• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MipsSEISelDAGToDAG.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "Mips.h"
17 #include "MipsAnalyzeImmediate.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsRegisterInfo.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "mips-isel"
39 
runOnMachineFunction(MachineFunction & MF)40 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
41   Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
42   if (Subtarget->inMips16Mode())
43     return false;
44   return MipsDAGToDAGISel::runOnMachineFunction(MF);
45 }
46 
getAnalysisUsage(AnalysisUsage & AU) const47 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
48   AU.addRequired<DominatorTreeWrapperPass>();
49   SelectionDAGISel::getAnalysisUsage(AU);
50 }
51 
addDSPCtrlRegOperands(bool IsDef,MachineInstr & MI,MachineFunction & MF)52 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
53                                                MachineFunction &MF) {
54   MachineInstrBuilder MIB(MF, &MI);
55   unsigned Mask = MI.getOperand(1).getImm();
56   unsigned Flag =
57       IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
58 
59   if (Mask & 1)
60     MIB.addReg(Mips::DSPPos, Flag);
61 
62   if (Mask & 2)
63     MIB.addReg(Mips::DSPSCount, Flag);
64 
65   if (Mask & 4)
66     MIB.addReg(Mips::DSPCarry, Flag);
67 
68   if (Mask & 8)
69     MIB.addReg(Mips::DSPOutFlag, Flag);
70 
71   if (Mask & 16)
72     MIB.addReg(Mips::DSPCCond, Flag);
73 
74   if (Mask & 32)
75     MIB.addReg(Mips::DSPEFI, Flag);
76 }
77 
getMSACtrlReg(const SDValue RegIdx) const78 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
79   switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
80   default:
81     llvm_unreachable("Could not map int to register");
82   case 0: return Mips::MSAIR;
83   case 1: return Mips::MSACSR;
84   case 2: return Mips::MSAAccess;
85   case 3: return Mips::MSASave;
86   case 4: return Mips::MSAModify;
87   case 5: return Mips::MSARequest;
88   case 6: return Mips::MSAMap;
89   case 7: return Mips::MSAUnmap;
90   }
91 }
92 
replaceUsesWithZeroReg(MachineRegisterInfo * MRI,const MachineInstr & MI)93 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
94                                                 const MachineInstr& MI) {
95   unsigned DstReg = 0, ZeroReg = 0;
96 
97   // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
98   if ((MI.getOpcode() == Mips::ADDiu) &&
99       (MI.getOperand(1).getReg() == Mips::ZERO) &&
100       (MI.getOperand(2).isImm()) &&
101       (MI.getOperand(2).getImm() == 0)) {
102     DstReg = MI.getOperand(0).getReg();
103     ZeroReg = Mips::ZERO;
104   } else if ((MI.getOpcode() == Mips::DADDiu) &&
105              (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
106              (MI.getOperand(2).isImm()) &&
107              (MI.getOperand(2).getImm() == 0)) {
108     DstReg = MI.getOperand(0).getReg();
109     ZeroReg = Mips::ZERO_64;
110   }
111 
112   if (!DstReg)
113     return false;
114 
115   // Replace uses with ZeroReg.
116   for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
117        E = MRI->use_end(); U != E;) {
118     MachineOperand &MO = *U;
119     unsigned OpNo = U.getOperandNo();
120     MachineInstr *MI = MO.getParent();
121     ++U;
122 
123     // Do not replace if it is a phi's operand or is tied to def operand.
124     if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
125       continue;
126 
127     // Also, we have to check that the register class of the operand
128     // contains the zero register.
129     if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
130       continue;
131 
132     MO.setReg(ZeroReg);
133   }
134 
135   return true;
136 }
137 
initGlobalBaseReg(MachineFunction & MF)138 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
139   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
140 
141   if (!MipsFI->globalBaseRegSet())
142     return;
143 
144   MachineBasicBlock &MBB = MF.front();
145   MachineBasicBlock::iterator I = MBB.begin();
146   MachineRegisterInfo &RegInfo = MF.getRegInfo();
147   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
148   DebugLoc DL;
149   unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
150   const TargetRegisterClass *RC;
151   const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
152   RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
153 
154   V0 = RegInfo.createVirtualRegister(RC);
155   V1 = RegInfo.createVirtualRegister(RC);
156 
157   if (ABI.IsN64()) {
158     MF.getRegInfo().addLiveIn(Mips::T9_64);
159     MBB.addLiveIn(Mips::T9_64);
160 
161     // lui $v0, %hi(%neg(%gp_rel(fname)))
162     // daddu $v1, $v0, $t9
163     // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
164     const GlobalValue *FName = &MF.getFunction();
165     BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
166       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
167     BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
168       .addReg(Mips::T9_64);
169     BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
170       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
171     return;
172   }
173 
174   if (!MF.getTarget().isPositionIndependent()) {
175     // Set global register to __gnu_local_gp.
176     //
177     // lui   $v0, %hi(__gnu_local_gp)
178     // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
179     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
180       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
181     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
182       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
183     return;
184   }
185 
186   MF.getRegInfo().addLiveIn(Mips::T9);
187   MBB.addLiveIn(Mips::T9);
188 
189   if (ABI.IsN32()) {
190     // lui $v0, %hi(%neg(%gp_rel(fname)))
191     // addu $v1, $v0, $t9
192     // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
193     const GlobalValue *FName = &MF.getFunction();
194     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
195       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
196     BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
197     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
198       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
199     return;
200   }
201 
202   assert(ABI.IsO32());
203 
204   // For O32 ABI, the following instruction sequence is emitted to initialize
205   // the global base register:
206   //
207   //  0. lui   $2, %hi(_gp_disp)
208   //  1. addiu $2, $2, %lo(_gp_disp)
209   //  2. addu  $globalbasereg, $2, $t9
210   //
211   // We emit only the last instruction here.
