1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MipsSEISelDAGToDAG.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "Mips.h"
17 #include "MipsAnalyzeImmediate.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsRegisterInfo.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 using namespace llvm;
37
38 #define DEBUG_TYPE "mips-isel"
39
runOnMachineFunction(MachineFunction & MF)40 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
41 Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
42 if (Subtarget->inMips16Mode())
43 return false;
44 return MipsDAGToDAGISel::runOnMachineFunction(MF);
45 }
46
getAnalysisUsage(AnalysisUsage & AU) const47 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
48 AU.addRequired<DominatorTreeWrapperPass>();
49 SelectionDAGISel::getAnalysisUsage(AU);
50 }
51
addDSPCtrlRegOperands(bool IsDef,MachineInstr & MI,MachineFunction & MF)52 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
53 MachineFunction &MF) {
54 MachineInstrBuilder MIB(MF, &MI);
55 unsigned Mask = MI.getOperand(1).getImm();
56 unsigned Flag =
57 IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
58
59 if (Mask & 1)
60 MIB.addReg(Mips::DSPPos, Flag);
61
62 if (Mask & 2)
63 MIB.addReg(Mips::DSPSCount, Flag);
64
65 if (Mask & 4)
66 MIB.addReg(Mips::DSPCarry, Flag);
67
68 if (Mask & 8)
69 MIB.addReg(Mips::DSPOutFlag, Flag);
70
71 if (Mask & 16)
72 MIB.addReg(Mips::DSPCCond, Flag);
73
74 if (Mask & 32)
75 MIB.addReg(Mips::DSPEFI, Flag);
76 }
77
getMSACtrlReg(const SDValue RegIdx) const78 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
79 switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
80 default:
81 llvm_unreachable("Could not map int to register");
82 case 0: return Mips::MSAIR;
83 case 1: return Mips::MSACSR;
84 case 2: return Mips::MSAAccess;
85 case 3: return Mips::MSASave;
86 case 4: return Mips::MSAModify;
87 case 5: return Mips::MSARequest;
88 case 6: return Mips::MSAMap;
89 case 7: return Mips::MSAUnmap;
90 }
91 }
92
replaceUsesWithZeroReg(MachineRegisterInfo * MRI,const MachineInstr & MI)93 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
94 const MachineInstr& MI) {
95 unsigned DstReg = 0, ZeroReg = 0;
96
97 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
98 if ((MI.getOpcode() == Mips::ADDiu) &&
99 (MI.getOperand(1).getReg() == Mips::ZERO) &&
100 (MI.getOperand(2).isImm()) &&
101 (MI.getOperand(2).getImm() == 0)) {
102 DstReg = MI.getOperand(0).getReg();
103 ZeroReg = Mips::ZERO;
104 } else if ((MI.getOpcode() == Mips::DADDiu) &&
105 (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
106 (MI.getOperand(2).isImm()) &&
107 (MI.getOperand(2).getImm() == 0)) {
108 DstReg = MI.getOperand(0).getReg();
109 ZeroReg = Mips::ZERO_64;
110 }
111
112 if (!DstReg)
113 return false;
114
115 // Replace uses with ZeroReg.
116 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
117 E = MRI->use_end(); U != E;) {
118 MachineOperand &MO = *U;
119 unsigned OpNo = U.getOperandNo();
120 MachineInstr *MI = MO.getParent();
121 ++U;
122
123 // Do not replace if it is a phi's operand or is tied to def operand.
124 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
125 continue;
126
127 // Also, we have to check that the register class of the operand
128 // contains the zero register.
129 if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
130 continue;
131
132 MO.setReg(ZeroReg);
133 }
134
135 return true;
136 }
137
initGlobalBaseReg(MachineFunction & MF)138 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
139 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
140
141 if (!MipsFI->globalBaseRegSet())
142 return;
143
144 MachineBasicBlock &MBB = MF.front();
145 MachineBasicBlock::iterator I = MBB.begin();
146 MachineRegisterInfo &RegInfo = MF.getRegInfo();
147 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
148 DebugLoc DL;
149 unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
150 const TargetRegisterClass *RC;
151 const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
152 RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
153
154 V0 = RegInfo.createVirtualRegister(RC);
155 V1 = RegInfo.createVirtualRegister(RC);
156
157 if (ABI.IsN64()) {
158 MF.getRegInfo().addLiveIn(Mips::T9_64);
159 MBB.addLiveIn(Mips::T9_64);
160
161 // lui $v0, %hi(%neg(%gp_rel(fname)))
162 // daddu $v1, $v0, $t9
163 // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
164 const GlobalValue *FName = &MF.getFunction();
165 BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
166 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
167 BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
168 .addReg(Mips::T9_64);
169 BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
170 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
171 return;
172 }
173
174 if (!MF.getTarget().isPositionIndependent()) {
175 // Set global register to __gnu_local_gp.
