• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transform is designed to eliminate unreachable internal globals from the
11 // program.  It uses an aggressive algorithm, searching out globals that are
12 // known to be alive.  After it finds all of the globals which are needed, it
13 // deletes whatever is left over.  This allows it to delete recursive chunks of
14 // the program which are unreachable.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/IPO/GlobalDCE.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Transforms/IPO.h"
25 #include "llvm/Transforms/Utils/CtorUtils.h"
26 #include "llvm/Transforms/Utils/GlobalStatus.h"
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "globaldce"
31 
32 STATISTIC(NumAliases  , "Number of global aliases removed");
33 STATISTIC(NumFunctions, "Number of functions removed");
34 STATISTIC(NumIFuncs,    "Number of indirect functions removed");
35 STATISTIC(NumVariables, "Number of global variables removed");
36 
37 namespace {
38   class GlobalDCELegacyPass : public ModulePass {
39   public:
40     static char ID; // Pass identification, replacement for typeid
GlobalDCELegacyPass()41     GlobalDCELegacyPass() : ModulePass(ID) {
42       initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry());
43     }
44 
45     // run - Do the GlobalDCE pass on the specified module, optionally updating
46     // the specified callgraph to reflect the changes.
47     //
runOnModule(Module & M)48     bool runOnModule(Module &M) override {
49       if (skipModule(M))
50         return false;
51 
52       // We need a minimally functional dummy module analysis manager. It needs
53       // to at least know about the possibility of proxying a function analysis
54       // manager.
55       FunctionAnalysisManager DummyFAM;
56       ModuleAnalysisManager DummyMAM;
57       DummyMAM.registerPass(
58           [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); });
59 
60       auto PA = Impl.run(M, DummyMAM);
61       return !PA.areAllPreserved();
62     }
63 
64   private:
65     GlobalDCEPass Impl;
66   };
67 }
68 
69 char GlobalDCELegacyPass::ID = 0;
70 INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce",
71                 "Dead Global Elimination", false, false)
72 
73 // Public interface to the GlobalDCEPass.
createGlobalDCEPass()74 ModulePass *llvm::createGlobalDCEPass() {
75   return new GlobalDCELegacyPass();
76 }
77 
78 /// Returns true if F contains only a single "ret" instruction.
isEmptyFunction(Function * F)79 static bool isEmptyFunction(Function *F) {
80   BasicBlock &Entry = F->getEntryBlock();
81   if (Entry.size() != 1 || !isa<ReturnInst>(Entry.front()))
82     return false;
83   ReturnInst &RI = cast<ReturnInst>(Entry.front());
84   return RI.getReturnValue() == nullptr;
85 }
86 
87 /// Compute the set of GlobalValue that depends from V.
88 /// The recursion stops as soon as a GlobalValue is met.
ComputeDependencies(Value * V,SmallPtrSetImpl<GlobalValue * > & Deps)89 void GlobalDCEPass::ComputeDependencies(Value *V,
90                                         SmallPtrSetImpl<GlobalValue *> &Deps) {
91   if (auto *I = dyn_cast<Instruction>(V)) {
92     Function *Parent = I->getParent()->getParent();
93     Deps.insert(Parent);
94   } else if (auto *GV = dyn_cast<GlobalValue>(V)) {
95     Deps.insert(GV);
96   } else if (auto *CE = dyn_cast<Constant>(V)) {
97     // Avoid walking the whole tree of a big ConstantExprs multiple times.
98     auto Where = ConstantDependenciesCache.find(CE);
99     if (Where != ConstantDependenciesCache.end()) {
100       auto const &K = Where->second;
101       Deps.insert(K.begin(), K.end());
102     } else {
103       SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE];
104       for (User *CEUser : CE->users())
105         ComputeDependencies(CEUser, LocalDeps);
106       Deps.insert(LocalDeps.begin(), LocalDeps.end());
107     }
108   }
109 }
110 
UpdateGVDependencies(GlobalValue & GV)111 void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
112   SmallPtrSet<GlobalValue *, 8> Deps;
113   for (User *User : GV.users())
