRegBase()) {
790 simplifyAddress(Addr);
791 emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
792 return true;
793 }
794 if (Addr.isFIBase()) {
795 unsigned FI = Addr.getFI();
796 unsigned Align = 4;
797 int64_t Offset = Addr.getOffset();
798 MachineFrameInfo &MFI = MF->getFrameInfo();
799 MachineMemOperand *MMO = MF->getMachineMemOperand(
800 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
801 MFI.getObjectSize(FI), Align);
802 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
803 .addFrameIndex(FI)
804 .addImm(Offset)
805 .addMemOperand(MMO);
806 return true;
807 }
808 return false;
809 }
810
emitStore(MVT VT,unsigned SrcReg,Address & Addr,unsigned Alignment)811 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
812 unsigned Alignment) {
813 //
814 // more cases will be handled here in following patches.
815 //
816 unsigned Opc;
817 switch (VT.SimpleTy) {
818 case MVT::i8:
819 Opc = Mips::SB;
820 break;
821 case MVT::i16:
822 Opc = Mips::SH;
823 break;
824 case MVT::i32:
825 Opc = Mips::SW;
826 break;
827 case MVT::f32:
828 if (UnsupportedFPMode)
829 return false;
830 Opc = Mips::SWC1;
831 break;
832 case MVT::f64:
833 if (UnsupportedFPMode)
834 return false;
835 Opc = Mips::SDC1;
836 break;
837 default:
838 return false;
839 }
840 if (Addr.isRegBase()) {
841 simplifyAddress(Addr);
842 emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
843 return true;
844 }
845 if (Addr.isFIBase()) {
846 unsigned FI = Addr.getFI();
847 unsigned Align = 4;
848 int64_t Offset = Addr.getOffset();
849 MachineFrameInfo &MFI = MF->getFrameInfo();
850 MachineMemOperand *MMO = MF->getMachineMemOperand(
851 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
852 MFI.getObjectSize(FI), Align);
853 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
854 .addReg(SrcReg)
855 .addFrameIndex(FI)
856 .addImm(Offset)
857 .addMemOperand(MMO);
858 return true;
859 }
860 return false;
861 }
862
selectLogicalOp(const Instruction * I)863 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
864 MVT VT;
865 if (!isTypeSupported(I->getType(), VT))
866 return false;
867
868 unsigned ResultReg;
869 switch (I->getOpcode()) {
870 default:
871 llvm_unreachable("Unexpected instruction.");
872 case Instruction::And:
873 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
874 break;
875 case Instruction::Or:
876 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
877 break;
878 case Instruction::Xor:
879 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
880 break;
881 }
882
883 if (!ResultReg)
884 return false;
885
886 updateValueMap(I, ResultReg);
887 return true;
888 }
889
selectLoad(const Instruction * I)890 bool MipsFastISel::selectLoad(const Instruction *I) {
891 // Atomic loads need special handling.
892 if (cast<LoadInst>(I)->isAtomic())
893 return false;
894
895 // Verify we have a legal type before going any further.
896 MVT VT;
897 if (!isLoadTypeLegal(I->getType(), VT))
898 return false;
899
900 // See if we can handle this address.
901 Address Addr;
902 if (!computeAddress(I->getOperand(0), Addr))
903 return false;
904
905 unsigned ResultReg;
906 if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
907 return false;
908 updateValueMap(I, ResultReg);
909 return true;
910 }
911
selectStore(const Instruction * I)912 bool MipsFastISel::selectStore(const Instruction *I) {
913 Value *Op0 = I->getOperand(0);
914 unsigned SrcReg = 0;
915
916 // Atomic stores need special handling.
917 if (cast<StoreInst>(I)->isAtomic())
918 return false;
919
920 // Verify we have a legal type before going any further.
921 MVT VT;
922 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
923 return false;
924
925 // Get the value to be stored into a register.
926 SrcReg = getRegForValue(Op0);
927 if (SrcReg == 0)
928 return false;
929
930 // See if we can handle this address.
931 Address Addr;
932 if (!computeAddress(I->getOperand(1), Addr))
933 return false;
934
935 if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
936 return false;
937 return true;
938 }
939
940 // This can cause a redundant sltiu to be generated.
941 // FIXME: try and eliminate this in a future patch.
selectBranch(const Instruction * I)942 bool MipsFastISel::selectBranch(const Instruction *I) {
943 const BranchInst *BI = cast<BranchInst>(I);
944 MachineBasicBlock *BrBB = FuncInfo.MBB;
945 //
946 // TBB is the basic block for the case where the comparison is true.
947 // FBB is the basic block for the case where the comparison is false.
948 // if (cond) goto TBB
949 // goto FBB
950 // TBB:
951 //
952 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
953 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
954 // For now, just try the simplest case where it's fed by a compare.