176 //
177 // lui $v0, %hi(__gnu_local_gp)
178 // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
179 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
180 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
181 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
182 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
183 return;
184 }
185
186 MF.getRegInfo().addLiveIn(Mips::T9);
187 MBB.addLiveIn(Mips::T9);
188
189 if (ABI.IsN32()) {
190 // lui $v0, %hi(%neg(%gp_rel(fname)))
191 // addu $v1, $v0, $t9
192 // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
193 const GlobalValue *FName = &MF.getFunction();
194 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
195 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
196 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
197 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
198 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
199 return;
200 }
201
202 assert(ABI.IsO32());
203
204 // For O32 ABI, the following instruction sequence is emitted to initialize
205 // the global base register:
206 //
207 // 0. lui $2, %hi(_gp_disp)
208 // 1. addiu $2, $2, %lo(_gp_disp)
209 // 2. addu $globalbasereg, $2, $t9
210 //
211 // We emit only the last instruction here.
212 //
213 // GNU linker requires that the first two instructions appear at the beginning
214 // of a function and no instructions be inserted before or between them.
215 // The two instructions are emitted during lowering to MC layer in order to
216 // avoid any reordering.
217 //
218 // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
219 // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
220 // reads it.
221 MF.getRegInfo().addLiveIn(Mips::V0);
222 MBB.addLiveIn(Mips::V0);
223 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
224 .addReg(Mips::V0).addReg(Mips::T9);
225 }
226
processFunctionAfterISel(MachineFunction & MF)227 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
228 initGlobalBaseReg(MF);
229
230 MachineRegisterInfo *MRI = &MF.getRegInfo();
231
232 for (auto &MBB: MF) {
233 for (auto &MI: MBB) {
234 switch (MI.getOpcode()) {
235 case Mips::RDDSP:
236 addDSPCtrlRegOperands(false, MI, MF);
237 break;
238 case Mips::WRDSP:
239 addDSPCtrlRegOperands(true, MI, MF);
240 break;
241 case Mips::BuildPairF64_64:
242 case Mips::ExtractElementF64_64:
243 if (!Subtarget->useOddSPReg()) {
244 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
245 break;
246 }
247 LLVM_FALLTHROUGH;
248 case Mips::BuildPairF64:
249 case Mips::ExtractElementF64:
250 if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1())
251 MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
252 break;
253 default:
254 replaceUsesWithZeroReg(MRI, MI);
255 }
256 }
257 }
258 }
259
selectAddE(SDNode * Node,const SDLoc & DL) const260 void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const {
261 SDValue InFlag = Node->getOperand(2);
262 unsigned Opc = InFlag.getOpcode();
263 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
264 EVT VT = LHS.getValueType();
265
266 // In the base case, we can rely on the carry bit from the addsc
267 // instruction.
268 if (Opc == ISD::ADDC) {
269 SDValue Ops[3] = {LHS, RHS, InFlag};
270 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops);
271 return;
272 }
273
274 assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!");
275
276 // The more complex case is when there is a chain of ISD::ADDE nodes like:
277 // (adde (adde (adde (addc a b) c) d) e).
278 //
279 // The addwc instruction does not write to the carry bit, instead it writes
280 // to bit 20 of the dsp control register. To match this series of nodes, each
281 // intermediate adde node must be expanded to write the carry bit before the
282 // addition.
283
284 // Start by reading the overflow field for addsc and moving the value to the
285 // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
286 // corresponds to reading/writing the entire control register to/from a GPR.
287
288 SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32);
289
290 SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32);
291
292 SDNode *DSPCtrlField =
293 CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag);
294
295 SDNode *Carry = CurDAG->getMachineNode(
296 Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne);
297
298 SDValue Ops[4] = {SDValue(DSPCtrlField, 0),
299 CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne,
300 SDValue(Carry, 0)};
301 SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops);
302
303 // My reading of the MIPS DSP 3.01 specification isn't as clear as I
304 // would like about whether bit 20 always gets overwritten by addwc.
305 // Hence take an extremely conservative view and presume it's sticky. We
306 // therefore need to clear it.
307
308 SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
309
310 SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)};
311 SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps);
312
313 SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue,
314 SDValue(DSPCtrlFinal, 0), CstOne);
315
316 SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)};
317 CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands);
318 }
319
320 /// Match frameindex
selectAddrFrameIndex(SDValue Addr,SDValue & Base,SDValue & Offset) const321 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
322 SDValue &Offset) const {
323 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
324 EVT ValTy = Addr.getValueType();
325
326 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
327 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
328 return true;
329 }
330 return false;
331 }
332
333 /// Match frameindex+offset and frameindex|offset
selectAddrFrameIndexOffset(SDValue Addr,SDValue & Base,SDValue & Offset,unsigned OffsetBits,unsigned ShiftAmount=0) const334 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
335 SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
336 unsigned ShiftAmount = 0) const {
337 if (CurDAG->isBaseWithConstantOffset(Addr)) {
338 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
339 if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
340 EVT ValTy = Addr.getValueType();
341
342 // If the first operand is a FI, get the TargetFI Node
343 if (FrameIndexSDNode *FIN =
344 dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
345 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
346 else {
347 Base = Addr.getOperand(0);
348 // If base is a FI, additional offset calculation is done in
349 // eliminateFrameIndex, otherwise we need to check the alignment
350 if (OffsetToAlignment(CN->getZExtValue(), 1ull << ShiftAmount) != 0)
351 return false;
352 }
353
354 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
355 ValTy);
356 return true;
357 }
358 }
359 return false;
360 }
361
362 /// ComplexPattern used on MipsInstrInfo
363 /// Used on Mips Load/Store instructions
selectAddrRegImm(SDValue Addr,SDValue & Base,SDValue & Offset) const364 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
365 SDValue &Offset) const {
366 // if Address is FI, get the TargetFrameIndex.
