• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Class definitions.
12//===----------------------------------------------------------------------===//
13
14class SystemZReg<string n> : Register<n> {
15  let Namespace = "SystemZ";
16}
17
18class SystemZRegWithSubregs<string n, list<Register> subregs>
19  : RegisterWithSubRegs<n, subregs> {
20  let Namespace = "SystemZ";
21}
22
23let Namespace = "SystemZ" in {
24def subreg_l32   : SubRegIndex<32, 0>;  // Also acts as subreg_ll32.
25def subreg_h32   : SubRegIndex<32, 32>; // Also acts as subreg_lh32.
26def subreg_l64   : SubRegIndex<64, 0>;
27def subreg_h64   : SubRegIndex<64, 64>;
28def subreg_r32   : SubRegIndex<32, 32>; // Reinterpret a wider reg as 32 bits.
29def subreg_r64   : SubRegIndex<64, 64>; // Reinterpret a wider reg as 64 bits.
30def subreg_hh32  : ComposedSubRegIndex<subreg_h64, subreg_h32>;
31def subreg_hl32  : ComposedSubRegIndex<subreg_h64, subreg_l32>;
32def subreg_hr32  : ComposedSubRegIndex<subreg_h64, subreg_r32>;
33}
34
35// Define a register class that contains values of types TYPES and an
36// associated operand called NAME.  SIZE is the size and alignment
37// of the registers and REGLIST is the list of individual registers.
38multiclass SystemZRegClass<string name, list<ValueType> types, int size,
39                           dag regList, bit allocatable = 1> {
40  def AsmOperand : AsmOperandClass {
41    let Name = name;
42    let ParserMethod = "parse"##name;
43    let RenderMethod = "addRegOperands";
44  }
45  let isAllocatable = allocatable in
46    def Bit : RegisterClass<"SystemZ", types, size, regList> {
47      let Size = size;
48    }
49  def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> {
50    let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand");
51  }
52}
53
54//===----------------------------------------------------------------------===//
55// General-purpose registers
56//===----------------------------------------------------------------------===//
57
58// Lower 32 bits of one of the 16 64-bit general-purpose registers
59class GPR32<bits<16> num, string n> : SystemZReg<n> {
60  let HWEncoding = num;
61}
62
63// One of the 16 64-bit general-purpose registers.
64class GPR64<bits<16> num, string n, GPR32 low, GPR32 high>
65 : SystemZRegWithSubregs<n, [low, high]> {
66  let HWEncoding = num;
67  let SubRegIndices = [subreg_l32, subreg_h32];
68  let CoveredBySubRegs = 1;
69}
70
71// 8 even-odd pairs of GPR64s.
72class GPR128<bits<16> num, string n, GPR64 low, GPR64 high>
73 : SystemZRegWithSubregs<n, [low, high]> {
74  let HWEncoding = num;
75  let SubRegIndices = [subreg_l64, subreg_h64];
76  let CoveredBySubRegs = 1;
77}
78
79// General-purpose registers
80foreach I = 0-15 in {
81  def R#I#L : GPR32<I, "r"#I>;
82  def R#I#H : GPR32<I, "r"#I>;
83  def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>,
84                    DwarfRegNum<[I]>;
85}
86
87foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
88  def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"),
89                     !cast<GPR64>("R"#I#"D")>;
90}
91
92/// Allocate the callee-saved R6-R13 backwards. That way they can be saved
93/// together with R14 and R15 in one prolog instruction.
94defm GR32  : SystemZRegClass<"GR32",  [i32], 32,
95                             (add (sequence "R%uL",  0, 5),
96                                  (sequence "R%uL", 15, 6))>;
97defm GRH32 : SystemZRegClass<"GRH32", [i32], 32,
98                             (add (sequence "R%uH",  0, 5),
99                                  (sequence "R%uH", 15, 6))>;
100defm GR64  : SystemZRegClass<"GR64",  [i64], 64,
101                             (add (sequence "R%uD",  0, 5),
102                                  (sequence "R%uD", 15, 6))>;
103
104// Combine the low and high GR32s into a single class.  This can only be
105// used for virtual registers if the high-word facility is available.
106defm GRX32 : SystemZRegClass<"GRX32", [i32], 32,
107                             (add (sequence "R%uL",  0, 5),
108                                  (sequence "R%uH",  0, 5),
109                                  R15L, R15H, R14L, R14H, R13L, R13H,
110                                  R12L, R12H, R11L, R11H, R10L, R10H,
111                                  R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>;
112
113// The architecture doesn't really have any i128 support, so model the
114// register pairs as untyped instead.
