1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86-specific support for the FastISel class. Much
11 // of the target-specific code is generated by tablegen in the file
12 // X86GenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "X86.h"
17 #include "X86CallingConv.h"
18 #include "X86InstrBuilder.h"
19 #include "X86InstrInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "X86RegisterInfo.h"
22 #include "X86Subtarget.h"
23 #include "X86TargetMachine.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Target/TargetOptions.h"
44 using namespace llvm;
45
46 namespace {
47
48 class X86FastISel final : public FastISel {
49 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
50 /// make the right decision when generating code for different targets.
51 const X86Subtarget *Subtarget;
52
53 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
54 /// floating point ops.
55 /// When SSE is available, use it for f32 operations.
56 /// When SSE2 is available, use it for f64 operations.
57 bool X86ScalarSSEf64;
58 bool X86ScalarSSEf32;
59
60 public:
X86FastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)61 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
62 const TargetLibraryInfo *libInfo)
63 : FastISel(funcInfo, libInfo) {
64 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
65 X86ScalarSSEf64 = Subtarget->hasSSE2();
66 X86ScalarSSEf32 = Subtarget->hasSSE1();
67 }
68
69 bool fastSelectInstruction(const Instruction *I) override;
70
71 /// The specified machine instr operand is a vreg, and that
72 /// vreg is being provided by the specified load instruction. If possible,
73 /// try to fold the load as an operand to the instruction, returning true if
74 /// possible.
75 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
76 const LoadInst *LI) override;
77
78 bool fastLowerArguments() override;
79 bool fastLowerCall(CallLoweringInfo &CLI) override;
80 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
81
82 #include "X86GenFastISel.inc"
83
84 private:
85 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
86 const DebugLoc &DL);
87
88 bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
89 unsigned &ResultReg, unsigned Alignment = 1);
90
91 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
92 MachineMemOperand *MMO = nullptr, bool Aligned = false);
93 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
94 X86AddressMode &AM,
95 MachineMemOperand *MMO = nullptr, bool Aligned = false);
96
97 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
98 unsigned &ResultReg);
99
100 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
101 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
102
103 bool X86SelectLoad(const Instruction *I);
104
105 bool X86SelectStore(const Instruction *I);
106
107 bool X86SelectRet(const Instruction *I);
108
109 bool X86SelectCmp(const Instruction *I);
110
111 bool X86SelectZExt(const Instruction *I);
112
113 bool X86SelectSExt(const Instruction *I);
114
115 bool X86SelectBranch(const Instruction *I);
116
117 bool X86SelectShift(const Instruction *I);
118
119 bool X86SelectDivRem(const Instruction *I);
120
121 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
122
123 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
124
125 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
126
127 bool X86SelectSelect(const Instruction *I);
128
129 bool X86SelectTrunc(const Instruction *I);
130
131 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
132 const TargetRegisterClass *RC);
133
134 bool X86SelectFPExt(const Instruction *I);
135 bool X86SelectFPTrunc(const Instruction *I);
136 bool X86SelectSIToFP(const Instruction *I);
137 bool X86SelectUIToFP(const Instruction *I);
138 bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
139
getInstrInfo() const140 const X86InstrInfo *getInstrInfo() const {
141 return Subtarget->getInstrInfo();
142 }
getTargetMachine() const143 const X86TargetMachine *getTargetMachine() const {
144 return static_cast<const X86TargetMachine *>(&TM);
145 }
146
147 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
148
149 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
150 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
151 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
152 unsigned fastMaterializeConstant(const Constant *C) override;
153
154 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
155
156 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
157
158 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
159 /// computed in an SSE register, not on the X87 floating point stack.
isScalarFPTypeInSSEReg(EVT VT) const160 bool isScalarFPTypeInSSEReg(EVT VT) const {
161 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
162 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
163 }
164
165 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
166
167 bool IsMemcpySmall(uint64_t Len);
168
169 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
170 X86AddressMode SrcAM, uint64_t Len);
171
172 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
173 const Value *Cond);
174
175 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
176 X86AddressMode &AM);
177
178 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
179 const TargetRegisterClass *RC, unsigned Op0,
180 bool Op0IsKill, unsigned Op1, bool Op1IsKill,
181 unsigned Op2, bool Op2IsKill, unsigned Op3,
182 bool Op3IsKill);
183 };
184
185 } // end anonymous namespace.
186
187 static std::pair<unsigned, bool>
getX86SSEConditionCode(CmpInst::Predicate Predicate)188 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
189 unsigned CC;
190 bool NeedSwap = false;
191
192 // SSE Condition code mapping:
193 // 0 - EQ
194 // 1 - LT
195 // 2 - LE
196 // 3 - UNORD
197 // 4 - NEQ
198 // 5 - NLT
199 // 6 - NLE
200 // 7 - ORD
201 switch (Predicate) {
202 default: llvm_unreachable("Unexpected predicate");
203 case CmpInst::FCMP_OEQ: CC = 0; break;
204 case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
205 case CmpInst::FCMP_OLT: CC = 1; break;
206 case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
207 case CmpInst::FCMP_OLE: CC = 2; break;
208 case CmpInst::FCMP_UNO: CC = 3; break;
209 case CmpInst::FCMP_UNE: CC = 4; break;
210 case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
211 case CmpInst::FCMP_UGE: CC = 5; break;
212 case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
213 case CmpInst::FCMP_UGT: CC = 6; break;
214 case CmpInst::FCMP_ORD: CC = 7; break;
215 case CmpInst::FCMP_UEQ: CC = 8; break;
216 case CmpInst::FCMP_ONE: CC = 12; break;
217 }
218
219 return std::make_pair(CC, NeedSwap);
220 }
221
222 /// Adds a complex addressing mode to the given machine instr builder.
223 /// Note, this will constrain the index register. If its not possible to
224 /// constrain the given index register, then a new one will be created. The
225 /// IndexReg field of the addressing mode will be updated to match in this case.
226 const MachineInstrBuilder &
addFullAddress(const MachineInstrBuilder & MIB,X86AddressMode & AM)227 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
228 X86AddressMode &AM) {
229 // First constrain the index register. It needs to be a GR64_NOSP.
230 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
231 MIB->getNumOperands() +
232 X86::AddrIndexReg);
233 return ::addFullAddress(MIB, AM);
234 }
235
236 /// Check if it is possible to fold the condition from the XALU intrinsic
237 /// into the user. The condition code will only be updated on success.
foldX86XALUIntrinsic(X86::CondCode & CC,const Instruction * I,const Value * Cond)238 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
239 const Value *Cond) {
240 if (!isa<ExtractValueInst>(Cond))
241 return false;
242
243 const auto *EV = cast<ExtractValueInst>(Cond);
244 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
245 return false;
246
247 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
248 MVT RetVT;
249 const Function *Callee = II->getCalledFunction();
250 Type *RetTy =
251 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
252 if (!isTypeLegal(RetTy, RetVT))
253 return false;
254
255 if (RetVT != MVT::i32 && RetVT != MVT::i64)
256 return false;
257
258 X86::CondCode TmpCC;
259 switch (II->getIntrinsicID()) {
260 default: return false;
261 case Intrinsic::sadd_with_overflow:
262 case Intrinsic::ssub_with_overflow:
263 case Intrinsic::smul_with_overflow:
264 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
265 case Intrinsic::uadd_with_overflow:
266 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
267 }
268
269 // Check if both instructions are in the same basic block.
270 if (II->getParent() != I->getParent())
271 return false;
272
273 // Make sure nothing is in the way
274 BasicBlock::const_iterator Start(I);
275 BasicBlock::const_iterator End(II);
276 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
277 // We only expect extractvalue instructions between the intrinsic and the
278 // instruction to be selected.
279 if (!isa<ExtractValueInst>(Itr))
280 return false;
281
282 // Check that the extractvalue operand comes from the intrinsic.
283 const auto *EVI = cast<ExtractValueInst>(Itr);
284 if (EVI->getAggregateOperand() != II)
285 return false;
286 }
287
288 CC = TmpCC;
289 return true;
290 }
291
isTypeLegal(Type * Ty,MVT & VT,bool AllowI1)292 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
293 EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
294 if (evt == MVT::Other || !evt.isSimple())
295 // Unhandled type. Halt "fast" selection and bail.
296 return false;
297
298 VT = evt.getSimpleVT();
299 // For now, require SSE/SSE2 for performing floating-point operations,
300 // since x87 requires additional work.
301 if (VT == MVT::f64 && !X86ScalarSSEf64)
302 return false;
303 if (VT == MVT::f32 && !X86ScalarSSEf32)
304 return false;
305 // Similarly, no f80 support yet.
306 if (VT == MVT::f80)
307 return false;
308 // We only handle legal types. For example, on x86-32 the instruction
309 // selector contains all of the 64-bit instructions from x86-64,
310 // under the assumption that i64 won't be used if the target doesn't
311 // support it.
312 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
313 }
314
315 #include "X86GenCallingConv.inc"
316
317 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
318 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
319 /// Return true and the result register by reference if it is possible.
X86FastEmitLoad(EVT VT,X86AddressMode & AM,MachineMemOperand * MMO,unsigned & ResultReg,unsigned Alignment)320 bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
321 MachineMemOperand *MMO, unsigned &ResultReg,
322 unsigned Alignment) {
323 bool HasSSE41 = Subtarget->hasSSE41();
324 bool HasAVX = Subtarget->hasAVX();
325 bool HasAVX2 = Subtarget->hasAVX2();
326 bool HasAVX512 = Subtarget->hasAVX512();
327 bool HasVLX = Subtarget->hasVLX();
328 bool IsNonTemporal = MMO && MMO->isNonTemporal();
329
330 // Get opcode and regclass of the output for the given load instruction.
331 unsigned Opc = 0;
332 const TargetRegisterClass *RC = nullptr;
333 switch (VT.getSimpleVT().SimpleTy) {
334 default: return false;
335 case MVT::i1:
336 case MVT::i8:
337 Opc = X86::MOV8rm;
338 RC = &X86::GR8RegClass;
339 break;
340 case MVT::i16:
341 Opc = X86::MOV16rm;
342 RC = &X86::GR16RegClass;
343 break;
344 case MVT::i32:
345 Opc = X86::MOV32rm;
346 RC = &X86::GR32RegClass;
347 break;
348 case MVT::i64:
349 // Must be in x86-64 mode.
350 Opc = X86::MOV64rm;
351 RC = &X86::GR64RegClass;
352 break;
353 case MVT::f32:
354 if (X86ScalarSSEf32) {
355 Opc = HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm;
356 RC = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass;
357 } else {
358 Opc = X86::LD_Fp32m;
359 RC = &X86::RFP32RegClass;
360 }
361 break;
362 case MVT::f64:
363 if (X86ScalarSSEf64) {
364 Opc = HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm;
365 RC = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass;
366 } else {
367 Opc = X86::LD_Fp64m;
368 RC = &X86::RFP64RegClass;
369 }
370 break;
371 case MVT::f80:
372 // No f80 support yet.
373 return false;
374 case MVT::v4f32:
375 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
376 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
377 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
378 else if (Alignment >= 16)
379 Opc = HasVLX ? X86::VMOVAPSZ128rm :
380 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
381 else
382 Opc = HasVLX ? X86::VMOVUPSZ128rm :
383 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
384 RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass;
385 break;
386 case MVT::v2f64:
387 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
388 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
389 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
390 else if (Alignment >= 16)
391 Opc = HasVLX ? X86::VMOVAPDZ128rm :
392 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
393 else
394 Opc = HasVLX ? X86::VMOVUPDZ128rm :
395 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
396 RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass;
397 break;
398 case MVT::v4i32:
399 case MVT::v2i64:
400 case MVT::v8i16:
401 case MVT::v16i8:
402 if (IsNonTemporal && Alignment >= 16)
403 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
404 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
405 else if (Alignment >= 16)
406 Opc = HasVLX ? X86::VMOVDQA64Z128rm :
407 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
408 else
409 Opc = HasVLX ? X86::VMOVDQU64Z128rm :
410 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
411 RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass;
412 break;
413 case MVT::v8f32:
414 assert(HasAVX);
415 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
416 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
417 else if (IsNonTemporal && Alignment >= 16)
418 return false; // Force split for X86::VMOVNTDQArm
419 else if (Alignment >= 32)
420 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
421 else
422 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
423 RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass;
424 break;
425 case MVT::v4f64:
426 assert(HasAVX);
427 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
428 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
429 else if (IsNonTemporal && Alignment >= 16)
430 return false; // Force split for X86::VMOVNTDQArm
431 else if (Alignment >= 32)
432 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
433 else
434 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
435 RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass;
436 break;
437 case MVT::v8i32:
438 case MVT::v4i64:
439 case MVT::v16i16:
440 case MVT::v32i8:
441 assert(HasAVX);
442 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
443 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
444 else if (IsNonTemporal && Alignment >= 16)
445 return false; // Force split for X86::VMOVNTDQArm
446 else if (Alignment >= 32)
447 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
448 else
449 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
450 RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass;
451 break;
452 case MVT::v16f32:
453 assert(HasAVX512);
454 if (IsNonTemporal && Alignment >= 64)
455 Opc = X86::VMOVNTDQAZrm;
456 else
457 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
458 RC = &X86::VR512RegClass;
459 break;
460 case MVT::v8f64:
461 assert(HasAVX512);
462 if (IsNonTemporal && Alignment >= 64)
463 Opc = X86::VMOVNTDQAZrm;
464 else
465 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
466 RC = &X86::VR512RegClass;
467 break;
468 case MVT::v8i64:
469 case MVT::v16i32:
470 case MVT::v32i16:
471 case MVT::v64i8:
472 assert(HasAVX512);
473 // Note: There are a lot more choices based on type with AVX-512, but
474 // there's really no advantage when the load isn't masked.
475 if (IsNonTemporal && Alignment >= 64)
476 Opc = X86::VMOVNTDQAZrm;
477 else
478 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
479 RC = &X86::VR512RegClass;
480 break;
481 }
482
483 ResultReg = createResultReg(RC);
484 MachineInstrBuilder MIB =
485 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
486 addFullAddress(MIB, AM);
487 if (MMO)
488 MIB->addMemOperand(*FuncInfo.MF, MMO);
489 return true;
490 }
491
492 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
493 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
494 /// and a displacement offset, or a GlobalAddress,
495 /// i.e. V. Return true if it is possible.
X86FastEmitStore(EVT VT,unsigned ValReg,bool ValIsKill,X86AddressMode & AM,MachineMemOperand * MMO,bool Aligned)496 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
497 X86AddressMode &AM,
498 MachineMemOperand *MMO, bool Aligned) {
499 bool HasSSE1 = Subtarget->hasSSE1();
500 bool HasSSE2 = Subtarget->hasSSE2();
501 bool HasSSE4A = Subtarget->hasSSE4A();
502 bool HasAVX = Subtarget->hasAVX();
503 bool HasAVX512 = Subtarget->hasAVX512();
504 bool HasVLX = Subtarget->hasVLX();
505 bool IsNonTemporal = MMO && MMO->isNonTemporal();
506
507 // Get opcode and regclass of the output for the given store instruction.
508 unsigned Opc = 0;
509 switch (VT.getSimpleVT().SimpleTy) {
510 case MVT::f80: // No f80 support yet.
511 default: return false;
512 case MVT::i1: {
513 // Mask out all but lowest bit.
514 unsigned AndResult = createResultReg(&X86::GR8RegClass);
515 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
516 TII.get(X86::AND8ri), AndResult)
517 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
518 ValReg = AndResult;
519 LLVM_FALLTHROUGH; // handle i1 as i8.
520 }
521 case MVT::i8: Opc = X86::MOV8mr; break;
522 case MVT::i16: Opc = X86::MOV16mr; break;
523 case MVT::i32:
524 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
525 break;
526 case MVT::i64:
527 // Must be in x86-64 mode.