212   //
213   // GNU linker requires that the first two instructions appear at the beginning
214   // of a function and no instructions be inserted before or between them.
215   // The two instructions are emitted during lowering to MC layer in order to
216   // avoid any reordering.
217   //
218   // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
219   // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
220   // reads it.
221   MF.getRegInfo().addLiveIn(Mips::V0);
222   MBB.addLiveIn(Mips::V0);
223   BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
224     .addReg(Mips::V0).addReg(Mips::T9);
225 }
226 
processFunctionAfterISel(MachineFunction & MF)227 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
228   initGlobalBaseReg(MF);
229 
230   MachineRegisterInfo *MRI = &MF.getRegInfo();
231 
232   for (auto &MBB: MF) {
233     for (auto &MI: MBB) {
234       switch (MI.getOpcode()) {
235       case Mips::RDDSP:
236         addDSPCtrlRegOperands(false, MI, MF);
237         break;
238       case Mips::WRDSP:
239         addDSPCtrlRegOperands(true, MI, MF);
240         break;
241       case Mips::BuildPairF64_64:
242       case Mips::ExtractElementF64_64:
243         if (!Subtarget->useOddSPReg()) {
244           MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
245           break;
246         }
247         LLVM_FALLTHROUGH;
248       case Mips::BuildPairF64:
249       case Mips::ExtractElementF64:
250         if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1())
251           MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
252         break;
253       default:
254         replaceUsesWithZeroReg(MRI, MI);
255       }
256     }
257   }
258 }
259 
selectAddE(SDNode * Node,const SDLoc & DL) const260 void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const {
261   SDValue InFlag = Node->getOperand(2);
262   unsigned Opc = InFlag.getOpcode();
263   SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
264   EVT VT = LHS.getValueType();
265 
266   // In the base case, we can rely on the carry bit from the addsc
267   // instruction.
268   if (Opc == ISD::ADDC) {
269     SDValue Ops[3] = {LHS, RHS, InFlag};
270     CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops);
271     return;
272   }
273 
274   assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!");
275 
276   // The more complex case is when there is a chain of ISD::ADDE nodes like:
277   // (adde (adde (adde (addc a b) c) d) e).
278   //
279   // The addwc instruction does not write to the carry bit, instead it writes
280   // to bit 20 of the dsp control register. To match this series of nodes, each
281   // intermediate adde node must be expanded to write the carry bit before the
282   // addition.
283 
284   // Start by reading the overflow field for addsc and moving the value to the
285   // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
286   // corresponds to reading/writing the entire control register to/from a GPR.
287 
288   SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32);
289 
290   SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32);
291 
292   SDNode *DSPCtrlField =
293       CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag);
294 
295   SDNode *Carry = CurDAG->getMachineNode(
296       Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne);
297 
298   SDValue Ops[4] = {SDValue(DSPCtrlField, 0),
299                     CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne,
300                     SDValue(Carry, 0)};
301   SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops);
302 
303   // My reading of the MIPS DSP 3.01 specification isn't as clear as I
304   // would like about whether bit 20 always gets overwritten by addwc.
305   // Hence take an extremely conservative view and presume it's sticky. We
306   // therefore need to clear it.
307 
308   SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
309 
310   SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)};
311   SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps);
312 
313   SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue,
314                                          SDValue(DSPCtrlFinal, 0), CstOne);
315 
316   SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)};
317   CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands);
318 }
319 
320 /// Match frameindex
selectAddrFrameIndex(SDValue Addr,SDValue & Base,SDValue & Offset) const321 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
322                                               SDValue &Offset) const {
323   if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
324     EVT ValTy = Addr.getValueType();
325 
326     Base   = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
327     Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
328     return true;
329   }
330   return false;
331 }
332 
333 /// Match frameindex+offset and frameindex|offset
selectAddrFrameIndexOffset(SDValue Addr,SDValue & Base,SDValue & Offset,unsigned OffsetBits,unsigned ShiftAmount=0) const334 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
335     SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
336     unsigned ShiftAmount = 0) const {
337   if (CurDAG->isBaseWithConstantOffset(Addr)) {
338     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
339     if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
340       EVT ValTy = Addr.getValueType();
341 
342       // If the first operand is a FI, get the TargetFI Node
343       if (FrameIndexSDNode *FIN =
344               dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
345         Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
346       else {
347         Base = Addr.getOperand(0);
348         // If base is a FI, additional offset calculation is done in
349         // eliminateFrameIndex, otherwise we need to check the alignment
350         if (OffsetToAlignment(CN->getZExtValue(), 1ull << ShiftAmount) != 0)
351           return false;
352       }
353 
354       Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
355                                          ValTy);
356       return true;
357     }
358   }
359   return false;
360 }
361 
362 /// ComplexPattern used on MipsInstrInfo
363 /// Used on Mips Load/Store instructions
selectAddrRegImm(SDValue Addr,SDValue & Base,SDValue & Offset) const364 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
365                                           SDValue &Offset) const {
366   // if Address is FI, get the TargetFrameIndex.