955 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
956 MVT CIMVT =
957 TLI.getValueType(DL, CI->getOperand(0)->getType(), true).getSimpleVT();
958 if (CIMVT == MVT::i1)
959 return false;
960
961 unsigned CondReg = getRegForValue(CI);
962 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
963 .addReg(CondReg)
964 .addMBB(TBB);
965 finishCondBranch(BI->getParent(), TBB, FBB);
966 return true;
967 }
968 return false;
969 }
970
selectCmp(const Instruction * I)971 bool MipsFastISel::selectCmp(const Instruction *I) {
972 const CmpInst *CI = cast<CmpInst>(I);
973 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
974 if (!emitCmp(ResultReg, CI))
975 return false;
976 updateValueMap(I, ResultReg);
977 return true;
978 }
979
980 // Attempt to fast-select a floating-point extend instruction.
selectFPExt(const Instruction * I)981 bool MipsFastISel::selectFPExt(const Instruction *I) {
982 if (UnsupportedFPMode)
983 return false;
984 Value *Src = I->getOperand(0);
985 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
986 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
987
988 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
989 return false;
990
991 unsigned SrcReg =
992 getRegForValue(Src); // this must be a 32bit floating point register class
993 // maybe we should handle this differently
994 if (!SrcReg)
995 return false;
996
997 unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
998 emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
999 updateValueMap(I, DestReg);
1000 return true;
1001 }
1002
selectSelect(const Instruction * I)1003 bool MipsFastISel::selectSelect(const Instruction *I) {
1004 assert(isa<SelectInst>(I) && "Expected a select instruction.");
1005
1006 LLVM_DEBUG(dbgs() << "selectSelect\n");
1007
1008 MVT VT;
1009 if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
1010 LLVM_DEBUG(
1011 dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
1012 return false;
1013 }
1014
1015 unsigned CondMovOpc;
1016 const TargetRegisterClass *RC;
1017
1018 if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
1019 CondMovOpc = Mips::MOVN_I_I;
1020 RC = &Mips::GPR32RegClass;
1021 } else if (VT == MVT::f32) {
1022 CondMovOpc = Mips::MOVN_I_S;
1023 RC = &Mips::FGR32RegClass;
1024 } else if (VT == MVT::f64) {
1025 CondMovOpc = Mips::MOVN_I_D32;
1026 RC = &Mips::AFGR64RegClass;
1027 } else
1028 return false;
1029
1030 const SelectInst *SI = cast<SelectInst>(I);
1031 const Value *Cond = SI->getCondition();
1032 unsigned Src1Reg = getRegForValue(SI->getTrueValue());
1033 unsigned Src2Reg = getRegForValue(SI->getFalseValue());
1034 unsigned CondReg = getRegForValue(Cond);
1035
1036 if (!Src1Reg || !Src2Reg || !CondReg)
1037 return false;
1038
1039 unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1040 if (!ZExtCondReg)
1041 return false;
1042
1043 if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1044 return false;
1045
1046 unsigned ResultReg = createResultReg(RC);
1047 unsigned TempReg = createResultReg(RC);
1048
1049 if (!ResultReg || !TempReg)
1050 return false;
1051
1052 emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1053 emitInst(CondMovOpc, ResultReg)
1054 .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1055 updateValueMap(I, ResultReg);
1056 return true;
1057 }
1058
1059 // Attempt to fast-select a floating-point truncate instruction.
selectFPTrunc(const Instruction * I)1060 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1061 if (UnsupportedFPMode)
1062 return false;
1063 Value *Src = I->getOperand(0);
1064 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1065 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1066
1067 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1068 return false;
1069
1070 unsigned SrcReg = getRegForValue(Src);
1071 if (!SrcReg)
1072 return false;
1073
1074 unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
1075 if (!DestReg)
1076 return false;
1077
1078 emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1079 updateValueMap(I, DestReg);
1080 return true;
1081 }
1082
1083 // Attempt to fast-select a floating-point-to-integer conversion.
selectFPToInt(const Instruction * I,bool IsSigned)1084 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1085 if (UnsupportedFPMode)
1086 return false;
1087 MVT DstVT, SrcVT;
1088 if (!IsSigned)
1089 return false; // We don't handle this case yet. There is no native
1090 // instruction for this but it can be synthesized.
1091 Type *DstTy = I->getType();
1092 if (!isTypeLegal(DstTy, DstVT))
1093 return false;
1094
1095 if (DstVT != MVT::i32)
1096 return false;
1097
1098 Value *Src = I->getOperand(0);
1099 Type *SrcTy = Src->getType();
1100 if (!isTypeLegal(SrcTy, SrcVT))
1101 return false;
1102
1103 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1104 return false;
1105
1106 unsigned SrcReg = getRegForValue(Src);
1107 if (SrcReg == 0)
1108 return false;
1109
1110 // Determine the opcode for the conversion, which takes place
1111 // entirely within FPRs.
1112 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1113 unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
1114 unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1115
1116 // Generate the convert.
1117 emitInst(Opc, TempReg).addReg(SrcReg);
1118 emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1119
1120 updateValueMap(I, DestReg);
1121 return true;
1122 }
1123
processCallArgs(CallLoweringInfo & CLI,SmallVectorImpl<MVT> & OutVTs,unsigned & NumBytes)1124 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1125 SmallVectorImpl<MVT> &OutVTs,
1126 unsigned &NumBytes) {
1127 CallingConv::ID CC = CLI.CallConv;
1128 SmallVector<CCValAssign, 16> ArgLocs;
1129 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1130 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1131 // Get a count of how many bytes are to be pushed on the stack.