528 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
529 break;
530 case MVT::f32:
531 if (X86ScalarSSEf32) {
532 if (IsNonTemporal && HasSSE4A)
533 Opc = X86::MOVNTSS;
534 else
535 Opc = HasAVX512 ? X86::VMOVSSZmr :
536 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
537 } else
538 Opc = X86::ST_Fp32m;
539 break;
540 case MVT::f64:
541 if (X86ScalarSSEf32) {
542 if (IsNonTemporal && HasSSE4A)
543 Opc = X86::MOVNTSD;
544 else
545 Opc = HasAVX512 ? X86::VMOVSDZmr :
546 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
547 } else
548 Opc = X86::ST_Fp64m;
549 break;
550 case MVT::x86mmx:
551 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
552 break;
553 case MVT::v4f32:
554 if (Aligned) {
555 if (IsNonTemporal)
556 Opc = HasVLX ? X86::VMOVNTPSZ128mr :
557 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
558 else
559 Opc = HasVLX ? X86::VMOVAPSZ128mr :
560 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
561 } else
562 Opc = HasVLX ? X86::VMOVUPSZ128mr :
563 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
564 break;
565 case MVT::v2f64:
566 if (Aligned) {
567 if (IsNonTemporal)
568 Opc = HasVLX ? X86::VMOVNTPDZ128mr :
569 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
570 else
571 Opc = HasVLX ? X86::VMOVAPDZ128mr :
572 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
573 } else
574 Opc = HasVLX ? X86::VMOVUPDZ128mr :
575 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
576 break;
577 case MVT::v4i32:
578 case MVT::v2i64:
579 case MVT::v8i16:
580 case MVT::v16i8:
581 if (Aligned) {
582 if (IsNonTemporal)
583 Opc = HasVLX ? X86::VMOVNTDQZ128mr :
584 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
585 else
586 Opc = HasVLX ? X86::VMOVDQA64Z128mr :
587 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
588 } else
589 Opc = HasVLX ? X86::VMOVDQU64Z128mr :
590 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
591 break;
592 case MVT::v8f32:
593 assert(HasAVX);
594 if (Aligned) {
595 if (IsNonTemporal)
596 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
597 else
598 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
599 } else
600 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
601 break;
602 case MVT::v4f64:
603 assert(HasAVX);
604 if (Aligned) {
605 if (IsNonTemporal)
606 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
607 else
608 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
609 } else
610 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
611 break;
612 case MVT::v8i32:
613 case MVT::v4i64:
614 case MVT::v16i16:
615 case MVT::v32i8:
616 assert(HasAVX);
617 if (Aligned) {
618 if (IsNonTemporal)
619 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
620 else
621 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
622 } else
623 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
624 break;
625 case MVT::v16f32:
626 assert(HasAVX512);
627 if (Aligned)
628 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
629 else
630 Opc = X86::VMOVUPSZmr;
631 break;
632 case MVT::v8f64:
633 assert(HasAVX512);
634 if (Aligned) {
635 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
636 } else
637 Opc = X86::VMOVUPDZmr;
638 break;
639 case MVT::v8i64:
640 case MVT::v16i32:
641 case MVT::v32i16:
642 case MVT::v64i8:
643 assert(HasAVX512);
644 // Note: There are a lot more choices based on type with AVX-512, but
645 // there's really no advantage when the store isn't masked.
646 if (Aligned)
647 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
648 else
649 Opc = X86::VMOVDQU64Zmr;
650 break;
651 }
652
653 const MCInstrDesc &Desc = TII.get(Opc);
654 // Some of the instructions in the previous switch use FR128 instead
655 // of FR32 for ValReg. Make sure the register we feed the instruction
656 // matches its register class constraints.
657 // Note: This is fine to do a copy from FR32 to FR128, this is the
658 // same registers behind the scene and actually why it did not trigger
659 // any bugs before.
660 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
661 MachineInstrBuilder MIB =
662 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
663 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
664 if (MMO)
665 MIB->addMemOperand(*FuncInfo.MF, MMO);
666
667 return true;
668 }
669
X86FastEmitStore(EVT VT,const Value * Val,X86AddressMode & AM,MachineMemOperand * MMO,bool Aligned)670 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
671 X86AddressMode &AM,
672 MachineMemOperand *MMO, bool Aligned) {
673 // Handle 'null' like i32/i64 0.
674 if (isa<ConstantPointerNull>(Val))
675 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
676
677 // If this is a store of a simple constant, fold the constant into the store.
678 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
679 unsigned Opc = 0;
680 bool Signed = true;
681 switch (VT.getSimpleVT().SimpleTy) {
682 default: break;
683 case MVT::i1:
684 Signed = false;
685 LLVM_FALLTHROUGH; // Handle as i8.
686 case MVT::i8: Opc = X86::MOV8mi; break;
687 case MVT::i16: Opc = X86::MOV16mi; break;
688 case MVT::i32: Opc = X86::MOV32mi; break;
689 case MVT::i64:
690 // Must be a 32-bit sign extended value.
691 if (isInt<32>(CI->getSExtValue()))
692 Opc = X86::MOV64mi32;
693 break;
694 }
695
696 if (Opc) {
697 MachineInstrBuilder MIB =
698 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
699 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
700 : CI->getZExtValue());
701 if (MMO)
702 MIB->addMemOperand(*FuncInfo.MF, MMO);
703 return true;
704 }
705 }
706
707 unsigned ValReg = getRegForValue(Val);
708 if (ValReg == 0)
709 return false;
710
711 bool ValKill = hasTrivialKill(Val);
712 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
713 }
714
715 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
716 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
717 /// ISD::SIGN_EXTEND).
X86FastEmitExtend(ISD::NodeType Opc,EVT DstVT,unsigned Src,EVT SrcVT,unsigned & ResultReg)718 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
719 unsigned Src, EVT SrcVT,
720 unsigned &ResultReg) {
721 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
722 Src, /*TODO: Kill=*/false);
723 if (RR == 0)
724 return false;
725
726 ResultReg = RR;
727 return true;
728 }
729
handleConstantAddresses(const Value * V,X86AddressMode & AM)730 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
731 // Handle constant address.
732 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
733 // Can't handle alternate code models yet.
734 if (TM.getCodeModel() != CodeModel::Small)
735 return false;
736
737 // Can't handle TLS yet.
738 if (GV->isThreadLocal())
739 return false;
740
741 // Can't handle !absolute_symbol references yet.
742 if (GV->isAbsoluteSymbolRef())
743 return false;
744
745 // RIP-relative addresses can't have additional register operands, so if
746 // we've already folded stuff into the addressing mode, just force the
747 // global value into its own register, which we can use as the basereg.
748 if (!Subtarget->isPICStyleRIPRel() ||
749 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
750 // Okay, we've committed to selecting this global. Set up the address.
751 AM.GV = GV;
752
753 // Allow the subtarget to classify the global.
754 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
755
756 // If this reference is relative to the pic base, set it now.
757 if (isGlobalRelativeToPICBase(GVFlags)) {
758 // FIXME: How do we know Base.Reg is free??
759 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
760 }
761
762 // Unless the ABI requires an extra load, return a direct reference to
763 // the global.
764 if (!isGlobalStubReference(GVFlags)) {
765 if (Subtarget->isPICStyleRIPRel()) {
766 // Use rip-relative addressing if we can. Above we verified that the
767 // base and index registers are unused.
768 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
769 AM.Base.Reg = X86::RIP;
770 }
771 AM.GVOpFlags = GVFlags;
772 return true;
773 }
774
775 // Ok, we need to do a load from a stub. If we've already loaded from
776 // this stub, reuse the loaded pointer, otherwise emit the load now.
777 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
778 unsigned LoadReg;
779 if (I != LocalValueMap.end() && I->second != 0) {
780 LoadReg = I->second;
781 } else {
782 // Issue load from stub.
783 unsigned Opc = 0;
784 const TargetRegisterClass *RC = nullptr;
785 X86AddressMode StubAM;
786 StubAM.Base.Reg = AM.Base.Reg;
787 StubAM.GV = GV;
788 StubAM.GVOpFlags = GVFlags;
789
790 // Prepare for inserting code in the local-value area.
791 SavePoint SaveInsertPt = enterLocalValueArea();
792
793 if (TLI.getPointerTy(DL) == MVT::i64) {
794 Opc = X86::MOV64rm;
795 RC = &X86::GR64RegClass;
796
797 if (Subtarget->isPICStyleRIPRel())
798 StubAM.Base.Reg = X86::RIP;
799 } else {
800 Opc = X86::MOV32rm;
801 RC = &X86::GR32RegClass;
802 }
803
804 LoadReg = createResultReg(RC);
805 MachineInstrBuilder LoadMI =
806 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
807 addFullAddress(LoadMI, StubAM);
808
809 // Ok, back to normal mode.
810 leaveLocalValueArea(SaveInsertPt);
811
812 // Prevent loading GV stub multiple times in same MBB.
813 LocalValueMap[V] = LoadReg;
814 }
815
816 // Now construct the final address. Note that the Disp, Scale,
817 // and Index values may already be set here.
818 AM.Base.Reg = LoadReg;
819 AM.GV = nullptr;
820 return true;
821 }
822 }
823
824 // If all else fails, try to materialize the value in a register.
825 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
826 if (AM.Base.Reg == 0) {
827 AM.Base.Reg = getRegForValue(V);
828 return AM.Base.Reg != 0;
829 }
830 if (AM.IndexReg == 0) {
831 assert(AM.Scale == 1 && "Scale with no index!");
832 AM.IndexReg = getRegForValue(V);
833 return AM.IndexReg != 0;
834 }
835 }
836
837 return false;
838 }
839
840 /// X86SelectAddress - Attempt to fill in an address from the given value.
841 ///
X86SelectAddress(const Value * V,X86AddressMode & AM)842 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
843 SmallVector<const Value *, 32> GEPs;
844 redo_gep:
845 const User *U = nullptr;
846 unsigned Opcode = Instruction::UserOp1;
847 if (const Instruction *I = dyn_cast<Instruction>(V)) {
848 // Don't walk into other basic blocks; it's possible we haven't
849 // visited them yet, so the instructions may not yet be assigned
850 // virtual registers.
851 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
852 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
853 Opcode = I->getOpcode();
854 U = I;
855 }
856 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
857 Opcode = C->getOpcode();
858 U = C;
859 }
860
861 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
862 if (Ty->getAddressSpace() > 255)
863 // Fast instruction selection doesn't support the special
864 // address spaces.
865 return false;
866
867 switch (Opcode) {
868 default: break;
869 case Instruction::BitCast:
870 // Look past bitcasts.
871 return X86SelectAddress(U->getOperand(0), AM);
872
873 case Instruction::IntToPtr:
874 // Look past no-op inttoptrs.
875 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
876 TLI.getPointerTy(DL))
877 return X86SelectAddress(U->getOperand(0), AM);
878 break;
879
880 case Instruction::PtrToInt:
881 // Look past no-op ptrtoints.
882 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
883 return X86SelectAddress(U->getOperand(0), AM);
884 break;
885
886 case Instruction::Alloca: {
887 // Do static allocas.
888 const AllocaInst *A = cast<AllocaInst>(V);
889 DenseMap<const AllocaInst *, int>::iterator SI =
890 FuncInfo.StaticAllocaMap.find(A);
891 if (SI != FuncInfo.StaticAllocaMap.end()) {
892 AM.BaseType = X86AddressMode::FrameIndexBase;
893 AM.Base.FrameIndex = SI->second;
894 return true;
895 }
896 break;
897 }
898
899 case Instruction::Add: {
900 // Adds of constants are common and easy enough.
901 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
902 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
903 // They have to fit in the 32-bit signed displacement field though.
904 if (isInt<32>(Disp)) {
905 AM.Disp = (uint32_t)Disp;
906 return X86SelectAddress(U->getOperand(0), AM);
907 }
908 }
909 break;
910 }
911
912 case Instruction::GetElementPtr: {
913 X86AddressMode SavedAM = AM;
914
915 // Pattern-match simple GEPs.
916 uint64_t Disp = (int32_t)AM.Disp;
917 unsigned IndexReg = AM.IndexReg;
918 unsigned Scale = AM.Scale;
919 gep_type_iterator GTI = gep_type_begin(U);
920 // Iterate through the indices, folding what we can. Constants can be
921 // folded, and one dynamic index can be handled, if the scale is supported.
922 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
923 i != e; ++i, ++GTI) {
924 const Value *Op = *i;
925 if (StructType *STy = GTI.getStructTypeOrNull()) {
926 const StructLayout *SL = DL.getStructLayout(STy);
927 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
928 continue;
929 }
930
931 // A array/variable index is always of the form i*S where S is the
932 // constant scale size. See if we can push the scale into immediates.
933 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
934 for (;;) {
935 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
936 // Constant-offset addressing.
937 Disp += CI->getSExtValue() * S;
938 break;
939 }
940 if (canFoldAddIntoGEP(U, Op)) {
941 // A compatible add with a constant operand. Fold the constant.
942 ConstantInt *CI =
943 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
944 Disp += CI->getSExtValue() * S;
945 // Iterate on the other operand.
946 Op = cast<AddOperator>(Op)->getOperand(0);
947 continue;
948 }
949 if (IndexReg == 0 &&
950 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
951 (S == 1 || S == 2 || S == 4 || S == 8)) {
952 // Scaled-index addressing.
953 Scale = S;
954 IndexReg = getRegForGEPIndex(Op).first;
955 if (IndexReg == 0)
956 return false;
957 break;
958 }
959 // Unsupported.
960 goto unsupported_gep;
961 }
962 }
963
964 // Check for displacement overflow.
965 if (!isInt<32>(Disp))
966 break;
967
968 AM.IndexReg = IndexReg;
969 AM.Scale = Scale;
970 AM.Disp = (uint32_t)Disp;
971 GEPs.push_back(V);
972
973 if (const GetElementPtrInst *GEP =
974 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
975 // Ok, the GEP indices were covered by constant-offset and scaled-index
976 // addressing. Update the address state and move on to examining the base.
977 V = GEP;
978 goto redo_gep;
979 } else if (X86SelectAddress(U->getOperand(0), AM)) {
980 return true;
981 }
982
983 // If we couldn't merge the gep value into this addr mode, revert back to
984 // our address and just match the value instead of completely failing.
985 AM = SavedAM;
986
987 for (const Value *I : reverse(GEPs))
988 if (handleConstantAddresses(I, AM))
989 return true;
990
991 return false;
992 unsupported_gep:
993 // Ok, the GEP indices weren't all covered.
994 break;
995 }
996 }
997
998 return handleConstantAddresses(V, AM);
999 }
1000
1001 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
1002 ///
X86SelectCallAddress(const Value * V,X86AddressMode & AM)1003 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
1004 const User *U = nullptr;
1005 unsigned Opcode = Instruction::UserOp1;
1006 const Instruction *I = dyn_cast<Instruction>(V);
1007 // Record if the value is defined in the same basic block.
1008 //
1009 // This information is crucial to know whether or not folding an
1010 // operand is valid.
1011 // Indeed, FastISel generates or reuses a virtual register for all
1012 // operands of all instructions it selects. Obviously, the definition and
1013 // its uses must use the same virtual register otherwise the produced
1014 // code is incorrect.
1015 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1016 // registers for values that are alive across basic blocks. This ensures
1017 // that the values are consistently set between across basic block, even
1018 // if different instruction selection mechanisms are used (e.g., a mix of
1019 // SDISel and FastISel).
1020 // For values local to a basic block, the instruction selection process
1021 // generates these virtual registers with whatever method is appropriate
1022 // for its needs. In particular, FastISel and SDISel do not share the way
1023 // local virtual registers are set.
1024 // Therefore, this is impossible (or at least unsafe) to share values
1025 // between basic blocks unless they use the same instruction selection
1026 // method, which is not guarantee for X86.