367   if (selectAddrFrameIndex(Addr, Base, Offset))
368     return true;
369 
370   // on PIC code Load GA
371   if (Addr.getOpcode() == MipsISD::Wrapper) {
372     Base   = Addr.getOperand(0);
373     Offset = Addr.getOperand(1);
374     return true;
375   }
376 
377   if (!TM.isPositionIndependent()) {
378     if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
379         Addr.getOpcode() == ISD::TargetGlobalAddress))
380       return false;
381   }
382 
383   // Addresses of the form FI+const or FI|const
384   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
385     return true;
386 
387   // Operand is a result from an ADD.
388   if (Addr.getOpcode() == ISD::ADD) {
389     // When loading from constant pools, load the lower address part in
390     // the instruction itself. Example, instead of:
391     //  lui $2, %hi($CPI1_0)
392     //  addiu $2, $2, %lo($CPI1_0)
393     //  lwc1 $f0, 0($2)
394     // Generate:
395     //  lui $2, %hi($CPI1_0)
396     //  lwc1 $f0, %lo($CPI1_0)($2)
397     if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
398         Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
399       SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
400       if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
401           isa<JumpTableSDNode>(Opnd0)) {
402         Base = Addr.getOperand(0);
403         Offset = Opnd0;
404         return true;
405       }
406     }
407   }
408 
409   return false;
410 }
411 
412 /// ComplexPattern used on MipsInstrInfo
413 /// Used on Mips Load/Store instructions
selectAddrDefault(SDValue Addr,SDValue & Base,SDValue & Offset) const414 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
415                                            SDValue &Offset) const {
416   Base = Addr;
417   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
418   return true;
419 }
420 
selectIntAddr(SDValue Addr,SDValue & Base,SDValue & Offset) const421 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
422                                        SDValue &Offset) const {
423   return selectAddrRegImm(Addr, Base, Offset) ||
424     selectAddrDefault(Addr, Base, Offset);
425 }
426 
selectAddrRegImm9(SDValue Addr,SDValue & Base,SDValue & Offset) const427 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
428                                            SDValue &Offset) const {
429   if (selectAddrFrameIndex(Addr, Base, Offset))
430     return true;
431 
432   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
433     return true;
434 
435   return false;
436 }
437 
438 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
selectAddrRegImm11(SDValue Addr,SDValue & Base,SDValue & Offset) const439 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
440                                             SDValue &Offset) const {
441   if (selectAddrFrameIndex(Addr, Base, Offset))
442     return true;
443 
444   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
445     return true;
446 
447   return false;
448 }
449 
450 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
selectAddrRegImm12(SDValue Addr,SDValue & Base,SDValue & Offset) const451 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
452                                             SDValue &Offset) const {
453   if (selectAddrFrameIndex(Addr, Base, Offset))
454     return true;
455 
456   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
457     return true;
458 
459   return false;
460 }
461 
selectAddrRegImm16(SDValue Addr,SDValue & Base,SDValue & Offset) const462 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
463                                             SDValue &Offset) const {
464   if (selectAddrFrameIndex(Addr, Base, Offset))
465     return true;
466 
467   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
468     return true;
469 
470   return false;
471 }
472 
selectIntAddr11MM(SDValue Addr,SDValue & Base,SDValue & Offset) const473 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
474                                          SDValue &Offset) const {
475   return selectAddrRegImm11(Addr, Base, Offset) ||
476     selectAddrDefault(Addr, Base, Offset);
477 }
478 
selectIntAddr12MM(SDValue Addr,SDValue & Base,SDValue & Offset) const479 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
480                                          SDValue &Offset) const {
481   return selectAddrRegImm12(Addr, Base, Offset) ||
482     selectAddrDefault(Addr, Base, Offset);
483 }
484 
selectIntAddr16MM(SDValue Addr,SDValue & Base,SDValue & Offset) const485 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
486                                          SDValue &Offset) const {
487   return selectAddrRegImm16(Addr, Base, Offset) ||
488     selectAddrDefault(Addr, Base, Offset);
489 }
490 
selectIntAddrLSL2MM(SDValue Addr,SDValue & Base,SDValue & Offset) const491 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
492                                              SDValue &Offset) const {
493   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
494     if (isa<FrameIndexSDNode>(Base))
495       return false;
496 
497     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
498       unsigned CnstOff = CN->getZExtValue();
499       return (CnstOff == (CnstOff & 0x3c));
500     }
501 
502     return false;
503   }
504 
505   // For all other cases where "lw" would be selected, don't select "lw16"
506   // because it would result in additional instructions to prepare operands.
