• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- TruncInstCombine.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // TruncInstCombine - looks for expression dags post-dominated by TruncInst and
11 // for each eligible dag, it will create a reduced bit-width expression, replace
12 // the old expression with this new one and remove the old expression.
13 // Eligible expression dag is such that:
14 //   1. Contains only supported instructions.
15 //   2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value.
16 //   3. Can be evaluated into type with reduced legal bit-width.
17 //   4. All instructions in the dag must not have users outside the dag.
18 //      The only exception is for {ZExt, SExt}Inst with operand type equal to
19 //      the new reduced type evaluated in (3).
20 //
21 // The motivation for this optimization is that evaluating and expression using
22 // smaller bit-width is preferable, especially for vectorization where we can
23 // fit more values in one vectorized instruction. In addition, this optimization
24 // may decrease the number of cast instructions, but will not increase it.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "AggressiveInstCombineInternal.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/IRBuilder.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "aggressive-instcombine"
39 
40 /// Given an instruction and a container, it fills all the relevant operands of
41 /// that instruction, with respect to the Trunc expression dag optimizaton.
getRelevantOperands(Instruction * I,SmallVectorImpl<Value * > & Ops)42 static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) {
43   unsigned Opc = I->getOpcode();
44   switch (Opc) {
45   case Instruction::Trunc:
46   case Instruction::ZExt:
47   case Instruction::SExt:
48     // These CastInst are considered leaves of the evaluated expression, thus,
49     // their operands are not relevent.
50     break;
51   case Instruction::Add:
52   case Instruction::Sub:
53   case Instruction::Mul:
54   case Instruction::And:
55   case Instruction::Or:
56   case Instruction::Xor:
57     Ops.push_back(I->getOperand(0));
58     Ops.push_back(I->getOperand(1));
59     break;
60   default:
61     llvm_unreachable("Unreachable!");
62   }
63 }
64 
buildTruncExpressionDag()65 bool TruncInstCombine::buildTruncExpressionDag() {
66   SmallVector<Value *, 8> Worklist;
67   SmallVector<Instruction *, 8> Stack;
68   // Clear old expression dag.
69   InstInfoMap.clear();
70 
71   Worklist.push_back(CurrentTruncInst->getOperand(0));
72 
73   while (!Worklist.empty()) {
74     Value *Curr = Worklist.back();
75 
76     if (isa<Constant>(Curr)) {
77       Worklist.pop_back();
78       continue;
79     }
80 
81     auto *I = dyn_cast<Instruction>(Curr);
82     if (!I)
83       return false;
84 
85     if (!Stack.empty() && Stack.back() == I) {
86       // Already handled all instruction operands, can remove it from both the
87       // Worklist and the Stack, and add it to the instruction info map.
88       Worklist.pop_back();
89       Stack.pop_back();
90       // Insert I to the Info map.
91       InstInfoMap.insert(std::make_pair(I, Info()));
92       continue;
93     }
94 
95     if (InstInfoMap.count(I)) {
96       Worklist.pop_back();
97       continue;
98     }
99 
100     // Add the instruction to the stack before start handling its operands.
101     Stack.push_back(I);
102 
103     unsigned Opc = I->getOpcode();
104     switch (Opc) {
105     case Instruction::Trunc:
106     case Instruction::ZExt:
107     case Instruction::SExt:
108       // trunc(trunc(x)) -> trunc(x)
109       // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
110       // trunc(ext(x)) -> trunc(x) if the source type is larger than the new
111       // dest
112       break;
113     case Instruction::Add:
114     case Instruction::Sub:
115     case Instruction::Mul:
116     case Instruction::And:
117     case Instruction::Or:
118     case Instruction::Xor: {
119       SmallVector<Value *, 2> Operands;
120       getRelevantOperands(I, Operands);
121       for (Value *Operand : Operands)
122         Worklist.push_back(Operand);
123       break;
124     }
125     default:
126       // TODO: Can handle more cases here:
127       // 1. select, shufflevector, extractelement, insertelement
128       // 2. udiv, urem
129       // 3. shl, lshr, ashr
130       // 4. phi node(and loop handling)
131       // ...