1027 // Moreover, things like hasOneUse could not be used accurately, if we
1028 // allow to reference values across basic blocks whereas they are not
1029 // alive across basic blocks initially.
1030 bool InMBB = true;
1031 if (I) {
1032 Opcode = I->getOpcode();
1033 U = I;
1034 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1035 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1036 Opcode = C->getOpcode();
1037 U = C;
1038 }
1039
1040 switch (Opcode) {
1041 default: break;
1042 case Instruction::BitCast:
1043 // Look past bitcasts if its operand is in the same BB.
1044 if (InMBB)
1045 return X86SelectCallAddress(U->getOperand(0), AM);
1046 break;
1047
1048 case Instruction::IntToPtr:
1049 // Look past no-op inttoptrs if its operand is in the same BB.
1050 if (InMBB &&
1051 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1052 TLI.getPointerTy(DL))
1053 return X86SelectCallAddress(U->getOperand(0), AM);
1054 break;
1055
1056 case Instruction::PtrToInt:
1057 // Look past no-op ptrtoints if its operand is in the same BB.
1058 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1059 return X86SelectCallAddress(U->getOperand(0), AM);
1060 break;
1061 }
1062
1063 // Handle constant address.
1064 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1065 // Can't handle alternate code models yet.
1066 if (TM.getCodeModel() != CodeModel::Small)
1067 return false;
1068
1069 // RIP-relative addresses can't have additional register operands.
1070 if (Subtarget->isPICStyleRIPRel() &&
1071 (AM.Base.Reg != 0 || AM.IndexReg != 0))
1072 return false;
1073
1074 // Can't handle TLS.
1075 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1076 if (GVar->isThreadLocal())
1077 return false;
1078
1079 // Okay, we've committed to selecting this global. Set up the basic address.
1080 AM.GV = GV;
1081
1082 // Return a direct reference to the global. Fastisel can handle calls to
1083 // functions that require loads, such as dllimport and nonlazybind
1084 // functions.
1085 if (Subtarget->isPICStyleRIPRel()) {
1086 // Use rip-relative addressing if we can. Above we verified that the
1087 // base and index registers are unused.
1088 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1089 AM.Base.Reg = X86::RIP;
1090 } else {
1091 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1092 }
1093
1094 return true;
1095 }
1096
1097 // If all else fails, try to materialize the value in a register.
1098 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1099 if (AM.Base.Reg == 0) {
1100 AM.Base.Reg = getRegForValue(V);
1101 return AM.Base.Reg != 0;
1102 }
1103 if (AM.IndexReg == 0) {
1104 assert(AM.Scale == 1 && "Scale with no index!");
1105 AM.IndexReg = getRegForValue(V);
1106 return AM.IndexReg != 0;
1107 }
1108 }
1109
1110 return false;
1111 }
1112
1113
1114 /// X86SelectStore - Select and emit code to implement store instructions.
X86SelectStore(const Instruction * I)1115 bool X86FastISel::X86SelectStore(const Instruction *I) {
1116 // Atomic stores need special handling.
1117 const StoreInst *S = cast<StoreInst>(I);
1118
1119 if (S->isAtomic())
1120 return false;
1121
1122 const Value *PtrV = I->getOperand(1);
1123 if (TLI.supportSwiftError()) {
1124 // Swifterror values can come from either a function parameter with
1125 // swifterror attribute or an alloca with swifterror attribute.
1126 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1127 if (Arg->hasSwiftErrorAttr())
1128 return false;
1129 }
1130
1131 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1132 if (Alloca->isSwiftError())
1133 return false;
1134 }
1135 }
1136
1137 const Value *Val = S->getValueOperand();
1138 const Value *Ptr = S->getPointerOperand();
1139
1140 MVT VT;
1141 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1142 return false;
1143
1144 unsigned Alignment = S->getAlignment();
1145 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1146 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1147 Alignment = ABIAlignment;
1148 bool Aligned = Alignment >= ABIAlignment;
1149
1150 X86AddressMode AM;
1151 if (!X86SelectAddress(Ptr, AM))
1152 return false;
1153
1154 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1155 }
1156
1157 /// X86SelectRet - Select and emit code to implement ret instructions.
X86SelectRet(const Instruction * I)1158 bool X86FastISel::X86SelectRet(const Instruction *I) {
1159 const ReturnInst *Ret = cast<ReturnInst>(I);
1160 const Function &F = *I->getParent()->getParent();
1161 const X86MachineFunctionInfo *X86MFInfo =
1162 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1163
1164 if (!FuncInfo.CanLowerReturn)
1165 return false;
1166
1167 if (TLI.supportSwiftError() &&
1168 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1169 return false;
1170
1171 if (TLI.supportSplitCSR(FuncInfo.MF))
1172 return false;
1173
1174 CallingConv::ID CC = F.getCallingConv();
1175 if (CC != CallingConv::C &&
1176 CC != CallingConv::Fast &&
1177 CC != CallingConv::X86_FastCall &&
1178 CC != CallingConv::X86_StdCall &&
1179 CC != CallingConv::X86_ThisCall &&
1180 CC != CallingConv::X86_64_SysV &&
1181 CC != CallingConv::Win64)
1182 return false;
1183
1184 // Don't handle popping bytes if they don't fit the ret's immediate.
1185 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1186 return false;
1187
1188 // fastcc with -tailcallopt is intended to provide a guaranteed
1189 // tail call optimization. Fastisel doesn't know how to do that.
1190 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1191 return false;
1192
1193 // Let SDISel handle vararg functions.
1194 if (F.isVarArg())
1195 return false;
1196
1197 // Build a list of return value registers.
1198 SmallVector<unsigned, 4> RetRegs;
1199
1200 if (Ret->getNumOperands() > 0) {
1201 SmallVector<ISD::OutputArg, 4> Outs;
1202 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1203
1204 // Analyze operands of the call, assigning locations to each operand.
1205 SmallVector<CCValAssign, 16> ValLocs;
1206 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1207 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1208
1209 const Value *RV = Ret->getOperand(0);
1210 unsigned Reg = getRegForValue(RV);
1211 if (Reg == 0)
1212 return false;
1213
1214 // Only handle a single return value for now.
1215 if (ValLocs.size() != 1)
1216 return false;
1217
1218 CCValAssign &VA = ValLocs[0];
1219
1220 // Don't bother handling odd stuff for now.
1221 if (VA.getLocInfo() != CCValAssign::Full)
1222 return false;
1223 // Only handle register returns for now.
1224 if (!VA.isRegLoc())
1225 return false;
1226
1227 // The calling-convention tables for x87 returns don't tell
1228 // the whole story.
1229 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1230 return false;
1231
1232 unsigned SrcReg = Reg + VA.getValNo();
1233 EVT SrcVT = TLI.getValueType(DL, RV->getType());
1234 EVT DstVT = VA.getValVT();
1235 // Special handling for extended integers.
1236 if (SrcVT != DstVT) {
1237 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1238 return false;
1239
1240 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1241 return false;
1242
1243 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1244
1245 if (SrcVT == MVT::i1) {
1246 if (Outs[0].Flags.isSExt())
1247 return false;
1248 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1249 SrcVT = MVT::i8;
1250 }
1251 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1252 ISD::SIGN_EXTEND;
1253 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1254 SrcReg, /*TODO: Kill=*/false);
1255 }
1256
1257 // Make the copy.
1258 unsigned DstReg = VA.getLocReg();
1259 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1260 // Avoid a cross-class copy. This is very unlikely.
1261 if (!SrcRC->contains(DstReg))
1262 return false;
1263 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1264 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1265
1266 // Add register to return instruction.
1267 RetRegs.push_back(VA.getLocReg());
1268 }
1269
1270 // Swift calling convention does not require we copy the sret argument
1271 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1272
1273 // All x86 ABIs require that for returning structs by value we copy
1274 // the sret argument into %rax/%eax (depending on ABI) for the return.
1275 // We saved the argument into a virtual register in the entry block,
1276 // so now we copy the value out and into %rax/%eax.
1277 if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
1278 unsigned Reg = X86MFInfo->getSRetReturnReg();
1279 assert(Reg &&
1280 "SRetReturnReg should have been set in LowerFormalArguments()!");
1281 unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
1282 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1283 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1284 RetRegs.push_back(RetReg);
1285 }
1286
1287 // Now emit the RET.
1288 MachineInstrBuilder MIB;
1289 if (X86MFInfo->getBytesToPopOnReturn()) {
1290 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1291 TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1292 .addImm(X86MFInfo->getBytesToPopOnReturn());
1293 } else {
1294 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1295 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1296 }
1297 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1298 MIB.addReg(RetRegs[i], RegState::Implicit);
1299 return true;
1300 }
1301
1302 /// X86SelectLoad - Select and emit code to implement load instructions.
1303 ///
X86SelectLoad(const Instruction * I)1304 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1305 const LoadInst *LI = cast<LoadInst>(I);
1306
1307 // Atomic loads need special handling.
1308 if (LI->isAtomic())
1309 return false;
1310
1311 const Value *SV = I->getOperand(0);
1312 if (TLI.supportSwiftError()) {
1313 // Swifterror values can come from either a function parameter with
1314 // swifterror attribute or an alloca with swifterror attribute.
1315 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1316 if (Arg->hasSwiftErrorAttr())
1317 return false;
1318 }
1319
1320 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1321 if (Alloca->isSwiftError())
1322 return false;
1323 }
1324 }
1325
1326 MVT VT;
1327 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1328 return false;
1329
1330 const Value *Ptr = LI->getPointerOperand();
1331
1332 X86AddressMode AM;
1333 if (!X86SelectAddress(Ptr, AM))
1334 return false;
1335
1336 unsigned Alignment = LI->getAlignment();
1337 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1338 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1339 Alignment = ABIAlignment;
1340
1341 unsigned ResultReg = 0;
1342 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1343 Alignment))
1344 return false;
1345
1346 updateValueMap(I, ResultReg);
1347 return true;
1348 }
1349
X86ChooseCmpOpcode(EVT VT,const X86Subtarget * Subtarget)1350 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1351 bool HasAVX512 = Subtarget->hasAVX512();
1352 bool HasAVX = Subtarget->hasAVX();
1353 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1354 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1355
1356 switch (VT.getSimpleVT().SimpleTy) {
1357 default: return 0;
1358 case MVT::i8: return X86::CMP8rr;
1359 case MVT::i16: return X86::CMP16rr;
1360 case MVT::i32: return X86::CMP32rr;
1361 case MVT::i64: return X86::CMP64rr;
1362 case MVT::f32:
1363 return X86ScalarSSEf32
1364 ? (HasAVX512 ? X86::VUCOMISSZrr
1365 : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr)
1366 : 0;
1367 case MVT::f64:
1368 return X86ScalarSSEf64
1369 ? (HasAVX512 ? X86::VUCOMISDZrr
1370 : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr)
1371 : 0;
1372 }
1373 }
1374
1375 /// If we have a comparison with RHS as the RHS of the comparison, return an
1376 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
X86ChooseCmpImmediateOpcode(EVT VT,const ConstantInt * RHSC)1377 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1378 int64_t Val = RHSC->getSExtValue();
1379 switch (VT.getSimpleVT().SimpleTy) {
1380 // Otherwise, we can't fold the immediate into this comparison.
1381 default:
1382 return 0;
1383 case MVT::i8:
1384 return X86::CMP8ri;
1385 case MVT::i16:
1386 if (isInt<8>(Val))
1387 return X86::CMP16ri8;
1388 return X86::CMP16ri;
1389 case MVT::i32:
1390 if (isInt<8>(Val))
1391 return X86::CMP32ri8;
1392 return X86::CMP32ri;
1393 case MVT::i64:
1394 if (isInt<8>(Val))
1395 return X86::CMP64ri8;
1396 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1397 // field.
1398 if (isInt<32>(Val))
1399 return X86::CMP64ri32;
1400 return 0;
1401 }
1402 }
1403
X86FastEmitCompare(const Value * Op0,const Value * Op1,EVT VT,const DebugLoc & CurDbgLoc)1404 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1405 const DebugLoc &CurDbgLoc) {
1406 unsigned Op0Reg = getRegForValue(Op0);
1407 if (Op0Reg == 0) return false;
1408
1409 // Handle 'null' like i32/i64 0.
1410 if (isa<ConstantPointerNull>(Op1))
1411 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1412
1413 // We have two options: compare with register or immediate. If the RHS of
1414 // the compare is an immediate that we can fold into this compare, use
1415 // CMPri, otherwise use CMPrr.
1416 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1417 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1418 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1419 .addReg(Op0Reg)
1420 .addImm(Op1C->getSExtValue());
1421 return true;
1422 }
1423 }
1424
1425 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1426 if (CompareOpc == 0) return false;
1427
1428 unsigned Op1Reg = getRegForValue(Op1);
1429 if (Op1Reg == 0) return false;
1430 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1431 .addReg(Op0Reg)
1432 .addReg(Op1Reg);
1433
1434 return true;
1435 }
1436
X86SelectCmp(const Instruction * I)1437 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1438 const CmpInst *CI = cast<CmpInst>(I);
1439
1440 MVT VT;
1441 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1442 return false;
1443
1444 // Try to optimize or fold the cmp.
1445 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1446 unsigned ResultReg = 0;
1447 switch (Predicate) {
1448 default: break;
1449 case CmpInst::FCMP_FALSE: {
1450 ResultReg = createResultReg(&X86::GR32RegClass);
1451 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1452 ResultReg);
1453 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1454 X86::sub_8bit);
1455 if (!ResultReg)
1456 return false;
1457 break;
1458 }
1459 case CmpInst::FCMP_TRUE: {
1460 ResultReg = createResultReg(&X86::GR8RegClass);
1461 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1462 ResultReg).addImm(1);
1463 break;
1464 }
1465 }
1466
1467 if (ResultReg) {
1468 updateValueMap(I, ResultReg);
1469 return true;
1470 }
1471
1472 const Value *LHS = CI->getOperand(0);
1473 const Value *RHS = CI->getOperand(1);
1474
1475 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1476 // We don't have to materialize a zero constant for this case and can just use
1477 // %x again on the RHS.
1478 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1479 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1480 if (RHSC && RHSC->isNullValue())
1481 RHS = LHS;
1482 }
1483
1484 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1485 static const uint16_t SETFOpcTable[2][3] = {
1486 { X86::SETEr, X86::SETNPr, X86::AND8rr },
1487 { X86::SETNEr, X86::SETPr, X86::OR8rr }
1488 };
1489 const uint16_t *SETFOpc = nullptr;
1490 switch (Predicate) {
1491 default: break;
1492 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1493 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1494 }
1495
1496 ResultReg = createResultReg(&X86::GR8RegClass);
1497 if (SETFOpc) {
1498 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1499 return false;
1500
1501 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1502 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1503 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1504 FlagReg1);
1505 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1506 FlagReg2);
1507 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1508 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1509 updateValueMap(I, ResultReg);
1510 return true;
1511 }
1512
1513 X86::CondCode CC;
1514 bool SwapArgs;
1515 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1516 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1517 unsigned Opc = X86::getSETFromCond(CC);
1518
1519 if (SwapArgs)
1520 std::swap(LHS, RHS);
1521
1522 // Emit a compare of LHS/RHS.
1523 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1524 return false;
1525
1526 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1527 updateValueMap(I, ResultReg);
1528 return true;
1529 }
1530
X86SelectZExt(const Instruction * I)1531 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1532 EVT DstVT = TLI.getValueType(DL, I->getType());
1533 if (!TLI.isTypeLegal(DstVT))
1534 return false;
1535
1536 unsigned ResultReg = getRegForValue(I->getOperand(0));
1537 if (ResultReg == 0)
1538 return false;
1539
1540 // Handle zero-extension from i1 to i8, which is common.
1541 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1542 if (SrcVT == MVT::i1) {
1543 // Set the high bits to zero.
1544 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1545 SrcVT = MVT::i8;
1546
1547 if (ResultReg == 0)
1548 return false;
1549 }
1550
1551 if (DstVT == MVT::i64) {
1552 // Handle extension to 64-bits via sub-register shenanigans.