507   if (selectAddrRegImm(Addr, Base, Offset))
508     return false;
509 
510   return selectAddrDefault(Addr, Base, Offset);
511 }
512 
selectIntAddrSImm10(SDValue Addr,SDValue & Base,SDValue & Offset) const513 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
514                                              SDValue &Offset) const {
515 
516   if (selectAddrFrameIndex(Addr, Base, Offset))
517     return true;
518 
519   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
520     return true;
521 
522   return selectAddrDefault(Addr, Base, Offset);
523 }
524 
selectIntAddrSImm10Lsl1(SDValue Addr,SDValue & Base,SDValue & Offset) const525 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
526                                                  SDValue &Offset) const {
527   if (selectAddrFrameIndex(Addr, Base, Offset))
528     return true;
529 
530   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
531     return true;
532 
533   return selectAddrDefault(Addr, Base, Offset);
534 }
535 
selectIntAddrSImm10Lsl2(SDValue Addr,SDValue & Base,SDValue & Offset) const536 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
537                                                  SDValue &Offset) const {
538   if (selectAddrFrameIndex(Addr, Base, Offset))
539     return true;
540 
541   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
542     return true;
543 
544   return selectAddrDefault(Addr, Base, Offset);
545 }
546 
selectIntAddrSImm10Lsl3(SDValue Addr,SDValue & Base,SDValue & Offset) const547 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
548                                                  SDValue &Offset) const {
549   if (selectAddrFrameIndex(Addr, Base, Offset))
550     return true;
551 
552   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
553     return true;
554 
555   return selectAddrDefault(Addr, Base, Offset);
556 }
557 
558 // Select constant vector splats.
559 //
560 // Returns true and sets Imm if:
561 // * MSA is enabled
562 // * N is a ISD::BUILD_VECTOR representing a constant splat
selectVSplat(SDNode * N,APInt & Imm,unsigned MinSizeInBits) const563 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
564                                       unsigned MinSizeInBits) const {
565   if (!Subtarget->hasMSA())
566     return false;
567 
568   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
569 
570   if (!Node)
571     return false;
572 
573   APInt SplatValue, SplatUndef;
574   unsigned SplatBitSize;
575   bool HasAnyUndefs;
576 
577   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
578                              MinSizeInBits, !Subtarget->isLittle()))
579     return false;
580 
581   Imm = SplatValue;
582 
583   return true;
584 }
585 
586 // Select constant vector splats.
587 //
588 // In addition to the requirements of selectVSplat(), this function returns
589 // true and sets Imm if:
590 // * The splat value is the same width as the elements of the vector
591 // * The splat value fits in an integer with the specified signed-ness and
592 //   width.
593 //
594 // This function looks through ISD::BITCAST nodes.
595 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
596 //       sometimes a shuffle in big-endian mode.
597 //
598 // It's worth noting that this function is not used as part of the selection
599 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
600 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
601 // MipsSEDAGToDAGISel::selectNode.
602 bool MipsSEDAGToDAGISel::
selectVSplatCommon(SDValue N,SDValue & Imm,bool Signed,unsigned ImmBitSize) const603 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
604                    unsigned ImmBitSize) const {
605   APInt ImmValue;
606   EVT EltTy = N->getValueType(0).getVectorElementType();
607 
608   if (N->getOpcode() == ISD::BITCAST)
609     N = N->getOperand(0);
610 
611   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
612       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
613 
614     if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
615         (!Signed && ImmValue.isIntN(ImmBitSize))) {
616       Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
617       return true;
618     }
619   }
620 
621   return false;
622 }
623 
624 // Select constant vector splats.
625 bool MipsSEDAGToDAGISel::
selectVSplatUimm1(SDValue N,SDValue & Imm) const626 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
627   return selectVSplatCommon(N, Imm, false, 1);
628 }
629 
630 bool MipsSEDAGToDAGISel::
selectVSplatUimm2(SDValue N,SDValue & Imm) const631 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
632   return selectVSplatCommon(N, Imm, false, 2);
633 }
634 
635 bool MipsSEDAGToDAGISel::
selectVSplatUimm3(SDValue N,SDValue & Imm) const636 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
637   return selectVSplatCommon(N, Imm, false, 3);
638 }
639 
640 // Select constant vector splats.
641 bool MipsSEDAGToDAGISel::
selectVSplatUimm4(SDValue N,SDValue & Imm) const642 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
643   return selectVSplatCommon(N, Imm, false, 4);
644 }
645 
646 // Select constant vector splats.
647 bool MipsSEDAGToDAGISel::
selectVSplatUimm5(SDValue N,SDValue & Imm) const648 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
649   return selectVSplatCommon(N, Imm, false, 5);
650 }
651 
652 // Select constant vector splats.
653 bool MipsSEDAGToDAGISel::
selectVSplatUimm6(SDValue N,SDValue & Imm) const654 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
655   return selectVSplatCommon(N, Imm, false, 6);
656 }
657 
658 // Select constant vector splats.
659 bool MipsSEDAGToDAGISel::
selectVSplatUimm8(SDValue N,SDValue & Imm) const660 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
661   return selectVSplatCommon(N, Imm, false, 8);
662 }
663 
664 // Select constant vector splats.
665 bool MipsSEDAGToDAGISel::
selectVSplatSimm5(SDValue N,SDValue & Imm) const666 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
667   return selectVSplatCommon(N, Imm, true, 5);
668 }
669 
670 // Select constant vector splats whose value is a power of 2.
671 //
672 // In addition to the requirements of selectVSplat(), this function returns
673 // true and sets Imm if:
674 // * The splat value is the same width as the elements of the vector
675 // * The splat value is a power of two.
676 //
677 // This function looks through ISD::BITCAST nodes.