132       return false;
133     }
134   }
135   return true;
136 }
137 
getMinBitWidth()138 unsigned TruncInstCombine::getMinBitWidth() {
139   SmallVector<Value *, 8> Worklist;
140   SmallVector<Instruction *, 8> Stack;
141 
142   Value *Src = CurrentTruncInst->getOperand(0);
143   Type *DstTy = CurrentTruncInst->getType();
144   unsigned TruncBitWidth = DstTy->getScalarSizeInBits();
145   unsigned OrigBitWidth =
146       CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
147 
148   if (isa<Constant>(Src))
149     return TruncBitWidth;
150 
151   Worklist.push_back(Src);
152   InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth;
153 
154   while (!Worklist.empty()) {
155     Value *Curr = Worklist.back();
156 
157     if (isa<Constant>(Curr)) {
158       Worklist.pop_back();
159       continue;
160     }
161 
162     // Otherwise, it must be an instruction.
163     auto *I = cast<Instruction>(Curr);
164 
165     auto &Info = InstInfoMap[I];
166 
167     SmallVector<Value *, 2> Operands;
168     getRelevantOperands(I, Operands);
169 
170     if (!Stack.empty() && Stack.back() == I) {
171       // Already handled all instruction operands, can remove it from both, the
172       // Worklist and the Stack, and update MinBitWidth.
173       Worklist.pop_back();
174       Stack.pop_back();
175       for (auto *Operand : Operands)
176         if (auto *IOp = dyn_cast<Instruction>(Operand))
177           Info.MinBitWidth =
178               std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth);
179       continue;
180     }
181 
182     // Add the instruction to the stack before start handling its operands.
183     Stack.push_back(I);
184     unsigned ValidBitWidth = Info.ValidBitWidth;
185 
186     // Update minimum bit-width before handling its operands. This is required
187     // when the instruction is part of a loop.
188     Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth);
189 
190     for (auto *Operand : Operands)
191       if (auto *IOp = dyn_cast<Instruction>(Operand)) {
192         // If we already calculated the minimum bit-width for this valid
193         // bit-width, or for a smaller valid bit-width, then just keep the
194         // answer we already calculated.
195         unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth;
196         if (IOpBitwidth >= ValidBitWidth)
197           continue;
198         InstInfoMap[IOp].ValidBitWidth = std::max(ValidBitWidth, IOpBitwidth);
199         Worklist.push_back(IOp);
200       }
201   }
202   unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth;
203   assert(MinBitWidth >= TruncBitWidth);
204 
205   if (MinBitWidth > TruncBitWidth) {
206     // In this case reducing expression with vector type might generate a new
207     // vector type, which is not preferable as it might result in generating
208     // sub-optimal code.
209     if (DstTy->isVectorTy())
210       return OrigBitWidth;
211     // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth).
212     Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth);
213     // Update minimum bit-width with the new destination type bit-width if
214     // succeeded to find such, otherwise, with original bit-width.
215     MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth;
216   } else { // MinBitWidth == TruncBitWidth
217     // In this case the expression can be evaluated with the trunc instruction
218     // destination type, and trunc instruction can be omitted. However, we
219     // should not perform the evaluation if the original type is a legal scalar
220     // type and the target type is illegal.
221     bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth);
222     bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth);
223     if (!DstTy->isVectorTy() && FromLegal && !ToLegal)
224       return OrigBitWidth;
225   }
226   return MinBitWidth;
227 }
228 
getBestTruncatedType()229 Type *TruncInstCombine::getBestTruncatedType() {
230   if (!buildTruncExpressionDag())
231     return nullptr;
232 
233   // We don't want to duplicate instructions, which isn't profitable. Thus, we
234   // can't shrink something that has multiple users, unless all users are
235   // post-dominated by the trunc instruction, i.e., were visited during the
236   // expression evaluation.