1553 unsigned MovInst;
1554
1555 switch (SrcVT.SimpleTy) {
1556 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1557 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1558 case MVT::i32: MovInst = X86::MOV32rr; break;
1559 default: llvm_unreachable("Unexpected zext to i64 source type");
1560 }
1561
1562 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1563 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1564 .addReg(ResultReg);
1565
1566 ResultReg = createResultReg(&X86::GR64RegClass);
1567 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1568 ResultReg)
1569 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1570 } else if (DstVT == MVT::i16) {
1571 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1572 // extend to 32-bits and then extract down to 16-bits.
1573 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1574 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
1575 Result32).addReg(ResultReg);
1576
1577 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1578 X86::sub_16bit);
1579 } else if (DstVT != MVT::i8) {
1580 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1581 ResultReg, /*Kill=*/true);
1582 if (ResultReg == 0)
1583 return false;
1584 }
1585
1586 updateValueMap(I, ResultReg);
1587 return true;
1588 }
1589
X86SelectSExt(const Instruction * I)1590 bool X86FastISel::X86SelectSExt(const Instruction *I) {
1591 EVT DstVT = TLI.getValueType(DL, I->getType());
1592 if (!TLI.isTypeLegal(DstVT))
1593 return false;
1594
1595 unsigned ResultReg = getRegForValue(I->getOperand(0));
1596 if (ResultReg == 0)
1597 return false;
1598
1599 // Handle sign-extension from i1 to i8.
1600 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1601 if (SrcVT == MVT::i1) {
1602 // Set the high bits to zero.
1603 unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg,
1604 /*TODO: Kill=*/false);
1605 if (ZExtReg == 0)
1606 return false;
1607
1608 // Negate the result to make an 8-bit sign extended value.
1609 ResultReg = createResultReg(&X86::GR8RegClass);
1610 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
1611 ResultReg).addReg(ZExtReg);
1612
1613 SrcVT = MVT::i8;
1614 }
1615
1616 if (DstVT == MVT::i16) {
1617 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1618 // extend to 32-bits and then extract down to 16-bits.
1619 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1620 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
1621 Result32).addReg(ResultReg);
1622
1623 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1624 X86::sub_16bit);
1625 } else if (DstVT != MVT::i8) {
1626 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1627 ResultReg, /*Kill=*/true);
1628 if (ResultReg == 0)
1629 return false;
1630 }
1631
1632 updateValueMap(I, ResultReg);
1633 return true;
1634 }
1635
X86SelectBranch(const Instruction * I)1636 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1637 // Unconditional branches are selected by tablegen-generated code.
1638 // Handle a conditional branch.
1639 const BranchInst *BI = cast<BranchInst>(I);
1640 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1641 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1642
1643 // Fold the common case of a conditional branch with a comparison
1644 // in the same block (values defined on other blocks may not have
1645 // initialized registers).
1646 X86::CondCode CC;
1647 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1648 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1649 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1650
1651 // Try to optimize or fold the cmp.
1652 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1653 switch (Predicate) {
1654 default: break;
1655 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1656 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1657 }
1658
1659 const Value *CmpLHS = CI->getOperand(0);
1660 const Value *CmpRHS = CI->getOperand(1);
1661
1662 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1663 // 0.0.
1664 // We don't have to materialize a zero constant for this case and can just
1665 // use %x again on the RHS.
1666 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1667 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1668 if (CmpRHSC && CmpRHSC->isNullValue())
1669 CmpRHS = CmpLHS;
1670 }
1671
1672 // Try to take advantage of fallthrough opportunities.
1673 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1674 std::swap(TrueMBB, FalseMBB);
1675 Predicate = CmpInst::getInversePredicate(Predicate);
1676 }
1677
1678 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1679 // code check. Instead two branch instructions are required to check all
1680 // the flags. First we change the predicate to a supported condition code,
1681 // which will be the first branch. Later one we will emit the second
1682 // branch.
1683 bool NeedExtraBranch = false;
1684 switch (Predicate) {
1685 default: break;
1686 case CmpInst::FCMP_OEQ:
1687 std::swap(TrueMBB, FalseMBB);
1688 LLVM_FALLTHROUGH;
1689 case CmpInst::FCMP_UNE:
1690 NeedExtraBranch = true;
1691 Predicate = CmpInst::FCMP_ONE;
1692 break;
1693 }
1694
1695 bool SwapArgs;
1696 unsigned BranchOpc;
1697 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1698 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1699
1700 BranchOpc = X86::GetCondBranchFromCond(CC);
1701 if (SwapArgs)
1702 std::swap(CmpLHS, CmpRHS);
1703
1704 // Emit a compare of the LHS and RHS, setting the flags.
1705 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1706 return false;
1707
1708 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1709 .addMBB(TrueMBB);
1710
1711 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1712 // to UNE above).
1713 if (NeedExtraBranch) {
1714 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1715 .addMBB(TrueMBB);
1716 }
1717
1718 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1719 return true;
1720 }
1721 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1722 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1723 // typically happen for _Bool and C++ bools.
1724 MVT SourceVT;
1725 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1726 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1727 unsigned TestOpc = 0;
1728 switch (SourceVT.SimpleTy) {
1729 default: break;
1730 case MVT::i8: TestOpc = X86::TEST8ri; break;
1731 case MVT::i16: TestOpc = X86::TEST16ri; break;
1732 case MVT::i32: TestOpc = X86::TEST32ri; break;
1733 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1734 }
1735 if (TestOpc) {
1736 unsigned OpReg = getRegForValue(TI->getOperand(0));
1737 if (OpReg == 0) return false;
1738
1739 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1740 .addReg(OpReg).addImm(1);
1741
1742 unsigned JmpOpc = X86::JNE_1;
1743 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1744 std::swap(TrueMBB, FalseMBB);
1745 JmpOpc = X86::JE_1;
1746 }
1747
1748 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1749 .addMBB(TrueMBB);
1750
1751 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1752 return true;
1753 }
1754 }
1755 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1756 // Fake request the condition, otherwise the intrinsic might be completely
1757 // optimized away.
1758 unsigned TmpReg = getRegForValue(BI->getCondition());
1759 if (TmpReg == 0)
1760 return false;
1761
1762 unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1763
1764 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1765 .addMBB(TrueMBB);
1766 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1767 return true;
1768 }
1769
1770 // Otherwise do a clumsy setcc and re-test it.
1771 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1772 // in an explicit cast, so make sure to handle that correctly.
1773 unsigned OpReg = getRegForValue(BI->getCondition());
1774 if (OpReg == 0) return false;
1775
1776 // In case OpReg is a K register, COPY to a GPR
1777 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1778 unsigned KOpReg = OpReg;
1779 OpReg = createResultReg(&X86::GR32RegClass);
1780 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1781 TII.get(TargetOpcode::COPY), OpReg)
1782 .addReg(KOpReg);
1783 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true,
1784 X86::sub_8bit);
1785 }
1786 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1787 .addReg(OpReg)
1788 .addImm(1);
1789 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1790 .addMBB(TrueMBB);
1791 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1792 return true;
1793 }
1794
X86SelectShift(const Instruction * I)1795 bool X86FastISel::X86SelectShift(const Instruction *I) {
1796 unsigned CReg = 0, OpReg = 0;
1797 const TargetRegisterClass *RC = nullptr;
1798 if (I->getType()->isIntegerTy(8)) {
1799 CReg = X86::CL;
1800 RC = &X86::GR8RegClass;
1801 switch (I->getOpcode()) {
1802 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1803 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1804 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1805 default: return false;
1806 }
1807 } else if (I->getType()->isIntegerTy(16)) {
1808 CReg = X86::CX;
1809 RC = &X86::GR16RegClass;
1810 switch (I->getOpcode()) {
1811 default: llvm_unreachable("Unexpected shift opcode");
1812 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1813 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1814 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1815 }
1816 } else if (I->getType()->isIntegerTy(32)) {
1817 CReg = X86::ECX;
1818 RC = &X86::GR32RegClass;
1819 switch (I->getOpcode()) {
1820 default: llvm_unreachable("Unexpected shift opcode");
1821 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1822 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1823 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1824 }
1825 } else if (I->getType()->isIntegerTy(64)) {
1826 CReg = X86::RCX;
1827 RC = &X86::GR64RegClass;
1828 switch (I->getOpcode()) {
1829 default: llvm_unreachable("Unexpected shift opcode");
1830 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1831 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1832 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1833 }
1834 } else {
1835 return false;
1836 }
1837
1838 MVT VT;
1839 if (!isTypeLegal(I->getType(), VT))
1840 return false;
1841
1842 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1843 if (Op0Reg == 0) return false;
1844
1845 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1846 if (Op1Reg == 0) return false;
1847 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1848 CReg).addReg(Op1Reg);
1849
1850 // The shift instruction uses X86::CL. If we defined a super-register
1851 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1852 if (CReg != X86::CL)
1853 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1854 TII.get(TargetOpcode::KILL), X86::CL)
1855 .addReg(CReg, RegState::Kill);
1856
1857 unsigned ResultReg = createResultReg(RC);
1858 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1859 .addReg(Op0Reg);
1860 updateValueMap(I, ResultReg);
1861 return true;
1862 }
1863
X86SelectDivRem(const Instruction * I)1864 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1865 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1866 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1867 const static bool S = true; // IsSigned
1868 const static bool U = false; // !IsSigned
1869 const static unsigned Copy = TargetOpcode::COPY;
1870 // For the X86 DIV/IDIV instruction, in most cases the dividend
1871 // (numerator) must be in a specific register pair highreg:lowreg,
1872 // producing the quotient in lowreg and the remainder in highreg.
1873 // For most data types, to set up the instruction, the dividend is
1874 // copied into lowreg, and lowreg is sign-extended or zero-extended
1875 // into highreg. The exception is i8, where the dividend is defined
1876 // as a single register rather than a register pair, and we
1877 // therefore directly sign-extend or zero-extend the dividend into
1878 // lowreg, instead of copying, and ignore the highreg.
1879 const static struct DivRemEntry {
1880 // The following portion depends only on the data type.
1881 const TargetRegisterClass *RC;
1882 unsigned LowInReg; // low part of the register pair
1883 unsigned HighInReg; // high part of the register pair
1884 // The following portion depends on both the data type and the operation.
1885 struct DivRemResult {
1886 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1887 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1888 // highreg, or copying a zero into highreg.
1889 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1890 // zero/sign-extending into lowreg for i8.
1891 unsigned DivRemResultReg; // Register containing the desired result.
1892 bool IsOpSigned; // Whether to use signed or unsigned form.
1893 } ResultTable[NumOps];
1894 } OpTable[NumTypes] = {
1895 { &X86::GR8RegClass, X86::AX, 0, {
1896 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1897 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1898 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1899 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1900 }
1901 }, // i8
1902 { &X86::GR16RegClass, X86::AX, X86::DX, {
1903 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1904 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1905 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1906 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1907 }
1908 }, // i16
1909 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1910 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1911 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1912 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1913 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1914 }
1915 }, // i32
1916 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1917 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1918 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1919 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1920 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1921 }
1922 }, // i64
1923 };
1924
1925 MVT VT;
1926 if (!isTypeLegal(I->getType(), VT))
1927 return false;
1928
1929 unsigned TypeIndex, OpIndex;
1930 switch (VT.SimpleTy) {
1931 default: return false;
1932 case MVT::i8: TypeIndex = 0; break;
1933 case MVT::i16: TypeIndex = 1; break;
1934 case MVT::i32: TypeIndex = 2; break;
1935 case MVT::i64: TypeIndex = 3;
1936 if (!Subtarget->is64Bit())
1937 return false;
1938 break;
1939 }
1940
1941 switch (I->getOpcode()) {
1942 default: llvm_unreachable("Unexpected div/rem opcode");
1943 case Instruction::SDiv: OpIndex = 0; break;
1944 case Instruction::SRem: OpIndex = 1; break;
1945 case Instruction::UDiv: OpIndex = 2; break;
1946 case Instruction::URem: OpIndex = 3; break;
1947 }
1948
1949 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1950 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1951 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1952 if (Op0Reg == 0)
1953 return false;
1954 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1955 if (Op1Reg == 0)
1956 return false;
1957
1958 // Move op0 into low-order input register.
1959 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1960 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1961 // Zero-extend or sign-extend into high-order input register.
1962 if (OpEntry.OpSignExtend) {
1963 if (OpEntry.IsOpSigned)
1964 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1965 TII.get(OpEntry.OpSignExtend));
1966 else {
1967 unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1968 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1969 TII.get(X86::MOV32r0), Zero32);
1970
1971 // Copy the zero into the appropriate sub/super/identical physical
1972 // register. Unfortunately the operations needed are not uniform enough
1973 // to fit neatly into the table above.
1974 if (VT == MVT::i16) {
1975 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1976 TII.get(Copy), TypeEntry.HighInReg)
1977 .addReg(Zero32, 0, X86::sub_16bit);
1978 } else if (VT == MVT::i32) {
1979 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1980 TII.get(Copy), TypeEntry.HighInReg)
1981 .addReg(Zero32);
1982 } else if (VT == MVT::i64) {
1983 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1984 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1985 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1986 }
1987 }
1988 }
1989 // Generate the DIV/IDIV instruction.
1990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1991 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1992 // For i8 remainder, we can't reference ah directly, as we'll end
1993 // up with bogus copies like %r9b = COPY %ah. Reference ax
1994 // instead to prevent ah references in a rex instruction.
1995 //
1996 // The current assumption of the fast register allocator is that isel
1997 // won't generate explicit references to the GR8_NOREX registers. If
1998 // the allocator and/or the backend get enhanced to be more robust in
1999 // that regard, this can be, and should be, removed.
2000 unsigned ResultReg = 0;
2001 if ((I->getOpcode() == Instruction::SRem ||
2002 I->getOpcode() == Instruction::URem) &&
2003 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
2004 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
2005 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
2006 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2007 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
2008
2009 // Shift AX right by 8 bits instead of using AH.
2010 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
2011 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2012
2013 // Now reference the 8-bit subreg of the result.
2014 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2015 /*Kill=*/true, X86::sub_8bit);
2016 }
2017 // Copy the result out of the physreg if we haven't already.
2018 if (!ResultReg) {
2019 ResultReg = createResultReg(TypeEntry.RC);
2020 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
2021 .addReg(OpEntry.DivRemResultReg);
2022 }
2023 updateValueMap(I, ResultReg);
2024
2025 return true;
2026 }
2027
2028 /// Emit a conditional move instruction (if the are supported) to lower
2029 /// the select.
X86FastEmitCMoveSelect(MVT RetVT,const Instruction * I)2030 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2031 // Check if the subtarget supports these instructions.
2032 if (!Subtarget->hasCMov())
2033 return false;
2034
2035 // FIXME: Add support for i8.
2036 if (RetVT < MVT::i16 || RetVT > MVT::i64)
2037 return false;
2038
2039 const Value *Cond = I->getOperand(0);
2040 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2041 bool NeedTest = true;
2042 X86::CondCode CC = X86::COND_NE;
2043
2044 // Optimize conditions coming from a compare if both instructions are in the
2045 // same basic block (values defined in other basic blocks may not have
2046 // initialized registers).