115defm GR128 : SystemZRegClass<"GR128", [untyped], 128,
116                             (add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q)>;
117
118// Base and index registers.  Everything except R0, which in an address
119// context evaluates as 0.
120defm ADDR32 : SystemZRegClass<"ADDR32", [i32], 32, (sub GR32Bit, R0L)>;
121defm ADDR64 : SystemZRegClass<"ADDR64", [i64], 64, (sub GR64Bit, R0D)>;
122
123// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
124// of a GR128.
125defm ADDR128 : SystemZRegClass<"ADDR128", [untyped], 128, (sub GR128Bit, R0Q)>;
126
127// Any type register. Used for .insn directives when we don't know what the
128// register types could be.
129defm AnyReg : SystemZRegClass<"AnyReg",
130                              [i64, f64, v8i8, v4i16, v2i32, v2f32], 64,
131                              (add (sequence "R%uD", 0, 15),
132                                   (sequence "F%uD", 0, 15),
133                                   (sequence "V%u", 0, 15)), 0/*allocatable*/>;
134
135//===----------------------------------------------------------------------===//
136// Floating-point registers
137//===----------------------------------------------------------------------===//
138
139// Maps FPR register numbers to their DWARF encoding.
140class DwarfMapping<int id> { int Id = id; }
141
142def F0Dwarf  : DwarfMapping<16>;
143def F2Dwarf  : DwarfMapping<17>;
144def F4Dwarf  : DwarfMapping<18>;
145def F6Dwarf  : DwarfMapping<19>;
146
147def F1Dwarf  : DwarfMapping<20>;
148def F3Dwarf  : DwarfMapping<21>;
149def F5Dwarf  : DwarfMapping<22>;
150def F7Dwarf  : DwarfMapping<23>;
151
152def F8Dwarf  : DwarfMapping<24>;
153def F10Dwarf : DwarfMapping<25>;
154def F12Dwarf : DwarfMapping<26>;
155def F14Dwarf : DwarfMapping<27>;
156
157def F9Dwarf  : DwarfMapping<28>;
158def F11Dwarf : DwarfMapping<29>;
159def F13Dwarf : DwarfMapping<30>;
160def F15Dwarf : DwarfMapping<31>;
161
162def F16Dwarf : DwarfMapping<68>;
163def F18Dwarf : DwarfMapping<69>;
164def F20Dwarf : DwarfMapping<70>;
165def F22Dwarf : DwarfMapping<71>;
166
167def F17Dwarf : DwarfMapping<72>;
168def F19Dwarf : DwarfMapping<73>;
169def F21Dwarf : DwarfMapping<74>;
170def F23Dwarf : DwarfMapping<75>;
171
172def F24Dwarf : DwarfMapping<76>;
173def F26Dwarf : DwarfMapping<77>;
174def F28Dwarf : DwarfMapping<78>;
175def F30Dwarf : DwarfMapping<79>;
176
177def F25Dwarf : DwarfMapping<80>;
178def F27Dwarf : DwarfMapping<81>;
179def F29Dwarf : DwarfMapping<82>;
180def F31Dwarf : DwarfMapping<83>;
181
182// Upper 32 bits of one of the floating-point registers
183class FPR32<bits<16> num, string n> : SystemZReg<n> {
184  let HWEncoding = num;
185}
186
187// One of the floating-point registers.
188class FPR64<bits<16> num, string n, FPR32 high>
189 : SystemZRegWithSubregs<n, [high]> {
190  let HWEncoding = num;
191  let SubRegIndices = [subreg_r32];
192}
193
194// 8 pairs of FPR64s, with a one-register gap inbetween.
195class FPR128<bits<16> num, string n, FPR64 low, FPR64 high>
196 : SystemZRegWithSubregs<n, [low, high]> {
197  let HWEncoding = num;
198  let SubRegIndices = [subreg_l64, subreg_h64];
199  let CoveredBySubRegs = 1;
200}
201
202// Floating-point registers.  Registers 16-31 require the vector facility.
203foreach I = 0-15 in {
204  def F#I#S : FPR32<I, "f"#I>;
205  def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
206              DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
207}
208foreach I = 16-31 in {
209  def F#I#S : FPR32<I, "v"#I>;
210  def F#I#D : FPR64<I, "v"#I, !cast<FPR32>("F"#I#"S")>,
211              DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
212}
213
214foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
215  def F#I#Q  : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"),
216                     !cast<FPR64>("F"#I#"D")>;
217}
218
219// There's no store-multiple instruction for FPRs, so we're not fussy
220// about the order in which call-saved registers are allocated.