367 if (selectAddrFrameIndex(Addr, Base, Offset))
368 return true;
369
370 // on PIC code Load GA
371 if (Addr.getOpcode() == MipsISD::Wrapper) {
372 Base = Addr.getOperand(0);
373 Offset = Addr.getOperand(1);
374 return true;
375 }
376
377 if (!TM.isPositionIndependent()) {
378 if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
379 Addr.getOpcode() == ISD::TargetGlobalAddress))
380 return false;
381 }
382
383 // Addresses of the form FI+const or FI|const
384 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
385 return true;
386
387 // Operand is a result from an ADD.
388 if (Addr.getOpcode() == ISD::ADD) {
389 // When loading from constant pools, load the lower address part in
390 // the instruction itself. Example, instead of:
391 // lui $2, %hi($CPI1_0)
392 // addiu $2, $2, %lo($CPI1_0)
393 // lwc1 $f0, 0($2)
394 // Generate:
395 // lui $2, %hi($CPI1_0)
396 // lwc1 $f0, %lo($CPI1_0)($2)
397 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
398 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
399 SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
400 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
401 isa<JumpTableSDNode>(Opnd0)) {
402 Base = Addr.getOperand(0);
403 Offset = Opnd0;
404 return true;
405 }
406 }
407 }
408
409 return false;
410 }
411
412 /// ComplexPattern used on MipsInstrInfo
413 /// Used on Mips Load/Store instructions
selectAddrDefault(SDValue Addr,SDValue & Base,SDValue & Offset) const414 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
415 SDValue &Offset) const {
416 Base = Addr;
417 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
418 return true;
419 }
420
selectIntAddr(SDValue Addr,SDValue & Base,SDValue & Offset) const421 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
422 SDValue &Offset) const {
423 return selectAddrRegImm(Addr, Base, Offset) ||
424 selectAddrDefault(Addr, Base, Offset);
425 }
426
selectAddrRegImm9(SDValue Addr,SDValue & Base,SDValue & Offset) const427 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
428 SDValue &Offset) const {
429 if (selectAddrFrameIndex(Addr, Base, Offset))
430 return true;
431
432 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
433 return true;
434
435 return false;
436 }
437
438 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
selectAddrRegImm11(SDValue Addr,SDValue & Base,SDValue & Offset) const439 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
440 SDValue &Offset) const {
441 if (selectAddrFrameIndex(Addr, Base, Offset))
442 return true;
443
444 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
445 return true;
446
447 return false;
448 }
449
450 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
selectAddrRegImm12(SDValue Addr,SDValue & Base,SDValue & Offset) const451 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
452 SDValue &Offset) const {
453 if (selectAddrFrameIndex(Addr, Base, Offset))
454 return true;
455
456 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
457 return true;
458
459 return false;
460 }
461
selectAddrRegImm16(SDValue Addr,SDValue & Base,SDValue & Offset) const462 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
463 SDValue &Offset) const {
464 if (selectAddrFrameIndex(Addr, Base, Offset))
465 return true;
466
467 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
468 return true;
469
470 return false;
471 }
472
selectIntAddr11MM(SDValue Addr,SDValue & Base,SDValue & Offset) const473 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
474 SDValue &Offset) const {
475 return selectAddrRegImm11(Addr, Base, Offset) ||
476 selectAddrDefault(Addr, Base, Offset);
477 }
478
selectIntAddr12MM(SDValue Addr,SDValue & Base,SDValue & Offset) const479 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
480 SDValue &Offset) const {
481 return selectAddrRegImm12(Addr, Base, Offset) ||
482 selectAddrDefault(Addr, Base, Offset);
483 }
484
selectIntAddr16MM(SDValue Addr,SDValue & Base,SDValue & Offset) const485 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
486 SDValue &Offset) const {
487 return selectAddrRegImm16(Addr, Base, Offset) ||
488 selectAddrDefault(Addr, Base, Offset);
489 }
490
selectIntAddrLSL2MM(SDValue Addr,SDValue & Base,SDValue & Offset) const491 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
492 SDValue &Offset) const {
493 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
494 if (isa<FrameIndexSDNode>(Base))
495 return false;
496
497 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
498 unsigned CnstOff = CN->getZExtValue();
499 return (CnstOff == (CnstOff & 0x3c));
500 }
501
502 return false;
503 }
504
505 // For all other cases where "lw" would be selected, don't select "lw16"
506 // because it would result in additional instructions to prepare operands.