2047 const auto *CI = dyn_cast<CmpInst>(Cond);
2048 if (CI && (CI->getParent() == I->getParent())) {
2049 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2050
2051 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2052 static const uint16_t SETFOpcTable[2][3] = {
2053 { X86::SETNPr, X86::SETEr , X86::TEST8rr },
2054 { X86::SETPr, X86::SETNEr, X86::OR8rr }
2055 };
2056 const uint16_t *SETFOpc = nullptr;
2057 switch (Predicate) {
2058 default: break;
2059 case CmpInst::FCMP_OEQ:
2060 SETFOpc = &SETFOpcTable[0][0];
2061 Predicate = CmpInst::ICMP_NE;
2062 break;
2063 case CmpInst::FCMP_UNE:
2064 SETFOpc = &SETFOpcTable[1][0];
2065 Predicate = CmpInst::ICMP_NE;
2066 break;
2067 }
2068
2069 bool NeedSwap;
2070 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2071 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2072
2073 const Value *CmpLHS = CI->getOperand(0);
2074 const Value *CmpRHS = CI->getOperand(1);
2075 if (NeedSwap)
2076 std::swap(CmpLHS, CmpRHS);
2077
2078 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2079 // Emit a compare of the LHS and RHS, setting the flags.
2080 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2081 return false;
2082
2083 if (SETFOpc) {
2084 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
2085 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
2087 FlagReg1);
2088 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
2089 FlagReg2);
2090 auto const &II = TII.get(SETFOpc[2]);
2091 if (II.getNumDefs()) {
2092 unsigned TmpReg = createResultReg(&X86::GR8RegClass);
2093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2094 .addReg(FlagReg2).addReg(FlagReg1);
2095 } else {
2096 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2097 .addReg(FlagReg2).addReg(FlagReg1);
2098 }
2099 }
2100 NeedTest = false;
2101 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2102 // Fake request the condition, otherwise the intrinsic might be completely
2103 // optimized away.
2104 unsigned TmpReg = getRegForValue(Cond);
2105 if (TmpReg == 0)
2106 return false;
2107
2108 NeedTest = false;
2109 }
2110
2111 if (NeedTest) {
2112 // Selects operate on i1, however, CondReg is 8 bits width and may contain
2113 // garbage. Indeed, only the less significant bit is supposed to be
2114 // accurate. If we read more than the lsb, we may see non-zero values
2115 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2116 // the select. This is achieved by performing TEST against 1.
2117 unsigned CondReg = getRegForValue(Cond);
2118 if (CondReg == 0)
2119 return false;
2120 bool CondIsKill = hasTrivialKill(Cond);
2121
2122 // In case OpReg is a K register, COPY to a GPR
2123 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2124 unsigned KCondReg = CondReg;
2125 CondReg = createResultReg(&X86::GR32RegClass);
2126 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2127 TII.get(TargetOpcode::COPY), CondReg)
2128 .addReg(KCondReg, getKillRegState(CondIsKill));
2129 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2130 X86::sub_8bit);
2131 }
2132 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2133 .addReg(CondReg, getKillRegState(CondIsKill))
2134 .addImm(1);
2135 }
2136
2137 const Value *LHS = I->getOperand(1);
2138 const Value *RHS = I->getOperand(2);
2139
2140 unsigned RHSReg = getRegForValue(RHS);
2141 bool RHSIsKill = hasTrivialKill(RHS);
2142
2143 unsigned LHSReg = getRegForValue(LHS);
2144 bool LHSIsKill = hasTrivialKill(LHS);
2145
2146 if (!LHSReg || !RHSReg)
2147 return false;
2148
2149 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2150 unsigned Opc = X86::getCMovFromCond(CC, TRI.getRegSizeInBits(*RC)/8);
2151 unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
2152 LHSReg, LHSIsKill);
2153 updateValueMap(I, ResultReg);
2154 return true;
2155 }
2156
2157 /// Emit SSE or AVX instructions to lower the select.
2158 ///
2159 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2160 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2161 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
X86FastEmitSSESelect(MVT RetVT,const Instruction * I)2162 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2163 // Optimize conditions coming from a compare if both instructions are in the
2164 // same basic block (values defined in other basic blocks may not have
2165 // initialized registers).
2166 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2167 if (!CI || (CI->getParent() != I->getParent()))
2168 return false;
2169
2170 if (I->getType() != CI->getOperand(0)->getType() ||
2171 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2172 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2173 return false;
2174
2175 const Value *CmpLHS = CI->getOperand(0);
2176 const Value *CmpRHS = CI->getOperand(1);
2177 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2178
2179 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2180 // We don't have to materialize a zero constant for this case and can just use
2181 // %x again on the RHS.
2182 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2183 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2184 if (CmpRHSC && CmpRHSC->isNullValue())
2185 CmpRHS = CmpLHS;
2186 }
2187
2188 unsigned CC;
2189 bool NeedSwap;
2190 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2191 if (CC > 7 && !Subtarget->hasAVX())
2192 return false;
2193
2194 if (NeedSwap)
2195 std::swap(CmpLHS, CmpRHS);
2196
2197 // Choose the SSE instruction sequence based on data type (float or double).
2198 static const uint16_t OpcTable[2][4] = {
2199 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr },
2200 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr }
2201 };
2202
2203 const uint16_t *Opc = nullptr;
2204 switch (RetVT.SimpleTy) {
2205 default: return false;
2206 case MVT::f32: Opc = &OpcTable[0][0]; break;
2207 case MVT::f64: Opc = &OpcTable[1][0]; break;
2208 }
2209
2210 const Value *LHS = I->getOperand(1);
2211 const Value *RHS = I->getOperand(2);
2212
2213 unsigned LHSReg = getRegForValue(LHS);
2214 bool LHSIsKill = hasTrivialKill(LHS);
2215
2216 unsigned RHSReg = getRegForValue(RHS);
2217 bool RHSIsKill = hasTrivialKill(RHS);
2218
2219 unsigned CmpLHSReg = getRegForValue(CmpLHS);
2220 bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2221
2222 unsigned CmpRHSReg = getRegForValue(CmpRHS);
2223 bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2224
2225 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
2226 return false;
2227
2228 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2229 unsigned ResultReg;
2230
2231 if (Subtarget->hasAVX512()) {
2232 // If we have AVX512 we can use a mask compare and masked movss/sd.
2233 const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2234 const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2235
2236 unsigned CmpOpcode =
2237 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2238 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill,
2239 CmpRHSReg, CmpRHSIsKill, CC);
2240
2241 // Need an IMPLICIT_DEF for the input that is used to generate the upper
2242 // bits of the result register since its not based on any of the inputs.
2243 unsigned ImplicitDefReg = createResultReg(VR128X);
2244 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2245 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2246
2247 // Place RHSReg is the passthru of the masked movss/sd operation and put
2248 // LHS in the input. The mask input comes from the compare.
2249 unsigned MovOpcode =
2250 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2251 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill,
2252 CmpReg, true, ImplicitDefReg, true,
2253 LHSReg, LHSIsKill);
2254
2255 ResultReg = createResultReg(RC);
2256 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2257 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2258
2259 } else if (Subtarget->hasAVX()) {
2260 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2261
2262 // If we have AVX, create 1 blendv instead of 3 logic instructions.
2263 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2264 // uses XMM0 as the selection register. That may need just as many
2265 // instructions as the AND/ANDN/OR sequence due to register moves, so
2266 // don't bother.
2267 unsigned CmpOpcode =
2268 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2269 unsigned BlendOpcode =
2270 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2271
2272 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
2273 CmpRHSReg, CmpRHSIsKill, CC);
2274 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2275 LHSReg, LHSIsKill, CmpReg, true);
2276 ResultReg = createResultReg(RC);
2277 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2278 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2279 } else {
2280 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2281 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2282 CmpRHSReg, CmpRHSIsKill, CC);
2283 unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false,
2284 LHSReg, LHSIsKill);
2285 unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true,
2286 RHSReg, RHSIsKill);
2287 unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true,
2288 AndReg, /*IsKill=*/true);
2289 ResultReg = createResultReg(RC);
2290 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2291 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2292 }
2293 updateValueMap(I, ResultReg);
2294 return true;
2295 }
2296
X86FastEmitPseudoSelect(MVT RetVT,const Instruction * I)2297 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2298 // These are pseudo CMOV instructions and will be later expanded into control-
2299 // flow.
2300 unsigned Opc;
2301 switch (RetVT.SimpleTy) {
2302 default: return false;
2303 case MVT::i8: Opc = X86::CMOV_GR8; break;
2304 case MVT::i16: Opc = X86::CMOV_GR16; break;
2305 case MVT::i32: Opc = X86::CMOV_GR32; break;
2306 case MVT::f32: Opc = X86::CMOV_FR32; break;
2307 case MVT::f64: Opc = X86::CMOV_FR64; break;
2308 }
2309
2310 const Value *Cond = I->getOperand(0);
2311 X86::CondCode CC = X86::COND_NE;
2312
2313 // Optimize conditions coming from a compare if both instructions are in the
2314 // same basic block (values defined in other basic blocks may not have
2315 // initialized registers).
2316 const auto *CI = dyn_cast<CmpInst>(Cond);
2317 if (CI && (CI->getParent() == I->getParent())) {
2318 bool NeedSwap;
2319 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2320 if (CC > X86::LAST_VALID_COND)
2321 return false;
2322
2323 const Value *CmpLHS = CI->getOperand(0);
2324 const Value *CmpRHS = CI->getOperand(1);
2325
2326 if (NeedSwap)
2327 std::swap(CmpLHS, CmpRHS);
2328
2329 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2330 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2331 return false;
2332 } else {
2333 unsigned CondReg = getRegForValue(Cond);
2334 if (CondReg == 0)
2335 return false;
2336 bool CondIsKill = hasTrivialKill(Cond);
2337
2338 // In case OpReg is a K register, COPY to a GPR
2339 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2340 unsigned KCondReg = CondReg;
2341 CondReg = createResultReg(&X86::GR32RegClass);
2342 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2343 TII.get(TargetOpcode::COPY), CondReg)
2344 .addReg(KCondReg, getKillRegState(CondIsKill));
2345 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2346 X86::sub_8bit);
2347 }
2348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2349 .addReg(CondReg, getKillRegState(CondIsKill))
2350 .addImm(1);
2351 }
2352
2353 const Value *LHS = I->getOperand(1);
2354 const Value *RHS = I->getOperand(2);
2355
2356 unsigned LHSReg = getRegForValue(LHS);
2357 bool LHSIsKill = hasTrivialKill(LHS);
2358
2359 unsigned RHSReg = getRegForValue(RHS);
2360 bool RHSIsKill = hasTrivialKill(RHS);
2361
2362 if (!LHSReg || !RHSReg)
2363 return false;
2364
2365 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2366
2367 unsigned ResultReg =
2368 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2369 updateValueMap(I, ResultReg);
2370 return true;
2371 }
2372
X86SelectSelect(const Instruction * I)2373 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2374 MVT RetVT;
2375 if (!isTypeLegal(I->getType(), RetVT))
2376 return false;
2377
2378 // Check if we can fold the select.
2379 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2380 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2381 const Value *Opnd = nullptr;
2382 switch (Predicate) {
2383 default: break;
2384 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2385 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2386 }
2387 // No need for a select anymore - this is an unconditional move.
2388 if (Opnd) {
2389 unsigned OpReg = getRegForValue(Opnd);
2390 if (OpReg == 0)
2391 return false;
2392 bool OpIsKill = hasTrivialKill(Opnd);
2393 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2394 unsigned ResultReg = createResultReg(RC);
2395 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2396 TII.get(TargetOpcode::COPY), ResultReg)
2397 .addReg(OpReg, getKillRegState(OpIsKill));
2398 updateValueMap(I, ResultReg);
2399 return true;
2400 }
2401 }
2402
2403 // First try to use real conditional move instructions.
2404 if (X86FastEmitCMoveSelect(RetVT, I))
2405 return true;
2406
2407 // Try to use a sequence of SSE instructions to simulate a conditional move.
2408 if (X86FastEmitSSESelect(RetVT, I))
2409 return true;
2410
2411 // Fall-back to pseudo conditional move instructions, which will be later
2412 // converted to control-flow.
2413 if (X86FastEmitPseudoSelect(RetVT, I))
2414 return true;
2415
2416 return false;
2417 }
2418
2419 // Common code for X86SelectSIToFP and X86SelectUIToFP.
X86SelectIntToFP(const Instruction * I,bool IsSigned)2420 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2421 // The target-independent selection algorithm in FastISel already knows how
2422 // to select a SINT_TO_FP if the target is SSE but not AVX.
2423 // Early exit if the subtarget doesn't have AVX.
2424 // Unsigned conversion requires avx512.
2425 bool HasAVX512 = Subtarget->hasAVX512();
2426 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2427 return false;
2428
2429 // TODO: We could sign extend narrower types.
2430 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2431 if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2432 return false;
2433
2434 // Select integer to float/double conversion.
2435 unsigned OpReg = getRegForValue(I->getOperand(0));
2436 if (OpReg == 0)
2437 return false;
2438
2439 unsigned Opcode;
2440
2441 static const uint16_t SCvtOpc[2][2][2] = {
2442 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr },
2443 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } },
2444 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2445 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2446 };
2447 static const uint16_t UCvtOpc[2][2] = {
2448 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2449 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2450 };
2451 bool Is64Bit = SrcVT == MVT::i64;
2452
2453 if (I->getType()->isDoubleTy()) {
2454 // s/uitofp int -> double
2455 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2456 } else if (I->getType()->isFloatTy()) {
2457 // s/uitofp int -> float
2458 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2459 } else
2460 return false;
2461
2462 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2463 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2464 unsigned ImplicitDefReg = createResultReg(RC);
2465 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2466 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2467 unsigned ResultReg =
2468 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
2469 updateValueMap(I, ResultReg);
2470 return true;
2471 }
2472
X86SelectSIToFP(const Instruction * I)2473 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2474 return X86SelectIntToFP(I, /*IsSigned*/true);
2475 }
2476
X86SelectUIToFP(const Instruction * I)2477 bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2478 return X86SelectIntToFP(I, /*IsSigned*/false);
2479 }
2480
2481 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
X86SelectFPExtOrFPTrunc(const Instruction * I,unsigned TargetOpc,const TargetRegisterClass * RC)2482 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2483 unsigned TargetOpc,
2484 const TargetRegisterClass *RC) {
2485 assert((I->getOpcode() == Instruction::FPExt ||
2486 I->getOpcode() == Instruction::FPTrunc) &&
2487 "Instruction must be an FPExt or FPTrunc!");
2488
2489 unsigned OpReg = getRegForValue(I->getOperand(0));
2490 if (OpReg == 0)
2491 return false;
2492
2493 unsigned ImplicitDefReg;
2494 if (Subtarget->hasAVX()) {
2495 ImplicitDefReg = createResultReg(RC);
2496 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2497 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2498
2499 }
2500
2501 unsigned ResultReg = createResultReg(RC);
2502 MachineInstrBuilder MIB;
2503 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2504 ResultReg);
2505
2506 if (Subtarget->hasAVX())
2507 MIB.addReg(ImplicitDefReg);
2508
2509 MIB.addReg(OpReg);
2510 updateValueMap(I, ResultReg);
2511 return true;
2512 }
2513
X86SelectFPExt(const Instruction * I)2514 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2515 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2516 I->getOperand(0)->getType()->isFloatTy()) {
2517 bool HasAVX512 = Subtarget->hasAVX512();
2518 // fpext from float to double.
2519 unsigned Opc =
2520 HasAVX512 ? X86::VCVTSS2SDZrr
2521 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2522 return X86SelectFPExtOrFPTrunc(
2523 I, Opc, HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass);
2524 }
2525
2526 return false;
2527 }
2528
X86SelectFPTrunc(const Instruction * I)2529 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2530 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2531 I->getOperand(0)->getType()->isDoubleTy()) {
2532 bool HasAVX512 = Subtarget->hasAVX512();
2533 // fptrunc from double to float.
2534 unsigned Opc =
2535 HasAVX512 ? X86::VCVTSD2SSZrr
2536 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2537 return X86SelectFPExtOrFPTrunc(
2538 I, Opc, HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass);
2539 }
2540
2541 return false;
2542 }
2543
X86SelectTrunc(const Instruction * I)2544 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2545 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2546 EVT DstVT = TLI.getValueType(DL, I->getType());
2547
2548 // This code only handles truncation to byte.