678 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
679 //       sometimes a shuffle in big-endian mode.
selectVSplatUimmPow2(SDValue N,SDValue & Imm) const680 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
681   APInt ImmValue;
682   EVT EltTy = N->getValueType(0).getVectorElementType();
683 
684   if (N->getOpcode() == ISD::BITCAST)
685     N = N->getOperand(0);
686 
687   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
688       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
689     int32_t Log2 = ImmValue.exactLogBase2();
690 
691     if (Log2 != -1) {
692       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
693       return true;
694     }
695   }
696 
697   return false;
698 }
699 
700 // Select constant vector splats whose value only has a consecutive sequence
701 // of left-most bits set (e.g. 0b11...1100...00).
702 //
703 // In addition to the requirements of selectVSplat(), this function returns
704 // true and sets Imm if:
705 // * The splat value is the same width as the elements of the vector
706 // * The splat value is a consecutive sequence of left-most bits.
707 //
708 // This function looks through ISD::BITCAST nodes.
709 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
710 //       sometimes a shuffle in big-endian mode.
selectVSplatMaskL(SDValue N,SDValue & Imm) const711 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
712   APInt ImmValue;
713   EVT EltTy = N->getValueType(0).getVectorElementType();
714 
715   if (N->getOpcode() == ISD::BITCAST)
716     N = N->getOperand(0);
717 
718   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
719       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
720     // Extract the run of set bits starting with bit zero from the bitwise
721     // inverse of ImmValue, and test that the inverse of this is the same
722     // as the original value.
723     if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
724 
725       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
726                                       EltTy);
727       return true;
728     }
729   }
730 
731   return false;
732 }
733 
734 // Select constant vector splats whose value only has a consecutive sequence
735 // of right-most bits set (e.g. 0b00...0011...11).
736 //
737 // In addition to the requirements of selectVSplat(), this function returns
738 // true and sets Imm if:
739 // * The splat value is the same width as the elements of the vector
740 // * The splat value is a consecutive sequence of right-most bits.
741 //
742 // This function looks through ISD::BITCAST nodes.
743 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
744 //       sometimes a shuffle in big-endian mode.
selectVSplatMaskR(SDValue N,SDValue & Imm) const745 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
746   APInt ImmValue;
747   EVT EltTy = N->getValueType(0).getVectorElementType();
748 
749   if (N->getOpcode() == ISD::BITCAST)
750     N = N->getOperand(0);
751 
752   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
753       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
754     // Extract the run of set bits starting with bit zero, and test that the
755     // result is the same as the original value
756     if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
757       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
758                                       EltTy);
759       return true;
760     }
761   }
762 
763   return false;
764 }
765 
selectVSplatUimmInvPow2(SDValue N,SDValue & Imm) const766 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
767                                                  SDValue &Imm) const {
768   APInt ImmValue;
769   EVT EltTy = N->getValueType(0).getVectorElementType();
770 
771   if (N->getOpcode() == ISD::BITCAST)
772     N = N->getOperand(0);
773 
774   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
775       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
776     int32_t Log2 = (~ImmValue).exactLogBase2();
777 
778     if (Log2 != -1) {
779       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
780       return true;
781     }
782   }
783 
784   return false;
785 }
786 
trySelect(SDNode * Node)787 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
788   unsigned Opcode = Node->getOpcode();
789   SDLoc DL(Node);
790 
791   ///
792   // Instruction Selection not handled by the auto-generated
793   // tablegen selection should be handled here.
794   ///
795   switch(Opcode) {
796   default: break;
797 
798   case ISD::ADDE: {
799     selectAddE(Node, DL);
800     return true;
801   }
802 
803   case ISD::ConstantFP: {
804     ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
805     if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
806       if (Subtarget->isGP64bit()) {
807         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
808                                               Mips::ZERO_64, MVT::i64);
809         ReplaceNode(Node,
810                     CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
811       } else if (Subtarget->isFP64bit()) {
812         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
813                                               Mips::ZERO, MVT::i32);
814         ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
815                                                  MVT::f64, Zero, Zero));
816       } else {
817         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
818                                               Mips::ZERO, MVT::i32);
819         ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
820                                                  MVT::f64, Zero, Zero));
821       }
822       return true;
823     }
824     break;
825   }
826 
827   case ISD::Constant: {
828     const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
829     int64_t Imm = CN->getSExtValue();
830     unsigned Size = CN->getValueSizeInBits(0);
831 
832     if (isInt<32>(Imm))
833       break;
834 
835     MipsAnalyzeImmediate AnalyzeImm;
836 
837     const MipsAnalyzeImmediate::InstSeq &Seq =
838       AnalyzeImm.Analyze(Imm, Size, false);
839 
840     MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
841     SDLoc DL(CN);
842     SDNode *RegOpnd;
843     SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
844                                                 DL, MVT::i64);
845 
846     // The first instruction can be a LUi which is different from other
847     // instructions (ADDiu, ORI and SLL) in that it does not have a register
848     // operand.
849     if (Inst->Opc == Mips::LUi64)
850       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
851     else
852       RegOpnd =
853         CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
854                                CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
855                                ImmOpnd);
856 
857     // The remaining instructions in the sequence are handled here.
858     for (++Inst; Inst != Seq.end(); ++Inst) {
859       ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
860                                           MVT::i64);
861       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
862                                        SDValue(RegOpnd, 0), ImmOpnd);
863     }
864 
865     ReplaceNode(Node, RegOpnd);
866     return true;
867   }
868 
869   case ISD::INTRINSIC_W_CHAIN: {
870     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
871     default:
872       break;
873 
874     case Intrinsic::mips_cfcmsa: {
875       SDValue ChainIn = Node->getOperand(0);
876       SDValue RegIdx = Node->getOperand(2);
877       SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
878                                            getMSACtrlReg(RegIdx), MVT::i32);
879       ReplaceNode(Node, Reg.getNode());
880       return true;
881     }
882     }
883     break;
884   }
885 
886   case ISD::INTRINSIC_WO_CHAIN: {
887     switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
888     default:
889       break;
890 
891     case Intrinsic::mips_move_v:
892       // Like an assignment but will always produce a move.v even if
893       // unnecessary.