237   unsigned DesiredBitWidth = 0;
238   for (auto Itr : InstInfoMap) {
239     Instruction *I = Itr.first;
240     if (I->hasOneUse())
241       continue;
242     bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I));
243     for (auto *U : I->users())
244       if (auto *UI = dyn_cast<Instruction>(U))
245         if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) {
246           if (!IsExtInst)
247             return nullptr;
248           // If this is an extension from the dest type, we can eliminate it,
249           // even if it has multiple users. Thus, update the DesiredBitWidth and
250           // validate all extension instructions agrees on same DesiredBitWidth.
251           unsigned ExtInstBitWidth =
252               I->getOperand(0)->getType()->getScalarSizeInBits();
253           if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth)
254             return nullptr;
255           DesiredBitWidth = ExtInstBitWidth;
256         }
257   }
258 
259   unsigned OrigBitWidth =
260       CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
261 
262   // Calculate minimum allowed bit-width allowed for shrinking the currently
263   // visited truncate's operand.
264   unsigned MinBitWidth = getMinBitWidth();
265 
266   // Check that we can shrink to smaller bit-width than original one and that
267   // it is similar to the DesiredBitWidth is such exists.
268   if (MinBitWidth >= OrigBitWidth ||
269       (DesiredBitWidth && DesiredBitWidth != MinBitWidth))
270     return nullptr;
271 
272   return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth);
273 }
274 
275 /// Given a reduced scalar type \p Ty and a \p V value, return a reduced type
276 /// for \p V, according to its type, if it vector type, return the vector
277 /// version of \p Ty, otherwise return \p Ty.
getReducedType(Value * V,Type * Ty)278 static Type *getReducedType(Value *V, Type *Ty) {
279   assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type");
280   if (auto *VTy = dyn_cast<VectorType>(V->getType()))
281     return VectorType::get(Ty, VTy->getNumElements());
282   return Ty;
283 }
284 
getReducedOperand(Value * V,Type * SclTy)285 Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) {
286   Type *Ty = getReducedType(V, SclTy);
287   if (auto *C = dyn_cast<Constant>(V)) {
288     C = ConstantExpr::getIntegerCast(C, Ty, false);
289     // If we got a constantexpr back, try to simplify it with DL info.
290     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
291       C = FoldedC;
292     return C;
293   }
294 
295   auto *I = cast<Instruction>(V);
296   Info Entry = InstInfoMap.lookup(I);
297   assert(Entry.NewValue);
298   return Entry.NewValue;
299 }
300 
ReduceExpressionDag(Type * SclTy)301 void TruncInstCombine::ReduceExpressionDag(Type *SclTy) {
302   for (auto &Itr : InstInfoMap) { // Forward
303     Instruction *I = Itr.first;
304     TruncInstCombine::Info &NodeInfo = Itr.second;
305 
306     assert(!NodeInfo.NewValue && "Instruction has been evaluated");
307 
308     IRBuilder<> Builder(I);
309     Value *Res = nullptr;
310     unsigned Opc = I->getOpcode();
311     switch (Opc) {
312     case Instruction::Trunc:
313     case Instruction::ZExt:
314     case Instruction::SExt: {
315       Type *Ty = getReducedType(I, SclTy);
316       // If the source type of the cast is the type we're trying for then we can
317       // just return the source.  There's no need to insert it because it is not
318       // new.
319       if (I->getOperand(0)->getType() == Ty) {
320         assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst");
321         NodeInfo.NewValue = I->getOperand(0);
322         continue;
323       }
324       // Otherwise, must be the same type of cast, so just reinsert a new one.
325       // This also handles the case of zext(trunc(x)) -> zext(x).