2549 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2550 return false;
2551 if (!TLI.isTypeLegal(SrcVT))
2552 return false;
2553
2554 unsigned InputReg = getRegForValue(I->getOperand(0));
2555 if (!InputReg)
2556 // Unhandled operand. Halt "fast" selection and bail.
2557 return false;
2558
2559 if (SrcVT == MVT::i8) {
2560 // Truncate from i8 to i1; no code needed.
2561 updateValueMap(I, InputReg);
2562 return true;
2563 }
2564
2565 // Issue an extract_subreg.
2566 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
2567 InputReg, false,
2568 X86::sub_8bit);
2569 if (!ResultReg)
2570 return false;
2571
2572 updateValueMap(I, ResultReg);
2573 return true;
2574 }
2575
IsMemcpySmall(uint64_t Len)2576 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2577 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2578 }
2579
TryEmitSmallMemcpy(X86AddressMode DestAM,X86AddressMode SrcAM,uint64_t Len)2580 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2581 X86AddressMode SrcAM, uint64_t Len) {
2582
2583 // Make sure we don't bloat code by inlining very large memcpy's.
2584 if (!IsMemcpySmall(Len))
2585 return false;
2586
2587 bool i64Legal = Subtarget->is64Bit();
2588
2589 // We don't care about alignment here since we just emit integer accesses.
2590 while (Len) {
2591 MVT VT;
2592 if (Len >= 8 && i64Legal)
2593 VT = MVT::i64;
2594 else if (Len >= 4)
2595 VT = MVT::i32;
2596 else if (Len >= 2)
2597 VT = MVT::i16;
2598 else
2599 VT = MVT::i8;
2600
2601 unsigned Reg;
2602 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2603 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2604 assert(RV && "Failed to emit load or store??");
2605
2606 unsigned Size = VT.getSizeInBits()/8;
2607 Len -= Size;
2608 DestAM.Disp += Size;
2609 SrcAM.Disp += Size;
2610 }
2611
2612 return true;
2613 }
2614
fastLowerIntrinsicCall(const IntrinsicInst * II)2615 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2616 // FIXME: Handle more intrinsics.
2617 switch (II->getIntrinsicID()) {
2618 default: return false;
2619 case Intrinsic::convert_from_fp16:
2620 case Intrinsic::convert_to_fp16: {
2621 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2622 return false;
2623
2624 const Value *Op = II->getArgOperand(0);
2625 unsigned InputReg = getRegForValue(Op);
2626 if (InputReg == 0)
2627 return false;
2628
2629 // F16C only allows converting from float to half and from half to float.
2630 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2631 if (IsFloatToHalf) {
2632 if (!Op->getType()->isFloatTy())
2633 return false;
2634 } else {
2635 if (!II->getType()->isFloatTy())
2636 return false;
2637 }
2638
2639 unsigned ResultReg = 0;
2640 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2641 if (IsFloatToHalf) {
2642 // 'InputReg' is implicitly promoted from register class FR32 to
2643 // register class VR128 by method 'constrainOperandRegClass' which is
2644 // directly called by 'fastEmitInst_ri'.
2645 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2646 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2647 // It's consistent with the other FP instructions, which are usually
2648 // controlled by MXCSR.
2649 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
2650
2651 // Move the lower 32-bits of ResultReg to another register of class GR32.
2652 ResultReg = createResultReg(&X86::GR32RegClass);
2653 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2654 TII.get(X86::VMOVPDI2DIrr), ResultReg)
2655 .addReg(InputReg, RegState::Kill);
2656
2657 // The result value is in the lower 16-bits of ResultReg.
2658 unsigned RegIdx = X86::sub_16bit;
2659 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2660 } else {
2661 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2662 // Explicitly sign-extend the input to 32-bit.
2663 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2664 /*Kill=*/false);
2665
2666 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2667 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2668 InputReg, /*Kill=*/true);
2669
2670 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2671
2672 // The result value is in the lower 32-bits of ResultReg.
2673 // Emit an explicit copy from register class VR128 to register class FR32.
2674 ResultReg = createResultReg(&X86::FR32RegClass);
2675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2676 TII.get(TargetOpcode::COPY), ResultReg)
2677 .addReg(InputReg, RegState::Kill);
2678 }
2679
2680 updateValueMap(II, ResultReg);
2681 return true;
2682 }
2683 case Intrinsic::frameaddress: {
2684 MachineFunction *MF = FuncInfo.MF;
2685 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2686 return false;
2687
2688 Type *RetTy = II->getCalledFunction()->getReturnType();
2689
2690 MVT VT;
2691 if (!isTypeLegal(RetTy, VT))
2692 return false;
2693
2694 unsigned Opc;
2695 const TargetRegisterClass *RC = nullptr;
2696
2697 switch (VT.SimpleTy) {
2698 default: llvm_unreachable("Invalid result type for frameaddress.");
2699 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2700 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2701 }
2702
2703 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2704 // we get the wrong frame register.
2705 MachineFrameInfo &MFI = MF->getFrameInfo();
2706 MFI.setFrameAddressIsTaken(true);
2707
2708 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2709 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2710 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2711 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2712 "Invalid Frame Register!");
2713
2714 // Always make a copy of the frame register to a vreg first, so that we
2715 // never directly reference the frame register (the TwoAddressInstruction-
2716 // Pass doesn't like that).
2717 unsigned SrcReg = createResultReg(RC);
2718 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2719 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2720
2721 // Now recursively load from the frame address.
2722 // movq (%rbp), %rax
2723 // movq (%rax), %rax
2724 // movq (%rax), %rax
2725 // ...
2726 unsigned DestReg;
2727 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2728 while (Depth--) {
2729 DestReg = createResultReg(RC);
2730 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2731 TII.get(Opc), DestReg), SrcReg);
2732 SrcReg = DestReg;
2733 }
2734
2735 updateValueMap(II, SrcReg);
2736 return true;
2737 }
2738 case Intrinsic::memcpy: {
2739 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2740 // Don't handle volatile or variable length memcpys.
2741 if (MCI->isVolatile())
2742 return false;
2743
2744 if (isa<ConstantInt>(MCI->getLength())) {
2745 // Small memcpy's are common enough that we want to do them
2746 // without a call if possible.
2747 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2748 if (IsMemcpySmall(Len)) {
2749 X86AddressMode DestAM, SrcAM;
2750 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2751 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2752 return false;
2753 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2754 return true;
2755 }
2756 }
2757
2758 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2759 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2760 return false;
2761
2762 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2763 return false;
2764
2765 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1);
2766 }
2767 case Intrinsic::memset: {
2768 const MemSetInst *MSI = cast<MemSetInst>(II);
2769
2770 if (MSI->isVolatile())
2771 return false;
2772
2773 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2774 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2775 return false;
2776
2777 if (MSI->getDestAddressSpace() > 255)
2778 return false;
2779
2780 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
2781 }
2782 case Intrinsic::stackprotector: {
2783 // Emit code to store the stack guard onto the stack.
2784 EVT PtrTy = TLI.getPointerTy(DL);
2785
2786 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2787 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2788
2789 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2790
2791 // Grab the frame index.
2792 X86AddressMode AM;
2793 if (!X86SelectAddress(Slot, AM)) return false;
2794 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2795 return true;
2796 }
2797 case Intrinsic::dbg_declare: {
2798 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2799 X86AddressMode AM;
2800 assert(DI->getAddress() && "Null address should be checked earlier!");
2801 if (!X86SelectAddress(DI->getAddress(), AM))
2802 return false;
2803 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2804 // FIXME may need to add RegState::Debug to any registers produced,
2805 // although ESP/EBP should be the only ones at the moment.
2806 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2807 "Expected inlined-at fields to agree");
2808 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2809 .addImm(0)
2810 .addMetadata(DI->getVariable())
2811 .addMetadata(DI->getExpression());
2812 return true;
2813 }
2814 case Intrinsic::trap: {
2815 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2816 return true;
2817 }
2818 case Intrinsic::sqrt: {
2819 if (!Subtarget->hasSSE1())
2820 return false;
2821
2822 Type *RetTy = II->getCalledFunction()->getReturnType();
2823
2824 MVT VT;
2825 if (!isTypeLegal(RetTy, VT))
2826 return false;
2827
2828 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2829 // is not generated by FastISel yet.
2830 // FIXME: Update this code once tablegen can handle it.
2831 static const uint16_t SqrtOpc[3][2] = {
2832 { X86::SQRTSSr, X86::SQRTSDr },
2833 { X86::VSQRTSSr, X86::VSQRTSDr },
2834 { X86::VSQRTSSZr, X86::VSQRTSDZr },
2835 };
2836 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2837 Subtarget->hasAVX() ? 1 :
2838 0;
2839 unsigned Opc;
2840 switch (VT.SimpleTy) {
2841 default: return false;
2842 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2843 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2844 }
2845
2846 const Value *SrcVal = II->getArgOperand(0);
2847 unsigned SrcReg = getRegForValue(SrcVal);
2848
2849 if (SrcReg == 0)
2850 return false;
2851
2852 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2853 unsigned ImplicitDefReg = 0;
2854 if (AVXLevel > 0) {
2855 ImplicitDefReg = createResultReg(RC);
2856 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2857 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2858 }
2859
2860 unsigned ResultReg = createResultReg(RC);
2861 MachineInstrBuilder MIB;
2862 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2863 ResultReg);
2864
2865 if (ImplicitDefReg)
2866 MIB.addReg(ImplicitDefReg);
2867
2868 MIB.addReg(SrcReg);
2869
2870 updateValueMap(II, ResultReg);
2871 return true;
2872 }
2873 case Intrinsic::sadd_with_overflow:
2874 case Intrinsic::uadd_with_overflow:
2875 case Intrinsic::ssub_with_overflow:
2876 case Intrinsic::usub_with_overflow:
2877 case Intrinsic::smul_with_overflow:
2878 case Intrinsic::umul_with_overflow: {
2879 // This implements the basic lowering of the xalu with overflow intrinsics
2880 // into add/sub/mul followed by either seto or setb.
2881 const Function *Callee = II->getCalledFunction();
2882 auto *Ty = cast<StructType>(Callee->getReturnType());
2883 Type *RetTy = Ty->getTypeAtIndex(0U);
2884 assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2885 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2886 "Overflow value expected to be an i1");
2887
2888 MVT VT;
2889 if (!isTypeLegal(RetTy, VT))
2890 return false;
2891
2892 if (VT < MVT::i8 || VT > MVT::i64)
2893 return false;
2894
2895 const Value *LHS = II->getArgOperand(0);
2896 const Value *RHS = II->getArgOperand(1);
2897
2898 // Canonicalize immediate to the RHS.
2899 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2900 isCommutativeIntrinsic(II))
2901 std::swap(LHS, RHS);
2902
2903 bool UseIncDec = false;
2904 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
2905 UseIncDec = true;
2906
2907 unsigned BaseOpc, CondOpc;
2908 switch (II->getIntrinsicID()) {
2909 default: llvm_unreachable("Unexpected intrinsic!");
2910 case Intrinsic::sadd_with_overflow:
2911 BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
2912 CondOpc = X86::SETOr;
2913 break;
2914 case Intrinsic::uadd_with_overflow:
2915 BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2916 case Intrinsic::ssub_with_overflow:
2917 BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
2918 CondOpc = X86::SETOr;
2919 break;
2920 case Intrinsic::usub_with_overflow:
2921 BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2922 case Intrinsic::smul_with_overflow:
2923 BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2924 case Intrinsic::umul_with_overflow:
2925 BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2926 }
2927
2928 unsigned LHSReg = getRegForValue(LHS);
2929 if (LHSReg == 0)
2930 return false;
2931 bool LHSIsKill = hasTrivialKill(LHS);
2932
2933 unsigned ResultReg = 0;
2934 // Check if we have an immediate version.
2935 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2936 static const uint16_t Opc[2][4] = {
2937 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2938 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2939 };
2940
2941 if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
2942 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2943 bool IsDec = BaseOpc == X86ISD::DEC;
2944 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2945 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2946 .addReg(LHSReg, getKillRegState(LHSIsKill));
2947 } else
2948 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2949 CI->getZExtValue());
2950 }
2951
2952 unsigned RHSReg;
2953 bool RHSIsKill;
2954 if (!ResultReg) {
2955 RHSReg = getRegForValue(RHS);
2956 if (RHSReg == 0)
2957 return false;
2958 RHSIsKill = hasTrivialKill(RHS);
2959 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2960 RHSIsKill);
2961 }
2962
2963 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2964 // it manually.
2965 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2966 static const uint16_t MULOpc[] =
2967 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2968 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2969 // First copy the first operand into RAX, which is an implicit input to
2970 // the X86::MUL*r instruction.
2971 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2972 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2973 .addReg(LHSReg, getKillRegState(LHSIsKill));
2974 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2975 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2976 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2977 static const uint16_t MULOpc[] =
2978 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2979 if (VT == MVT::i8) {
2980 // Copy the first operand into AL, which is an implicit input to the
2981 // X86::IMUL8r instruction.
2982 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2983 TII.get(TargetOpcode::COPY), X86::AL)
2984 .addReg(LHSReg, getKillRegState(LHSIsKill));
2985 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2986 RHSIsKill);
2987 } else
2988 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2989 TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2990 RHSReg, RHSIsKill);
2991 }
2992
2993 if (!ResultReg)
2994 return false;
2995
2996 // Assign to a GPR since the overflow return value is lowered to a SETcc.
2997 unsigned ResultReg2 = createResultReg(&X86::GR8RegClass);
2998 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
3000 ResultReg2);
3001
3002 updateValueMap(II, ResultReg, 2);
3003 return true;
3004 }
3005 case Intrinsic::x86_sse_cvttss2si:
3006 case Intrinsic::x86_sse_cvttss2si64:
3007 case Intrinsic::x86_sse2_cvttsd2si:
3008 case Intrinsic::x86_sse2_cvttsd2si64: {
3009 bool IsInputDouble;
3010 switch (II->getIntrinsicID()) {
3011 default: llvm_unreachable("Unexpected intrinsic.");
3012 case Intrinsic::x86_sse_cvttss2si:
3013 case Intrinsic::x86_sse_cvttss2si64:
3014 if (!Subtarget->hasSSE1())
3015 return false;
3016 IsInputDouble = false;
3017 break;
3018 case Intrinsic::x86_sse2_cvttsd2si:
3019 case Intrinsic::x86_sse2_cvttsd2si64:
3020 if (!Subtarget->hasSSE2())
3021 return false;
3022 IsInputDouble = true;
3023 break;
3024 }
3025
3026 Type *RetTy = II->getCalledFunction()->getReturnType();
3027 MVT VT;
3028 if (!isTypeLegal(RetTy, VT))
3029 return false;
3030
3031 static const uint16_t CvtOpc[3][2][2] = {
3032 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr },
3033 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } },
3034 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr },
3035 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } },
3036 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
3037 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
3038 };
3039 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
3040 Subtarget->hasAVX() ? 1 :
3041 0;
3042 unsigned Opc;
3043 switch (VT.SimpleTy) {
3044 default: llvm_unreachable("Unexpected result type.");
3045 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3046 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3047 }
3048
3049 // Check if we can fold insertelement instructions into the convert.