894       ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
895                                                Node->getValueType(0),
896                                                Node->getOperand(1)));
897       return true;
898     }
899     break;
900   }
901 
902   case ISD::INTRINSIC_VOID: {
903     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
904     default:
905       break;
906 
907     case Intrinsic::mips_ctcmsa: {
908       SDValue ChainIn = Node->getOperand(0);
909       SDValue RegIdx  = Node->getOperand(2);
910       SDValue Value   = Node->getOperand(3);
911       SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
912                                               getMSACtrlReg(RegIdx), Value);
913       ReplaceNode(Node, ChainOut.getNode());
914       return true;
915     }
916     }
917     break;
918   }
919 
920   // Manually match MipsISD::Ins nodes to get the correct instruction. It has
921   // to be done in this fashion so that we respect the differences between
922   // dins and dinsm, as the difference is that the size operand has the range
923   // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
924   // means SelectionDAGISel would have to test all the operands at once to
925   // match the instruction.
926   case MipsISD::Ins: {
927 
928     // Sanity checking for the node operands.
929     if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64)
930       return false;
931 
932     if (Node->getNumOperands() != 4)
933       return false;
934 
935     if (Node->getOperand(1)->getOpcode() != ISD::Constant ||
936         Node->getOperand(2)->getOpcode() != ISD::Constant)
937       return false;
938 
939     MVT ResTy = Node->getSimpleValueType(0);
940     uint64_t Pos = Node->getConstantOperandVal(1);
941     uint64_t Size = Node->getConstantOperandVal(2);
942 
943     // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
944     if (!Size)
945       return false;
946 
947     if (Pos + Size > 64)
948       return false;
949 
950     if (ResTy != MVT::i32 && ResTy != MVT::i64)
951       return false;
952 
953     unsigned Opcode = 0;
954     if (ResTy == MVT::i32) {
955       if (Pos + Size <= 32)
956         Opcode = Mips::INS;
957     } else {
958       if (Pos + Size <= 32)
959         Opcode = Mips::DINS;
960       else if (Pos < 32 && 1 < Size)
961         Opcode = Mips::DINSM;
962       else
963         Opcode = Mips::DINSU;
964     }
965 
966     if (Opcode) {
967       SDValue Ops[4] = {
968           Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32),
969           CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)};
970 
971       ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops));
972       return true;
973     }
974 
975     return false;
976   }
977 
978   case MipsISD::ThreadPointer: {
979     EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
980     unsigned RdhwrOpc, DestReg;
981 
982     if (PtrVT == MVT::i32) {
983       RdhwrOpc = Mips::RDHWR;
984       DestReg = Mips::V1;
985     } else {
986       RdhwrOpc = Mips::RDHWR64;
987       DestReg = Mips::V1_64;
988     }
989 
990     SDNode *Rdhwr =
991         CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0),
992                                CurDAG->getRegister(Mips::HWR29, MVT::i32),
993                                CurDAG->getTargetConstant(0, DL, MVT::i32));
994     SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
995                                          SDValue(Rdhwr, 0));
996     SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
997     ReplaceNode(Node, ResNode.getNode());
998     return true;
999   }
1000 
1001   case ISD::BUILD_VECTOR: {
1002     // Select appropriate ldi.[bhwd] instructions for constant splats of
1003     // 128-bit when MSA is enabled. Fixup any register class mismatches that
1004     // occur as a result.
1005     //
1006     // This allows the compiler to use a wider range of immediates than would
1007     // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
1008     // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
1009     // 0x01010101 } without using a constant pool. This would be sub-optimal
1010     // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
1011     // same set/ of registers. Similarly, ldi.h isn't capable of producing {
1012     // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
1013 
1014     const MipsABIInfo &ABI =
1015         static_cast<const MipsTargetMachine &>(TM).getABI();
1016 
1017     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
1018     APInt SplatValue, SplatUndef;
1019     unsigned SplatBitSize;
1020     bool HasAnyUndefs;
1021     unsigned LdiOp;
1022     EVT ResVecTy = BVN->getValueType(0);
1023     EVT ViaVecTy;
1024 
1025     if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
1026       return false;
1027 
1028     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1029                               HasAnyUndefs, 8,
1030                               !Subtarget->isLittle()))
1031       return false;
1032 
1033     switch (SplatBitSize) {
1034     default:
1035       return false;
1036     case 8:
1037       LdiOp = Mips::LDI_B;
1038       ViaVecTy = MVT::v16i8;
1039       break;
1040     case 16:
1041       LdiOp = Mips::LDI_H;
1042       ViaVecTy = MVT::v8i16;
1043       break;
1044     case 32:
1045       LdiOp = Mips::LDI_W;
1046       ViaVecTy = MVT::v4i32;
1047       break;
1048     case 64:
1049       LdiOp = Mips::LDI_D;
1050       ViaVecTy = MVT::v2i64;
1051       break;
1052     }
1053 
1054     SDNode *Res;
1055 
1056     // If we have a signed 10 bit integer, we can splat it directly.