1132 NumBytes = CCInfo.getNextStackOffset();
1133 // This is the minimum argument area used for A0-A3.
1134 if (NumBytes < 16)
1135 NumBytes = 16;
1136
1137 emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0);
1138 // Process the args.
1139 MVT firstMVT;
1140 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1141 CCValAssign &VA = ArgLocs[i];
1142 const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1143 MVT ArgVT = OutVTs[VA.getValNo()];
1144
1145 if (i == 0) {
1146 firstMVT = ArgVT;
1147 if (ArgVT == MVT::f32) {
1148 VA.convertToReg(Mips::F12);
1149 } else if (ArgVT == MVT::f64) {
1150 VA.convertToReg(Mips::D6);
1151 }
1152 } else if (i == 1) {
1153 if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1154 if (ArgVT == MVT::f32) {
1155 VA.convertToReg(Mips::F14);
1156 } else if (ArgVT == MVT::f64) {
1157 VA.convertToReg(Mips::D7);
1158 }
1159 }
1160 }
1161 if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1162 (ArgVT == MVT::i8)) &&
1163 VA.isMemLoc()) {
1164 switch (VA.getLocMemOffset()) {
1165 case 0:
1166 VA.convertToReg(Mips::A0);
1167 break;
1168 case 4:
1169 VA.convertToReg(Mips::A1);
1170 break;
1171 case 8:
1172 VA.convertToReg(Mips::A2);
1173 break;
1174 case 12:
1175 VA.convertToReg(Mips::A3);
1176 break;
1177 default:
1178 break;
1179 }
1180 }
1181 unsigned ArgReg = getRegForValue(ArgVal);
1182 if (!ArgReg)
1183 return false;
1184
1185 // Handle arg promotion: SExt, ZExt, AExt.
1186 switch (VA.getLocInfo()) {
1187 case CCValAssign::Full:
1188 break;
1189 case CCValAssign::AExt:
1190 case CCValAssign::SExt: {
1191 MVT DestVT = VA.getLocVT();
1192 MVT SrcVT = ArgVT;
1193 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1194 if (!ArgReg)
1195 return false;
1196 break;
1197 }
1198 case CCValAssign::ZExt: {
1199 MVT DestVT = VA.getLocVT();
1200 MVT SrcVT = ArgVT;
1201 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1202 if (!ArgReg)
1203 return false;
1204 break;
1205 }
1206 default:
1207 llvm_unreachable("Unknown arg promotion!");
1208 }
1209
1210 // Now copy/store arg to correct locations.
1211 if (VA.isRegLoc() && !VA.needsCustom()) {
1212 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1213 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1214 CLI.OutRegs.push_back(VA.getLocReg());
1215 } else if (VA.needsCustom()) {
1216 llvm_unreachable("Mips does not use custom args.");
1217 return false;
1218 } else {
1219 //
1220 // FIXME: This path will currently return false. It was copied
1221 // from the AArch64 port and should be essentially fine for Mips too.
1222 // The work to finish up this path will be done in a follow-on patch.
1223 //
1224 assert(VA.isMemLoc() && "Assuming store on stack.");
1225 // Don't emit stores for undef values.
1226 if (isa<UndefValue>(ArgVal))
1227 continue;
1228
1229 // Need to store on the stack.
1230 // FIXME: This alignment is incorrect but this path is disabled
1231 // for now (will return false). We need to determine the right alignment
1232 // based on the normal alignment for the underlying machine type.
1233 //
1234 unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1235
1236 unsigned BEAlign = 0;
1237 if (ArgSize < 8 && !Subtarget->isLittle())
1238 BEAlign = 8 - ArgSize;
1239
1240 Address Addr;
1241 Addr.setKind(Address::RegBase);
1242 Addr.setReg(Mips::SP);
1243 Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1244
1245 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
1246 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1247 MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1248 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1249 (void)(MMO);
1250 // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1251 return false; // can't store on the stack yet.
1252 }
1253 }
1254
1255 return true;
1256 }
1257
finishCall(CallLoweringInfo & CLI,MVT RetVT,unsigned NumBytes)1258 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1259 unsigned NumBytes) {
1260 CallingConv::ID CC = CLI.CallConv;
1261 emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1262 if (RetVT != MVT::isVoid) {
1263 SmallVector<CCValAssign, 16> RVLocs;
1264 MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1265
1266 CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy,
1267 CLI.Symbol ? CLI.Symbol->getName().data()
1268 : nullptr);
1269
1270 // Only handle a single return value.
1271 if (RVLocs.size() != 1)
1272 return false;
1273 // Copy all of the result registers out of their specified physreg.
1274 MVT CopyVT = RVLocs[0].getValVT();
1275 // Special handling for extended integers.