3050 const Value *Op = II->getArgOperand(0);
3051 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3052 const Value *Index = IE->getOperand(2);
3053 if (!isa<ConstantInt>(Index))
3054 break;
3055 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3056
3057 if (Idx == 0) {
3058 Op = IE->getOperand(1);
3059 break;
3060 }
3061 Op = IE->getOperand(0);
3062 }
3063
3064 unsigned Reg = getRegForValue(Op);
3065 if (Reg == 0)
3066 return false;
3067
3068 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3069 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3070 .addReg(Reg);
3071
3072 updateValueMap(II, ResultReg);
3073 return true;
3074 }
3075 }
3076 }
3077
fastLowerArguments()3078 bool X86FastISel::fastLowerArguments() {
3079 if (!FuncInfo.CanLowerReturn)
3080 return false;
3081
3082 const Function *F = FuncInfo.Fn;
3083 if (F->isVarArg())
3084 return false;
3085
3086 CallingConv::ID CC = F->getCallingConv();
3087 if (CC != CallingConv::C)
3088 return false;
3089
3090 if (Subtarget->isCallingConvWin64(CC))
3091 return false;
3092
3093 if (!Subtarget->is64Bit())
3094 return false;
3095
3096 if (Subtarget->useSoftFloat())
3097 return false;
3098
3099 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3100 unsigned GPRCnt = 0;
3101 unsigned FPRCnt = 0;
3102 for (auto const &Arg : F->args()) {
3103 if (Arg.hasAttribute(Attribute::ByVal) ||
3104 Arg.hasAttribute(Attribute::InReg) ||
3105 Arg.hasAttribute(Attribute::StructRet) ||
3106 Arg.hasAttribute(Attribute::SwiftSelf) ||
3107 Arg.hasAttribute(Attribute::SwiftError) ||
3108 Arg.hasAttribute(Attribute::Nest))
3109 return false;
3110
3111 Type *ArgTy = Arg.getType();
3112 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3113 return false;
3114
3115 EVT ArgVT = TLI.getValueType(DL, ArgTy);
3116 if (!ArgVT.isSimple()) return false;
3117 switch (ArgVT.getSimpleVT().SimpleTy) {
3118 default: return false;
3119 case MVT::i32:
3120 case MVT::i64:
3121 ++GPRCnt;
3122 break;
3123 case MVT::f32:
3124 case MVT::f64:
3125 if (!Subtarget->hasSSE1())
3126 return false;
3127 ++FPRCnt;
3128 break;
3129 }
3130
3131 if (GPRCnt > 6)
3132 return false;
3133
3134 if (FPRCnt > 8)
3135 return false;
3136 }
3137
3138 static const MCPhysReg GPR32ArgRegs[] = {
3139 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3140 };
3141 static const MCPhysReg GPR64ArgRegs[] = {
3142 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3143 };
3144 static const MCPhysReg XMMArgRegs[] = {
3145 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3146 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3147 };
3148
3149 unsigned GPRIdx = 0;
3150 unsigned FPRIdx = 0;
3151 for (auto const &Arg : F->args()) {
3152 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3153 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3154 unsigned SrcReg;
3155 switch (VT.SimpleTy) {
3156 default: llvm_unreachable("Unexpected value type.");
3157 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3158 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3159 case MVT::f32: LLVM_FALLTHROUGH;
3160 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3161 }
3162 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3163 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3164 // Without this, EmitLiveInCopies may eliminate the livein if its only
3165 // use is a bitcast (which isn't turned into an instruction).
3166 unsigned ResultReg = createResultReg(RC);
3167 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3168 TII.get(TargetOpcode::COPY), ResultReg)
3169 .addReg(DstReg, getKillRegState(true));
3170 updateValueMap(&Arg, ResultReg);
3171 }
3172 return true;
3173 }
3174
computeBytesPoppedByCalleeForSRet(const X86Subtarget * Subtarget,CallingConv::ID CC,ImmutableCallSite * CS)3175 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3176 CallingConv::ID CC,
3177 ImmutableCallSite *CS) {
3178 if (Subtarget->is64Bit())
3179 return 0;
3180 if (Subtarget->getTargetTriple().isOSMSVCRT())
3181 return 0;
3182 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3183 CC == CallingConv::HiPE)
3184 return 0;
3185
3186 if (CS)
3187 if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) ||
3188 CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3189 return 0;
3190
3191 return 4;
3192 }
3193
fastLowerCall(CallLoweringInfo & CLI)3194 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3195 auto &OutVals = CLI.OutVals;
3196 auto &OutFlags = CLI.OutFlags;
3197 auto &OutRegs = CLI.OutRegs;
3198 auto &Ins = CLI.Ins;
3199 auto &InRegs = CLI.InRegs;
3200 CallingConv::ID CC = CLI.CallConv;
3201 bool &IsTailCall = CLI.IsTailCall;
3202 bool IsVarArg = CLI.IsVarArg;
3203 const Value *Callee = CLI.Callee;
3204 MCSymbol *Symbol = CLI.Symbol;
3205
3206 bool Is64Bit = Subtarget->is64Bit();
3207 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
3208
3209 const CallInst *CI =
3210 CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr;
3211 const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr;
3212
3213 // Call / invoke instructions with NoCfCheck attribute require special
3214 // handling.
3215 const auto *II =
3216 CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr;
3217 if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck()))
3218 return false;
3219
3220 // Functions with no_caller_saved_registers that need special handling.
3221 if ((CI && CI->hasFnAttr("no_caller_saved_registers")) ||
3222 (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers")))
3223 return false;
3224
3225 // Functions using retpoline should use SDISel for calls.
3226 if (Subtarget->useRetpoline())
3227 return false;
3228
3229 // Handle only C, fastcc, and webkit_js calling conventions for now.
3230 switch (CC) {
3231 default: return false;
3232 case CallingConv::C:
3233 case CallingConv::Fast:
3234 case CallingConv::WebKit_JS:
3235 case CallingConv::Swift:
3236 case CallingConv::X86_FastCall:
3237 case CallingConv::X86_StdCall:
3238 case CallingConv::X86_ThisCall:
3239 case CallingConv::Win64:
3240 case CallingConv::X86_64_SysV:
3241 break;
3242 }
3243
3244 // Allow SelectionDAG isel to handle tail calls.
3245 if (IsTailCall)
3246 return false;
3247
3248 // fastcc with -tailcallopt is intended to provide a guaranteed
3249 // tail call optimization. Fastisel doesn't know how to do that.
3250 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
3251 return false;
3252
3253 // Don't know how to handle Win64 varargs yet. Nothing special needed for
3254 // x86-32. Special handling for x86-64 is implemented.
3255 if (IsVarArg && IsWin64)
3256 return false;
3257
3258 // Don't know about inalloca yet.
3259 if (CLI.CS && CLI.CS->hasInAllocaArgument())
3260 return false;
3261
3262 for (auto Flag : CLI.OutFlags)
3263 if (Flag.isSwiftError())
3264 return false;
3265
3266 SmallVector<MVT, 16> OutVTs;
3267 SmallVector<unsigned, 16> ArgRegs;
3268
3269 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3270 // instruction. This is safe because it is common to all FastISel supported
3271 // calling conventions on x86.
3272 for (int i = 0, e = OutVals.size(); i != e; ++i) {
3273 Value *&Val = OutVals[i];
3274 ISD::ArgFlagsTy Flags = OutFlags[i];
3275 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3276 if (CI->getBitWidth() < 32) {
3277 if (Flags.isSExt())
3278 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3279 else
3280 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3281 }
3282 }
3283
3284 // Passing bools around ends up doing a trunc to i1 and passing it.
3285 // Codegen this as an argument + "and 1".
3286 MVT VT;
3287 auto *TI = dyn_cast<TruncInst>(Val);
3288 unsigned ResultReg;
3289 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
3290 (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
3291 TI->hasOneUse()) {
3292 Value *PrevVal = TI->getOperand(0);
3293 ResultReg = getRegForValue(PrevVal);
3294
3295 if (!ResultReg)
3296 return false;
3297
3298 if (!isTypeLegal(PrevVal->getType(), VT))
3299 return false;
3300
3301 ResultReg =
3302 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3303 } else {
3304 if (!isTypeLegal(Val->getType(), VT))
3305 return false;
3306 ResultReg = getRegForValue(Val);
3307 }
3308
3309 if (!ResultReg)
3310 return false;
3311
3312 ArgRegs.push_back(ResultReg);
3313 OutVTs.push_back(VT);
3314 }
3315
3316 // Analyze operands of the call, assigning locations to each operand.
3317 SmallVector<CCValAssign, 16> ArgLocs;
3318 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3319
3320 // Allocate shadow area for Win64
3321 if (IsWin64)
3322 CCInfo.AllocateStack(32, 8);
3323
3324 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3325
3326 // Get a count of how many bytes are to be pushed on the stack.
3327 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3328
3329 // Issue CALLSEQ_START
3330 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3331 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
3332 .addImm(NumBytes).addImm(0).addImm(0);
3333
3334 // Walk the register/memloc assignments, inserting copies/loads.
3335 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3336 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3337 CCValAssign const &VA = ArgLocs[i];
3338 const Value *ArgVal = OutVals[VA.getValNo()];
3339 MVT ArgVT = OutVTs[VA.getValNo()];
3340
3341 if (ArgVT == MVT::x86mmx)
3342 return false;
3343
3344 unsigned ArgReg = ArgRegs[VA.getValNo()];
3345
3346 // Promote the value if needed.
3347 switch (VA.getLocInfo()) {
3348 case CCValAssign::Full: break;
3349 case CCValAssign::SExt: {
3350 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3351 "Unexpected extend");
3352
3353 if (ArgVT == MVT::i1)
3354 return false;
3355
3356 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3357 ArgVT, ArgReg);
3358 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3359 ArgVT = VA.getLocVT();
3360 break;
3361 }
3362 case CCValAssign::ZExt: {
3363 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3364 "Unexpected extend");
3365
3366 // Handle zero-extension from i1 to i8, which is common.
3367 if (ArgVT == MVT::i1) {
3368 // Set the high bits to zero.
3369 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3370 ArgVT = MVT::i8;
3371
3372 if (ArgReg == 0)
3373 return false;
3374 }
3375
3376 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3377 ArgVT, ArgReg);
3378 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3379 ArgVT = VA.getLocVT();
3380 break;
3381 }
3382 case CCValAssign::AExt: {
3383 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3384 "Unexpected extend");
3385 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3386 ArgVT, ArgReg);
3387 if (!Emitted)
3388 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3389 ArgVT, ArgReg);
3390 if (!Emitted)
3391 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3392 ArgVT, ArgReg);
3393
3394 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3395 ArgVT = VA.getLocVT();
3396 break;
3397 }
3398 case CCValAssign::BCvt: {
3399 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3400 /*TODO: Kill=*/false);
3401 assert(ArgReg && "Failed to emit a bitcast!");
3402 ArgVT = VA.getLocVT();
3403 break;
3404 }
3405 case CCValAssign::VExt:
3406 // VExt has not been implemented, so this should be impossible to reach
3407 // for now. However, fallback to Selection DAG isel once implemented.
3408 return false;
3409 case CCValAssign::AExtUpper:
3410 case CCValAssign::SExtUpper:
3411 case CCValAssign::ZExtUpper:
3412 case CCValAssign::FPExt:
3413 llvm_unreachable("Unexpected loc info!");
3414 case CCValAssign::Indirect:
3415 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3416 // support this.
3417 return false;
3418 }
3419
3420 if (VA.isRegLoc()) {
3421 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3422 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3423 OutRegs.push_back(VA.getLocReg());
3424 } else {
3425 assert(VA.isMemLoc());
3426
3427 // Don't emit stores for undef values.
3428 if (isa<UndefValue>(ArgVal))
3429 continue;
3430
3431 unsigned LocMemOffset = VA.getLocMemOffset();
3432 X86AddressMode AM;
3433 AM.Base.Reg = RegInfo->getStackRegister();
3434 AM.Disp = LocMemOffset;
3435 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3436 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3437 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3438 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3439 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3440 if (Flags.isByVal()) {
3441 X86AddressMode SrcAM;
3442 SrcAM.Base.Reg = ArgReg;
3443 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3444 return false;
3445 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3446 // If this is a really simple value, emit this with the Value* version
3447 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3448 // as it can cause us to reevaluate the argument.
3449 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3450 return false;
3451 } else {
3452 bool ValIsKill = hasTrivialKill(ArgVal);
3453 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3454 return false;
3455 }
3456 }
3457 }
3458
3459 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3460 // GOT pointer.
3461 if (Subtarget->isPICStyleGOT()) {
3462 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3463 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3464 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3465 }
3466
3467 if (Is64Bit && IsVarArg && !IsWin64) {
3468 // From AMD64 ABI document:
3469 // For calls that may call functions that use varargs or stdargs
3470 // (prototype-less calls or calls to functions containing ellipsis (...) in
3471 // the declaration) %al is used as hidden argument to specify the number
3472 // of SSE registers used. The contents of %al do not need to match exactly
3473 // the number of registers, but must be an ubound on the number of SSE
3474 // registers used and is in the range 0 - 8 inclusive.
3475
3476 // Count the number of XMM registers allocated.
3477 static const MCPhysReg XMMArgRegs[] = {
3478 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3479 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3480 };
3481 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3482 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3483 && "SSE registers cannot be used when SSE is disabled");
3484 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3485 X86::AL).addImm(NumXMMRegs);
3486 }
3487
3488 // Materialize callee address in a register. FIXME: GV address can be
3489 // handled with a CALLpcrel32 instead.
3490 X86AddressMode CalleeAM;
3491 if (!X86SelectCallAddress(Callee, CalleeAM))
3492 return false;
3493
3494 unsigned CalleeOp = 0;
3495 const GlobalValue *GV = nullptr;
3496 if (CalleeAM.GV != nullptr) {
3497 GV = CalleeAM.GV;
3498 } else if (CalleeAM.Base.Reg != 0) {
3499 CalleeOp = CalleeAM.Base.Reg;
3500 } else
3501 return false;
3502
3503 // Issue the call.
3504 MachineInstrBuilder MIB;
3505 if (CalleeOp) {
3506 // Register-indirect call.
3507 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3508 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3509 .addReg(CalleeOp);
3510 } else {
3511 // Direct call.
3512 assert(GV && "Not a direct call");
3513 // See if we need any target-specific flags on the GV operand.
3514 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3515
3516 // This will be a direct call, or an indirect call through memory for
3517 // NonLazyBind calls or dllimport calls.
3518 bool NeedLoad =
3519 OpFlags == X86II::MO_DLLIMPORT || OpFlags == X86II::MO_GOTPCREL;
3520 unsigned CallOpc = NeedLoad
3521 ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3522 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3523
3524 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3525 if (NeedLoad)
3526 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3527 if (Symbol)
3528 MIB.addSym(Symbol, OpFlags);
3529 else
3530 MIB.addGlobalAddress(GV, 0, OpFlags);
3531 if (NeedLoad)
3532 MIB.addReg(0);
3533 }
3534
3535 // Add a register mask operand representing the call-preserved registers.
3536 // Proper defs for return values will be added by setPhysRegsDeadExcept().
3537 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3538
3539 // Add an implicit use GOT pointer in EBX.
3540 if (Subtarget->isPICStyleGOT())
3541 MIB.addReg(X86::EBX, RegState::Implicit);
3542
3543 if (Is64Bit && IsVarArg && !IsWin64)
3544 MIB.addReg(X86::AL, RegState::Implicit);
3545
3546 // Add implicit physical register uses to the call.
3547 for (auto Reg : OutRegs)
3548 MIB.addReg(Reg, RegState::Implicit);
3549
3550 // Issue CALLSEQ_END
3551 unsigned NumBytesForCalleeToPop =
3552 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3553 TM.Options.GuaranteedTailCallOpt)
3554 ? NumBytes // Callee pops everything.
3555 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS);
3556 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3558 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3559
3560 // Now handle call return values.
3561 SmallVector<CCValAssign, 16> RVLocs;
3562 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3563 CLI.RetTy->getContext());
3564 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3565
3566 // Copy all of the result registers out of their specified physreg.
3567 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3568 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3569 CCValAssign &VA = RVLocs[i];
3570 EVT CopyVT = VA.getValVT();
3571 unsigned CopyReg = ResultReg + i;
3572 unsigned SrcReg = VA.getLocReg();
3573
3574 // If this is x86-64, and we disabled SSE, we can't return FP values
3575 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3576 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3577 report_fatal_error("SSE register return with SSE disabled");
3578 }
3579
3580 // If we prefer to use the value in xmm registers, copy it out as f80 and
3581 // use a truncate to move it from fp stack reg to xmm reg.