507 if (selectAddrRegImm(Addr, Base, Offset))
508 return false;
509
510 return selectAddrDefault(Addr, Base, Offset);
511 }
512
selectIntAddrSImm10(SDValue Addr,SDValue & Base,SDValue & Offset) const513 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
514 SDValue &Offset) const {
515
516 if (selectAddrFrameIndex(Addr, Base, Offset))
517 return true;
518
519 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
520 return true;
521
522 return selectAddrDefault(Addr, Base, Offset);
523 }
524
selectIntAddrSImm10Lsl1(SDValue Addr,SDValue & Base,SDValue & Offset) const525 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
526 SDValue &Offset) const {
527 if (selectAddrFrameIndex(Addr, Base, Offset))
528 return true;
529
530 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
531 return true;
532
533 return selectAddrDefault(Addr, Base, Offset);
534 }
535
selectIntAddrSImm10Lsl2(SDValue Addr,SDValue & Base,SDValue & Offset) const536 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
537 SDValue &Offset) const {
538 if (selectAddrFrameIndex(Addr, Base, Offset))
539 return true;
540
541 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
542 return true;
543
544 return selectAddrDefault(Addr, Base, Offset);
545 }
546
selectIntAddrSImm10Lsl3(SDValue Addr,SDValue & Base,SDValue & Offset) const547 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
548 SDValue &Offset) const {
549 if (selectAddrFrameIndex(Addr, Base, Offset))
550 return true;
551
552 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
553 return true;
554
555 return selectAddrDefault(Addr, Base, Offset);
556 }
557
558 // Select constant vector splats.
559 //
560 // Returns true and sets Imm if:
561 // * MSA is enabled
562 // * N is a ISD::BUILD_VECTOR representing a constant splat
selectVSplat(SDNode * N,APInt & Imm,unsigned MinSizeInBits) const563 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
564 unsigned MinSizeInBits) const {
565 if (!Subtarget->hasMSA())
566 return false;
567
568 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
569
570 if (!Node)
571 return false;
572
573 APInt SplatValue, SplatUndef;
574 unsigned SplatBitSize;
575 bool HasAnyUndefs;
576
577 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
578 MinSizeInBits, !Subtarget->isLittle()))
579 return false;
580
581 Imm = SplatValue;
582
583 return true;
584 }
585
586 // Select constant vector splats.
587 //
588 // In addition to the requirements of selectVSplat(), this function returns
589 // true and sets Imm if:
590 // * The splat value is the same width as the elements of the vector
591 // * The splat value fits in an integer with the specified signed-ness and
592 // width.
593 //
594 // This function looks through ISD::BITCAST nodes.
595 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
596 // sometimes a shuffle in big-endian mode.
597 //
598 // It's worth noting that this function is not used as part of the selection
599 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
600 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
601 // MipsSEDAGToDAGISel::selectNode.
602 bool MipsSEDAGToDAGISel::
selectVSplatCommon(SDValue N,SDValue & Imm,bool Signed,unsigned ImmBitSize) const603 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
604 unsigned ImmBitSize) const {
605 APInt ImmValue;
606 EVT EltTy = N->getValueType(0).getVectorElementType();
607
608 if (N->getOpcode() == ISD::BITCAST)
609 N = N->getOperand(0);
610
611 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
612 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
613
614 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
615 (!Signed && ImmValue.isIntN(ImmBitSize))) {
616 Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
617 return true;
618 }
619 }
620
621 return false;
622 }
623
624 // Select constant vector splats.
625 bool MipsSEDAGToDAGISel::
selectVSplatUimm1(SDValue N,SDValue & Imm) const626 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
627 return selectVSplatCommon(N, Imm, false, 1);
628 }
629
630 bool MipsSEDAGToDAGISel::
selectVSplatUimm2(SDValue N,SDValue & Imm) const631 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
632 return selectVSplatCommon(N, Imm, false, 2);
633 }
634
635 bool MipsSEDAGToDAGISel::
selectVSplatUimm3(SDValue N,SDValue & Imm) const636 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
637 return selectVSplatCommon(N, Imm, false, 3);
638 }
639
640 // Select constant vector splats.
641 bool MipsSEDAGToDAGISel::
selectVSplatUimm4(SDValue N,SDValue & Imm) const642 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
643 return selectVSplatCommon(N, Imm, false, 4);
644 }
645
646 // Select constant vector splats.
647 bool MipsSEDAGToDAGISel::
selectVSplatUimm5(SDValue N,SDValue & Imm) const648 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
649 return selectVSplatCommon(N, Imm, false, 5);
650 }
651
652 // Select constant vector splats.
653 bool MipsSEDAGToDAGISel::
selectVSplatUimm6(SDValue N,SDValue & Imm) const654 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
655 return selectVSplatCommon(N, Imm, false, 6);
656 }
657
658 // Select constant vector splats.
659 bool MipsSEDAGToDAGISel::
selectVSplatUimm8(SDValue N,SDValue & Imm) const660 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
661 return selectVSplatCommon(N, Imm, false, 8);
662 }
663
664 // Select constant vector splats.
665 bool MipsSEDAGToDAGISel::
selectVSplatSimm5(SDValue N,SDValue & Imm) const666 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
667 return selectVSplatCommon(N, Imm, true, 5);
668 }
669
670 // Select constant vector splats whose value is a power of 2.
671 //
672 // In addition to the requirements of selectVSplat(), this function returns
673 // true and sets Imm if:
674 // * The splat value is the same width as the elements of the vector
675 // * The splat value is a power of two.
676 //
677 // This function looks through ISD::BITCAST nodes.