1276 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1277 CopyVT = MVT::i32;
1278
1279 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1280 if (!ResultReg)
1281 return false;
1282 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1283 TII.get(TargetOpcode::COPY),
1284 ResultReg).addReg(RVLocs[0].getLocReg());
1285 CLI.InRegs.push_back(RVLocs[0].getLocReg());
1286
1287 CLI.ResultReg = ResultReg;
1288 CLI.NumResultRegs = 1;
1289 }
1290 return true;
1291 }
1292
fastLowerArguments()1293 bool MipsFastISel::fastLowerArguments() {
1294 LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
1295
1296 if (!FuncInfo.CanLowerReturn) {
1297 LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1298 return false;
1299 }
1300
1301 const Function *F = FuncInfo.Fn;
1302 if (F->isVarArg()) {
1303 LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
1304 return false;
1305 }
1306
1307 CallingConv::ID CC = F->getCallingConv();
1308 if (CC != CallingConv::C) {
1309 LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1310 return false;
1311 }
1312
1313 std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2,
1314 Mips::A3}};
1315 std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}};
1316 std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}};
1317 auto NextGPR32 = GPR32ArgRegs.begin();
1318 auto NextFGR32 = FGR32ArgRegs.begin();
1319 auto NextAFGR64 = AFGR64ArgRegs.begin();
1320
1321 struct AllocatedReg {
1322 const TargetRegisterClass *RC;
1323 unsigned Reg;
1324 AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
1325 : RC(RC), Reg(Reg) {}
1326 };
1327
1328 // Only handle simple cases. i.e. All arguments are directly mapped to
1329 // registers of the appropriate type.
1330 SmallVector<AllocatedReg, 4> Allocation;
1331 for (const auto &FormalArg : F->args()) {
1332 if (FormalArg.hasAttribute(Attribute::InReg) ||
1333 FormalArg.hasAttribute(Attribute::StructRet) ||
1334 FormalArg.hasAttribute(Attribute::ByVal)) {
1335 LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1336 return false;
1337 }
1338
1339 Type *ArgTy = FormalArg.getType();
1340 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
1341 LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1342 return false;
1343 }
1344
1345 EVT ArgVT = TLI.getValueType(DL, ArgTy);
1346 LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": "
1347 << ArgVT.getEVTString() << "\n");
1348 if (!ArgVT.isSimple()) {
1349 LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1350 return false;
1351 }
1352
1353 switch (ArgVT.getSimpleVT().SimpleTy) {
1354 case MVT::i1:
1355 case MVT::i8:
1356 case MVT::i16:
1357 if (!FormalArg.hasAttribute(Attribute::SExt) &&
1358 !FormalArg.hasAttribute(Attribute::ZExt)) {
1359 // It must be any extend, this shouldn't happen for clang-generated IR
1360 // so just fall back on SelectionDAG.
1361 LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1362 return false;
1363 }
1364
1365 if (NextGPR32 == GPR32ArgRegs.end()) {
1366 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1367 return false;
1368 }
1369
1370 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1371 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1372
1373 // Allocating any GPR32 prohibits further use of floating point arguments.
1374 NextFGR32 = FGR32ArgRegs.end();
1375 NextAFGR64 = AFGR64ArgRegs.end();
1376 break;
1377
1378 case MVT::i32:
1379 if (FormalArg.hasAttribute(Attribute::ZExt)) {
1380 // The O32 ABI does not permit a zero-extended i32.
1381 LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1382 return false;
1383 }
1384
1385 if (NextGPR32 == GPR32ArgRegs.end()) {
1386 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1387 return false;
1388 }
1389
1390 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1391 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1392
1393 // Allocating any GPR32 prohibits further use of floating point arguments.
1394 NextFGR32 = FGR32ArgRegs.end();
1395 NextAFGR64 = AFGR64ArgRegs.end();
1396 break;
1397
1398 case MVT::f32:
1399 if (UnsupportedFPMode) {
1400 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1401 return false;
1402 }
1403 if (NextFGR32 == FGR32ArgRegs.end()) {
1404 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1405 return false;
1406 }
1407 LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
1408 Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
1409 // Allocating an FGR32 also allocates the super-register AFGR64, and
1410 // ABI rules require us to skip the corresponding GPR32.
1411 if (NextGPR32 != GPR32ArgRegs.end())
1412 NextGPR32++;
1413 if (NextAFGR64 != AFGR64ArgRegs.end())
1414 NextAFGR64++;
1415 break;
1416
1417 case MVT::f64:
1418 if (UnsupportedFPMode) {
1419 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1420 return false;
1421 }
1422 if (NextAFGR64 == AFGR64ArgRegs.end()) {
1423 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1424 return false;
1425 }
1426 LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
1427 Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
1428 // Allocating an FGR32 also allocates the super-register AFGR64, and
1429 // ABI rules require us to skip the corresponding GPR32 pair.
1430 if (NextGPR32 != GPR32ArgRegs.end())
1431 NextGPR32++;
1432 if (NextGPR32 != GPR32ArgRegs.end())
1433 NextGPR32++;
1434 if (NextFGR32 != FGR32ArgRegs.end())
1435 NextFGR32++;
1436 break;
1437
1438 default:
1439 LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1440 return false;
1441 }
1442 }
1443
1444 for (const auto &FormalArg : F->args()) {
1445 unsigned ArgNo = FormalArg.getArgNo();
1446 unsigned SrcReg = Allocation[ArgNo].Reg;
1447 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC);
1448 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1449 // Without this, EmitLiveInCopies may eliminate the livein if its only
1450 // use is a bitcast (which isn't turned into an instruction).