221defm FP32  : SystemZRegClass<"FP32", [f32], 32, (sequence "F%uS", 0, 15)>;
222defm FP64  : SystemZRegClass<"FP64", [f64], 64, (sequence "F%uD", 0, 15)>;
223defm FP128 : SystemZRegClass<"FP128", [f128], 128,
224                             (add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>;
225
226//===----------------------------------------------------------------------===//
227// Vector registers
228//===----------------------------------------------------------------------===//
229
230// A full 128-bit vector register, with an FPR64 as its high part.
231class VR128<bits<16> num, string n, FPR64 high>
232  : SystemZRegWithSubregs<n, [high]> {
233  let HWEncoding = num;
234  let SubRegIndices = [subreg_r64];
235}
236
237// Full vector registers.
238foreach I = 0-31 in {
239  def V#I : VR128<I, "v"#I, !cast<FPR64>("F"#I#"D")>,
240            DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
241}
242
243// Class used to store 32-bit values in the first element of a vector
244// register.  f32 scalars are used for the WLEDB and WLDEB instructions.
245defm VR32 : SystemZRegClass<"VR32", [f32, v4i8, v2i16], 32,
246                            (add (sequence "F%uS", 0, 7),
247                                 (sequence "F%uS", 16, 31),
248                                 (sequence "F%uS", 8, 15))>;
249
250// Class used to store 64-bit values in the upper half of a vector register.
251// The vector facility also includes scalar f64 instructions that operate
252// on the full vector register set.
253defm VR64 : SystemZRegClass<"VR64", [f64, v8i8, v4i16, v2i32, v2f32], 64,
254                            (add (sequence "F%uD", 0, 7),
255                                 (sequence "F%uD", 16, 31),
256                                 (sequence "F%uD", 8, 15))>;
257
258// The subset of vector registers that can be used for floating-point
259// operations too.
260defm VF128 : SystemZRegClass<"VF128",
261                             [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
262                             (sequence "V%u", 0, 15)>;
263
264// All vector registers.
265defm VR128 : SystemZRegClass<"VR128",
266                             [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, f128],
267                             128, (add (sequence "V%u", 0, 7),
268                                       (sequence "V%u", 16, 31),
269                                       (sequence "V%u", 8, 15))>;
270
271// Attaches a ValueType to a register operand, to make the instruction
272// definitions easier.
273class TypedReg<ValueType vtin, RegisterOperand opin> {
274  ValueType vt = vtin;
275  RegisterOperand op = opin;
276}
277
278def v32f    : TypedReg<i32,     VR32>;
279def v32sb   : TypedReg<f32,     VR32>;
280def v64g    : TypedReg<i64,     VR64>;
281def v64db   : TypedReg<f64,     VR64>;
282def v128b   : TypedReg<v16i8,   VR128>;
283def v128h   : TypedReg<v8i16,   VR128>;
284def v128f   : TypedReg<v4i32,   VR128>;
285def v128g   : TypedReg<v2i64,   VR128>;
286def v128q   : TypedReg<v16i8,   VR128>;
287def v128sb  : TypedReg<v4f32,   VR128>;
288def v128db  : TypedReg<v2f64,   VR128>;
289def v128xb  : TypedReg<f128,    VR128>;
290def v128any : TypedReg<untyped, VR128>;
291
292//===----------------------------------------------------------------------===//
293// Other registers
294//===----------------------------------------------------------------------===//
295
296// The 2-bit condition code field of the PSW.  Every register named in an
297// inline asm needs a class associated with it.
298def CC : SystemZReg<"cc">;
299let isAllocatable = 0, CopyCost = -1 in
300  def CCR : RegisterClass<"SystemZ", [i32], 32, (add CC)>;
301
302// Access registers.
303class ACR32<bits<16> num, string n> : SystemZReg<n> {
304  let HWEncoding = num;
305}
306foreach I = 0-15 in {
307  def A#I : ACR32<I, "a"#I>, DwarfRegNum<[!add(I, 48)]>;
308}
309defm AR32 : SystemZRegClass<"AR32", [i32], 32,
310                            (add (sequence "A%u", 0, 15)), 0>;
311
312// Control registers.
313class CREG64<bits<16> num, string n> : SystemZReg<n> {
314  let HWEncoding = num;
315}
316foreach I = 0-15 in {
317  def C#I : CREG64<I, "c"#I>, DwarfRegNum<[!add(I, 32)]>;
318}
319defm CR64 : SystemZRegClass<"CR64", [i64], 64,
320                            (add (sequence "C%u", 0, 15)), 0>;
321
322