3582 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3583 isScalarFPTypeInSSEReg(VA.getValVT())) {
3584 CopyVT = MVT::f80;
3585 CopyReg = createResultReg(&X86::RFP80RegClass);
3586 }
3587
3588 // Copy out the result.
3589 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3590 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3591 InRegs.push_back(VA.getLocReg());
3592
3593 // Round the f80 to the right size, which also moves it to the appropriate
3594 // xmm register. This is accomplished by storing the f80 value in memory
3595 // and then loading it back.
3596 if (CopyVT != VA.getValVT()) {
3597 EVT ResVT = VA.getValVT();
3598 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3599 unsigned MemSize = ResVT.getSizeInBits()/8;
3600 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3601 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3602 TII.get(Opc)), FI)
3603 .addReg(CopyReg);
3604 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3605 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3606 TII.get(Opc), ResultReg + i), FI);
3607 }
3608 }
3609
3610 CLI.ResultReg = ResultReg;
3611 CLI.NumResultRegs = RVLocs.size();
3612 CLI.Call = MIB;
3613
3614 return true;
3615 }
3616
3617 bool
fastSelectInstruction(const Instruction * I)3618 X86FastISel::fastSelectInstruction(const Instruction *I) {
3619 switch (I->getOpcode()) {
3620 default: break;
3621 case Instruction::Load:
3622 return X86SelectLoad(I);
3623 case Instruction::Store:
3624 return X86SelectStore(I);
3625 case Instruction::Ret:
3626 return X86SelectRet(I);
3627 case Instruction::ICmp:
3628 case Instruction::FCmp:
3629 return X86SelectCmp(I);
3630 case Instruction::ZExt:
3631 return X86SelectZExt(I);
3632 case Instruction::SExt:
3633 return X86SelectSExt(I);
3634 case Instruction::Br:
3635 return X86SelectBranch(I);
3636 case Instruction::LShr:
3637 case Instruction::AShr:
3638 case Instruction::Shl:
3639 return X86SelectShift(I);
3640 case Instruction::SDiv:
3641 case Instruction::UDiv:
3642 case Instruction::SRem:
3643 case Instruction::URem:
3644 return X86SelectDivRem(I);
3645 case Instruction::Select:
3646 return X86SelectSelect(I);
3647 case Instruction::Trunc:
3648 return X86SelectTrunc(I);
3649 case Instruction::FPExt:
3650 return X86SelectFPExt(I);
3651 case Instruction::FPTrunc:
3652 return X86SelectFPTrunc(I);
3653 case Instruction::SIToFP:
3654 return X86SelectSIToFP(I);
3655 case Instruction::UIToFP:
3656 return X86SelectUIToFP(I);
3657 case Instruction::IntToPtr: // Deliberate fall-through.
3658 case Instruction::PtrToInt: {
3659 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3660 EVT DstVT = TLI.getValueType(DL, I->getType());
3661 if (DstVT.bitsGT(SrcVT))
3662 return X86SelectZExt(I);
3663 if (DstVT.bitsLT(SrcVT))
3664 return X86SelectTrunc(I);
3665 unsigned Reg = getRegForValue(I->getOperand(0));
3666 if (Reg == 0) return false;
3667 updateValueMap(I, Reg);
3668 return true;
3669 }
3670 case Instruction::BitCast: {
3671 // Select SSE2/AVX bitcasts between 128/256 bit vector types.
3672 if (!Subtarget->hasSSE2())
3673 return false;
3674
3675 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3676 EVT DstVT = TLI.getValueType(DL, I->getType());
3677
3678 if (!SrcVT.isSimple() || !DstVT.isSimple())
3679 return false;
3680
3681 MVT SVT = SrcVT.getSimpleVT();
3682 MVT DVT = DstVT.getSimpleVT();
3683
3684 if (!SVT.is128BitVector() &&
3685 !(Subtarget->hasAVX() && SVT.is256BitVector()) &&
3686 !(Subtarget->hasAVX512() && SVT.is512BitVector() &&
3687 (Subtarget->hasBWI() || (SVT.getScalarSizeInBits() >= 32 &&
3688 DVT.getScalarSizeInBits() >= 32))))
3689 return false;
3690
3691 unsigned Reg = getRegForValue(I->getOperand(0));
3692 if (Reg == 0)
3693 return false;
3694
3695 // No instruction is needed for conversion. Reuse the register used by
3696 // the fist operand.
3697 updateValueMap(I, Reg);
3698 return true;
3699 }
3700 }
3701
3702 return false;
3703 }
3704
X86MaterializeInt(const ConstantInt * CI,MVT VT)3705 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3706 if (VT > MVT::i64)
3707 return 0;
3708
3709 uint64_t Imm = CI->getZExtValue();
3710 if (Imm == 0) {
3711 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3712 switch (VT.SimpleTy) {
3713 default: llvm_unreachable("Unexpected value type");
3714 case MVT::i1:
3715 case MVT::i8:
3716 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3717 X86::sub_8bit);
3718 case MVT::i16:
3719 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3720 X86::sub_16bit);
3721 case MVT::i32:
3722 return SrcReg;
3723 case MVT::i64: {
3724 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3725 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3726 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3727 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3728 return ResultReg;
3729 }
3730 }
3731 }
3732
3733 unsigned Opc = 0;
3734 switch (VT.SimpleTy) {
3735 default: llvm_unreachable("Unexpected value type");
3736 case MVT::i1:
3737 // TODO: Support this properly.
3738 if (Subtarget->hasAVX512())
3739 return 0;
3740 VT = MVT::i8;
3741 LLVM_FALLTHROUGH;
3742 case MVT::i8: Opc = X86::MOV8ri; break;
3743 case MVT::i16: Opc = X86::MOV16ri; break;
3744 case MVT::i32: Opc = X86::MOV32ri; break;
3745 case MVT::i64: {
3746 if (isUInt<32>(Imm))
3747 Opc = X86::MOV32ri;
3748 else if (isInt<32>(Imm))
3749 Opc = X86::MOV64ri32;
3750 else
3751 Opc = X86::MOV64ri;
3752 break;
3753 }
3754 }
3755 if (VT == MVT::i64 && Opc == X86::MOV32ri) {
3756 unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
3757 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3759 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3760 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3761 return ResultReg;
3762 }
3763 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3764 }
3765
X86MaterializeFP(const ConstantFP * CFP,MVT VT)3766 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3767 if (CFP->isNullValue())
3768 return fastMaterializeFloatZero(CFP);
3769
3770 // Can't handle alternate code models yet.
3771 CodeModel::Model CM = TM.getCodeModel();
3772 if (CM != CodeModel::Small && CM != CodeModel::Large)
3773 return 0;
3774
3775 // Get opcode and regclass of the output for the given load instruction.
3776 unsigned Opc = 0;
3777 const TargetRegisterClass *RC = nullptr;
3778 switch (VT.SimpleTy) {
3779 default: return 0;
3780 case MVT::f32:
3781 if (X86ScalarSSEf32) {
3782 Opc = Subtarget->hasAVX512()
3783 ? X86::VMOVSSZrm
3784 : Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3785 RC = Subtarget->hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
3786 } else {
3787 Opc = X86::LD_Fp32m;
3788 RC = &X86::RFP32RegClass;
3789 }
3790 break;
3791 case MVT::f64:
3792 if (X86ScalarSSEf64) {
3793 Opc = Subtarget->hasAVX512()
3794 ? X86::VMOVSDZrm
3795 : Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3796 RC = Subtarget->hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
3797 } else {
3798 Opc = X86::LD_Fp64m;
3799 RC = &X86::RFP64RegClass;
3800 }
3801 break;
3802 case MVT::f80:
3803 // No f80 support yet.
3804 return 0;
3805 }
3806
3807 // MachineConstantPool wants an explicit alignment.
3808 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3809 if (Align == 0) {
3810 // Alignment of vector types. FIXME!
3811 Align = DL.getTypeAllocSize(CFP->getType());
3812 }
3813
3814 // x86-32 PIC requires a PIC base register for constant pools.
3815 unsigned PICBase = 0;
3816 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3817 if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3818 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3819 else if (OpFlag == X86II::MO_GOTOFF)
3820 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3821 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3822 PICBase = X86::RIP;
3823
3824 // Create the load from the constant pool.
3825 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3826 unsigned ResultReg = createResultReg(RC);
3827
3828 if (CM == CodeModel::Large) {
3829 unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3830 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3831 AddrReg)
3832 .addConstantPoolIndex(CPI, 0, OpFlag);
3833 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3834 TII.get(Opc), ResultReg);
3835 addDirectMem(MIB, AddrReg);
3836 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3837 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3838 MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
3839 MIB->addMemOperand(*FuncInfo.MF, MMO);
3840 return ResultReg;
3841 }
3842
3843 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3844 TII.get(Opc), ResultReg),
3845 CPI, PICBase, OpFlag);
3846 return ResultReg;
3847 }
3848
X86MaterializeGV(const GlobalValue * GV,MVT VT)3849 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3850 // Can't handle alternate code models yet.
3851 if (TM.getCodeModel() != CodeModel::Small)
3852 return 0;
3853
3854 // Materialize addresses with LEA/MOV instructions.
3855 X86AddressMode AM;
3856 if (X86SelectAddress(GV, AM)) {
3857 // If the expression is just a basereg, then we're done, otherwise we need
3858 // to emit an LEA.
3859 if (AM.BaseType == X86AddressMode::RegBase &&
3860 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3861 return AM.Base.Reg;
3862
3863 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3864 if (TM.getRelocationModel() == Reloc::Static &&
3865 TLI.getPointerTy(DL) == MVT::i64) {
3866 // The displacement code could be more than 32 bits away so we need to use
3867 // an instruction with a 64 bit immediate
3868 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3869 ResultReg)
3870 .addGlobalAddress(GV);
3871 } else {
3872 unsigned Opc =
3873 TLI.getPointerTy(DL) == MVT::i32
3874 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3875 : X86::LEA64r;
3876 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3877 TII.get(Opc), ResultReg), AM);
3878 }
3879 return ResultReg;
3880 }
3881 return 0;
3882 }
3883
fastMaterializeConstant(const Constant * C)3884 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3885 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3886
3887 // Only handle simple types.
3888 if (!CEVT.isSimple())
3889 return 0;
3890 MVT VT = CEVT.getSimpleVT();
3891
3892 if (const auto *CI = dyn_cast<ConstantInt>(C))
3893 return X86MaterializeInt(CI, VT);
3894 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3895 return X86MaterializeFP(CFP, VT);
3896 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3897 return X86MaterializeGV(GV, VT);
3898
3899 return 0;
3900 }
3901
fastMaterializeAlloca(const AllocaInst * C)3902 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3903 // Fail on dynamic allocas. At this point, getRegForValue has already
3904 // checked its CSE maps, so if we're here trying to handle a dynamic
3905 // alloca, we're not going to succeed. X86SelectAddress has a
3906 // check for dynamic allocas, because it's called directly from
3907 // various places, but targetMaterializeAlloca also needs a check
3908 // in order to avoid recursion between getRegForValue,
3909 // X86SelectAddrss, and targetMaterializeAlloca.
3910 if (!FuncInfo.StaticAllocaMap.count(C))
3911 return 0;
3912 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3913
3914 X86AddressMode AM;
3915 if (!X86SelectAddress(C, AM))
3916 return 0;
3917 unsigned Opc =
3918 TLI.getPointerTy(DL) == MVT::i32
3919 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3920 : X86::LEA64r;
3921 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3922 unsigned ResultReg = createResultReg(RC);
3923 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3924 TII.get(Opc), ResultReg), AM);
3925 return ResultReg;
3926 }
3927
fastMaterializeFloatZero(const ConstantFP * CF)3928 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3929 MVT VT;
3930 if (!isTypeLegal(CF->getType(), VT))
3931 return 0;
3932
3933 // Get opcode and regclass for the given zero.
3934 bool HasAVX512 = Subtarget->hasAVX512();
3935 unsigned Opc = 0;
3936 const TargetRegisterClass *RC = nullptr;
3937 switch (VT.SimpleTy) {
3938 default: return 0;
3939 case MVT::f32:
3940 if (X86ScalarSSEf32) {
3941 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS;
3942 RC = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass;
3943 } else {
3944 Opc = X86::LD_Fp032;
3945 RC = &X86::RFP32RegClass;
3946 }
3947 break;
3948 case MVT::f64:
3949 if (X86ScalarSSEf64) {
3950 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD;
3951 RC = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass;
3952 } else {
3953 Opc = X86::LD_Fp064;
3954 RC = &X86::RFP64RegClass;
3955 }
3956 break;
3957 case MVT::f80:
3958 // No f80 support yet.
3959 return 0;
3960 }
3961
3962 unsigned ResultReg = createResultReg(RC);
3963 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3964 return ResultReg;
3965 }
3966
3967
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)3968 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3969 const LoadInst *LI) {
3970 const Value *Ptr = LI->getPointerOperand();
3971 X86AddressMode AM;
3972 if (!X86SelectAddress(Ptr, AM))
3973 return false;
3974
3975 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3976
3977 unsigned Size = DL.getTypeAllocSize(LI->getType());
3978 unsigned Alignment = LI->getAlignment();
3979
3980 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3981 Alignment = DL.getABITypeAlignment(LI->getType());
3982
3983 SmallVector<MachineOperand, 8> AddrOps;
3984 AM.getFullAddress(AddrOps);
3985
3986 MachineInstr *Result = XII.foldMemoryOperandImpl(
3987 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3988 /*AllowCommute=*/true);
3989 if (!Result)
3990 return false;
3991
3992 // The index register could be in the wrong register class. Unfortunately,
3993 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3994 // to just look at OpNo + the offset to the index reg. We actually need to
3995 // scan the instruction to find the index reg and see if its the correct reg
3996 // class.
3997 unsigned OperandNo = 0;
3998 for (MachineInstr::mop_iterator I = Result->operands_begin(),
3999 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
4000 MachineOperand &MO = *I;
4001 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
4002 continue;
4003 // Found the index reg, now try to rewrite it.
4004 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
4005 MO.getReg(), OperandNo);
4006 if (IndexReg == MO.getReg())
4007 continue;
4008 MO.setReg(IndexReg);
4009 }
4010
4011 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
4012 MI->eraseFromParent();
4013 return true;
4014 }
4015
fastEmitInst_rrrr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,unsigned Op2,bool Op2IsKill,unsigned Op3,bool Op3IsKill)4016 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
4017 const TargetRegisterClass *RC,
4018 unsigned Op0, bool Op0IsKill,
4019 unsigned Op1, bool Op1IsKill,
4020 unsigned Op2, bool Op2IsKill,
4021 unsigned Op3, bool Op3IsKill) {
4022 const MCInstrDesc &II = TII.get(MachineInstOpcode);
4023
4024 unsigned ResultReg = createResultReg(RC);
4025 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
4026 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
4027 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
4028 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
4029
4030 if (II.getNumDefs() >= 1)
4031 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
4032 .addReg(Op0, getKillRegState(Op0IsKill))
4033 .addReg(Op1, getKillRegState(Op1IsKill))
4034 .addReg(Op2, getKillRegState(Op2IsKill))
4035 .addReg(Op3, getKillRegState(Op3IsKill));
4036 else {
4037 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
4038 .addReg(Op0, getKillRegState(Op0IsKill))
4039 .addReg(Op1, getKillRegState(Op1IsKill))
4040 .addReg(Op2, getKillRegState(Op2IsKill))
4041 .addReg(Op3, getKillRegState(Op3IsKill));
4042 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4043 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
4044 }
4045 return ResultReg;
4046 }
4047
4048
4049 namespace llvm {
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)4050 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4051 const TargetLibraryInfo *libInfo) {
4052 return new X86FastISel(funcInfo, libInfo);
4053 }
4054 }
4055