1451 unsigned ResultReg = createResultReg(Allocation[ArgNo].RC);
1452 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1453 TII.get(TargetOpcode::COPY), ResultReg)
1454 .addReg(DstReg, getKillRegState(true));
1455 updateValueMap(&FormalArg, ResultReg);
1456 }
1457
1458 // Calculate the size of the incoming arguments area.
1459 // We currently reject all the cases where this would be non-zero.
1460 unsigned IncomingArgSizeInBytes = 0;
1461
1462 // Account for the reserved argument area on ABI's that have one (O32).
1463 // It seems strange to do this on the caller side but it's necessary in
1464 // SelectionDAG's implementation.
1465 IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
1466 IncomingArgSizeInBytes);
1467
1468 MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
1469 false);
1470
1471 return true;
1472 }
1473
fastLowerCall(CallLoweringInfo & CLI)1474 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1475 CallingConv::ID CC = CLI.CallConv;
1476 bool IsTailCall = CLI.IsTailCall;
1477 bool IsVarArg = CLI.IsVarArg;
1478 const Value *Callee = CLI.Callee;
1479 MCSymbol *Symbol = CLI.Symbol;
1480
1481 // Do not handle FastCC.
1482 if (CC == CallingConv::Fast)
1483 return false;
1484
1485 // Allow SelectionDAG isel to handle tail calls.
1486 if (IsTailCall)
1487 return false;
1488
1489 // Let SDISel handle vararg functions.
1490 if (IsVarArg)
1491 return false;
1492
1493 // FIXME: Only handle *simple* calls for now.
1494 MVT RetVT;
1495 if (CLI.RetTy->isVoidTy())
1496 RetVT = MVT::isVoid;
1497 else if (!isTypeSupported(CLI.RetTy, RetVT))
1498 return false;
1499
1500 for (auto Flag : CLI.OutFlags)
1501 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1502 return false;
1503
1504 // Set up the argument vectors.
1505 SmallVector<MVT, 16> OutVTs;
1506 OutVTs.reserve(CLI.OutVals.size());
1507
1508 for (auto *Val : CLI.OutVals) {
1509 MVT VT;
1510 if (!isTypeLegal(Val->getType(), VT) &&
1511 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1512 return false;
1513
1514 // We don't handle vector parameters yet.
1515 if (VT.isVector() || VT.getSizeInBits() > 64)
1516 return false;
1517
1518 OutVTs.push_back(VT);
1519 }
1520
1521 Address Addr;
1522 if (!computeCallAddress(Callee, Addr))
1523 return false;
1524
1525 // Handle the arguments now that we've gotten them.
1526 unsigned NumBytes;
1527 if (!processCallArgs(CLI, OutVTs, NumBytes))
1528 return false;
1529
1530 if (!Addr.getGlobalValue())
1531 return false;
1532
1533 // Issue the call.
1534 unsigned DestAddress;
1535 if (Symbol)
1536 DestAddress = materializeExternalCallSym(Symbol);
1537 else
1538 DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1539 emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1540 MachineInstrBuilder MIB =
1541 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
1542 Mips::RA).addReg(Mips::T9);
1543
1544 // Add implicit physical register uses to the call.
1545 for (auto Reg : CLI.OutRegs)
1546 MIB.addReg(Reg, RegState::Implicit);
1547
1548 // Add a register mask with the call-preserved registers.
1549 // Proper defs for return values will be added by setPhysRegsDeadExcept().
1550 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1551
1552 CLI.Call = MIB;
1553
1554 // Finish off the call including any return values.
1555 return finishCall(CLI, RetVT, NumBytes);
1556 }
1557
fastLowerIntrinsicCall(const IntrinsicInst * II)1558 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1559 switch (II->getIntrinsicID()) {
1560 default:
1561 return false;
1562 case Intrinsic::bswap: {
1563 Type *RetTy = II->getCalledFunction()->getReturnType();
1564
1565 MVT VT;
1566 if (!isTypeSupported(RetTy, VT))
1567 return false;
1568
1569 unsigned SrcReg = getRegForValue(II->getOperand(0));
1570 if (SrcReg == 0)
1571 return false;
1572 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1573 if (DestReg == 0)
1574 return false;
1575 if (VT == MVT::i16) {
1576 if (Subtarget->hasMips32r2()) {
1577 emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1578 updateValueMap(II, DestReg);
1579 return true;
1580 } else {
1581 unsigned TempReg[3];
1582 for (int i = 0; i < 3; i++) {
1583 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1584 if (TempReg[i] == 0)
1585 return false;
1586 }
1587 emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1588 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1589 emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1590 emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1591 updateValueMap(II, DestReg);
1592 return true;
1593 }
1594 } else if (VT == MVT::i32) {
1595 if (Subtarget->hasMips32r2()) {
1596 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1597 emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1598 emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1599 updateValueMap(II, DestReg);
1600 return true;
1601 } else {
1602 unsigned TempReg[8];
1603 for (int i = 0; i < 8; i++) {
1604 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1605 if (TempReg[i] == 0)
1606 return false;
1607 }
1608
1609 emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1610 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1611 emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1612 emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1613
1614 emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1615 emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1616
1617 emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1618 emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1619 emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1620 updateValueMap(II, DestReg);
1621 return true;
1622 }
1623 }
1624 return false;
1625 }
1626 case Intrinsic::memcpy:
1627 case Intrinsic::memmove: {
1628 const auto *MTI = cast<MemTransferInst>(II);
1629 // Don't handle volatile.