678 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
679 // sometimes a shuffle in big-endian mode.
selectVSplatUimmPow2(SDValue N,SDValue & Imm) const680 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
681 APInt ImmValue;
682 EVT EltTy = N->getValueType(0).getVectorElementType();
683
684 if (N->getOpcode() == ISD::BITCAST)
685 N = N->getOperand(0);
686
687 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
688 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
689 int32_t Log2 = ImmValue.exactLogBase2();
690
691 if (Log2 != -1) {
692 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
693 return true;
694 }
695 }
696
697 return false;
698 }
699
700 // Select constant vector splats whose value only has a consecutive sequence
701 // of left-most bits set (e.g. 0b11...1100...00).
702 //
703 // In addition to the requirements of selectVSplat(), this function returns
704 // true and sets Imm if:
705 // * The splat value is the same width as the elements of the vector
706 // * The splat value is a consecutive sequence of left-most bits.
707 //
708 // This function looks through ISD::BITCAST nodes.
709 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
710 // sometimes a shuffle in big-endian mode.
selectVSplatMaskL(SDValue N,SDValue & Imm) const711 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
712 APInt ImmValue;
713 EVT EltTy = N->getValueType(0).getVectorElementType();
714
715 if (N->getOpcode() == ISD::BITCAST)
716 N = N->getOperand(0);
717
718 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
719 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
720 // Extract the run of set bits starting with bit zero from the bitwise
721 // inverse of ImmValue, and test that the inverse of this is the same
722 // as the original value.
723 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
724
725 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
726 EltTy);
727 return true;
728 }
729 }
730
731 return false;
732 }
733
734 // Select constant vector splats whose value only has a consecutive sequence
735 // of right-most bits set (e.g. 0b00...0011...11).
736 //
737 // In addition to the requirements of selectVSplat(), this function returns
738 // true and sets Imm if:
739 // * The splat value is the same width as the elements of the vector
740 // * The splat value is a consecutive sequence of right-most bits.
741 //
742 // This function looks through ISD::BITCAST nodes.
743 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
744 // sometimes a shuffle in big-endian mode.
selectVSplatMaskR(SDValue N,SDValue & Imm) const745 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
746 APInt ImmValue;
747 EVT EltTy = N->getValueType(0).getVectorElementType();
748
749 if (N->getOpcode() == ISD::BITCAST)
750 N = N->getOperand(0);
751
752 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
753 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
754 // Extract the run of set bits starting with bit zero, and test that the
755 // result is the same as the original value
756 if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
757 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
758 EltTy);
759 return true;
760 }
761 }
762
763 return false;
764 }
765
selectVSplatUimmInvPow2(SDValue N,SDValue & Imm) const766 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
767 SDValue &Imm) const {
768 APInt ImmValue;
769 EVT EltTy = N->getValueType(0).getVectorElementType();
770
771 if (N->getOpcode() == ISD::BITCAST)
772 N = N->getOperand(0);
773
774 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
775 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
776 int32_t Log2 = (~ImmValue).exactLogBase2();
777
778 if (Log2 != -1) {
779 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
780 return true;
781 }
782 }
783
784 return false;
785 }
786
trySelect(SDNode * Node)787 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
788 unsigned Opcode = Node->getOpcode();
789 SDLoc DL(Node);
790
791 ///
792 // Instruction Selection not handled by the auto-generated
793 // tablegen selection should be handled here.
794 ///
795 switch(Opcode) {
796 default: break;
797
798 case ISD::ADDE: {
799 selectAddE(Node, DL);
800 return true;
801 }
802
803 case ISD::ConstantFP: {
804 ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
805 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
806 if (Subtarget->isGP64bit()) {
807 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
808 Mips::ZERO_64, MVT::i64);
809 ReplaceNode(Node,
810 CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
811 } else if (Subtarget->isFP64bit()) {
812 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
813 Mips::ZERO, MVT::i32);
814 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
815 MVT::f64, Zero, Zero));
816 } else {
817 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
818 Mips::ZERO, MVT::i32);
819 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
820 MVT::f64, Zero, Zero));
821 }
822 return true;
823 }
824 break;
825 }
826
827 case ISD::Constant: {
828 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
829 int64_t Imm = CN->getSExtValue();
830 unsigned Size = CN->getValueSizeInBits(0);
831
832 if (isInt<32>(Imm))
833 break;
834
835 MipsAnalyzeImmediate AnalyzeImm;
836
837 const MipsAnalyzeImmediate::InstSeq &Seq =
838 AnalyzeImm.Analyze(Imm, Size, false);
839
840 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
841 SDLoc DL(CN);
842 SDNode *RegOpnd;
843 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
844 DL, MVT::i64);
845
846 // The first instruction can be a LUi which is different from other
847 // instructions (ADDiu, ORI and SLL) in that it does not have a register
848 // operand.
849 if (Inst->Opc == Mips::LUi64)
850 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
851 else
852 RegOpnd =
853 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
854 CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
855 ImmOpnd);
856
857 // The remaining instructions in the sequence are handled here.