1057     //
1058     // If we have something bigger we can synthesize the value into a GPR and
1059     // splat from there.
1060     if (SplatValue.isSignedIntN(10)) {
1061       SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
1062                                               ViaVecTy.getVectorElementType());
1063 
1064       Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
1065     } else if (SplatValue.isSignedIntN(16) &&
1066                ((ABI.IsO32() && SplatBitSize < 64) ||
1067                 (ABI.IsN32() || ABI.IsN64()))) {
1068       // Only handle signed 16 bit values when the element size is GPR width.
1069       // MIPS64 can handle all the cases but MIPS32 would need to handle
1070       // negative cases specifically here. Instead, handle those cases as
1071       // 64bit values.
1072 
1073       bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
1074       const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
1075       const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
1076       SDValue ZeroVal = CurDAG->getRegister(
1077           Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
1078 
1079       const unsigned FILLOp =
1080           SplatBitSize == 16
1081               ? Mips::FILL_H
1082               : (SplatBitSize == 32 ? Mips::FILL_W
1083                                     : (SplatBitSize == 64 ? Mips::FILL_D : 0));
1084 
1085       assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!");
1086       assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&
1087              "Attempting to use fill.d on MIPS32!");
1088 
1089       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1090       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
1091 
1092       Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
1093       Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
1094 
1095     } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
1096       // Only handle the cases where the splat size agrees with the size
1097       // of the SplatValue here.
1098       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1099       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1100       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1101 
1102       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1103       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1104 
1105       if (Hi)
1106         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1107 
1108       if (Lo)
1109         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1110                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1111 
1112       assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!");
1113       Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
1114 
1115     } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
1116                (ABI.IsN32() || ABI.IsN64())) {
1117       // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1118       // integers due to having 64bit registers. lui will cause the necessary
1119       // zero/sign extension.
1120       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1121       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1122       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1123 
1124       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1125       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1126 
1127       if (Hi)
1128         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1129 
1130       if (Lo)
1131         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1132                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1133 
1134       Res = CurDAG->getMachineNode(
1135               Mips::SUBREG_TO_REG, DL, MVT::i64,
1136               CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1137               SDValue(Res, 0),
1138               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1139 
1140       Res =
1141           CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1142 
1143     } else if (SplatValue.isSignedIntN(64)) {
1144       // If we have a 64 bit Splat value, we perform a similar sequence to the
1145       // above:
1146       //
1147       // MIPS32:                            MIPS64:
1148       //   lui $res, %highest(val)            lui $res, %highest(val)
1149       //   ori $res, $res, %higher(val)       ori $res, $res, %higher(val)
1150       //   lui $res2, %hi(val)                lui $res2, %hi(val)
1151       //   ori $res2, %res2, %lo(val)         ori $res2, %res2, %lo(val)
1152       //   $res3 = fill $res2                 dinsu $res, $res2, 0, 32
1153       //   $res4 = insert.w $res3[1], $res    fill.d $res
1154       //   splat.d $res4, 0
1155       //
1156       // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves
1157       // having to materialize the value by shifts and ors.
1158       //
1159       // FIXME: Implement the preferred sequence for MIPS64R6:
1160       //
1161       // MIPS64R6:
1162       //   ori $res, $zero, %lo(val)
1163       //   daui $res, $res, %hi(val)
1164       //   dahi $res, $res, %higher(val)
1165       //   dati $res, $res, %highest(cal)
1166       //   fill.d $res
1167       //
1168 
1169       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1170       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1171       const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
1172       const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
1173 
1174       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1175       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1176       SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
1177       SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
1178       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1179 
1180       // Independent of whether we're targeting MIPS64 or not, the basic
1181       // operations are the same. Also, directly use the $zero register if
1182       // the 16 bit chunk is zero.
1183       //
1184       // For optimization purposes we always synthesize the splat value as
1185       // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1186       // just before combining the values with dinsu to produce an i64. This
1187       // enables SelectionDAG to aggressively share components of splat values
1188       // where possible.
1189       //
1190       // FIXME: This is the general constant synthesis problem. This code
1191       //        should be factored out into a class shared between all the
1192       //        classes that need it. Specifically, for a splat size of 64
1193       //        bits that's a negative number we can do better than LUi/ORi
1194       //        for the upper 32bits.