1630 if (MTI->isVolatile())
1631 return false;
1632 if (!MTI->getLength()->getType()->isIntegerTy(32))
1633 return false;
1634 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1635 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1);
1636 }
1637 case Intrinsic::memset: {
1638 const MemSetInst *MSI = cast<MemSetInst>(II);
1639 // Don't handle volatile.
1640 if (MSI->isVolatile())
1641 return false;
1642 if (!MSI->getLength()->getType()->isIntegerTy(32))
1643 return false;
1644 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
1645 }
1646 }
1647 return false;
1648 }
1649
selectRet(const Instruction * I)1650 bool MipsFastISel::selectRet(const Instruction *I) {
1651 const Function &F = *I->getParent()->getParent();
1652 const ReturnInst *Ret = cast<ReturnInst>(I);
1653
1654 LLVM_DEBUG(dbgs() << "selectRet\n");
1655
1656 if (!FuncInfo.CanLowerReturn)
1657 return false;
1658
1659 // Build a list of return value registers.
1660 SmallVector<unsigned, 4> RetRegs;
1661
1662 if (Ret->getNumOperands() > 0) {
1663 CallingConv::ID CC = F.getCallingConv();
1664
1665 // Do not handle FastCC.
1666 if (CC == CallingConv::Fast)
1667 return false;
1668
1669 SmallVector<ISD::OutputArg, 4> Outs;
1670 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1671
1672 // Analyze operands of the call, assigning locations to each operand.
1673 SmallVector<CCValAssign, 16> ValLocs;
1674 MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1675 I->getContext());
1676 CCAssignFn *RetCC = RetCC_Mips;
1677 CCInfo.AnalyzeReturn(Outs, RetCC);
1678
1679 // Only handle a single return value for now.
1680 if (ValLocs.size() != 1)
1681 return false;
1682
1683 CCValAssign &VA = ValLocs[0];
1684 const Value *RV = Ret->getOperand(0);
1685
1686 // Don't bother handling odd stuff for now.
1687 if ((VA.getLocInfo() != CCValAssign::Full) &&
1688 (VA.getLocInfo() != CCValAssign::BCvt))
1689 return false;
1690
1691 // Only handle register returns for now.
1692 if (!VA.isRegLoc())
1693 return false;
1694
1695 unsigned Reg = getRegForValue(RV);
1696 if (Reg == 0)
1697 return false;
1698
1699 unsigned SrcReg = Reg + VA.getValNo();
1700 unsigned DestReg = VA.getLocReg();
1701 // Avoid a cross-class copy. This is very unlikely.
1702 if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1703 return false;
1704
1705 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1706 if (!RVEVT.isSimple())
1707 return false;
1708
1709 if (RVEVT.isVector())
1710 return false;
1711
1712 MVT RVVT = RVEVT.getSimpleVT();
1713 if (RVVT == MVT::f128)
1714 return false;
1715
1716 // Do not handle FGR64 returns for now.
1717 if (RVVT == MVT::f64 && UnsupportedFPMode) {
1718 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1719 return false;
1720 }
1721
1722 MVT DestVT = VA.getValVT();
1723 // Special handling for extended integers.
1724 if (RVVT != DestVT) {
1725 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1726 return false;
1727
1728 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1729 bool IsZExt = Outs[0].Flags.isZExt();
1730 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1731 if (SrcReg == 0)
1732 return false;
1733 }
1734 }
1735
1736 // Make the copy.
1737 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1738 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1739
1740 // Add register to return instruction.
1741 RetRegs.push_back(VA.getLocReg());
1742 }
1743 MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1744 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1745 MIB.addReg(RetRegs[i], RegState::Implicit);
1746 return true;
1747 }
1748
selectTrunc(const Instruction * I)1749 bool MipsFastISel::selectTrunc(const Instruction *I) {
1750 // The high bits for a type smaller than the register size are assumed to be
1751 // undefined.
1752 Value *Op = I->getOperand(0);
1753
1754 EVT SrcVT, DestVT;
1755 SrcVT = TLI.getValueType(DL, Op->getType(), true);
1756 DestVT = TLI.getValueType(DL, I->getType(), true);
1757
1758 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1759 return false;
1760 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1761 return false;
1762
1763 unsigned SrcReg = getRegForValue(Op);
1764 if (!SrcReg)
1765 return false;
1766
1767 // Because the high bits are undefined, a truncate doesn't generate
1768 // any code.