326       Res = Builder.CreateIntCast(I->getOperand(0), Ty,
327                                   Opc == Instruction::SExt);
328 
329       // Update Worklist entries with new value if needed.
330       // There are three possible changes to the Worklist:
331       // 1. Update Old-TruncInst -> New-TruncInst.
332       // 2. Remove Old-TruncInst (if New node is not TruncInst).
333       // 3. Add New-TruncInst (if Old node was not TruncInst).
334       auto Entry = find(Worklist, I);
335       if (Entry != Worklist.end()) {
336         if (auto *NewCI = dyn_cast<TruncInst>(Res))
337           *Entry = NewCI;
338         else
339           Worklist.erase(Entry);
340       } else if (auto *NewCI = dyn_cast<TruncInst>(Res))
341           Worklist.push_back(NewCI);
342       break;
343     }
344     case Instruction::Add:
345     case Instruction::Sub:
346     case Instruction::Mul:
347     case Instruction::And:
348     case Instruction::Or:
349     case Instruction::Xor: {
350       Value *LHS = getReducedOperand(I->getOperand(0), SclTy);
351       Value *RHS = getReducedOperand(I->getOperand(1), SclTy);
352       Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS);
353       break;
354     }
355     default:
356       llvm_unreachable("Unhandled instruction");
357     }
358 
359     NodeInfo.NewValue = Res;
360     if (auto *ResI = dyn_cast<Instruction>(Res))
361       ResI->takeName(I);
362   }
363 
364   Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy);
365   Type *DstTy = CurrentTruncInst->getType();
366   if (Res->getType() != DstTy) {
367     IRBuilder<> Builder(CurrentTruncInst);
368     Res = Builder.CreateIntCast(Res, DstTy, false);
369     if (auto *ResI = dyn_cast<Instruction>(Res))
370       ResI->takeName(CurrentTruncInst);
371   }
372   CurrentTruncInst->replaceAllUsesWith(Res);
373 
374   // Erase old expression dag, which was replaced by the reduced expression dag.
375   // We iterate backward, which means we visit the instruction before we visit
376   // any of its operands, this way, when we get to the operand, we already
377   // removed the instructions (from the expression dag) that uses it.
378   CurrentTruncInst->eraseFromParent();
379   for (auto I = InstInfoMap.rbegin(), E = InstInfoMap.rend(); I != E; ++I) {
380     // We still need to check that the instruction has no users before we erase
381     // it, because {SExt, ZExt}Inst Instruction might have other users that was
382     // not reduced, in such case, we need to keep that instruction.
383     if (I->first->use_empty())
384       I->first->eraseFromParent();
385   }
386 }
387 
run(Function & F)388 bool TruncInstCombine::run(Function &F) {
389   bool MadeIRChange = false;
390 
391   // Collect all TruncInst in the function into the Worklist for evaluating.
392   for (auto &BB : F) {
393     // Ignore unreachable basic block.
394     if (!DT.isReachableFromEntry(&BB))
395       continue;
396     for (auto &I : BB)
397       if (auto *CI = dyn_cast<TruncInst>(&I))
398         Worklist.push_back(CI);
399   }
400 
401   // Process all TruncInst in the Worklist, for each instruction:
402   //   1. Check if it dominates an eligible expression dag to be reduced.
403   //   2. Create a reduced expression dag and replace the old one with it.
404   while (!Worklist.empty()) {
405     CurrentTruncInst = Worklist.pop_back_val();
406 
407     if (Type *NewDstSclTy = getBestTruncatedType()) {
408       LLVM_DEBUG(
409           dbgs() << "ICE: TruncInstCombine reducing type of expression dag "
410                     "dominated by: "
411                  << CurrentTruncInst << '\n');
412       ReduceExpressionDag(NewDstSclTy);
413       MadeIRChange = true;
414     }
415   }
416 
417   return MadeIRChange;
418 }
419