858 for (++Inst; Inst != Seq.end(); ++Inst) {
859 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
860 MVT::i64);
861 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
862 SDValue(RegOpnd, 0), ImmOpnd);
863 }
864
865 ReplaceNode(Node, RegOpnd);
866 return true;
867 }
868
869 case ISD::INTRINSIC_W_CHAIN: {
870 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
871 default:
872 break;
873
874 case Intrinsic::mips_cfcmsa: {
875 SDValue ChainIn = Node->getOperand(0);
876 SDValue RegIdx = Node->getOperand(2);
877 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
878 getMSACtrlReg(RegIdx), MVT::i32);
879 ReplaceNode(Node, Reg.getNode());
880 return true;
881 }
882 }
883 break;
884 }
885
886 case ISD::INTRINSIC_WO_CHAIN: {
887 switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
888 default:
889 break;
890
891 case Intrinsic::mips_move_v:
892 // Like an assignment but will always produce a move.v even if
893 // unnecessary.
894 ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
895 Node->getValueType(0),
896 Node->getOperand(1)));
897 return true;
898 }
899 break;
900 }
901
902 case ISD::INTRINSIC_VOID: {
903 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
904 default:
905 break;
906
907 case Intrinsic::mips_ctcmsa: {
908 SDValue ChainIn = Node->getOperand(0);
909 SDValue RegIdx = Node->getOperand(2);
910 SDValue Value = Node->getOperand(3);
911 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
912 getMSACtrlReg(RegIdx), Value);
913 ReplaceNode(Node, ChainOut.getNode());
914 return true;
915 }
916 }
917 break;
918 }
919
920 // Manually match MipsISD::Ins nodes to get the correct instruction. It has
921 // to be done in this fashion so that we respect the differences between
922 // dins and dinsm, as the difference is that the size operand has the range
923 // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
924 // means SelectionDAGISel would have to test all the operands at once to
925 // match the instruction.
926 case MipsISD::Ins: {
927
928 // Sanity checking for the node operands.
929 if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64)
930 return false;
931
932 if (Node->getNumOperands() != 4)
933 return false;
934
935 if (Node->getOperand(1)->getOpcode() != ISD::Constant ||
936 Node->getOperand(2)->getOpcode() != ISD::Constant)
937 return false;
938
939 MVT ResTy = Node->getSimpleValueType(0);
940 uint64_t Pos = Node->getConstantOperandVal(1);
941 uint64_t Size = Node->getConstantOperandVal(2);
942
943 // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
944 if (!Size)
945 return false;
946
947 if (Pos + Size > 64)
948 return false;
949
950 if (ResTy != MVT::i32 && ResTy != MVT::i64)
951 return false;
952
953 unsigned Opcode = 0;
954 if (ResTy == MVT::i32) {
955 if (Pos + Size <= 32)
956 Opcode = Mips::INS;
957 } else {
958 if (Pos + Size <= 32)
959 Opcode = Mips::DINS;
960 else if (Pos < 32 && 1 < Size)
961 Opcode = Mips::DINSM;
962 else
963 Opcode = Mips::DINSU;
964 }
965
966 if (Opcode) {
967 SDValue Ops[4] = {
968 Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32),
969 CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)};
970
971 ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops));
972 return true;
973 }
974
975 return false;
976 }
977
978 case MipsISD::ThreadPointer: {
979 EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
980 unsigned RdhwrOpc, DestReg;
981
982 if (PtrVT == MVT::i32) {
983 RdhwrOpc = Mips::RDHWR;
984 DestReg = Mips::V1;
985 } else {
986 RdhwrOpc = Mips::RDHWR64;
987 DestReg = Mips::V1_64;
988 }
989
990 SDNode *Rdhwr =
991 CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0),
992 CurDAG->getRegister(Mips::HWR29, MVT::i32),
993 CurDAG->getTargetConstant(0, DL, MVT::i32));
994 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
995 SDValue(Rdhwr, 0));
996 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
997 ReplaceNode(Node, ResNode.getNode());
998 return true;
999 }
1000
1001 case ISD::BUILD_VECTOR: {
1002 // Select appropriate ldi.[bhwd] instructions for constant splats of
1003 // 128-bit when MSA is enabled. Fixup any register class mismatches that
1004 // occur as a result.
1005 //
1006 // This allows the compiler to use a wider range of immediates than would
1007 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
1008 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
1009 // 0x01010101 } without using a constant pool. This would be sub-optimal
1010 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
1011 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
1012 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
1013
1014 const MipsABIInfo &ABI =
1015 static_cast<const MipsTargetMachine &>(TM).getABI();
1016
1017 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
1018 APInt SplatValue, SplatUndef;
1019 unsigned SplatBitSize;
1020 bool HasAnyUndefs;
1021 unsigned LdiOp;
1022 EVT ResVecTy = BVN->getValueType(0);
1023 EVT ViaVecTy;
1024
1025 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
1026 return false;
1027
1028 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1029 HasAnyUndefs, 8,
1030 !Subtarget->isLittle()))
1031 return false;
1032
1033 switch (SplatBitSize) {
1034 default:
1035 return false;
1036 case 8:
1037 LdiOp = Mips::LDI_B;
1038 ViaVecTy = MVT::v16i8;
1039 break;
1040 case 16:
1041 LdiOp = Mips::LDI_H;
1042 ViaVecTy = MVT::v8i16;
1043 break;
1044 case 32:
1045 LdiOp = Mips::LDI_W;
1046 ViaVecTy = MVT::v4i32;
1047 break;
1048 case 64:
1049 LdiOp = Mips::LDI_D;
1050 ViaVecTy = MVT::v2i64;
1051 break;
1052 }
1053
1054 SDNode *Res;
1055
1056 // If we have a signed 10 bit integer, we can splat it directly.