1769 updateValueMap(I, SrcReg);
1770 return true;
1771 }
1772
selectIntExt(const Instruction * I)1773 bool MipsFastISel::selectIntExt(const Instruction *I) {
1774 Type *DestTy = I->getType();
1775 Value *Src = I->getOperand(0);
1776 Type *SrcTy = Src->getType();
1777
1778 bool isZExt = isa<ZExtInst>(I);
1779 unsigned SrcReg = getRegForValue(Src);
1780 if (!SrcReg)
1781 return false;
1782
1783 EVT SrcEVT, DestEVT;
1784 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1785 DestEVT = TLI.getValueType(DL, DestTy, true);
1786 if (!SrcEVT.isSimple())
1787 return false;
1788 if (!DestEVT.isSimple())
1789 return false;
1790
1791 MVT SrcVT = SrcEVT.getSimpleVT();
1792 MVT DestVT = DestEVT.getSimpleVT();
1793 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1794
1795 if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1796 return false;
1797 updateValueMap(I, ResultReg);
1798 return true;
1799 }
1800
emitIntSExt32r1(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1801 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1802 unsigned DestReg) {
1803 unsigned ShiftAmt;
1804 switch (SrcVT.SimpleTy) {
1805 default:
1806 return false;
1807 case MVT::i8:
1808 ShiftAmt = 24;
1809 break;
1810 case MVT::i16:
1811 ShiftAmt = 16;
1812 break;
1813 }
1814 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1815 emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1816 emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1817 return true;
1818 }
1819
emitIntSExt32r2(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1820 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1821 unsigned DestReg) {
1822 switch (SrcVT.SimpleTy) {
1823 default:
1824 return false;
1825 case MVT::i8:
1826 emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1827 break;
1828 case MVT::i16:
1829 emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1830 break;
1831 }
1832 return true;
1833 }
1834
emitIntSExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1835 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1836 unsigned DestReg) {
1837 if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1838 return false;
1839 if (Subtarget->hasMips32r2())
1840 return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1841 return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1842 }
1843
emitIntZExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1844 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1845 unsigned DestReg) {
1846 int64_t Imm;
1847
1848 switch (SrcVT.SimpleTy) {
1849 default:
1850 return false;
1851 case MVT::i1:
1852 Imm = 1;
1853 break;
1854 case MVT::i8:
1855 Imm = 0xff;
1856 break;
1857 case MVT::i16:
1858 Imm = 0xffff;
1859 break;
1860 }
1861
1862 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1863 return true;
1864 }
1865
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1866 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1867 unsigned DestReg, bool IsZExt) {
1868 // FastISel does not have plumbing to deal with extensions where the SrcVT or
1869 // DestVT are odd things, so test to make sure that they are both types we can
1870 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1871 // bail out to SelectionDAG.
1872 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1873 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1874 return false;
1875 if (IsZExt)
1876 return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1877 return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1878 }
1879
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool isZExt)1880 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1881 bool isZExt) {
1882 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1883 bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1884 return Success ? DestReg : 0;
1885 }
1886
selectDivRem(const Instruction * I,unsigned ISDOpcode)1887 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1888 EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1889 if (!DestEVT.isSimple())
1890 return false;
1891
1892 MVT DestVT = DestEVT.getSimpleVT();
1893 if (DestVT != MVT::i32)
1894 return false;
1895
1896 unsigned DivOpc;
1897 switch (ISDOpcode) {
1898 default:
1899 return false;
1900 case ISD::SDIV:
1901 case ISD::SREM:
1902 DivOpc = Mips::SDIV;
1903 break;
1904 case ISD::UDIV:
1905 case ISD::UREM:
1906 DivOpc = Mips::UDIV;
1907 break;
1908 }
1909
1910 unsigned Src0Reg = getRegForValue(I->getOperand(0));
1911 unsigned Src1Reg = getRegForValue(I->getOperand(1));
1912 if (!Src0Reg || !Src1Reg)
1913 return false;
1914
1915 emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1916 emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1917
1918 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1919 if (!ResultReg)
1920 return false;
1921
1922 unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1923 ? Mips::MFHI
1924 : Mips::MFLO;
1925 emitInst(MFOpc, ResultReg);
1926
1927 updateValueMap(I, ResultReg);
1928 return true;
1929 }
1930
selectShift(const Instruction * I)1931 bool MipsFastISel::selectShift(const Instruction *I) {
1932 MVT RetVT;
1933
1934 if (!isTypeSupported(I->getType(), RetVT))
1935 return false;
1936
1937 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1938 if (!ResultReg)
1939 return false;
1940
1941 unsigned Opcode = I->getOpcode();
1942 const Value *Op0 = I->getOperand(0);
1943 unsigned Op0Reg = getRegForValue(Op0);
1944 if (!Op0Reg)
1945 return false;
1946
1947 // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1948 if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1949 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1950 if (!TempReg)
1951 return false;