1195 
1196       if (Hi)
1197         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1198 
1199       if (Lo)
1200         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1201                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1202 
1203       SDNode *HiRes;
1204       if (Highest)
1205         HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
1206 
1207       if (Higher)
1208         HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1209                                        Highest ? SDValue(HiRes, 0) : ZeroVal,
1210                                        HigherVal);
1211 
1212 
1213       if (ABI.IsO32()) {
1214         Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
1215                                      (Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
1216 
1217         Res = CurDAG->getMachineNode(
1218             Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
1219             (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
1220             CurDAG->getTargetConstant(1, DL, MVT::i32));
1221 
1222         const TargetLowering *TLI = getTargetLowering();
1223         const TargetRegisterClass *RC =
1224             TLI->getRegClassFor(ViaVecTy.getSimpleVT());
1225 
1226         Res = CurDAG->getMachineNode(
1227             Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
1228             CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
1229 
1230         Res = CurDAG->getMachineNode(
1231             Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
1232             CurDAG->getTargetConstant(0, DL, MVT::i32));
1233       } else if (ABI.IsN64() || ABI.IsN32()) {
1234 
1235         SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
1236         const bool HiResNonZero = Highest || Higher;
1237         const bool ResNonZero = Hi || Lo;
1238 
1239         if (HiResNonZero)
1240           HiRes = CurDAG->getMachineNode(
1241               Mips::SUBREG_TO_REG, DL, MVT::i64,
1242               CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
1243               SDValue(HiRes, 0),
1244               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1245 
1246         if (ResNonZero)
1247           Res = CurDAG->getMachineNode(
1248               Mips::SUBREG_TO_REG, DL, MVT::i64,
1249               CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1250               SDValue(Res, 0),
1251               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1252 
1253         // We have 3 cases:
1254         //   The HiRes is nonzero but Res is $zero  => dsll32 HiRes, 0
1255         //   The Res is nonzero but HiRes is $zero  => dinsu Res, $zero, 32, 32
1256         //   Both are non zero                      => dinsu Res, HiRes, 32, 32
1257         //
1258         // The obvious "missing" case is when both are zero, but that case is
1259         // handled by the ldi case.
1260         if (ResNonZero) {
1261           IntegerType *Int32Ty =
1262               IntegerType::get(MF->getFunction().getContext(), 32);
1263           const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32);
1264           SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
1265                             CurDAG->getConstant(*Const32, DL, MVT::i32),
1266                             CurDAG->getConstant(*Const32, DL, MVT::i32),
1267                             SDValue(Res, 0)};
1268 
1269           Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
1270         } else if (HiResNonZero) {
1271           Res = CurDAG->getMachineNode(
1272               Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
1273               CurDAG->getTargetConstant(0, DL, MVT::i32));
1274         } else
1275           llvm_unreachable(
1276               "Zero splat value handled by non-zero 64bit splat synthesis!");
1277 
1278         Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1279       } else
1280         llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
1281 
1282     } else
1283       return false;
1284 
1285     if (ResVecTy != ViaVecTy) {
1286       // If LdiOp is writing to a different register class to ResVecTy, then
1287       // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1288       // since the source and destination register sets contain the same
1289       // registers.
1290       const TargetLowering *TLI = getTargetLowering();
1291       MVT ResVecTySimple = ResVecTy.getSimpleVT();
1292       const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
1293       Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
1294                                    ResVecTy, SDValue(Res, 0),
1295                                    CurDAG->getTargetConstant(RC->getID(), DL,
1296                                                              MVT::i32));
1297     }
1298 
1299     ReplaceNode(Node, Res);
1300     return true;
1301   }
1302 
1303   }
1304 
1305   return false;
1306 }
1307 
1308 bool MipsSEDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)1309 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
1310                              std::vector<SDValue> &OutOps) {
1311   SDValue Base, Offset;
1312 
1313   switch(ConstraintID) {
1314   default:
1315     llvm_unreachable("Unexpected asm memory constraint");
1316   // All memory constraints can at least accept raw pointers.
1317   case InlineAsm::Constraint_i:
1318     OutOps.push_back(Op);
1319     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1320     return false;
1321   case InlineAsm::Constraint_m:
1322     if (selectAddrRegImm16(Op, Base, Offset)) {
1323       OutOps.push_back(Base);
1324       OutOps.push_back(Offset);
1325       return false;
1326     }
1327     OutOps.push_back(Op);
1328     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1329     return false;
1330   case InlineAsm::Constraint_R:
1331     // The 'R' constraint is supposed to be much more complicated than this.
1332     // However, it's becoming less useful due to architectural changes and
1333     // ought to be replaced by other constraints such as 'ZC'.
1334     // For now, support 9-bit signed offsets which is supportable by all
1335     // subtargets for all instructions.
1336     if (selectAddrRegImm9(Op, Base, Offset)) {
1337       OutOps.push_back(Base);
1338       OutOps.push_back(Offset);
1339       return false;
1340     }
1341     OutOps.push_back(Op);
1342     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1343     return false;
1344   case InlineAsm::Constraint_ZC:
1345     // ZC matches whatever the pref, ll, and sc instructions can handle for the
1346     // given subtarget.
1347     if (Subtarget->inMicroMipsMode()) {
1348       // On microMIPS, they can handle 12-bit offsets.
1349       if (selectAddrRegImm12(Op, Base, Offset)) {
1350         OutOps.push_back(Base);
1351         OutOps.push_back(Offset);
1352         return false;
1353       }
1354     } else if (Subtarget->hasMips32r6()) {
1355       // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1356       if (selectAddrRegImm9(Op, Base, Offset)) {
1357         OutOps.push_back(Base);
1358         OutOps.push_back(Offset);
1359         return false;
1360       }
1361     } else if (selectAddrRegImm16(Op, Base, Offset)) {
1362       // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1363       OutOps.push_back(Base);
1364       OutOps.push_back(Offset);
1365       return false;
1366     }
1367     // In all cases, 0-bit offsets are acceptable.
1368     OutOps.push_back(Op);
1369     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1370     return false;
1371   }
1372   return true;
1373 }
1374 
createMipsSEISelDag(MipsTargetMachine & TM,CodeGenOpt::Level OptLevel)1375 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
1376                                         CodeGenOpt::Level OptLevel) {
1377   return new MipsSEDAGToDAGISel(TM, OptLevel);
1378 }
1379