1057 //
1058 // If we have something bigger we can synthesize the value into a GPR and
1059 // splat from there.
1060 if (SplatValue.isSignedIntN(10)) {
1061 SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
1062 ViaVecTy.getVectorElementType());
1063
1064 Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
1065 } else if (SplatValue.isSignedIntN(16) &&
1066 ((ABI.IsO32() && SplatBitSize < 64) ||
1067 (ABI.IsN32() || ABI.IsN64()))) {
1068 // Only handle signed 16 bit values when the element size is GPR width.
1069 // MIPS64 can handle all the cases but MIPS32 would need to handle
1070 // negative cases specifically here. Instead, handle those cases as
1071 // 64bit values.
1072
1073 bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
1074 const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
1075 const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
1076 SDValue ZeroVal = CurDAG->getRegister(
1077 Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
1078
1079 const unsigned FILLOp =
1080 SplatBitSize == 16
1081 ? Mips::FILL_H
1082 : (SplatBitSize == 32 ? Mips::FILL_W
1083 : (SplatBitSize == 64 ? Mips::FILL_D : 0));
1084
1085 assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!");
1086 assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&
1087 "Attempting to use fill.d on MIPS32!");
1088
1089 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1090 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
1091
1092 Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
1093 Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
1094
1095 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
1096 // Only handle the cases where the splat size agrees with the size
1097 // of the SplatValue here.
1098 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1099 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1100 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1101
1102 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1103 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1104
1105 if (Hi)
1106 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1107
1108 if (Lo)
1109 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1110 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1111
1112 assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!");
1113 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
1114
1115 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
1116 (ABI.IsN32() || ABI.IsN64())) {
1117 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1118 // integers due to having 64bit registers. lui will cause the necessary
1119 // zero/sign extension.
1120 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1121 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1122 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1123
1124 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1125 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1126
1127 if (Hi)
1128 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1129
1130 if (Lo)
1131 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1132 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1133
1134 Res = CurDAG->getMachineNode(
1135 Mips::SUBREG_TO_REG, DL, MVT::i64,
1136 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1137 SDValue(Res, 0),
1138 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1139
1140 Res =
1141 CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1142
1143 } else if (SplatValue.isSignedIntN(64)) {
1144 // If we have a 64 bit Splat value, we perform a similar sequence to the
1145 // above:
1146 //
1147 // MIPS32: MIPS64:
1148 // lui $res, %highest(val) lui $res, %highest(val)
1149 // ori $res, $res, %higher(val) ori $res, $res, %higher(val)
1150 // lui $res2, %hi(val) lui $res2, %hi(val)
1151 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val)
1152 // $res3 = fill $res2 dinsu $res, $res2, 0, 32
1153 // $res4 = insert.w $res3[1], $res fill.d $res
1154 // splat.d $res4, 0
1155 //
1156 // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves
1157 // having to materialize the value by shifts and ors.
1158 //
1159 // FIXME: Implement the preferred sequence for MIPS64R6:
1160 //
1161 // MIPS64R6:
1162 // ori $res, $zero, %lo(val)
1163 // daui $res, $res, %hi(val)
1164 // dahi $res, $res, %higher(val)
1165 // dati $res, $res, %highest(cal)
1166 // fill.d $res
1167 //
1168
1169 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1170 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1171 const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
1172 const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
1173
1174 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1175 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1176 SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
1177 SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
1178 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1179
1180 // Independent of whether we're targeting MIPS64 or not, the basic
1181 // operations are the same. Also, directly use the $zero register if
1182 // the 16 bit chunk is zero.
1183 //
1184 // For optimization purposes we always synthesize the splat value as
1185 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1186 // just before combining the values with dinsu to produce an i64. This
1187 // enables SelectionDAG to aggressively share components of splat values
1188 // where possible.
1189 //
1190 // FIXME: This is the general constant synthesis problem. This code
1191 // should be factored out into a class shared between all the
1192 // classes that need it. Specifically, for a splat size of 64
1193 // bits that's a negative number we can do better than LUi/ORi
1194 // for the upper 32bits.