1952
1953 MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1954 bool IsZExt = Opcode == Instruction::LShr;
1955 if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1956 return false;
1957
1958 Op0Reg = TempReg;
1959 }
1960
1961 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1962 uint64_t ShiftVal = C->getZExtValue();
1963
1964 switch (Opcode) {
1965 default:
1966 llvm_unreachable("Unexpected instruction.");
1967 case Instruction::Shl:
1968 Opcode = Mips::SLL;
1969 break;
1970 case Instruction::AShr:
1971 Opcode = Mips::SRA;
1972 break;
1973 case Instruction::LShr:
1974 Opcode = Mips::SRL;
1975 break;
1976 }
1977
1978 emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
1979 updateValueMap(I, ResultReg);
1980 return true;
1981 }
1982
1983 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1984 if (!Op1Reg)
1985 return false;
1986
1987 switch (Opcode) {
1988 default:
1989 llvm_unreachable("Unexpected instruction.");
1990 case Instruction::Shl:
1991 Opcode = Mips::SLLV;
1992 break;
1993 case Instruction::AShr:
1994 Opcode = Mips::SRAV;
1995 break;
1996 case Instruction::LShr:
1997 Opcode = Mips::SRLV;
1998 break;
1999 }
2000
2001 emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
2002 updateValueMap(I, ResultReg);
2003 return true;
2004 }
2005
fastSelectInstruction(const Instruction * I)2006 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
2007 switch (I->getOpcode()) {
2008 default:
2009 break;
2010 case Instruction::Load:
2011 return selectLoad(I);
2012 case Instruction::Store:
2013 return selectStore(I);
2014 case Instruction::SDiv:
2015 if (!selectBinaryOp(I, ISD::SDIV))
2016 return selectDivRem(I, ISD::SDIV);
2017 return true;
2018 case Instruction::UDiv:
2019 if (!selectBinaryOp(I, ISD::UDIV))
2020 return selectDivRem(I, ISD::UDIV);
2021 return true;
2022 case Instruction::SRem:
2023 if (!selectBinaryOp(I, ISD::SREM))
2024 return selectDivRem(I, ISD::SREM);
2025 return true;
2026 case Instruction::URem:
2027 if (!selectBinaryOp(I, ISD::UREM))
2028 return selectDivRem(I, ISD::UREM);
2029 return true;
2030 case Instruction::Shl:
2031 case Instruction::LShr:
2032 case Instruction::AShr:
2033 return selectShift(I);
2034 case Instruction::And:
2035 case Instruction::Or:
2036 case Instruction::Xor:
2037 return selectLogicalOp(I);
2038 case Instruction::Br:
2039 return selectBranch(I);
2040 case Instruction::Ret:
2041 return selectRet(I);
2042 case Instruction::Trunc:
2043 return selectTrunc(I);
2044 case Instruction::ZExt:
2045 case Instruction::SExt:
2046 return selectIntExt(I);
2047 case Instruction::FPTrunc:
2048 return selectFPTrunc(I);
2049 case Instruction::FPExt:
2050 return selectFPExt(I);
2051 case Instruction::FPToSI:
2052 return selectFPToInt(I, /*isSigned*/ true);
2053 case Instruction::FPToUI:
2054 return selectFPToInt(I, /*isSigned*/ false);
2055 case Instruction::ICmp:
2056 case Instruction::FCmp:
2057 return selectCmp(I);
2058 case Instruction::Select:
2059 return selectSelect(I);
2060 }
2061 return false;
2062 }
2063
getRegEnsuringSimpleIntegerWidening(const Value * V,bool IsUnsigned)2064 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
2065 bool IsUnsigned) {
2066 unsigned VReg = getRegForValue(V);
2067 if (VReg == 0)
2068 return 0;
2069 MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
2070
2071 if (VMVT == MVT::i1)
2072 return 0;
2073
2074 if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
2075 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
2076 if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
2077 return 0;
2078 VReg = TempReg;
2079 }
2080 return VReg;
2081 }
2082
simplifyAddress(Address & Addr)2083 void MipsFastISel::simplifyAddress(Address &Addr) {
2084 if (!isInt<16>(Addr.getOffset())) {
2085 unsigned TempReg =
2086 materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
2087 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
2088 emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
2089 Addr.setReg(DestReg);
2090 Addr.setOffset(0);
2091 }
2092 }
2093
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)2094 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2095 const TargetRegisterClass *RC,
2096 unsigned Op0, bool Op0IsKill,
2097 unsigned Op1, bool Op1IsKill) {
2098 // We treat the MUL instruction in a special way because it clobbers
2099 // the HI0 & LO0 registers. The TableGen definition of this instruction can
2100 // mark these registers only as implicitly defined. As a result, the
2101 // register allocator runs out of registers when this instruction is
2102 // followed by another instruction that defines the same registers too.
2103 // We can fix this by explicitly marking those registers as dead.
2104 if (MachineInstOpcode == Mips::MUL) {
2105 unsigned ResultReg = createResultReg(RC);
2106 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2107 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2108 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2109 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2110 .addReg(Op0, getKillRegState(Op0IsKill))
2111 .addReg(Op1, getKillRegState(Op1IsKill))
2112 .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
2113 .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
2114 return ResultReg;
2115 }
2116
2117 return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1,
2118 Op1IsKill);
2119 }
2120
2121 namespace llvm {
2122
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)2123 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
2124 const TargetLibraryInfo *libInfo) {
2125 return new MipsFastISel(funcInfo, libInfo);
2126 }
2127
2128 } // end namespace llvm
2129