1195
1196 if (Hi)
1197 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1198
1199 if (Lo)
1200 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1201 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1202
1203 SDNode *HiRes;
1204 if (Highest)
1205 HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
1206
1207 if (Higher)
1208 HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1209 Highest ? SDValue(HiRes, 0) : ZeroVal,
1210 HigherVal);
1211
1212
1213 if (ABI.IsO32()) {
1214 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
1215 (Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
1216
1217 Res = CurDAG->getMachineNode(
1218 Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
1219 (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
1220 CurDAG->getTargetConstant(1, DL, MVT::i32));
1221
1222 const TargetLowering *TLI = getTargetLowering();
1223 const TargetRegisterClass *RC =
1224 TLI->getRegClassFor(ViaVecTy.getSimpleVT());
1225
1226 Res = CurDAG->getMachineNode(
1227 Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
1228 CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
1229
1230 Res = CurDAG->getMachineNode(
1231 Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
1232 CurDAG->getTargetConstant(0, DL, MVT::i32));
1233 } else if (ABI.IsN64() || ABI.IsN32()) {
1234
1235 SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
1236 const bool HiResNonZero = Highest || Higher;
1237 const bool ResNonZero = Hi || Lo;
1238
1239 if (HiResNonZero)
1240 HiRes = CurDAG->getMachineNode(
1241 Mips::SUBREG_TO_REG, DL, MVT::i64,
1242 CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
1243 SDValue(HiRes, 0),
1244 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1245
1246 if (ResNonZero)
1247 Res = CurDAG->getMachineNode(
1248 Mips::SUBREG_TO_REG, DL, MVT::i64,
1249 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1250 SDValue(Res, 0),
1251 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1252
1253 // We have 3 cases:
1254 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0
1255 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32
1256 // Both are non zero => dinsu Res, HiRes, 32, 32
1257 //
1258 // The obvious "missing" case is when both are zero, but that case is
1259 // handled by the ldi case.
1260 if (ResNonZero) {
1261 IntegerType *Int32Ty =
1262 IntegerType::get(MF->getFunction().getContext(), 32);
1263 const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32);
1264 SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
1265 CurDAG->getConstant(*Const32, DL, MVT::i32),
1266 CurDAG->getConstant(*Const32, DL, MVT::i32),
1267 SDValue(Res, 0)};
1268
1269 Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
1270 } else if (HiResNonZero) {
1271 Res = CurDAG->getMachineNode(
1272 Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
1273 CurDAG->getTargetConstant(0, DL, MVT::i32));
1274 } else
1275 llvm_unreachable(
1276 "Zero splat value handled by non-zero 64bit splat synthesis!");
1277
1278 Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1279 } else
1280 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
1281
1282 } else
1283 return false;
1284
1285 if (ResVecTy != ViaVecTy) {
1286 // If LdiOp is writing to a different register class to ResVecTy, then
1287 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1288 // since the source and destination register sets contain the same
1289 // registers.
1290 const TargetLowering *TLI = getTargetLowering();
1291 MVT ResVecTySimple = ResVecTy.getSimpleVT();
1292 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
1293 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
1294 ResVecTy, SDValue(Res, 0),
1295 CurDAG->getTargetConstant(RC->getID(), DL,
1296 MVT::i32));
1297 }
1298
1299 ReplaceNode(Node, Res);
1300 return true;
1301 }
1302
1303 }
1304
1305 return false;
1306 }
1307
1308 bool MipsSEDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)1309 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
1310 std::vector<SDValue> &OutOps) {
1311 SDValue Base, Offset;
1312
1313 switch(ConstraintID) {
1314 default:
1315 llvm_unreachable("Unexpected asm memory constraint");
1316 // All memory constraints can at least accept raw pointers.
1317 case InlineAsm::Constraint_i:
1318 OutOps.push_back(Op);
1319 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1320 return false;
1321 case InlineAsm::Constraint_m:
1322 if (selectAddrRegImm16(Op, Base, Offset)) {
1323 OutOps.push_back(Base);
1324 OutOps.push_back(Offset);
1325 return false;
1326 }
1327 OutOps.push_back(Op);
1328 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1329 return false;
1330 case InlineAsm::Constraint_R:
1331 // The 'R' constraint is supposed to be much more complicated than this.
1332 // However, it's becoming less useful due to architectural changes and
1333 // ought to be replaced by other constraints such as 'ZC'.
1334 // For now, support 9-bit signed offsets which is supportable by all
1335 // subtargets for all instructions.
1336 if (selectAddrRegImm9(Op, Base, Offset)) {
1337 OutOps.push_back(Base);
1338 OutOps.push_back(Offset);
1339 return false;
1340 }
1341 OutOps.push_back(Op);
1342 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1343 return false;
1344 case InlineAsm::Constraint_ZC:
1345 // ZC matches whatever the pref, ll, and sc instructions can handle for the
1346 // given subtarget.
1347 if (Subtarget->inMicroMipsMode()) {
1348 // On microMIPS, they can handle 12-bit offsets.
1349 if (selectAddrRegImm12(Op, Base, Offset)) {
1350 OutOps.push_back(Base);
1351 OutOps.push_back(Offset);
1352 return false;
1353 }
1354 } else if (Subtarget->hasMips32r6()) {
1355 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1356 if (selectAddrRegImm9(Op, Base, Offset)) {
1357 OutOps.push_back(Base);
1358 OutOps.push_back(Offset);
1359 return false;
1360 }
1361 } else if (selectAddrRegImm16(Op, Base, Offset)) {
1362 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1363 OutOps.push_back(Base);
1364 OutOps.push_back(Offset);
1365 return false;
1366 }
1367 // In all cases, 0-bit offsets are acceptable.
1368 OutOps.push_back(Op);
1369 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1370 return false;
1371 }
1372 return true;
1373 }
1374
createMipsSEISelDag(MipsTargetMachine & TM,CodeGenOpt::Level OptLevel)1375 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
1376 CodeGenOpt::Level OptLevel) {
1377 return new MipsSEDAGToDAGISel(TM, OptLevel);
1378 }
1379