114     ComputeDependencies(User, Deps);
115   Deps.erase(&GV); // Remove self-reference.
116   for (GlobalValue *GVU : Deps) {
117     GVDependencies[GVU].insert(&GV);
118   }
119 }
120 
121 /// Mark Global value as Live
MarkLive(GlobalValue & GV,SmallVectorImpl<GlobalValue * > * Updates)122 void GlobalDCEPass::MarkLive(GlobalValue &GV,
123                              SmallVectorImpl<GlobalValue *> *Updates) {
124   auto const Ret = AliveGlobals.insert(&GV);
125   if (!Ret.second)
126     return;
127 
128   if (Updates)
129     Updates->push_back(&GV);
130   if (Comdat *C = GV.getComdat()) {
131     for (auto &&CM : make_range(ComdatMembers.equal_range(C)))
132       MarkLive(*CM.second, Updates); // Recursion depth is only two because only
133                                      // globals in the same comdat are visited.
134   }
135 }
136 
run(Module & M,ModuleAnalysisManager & MAM)137 PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
138   bool Changed = false;
139 
140   // The algorithm first computes the set L of global variables that are
141   // trivially live.  Then it walks the initialization of these variables to
142   // compute the globals used to initialize them, which effectively builds a
143   // directed graph where nodes are global variables, and an edge from A to B
144   // means B is used to initialize A.  Finally, it propagates the liveness
145   // information through the graph starting from the nodes in L. Nodes note
146   // marked as alive are discarded.
147 
148   // Remove empty functions from the global ctors list.
149   Changed |= optimizeGlobalCtorsList(M, isEmptyFunction);
150 
151   // Collect the set of members for each comdat.
152   for (Function &F : M)
153     if (Comdat *C = F.getComdat())
154       ComdatMembers.insert(std::make_pair(C, &F));
155   for (GlobalVariable &GV : M.globals())
156     if (Comdat *C = GV.getComdat())
157       ComdatMembers.insert(std::make_pair(C, &GV));
158   for (GlobalAlias &GA : M.aliases())
159     if (Comdat *C = GA.getComdat())
160       ComdatMembers.insert(std::make_pair(C, &GA));
161 
162   // Loop over the module, adding globals which are obviously necessary.
163   for (GlobalObject &GO : M.global_objects()) {
164     Changed |= RemoveUnusedGlobalValue(GO);
165     // Functions with external linkage are needed if they have a body.
166     // Externally visible & appending globals are needed, if they have an
167     // initializer.
168     if (!GO.isDeclaration() && !GO.hasAvailableExternallyLinkage())
169       if (!GO.isDiscardableIfUnused())
170         MarkLive(GO);
171 
172     UpdateGVDependencies(GO);
173   }
174 
175   // Compute direct dependencies of aliases.
176   for (GlobalAlias &GA : M.aliases()) {
177     Changed |= RemoveUnusedGlobalValue(GA);
178     // Externally visible aliases are needed.
179     if (!GA.isDiscardableIfUnused())
180       MarkLive(GA);
181 
182     UpdateGVDependencies(GA);
183   }
184 
185   // Compute direct dependencies of ifuncs.
186   for (GlobalIFunc &GIF : M.ifuncs()) {
187     Changed |= RemoveUnusedGlobalValue(GIF);
188     // Externally visible ifuncs are needed.
189     if (!GIF.isDiscardableIfUnused())
190       MarkLive(GIF);
191 
192     UpdateGVDependencies(GIF);
193   }
194 
195   // Propagate liveness from collected Global Values through the computed
196   // dependencies.
197   SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(),
198                                            AliveGlobals.end()};
199   while (!NewLiveGVs.empty()) {
200     GlobalValue *LGV = NewLiveGVs.pop_back_val();
201     for (auto *GVD : GVDependencies[LGV])
202       MarkLive(*GVD, &NewLiveGVs);
203   }
204 
205   // Now that all globals which are needed are in the AliveGlobals set, we loop
206   // through the program, deleting those which are not alive.
207   //
208 
209   // The first pass is to drop initializers of global variables which are dead.
210   std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals
211   for (GlobalVariable &GV : M.globals())
212     if (!AliveGlobals.count(&GV)) {
213       DeadGlobalVars.push_back(&GV);         // Keep track of dead globals
214       if (GV.hasInitializer()) {
215         Constant *Init = GV.getInitializer();
216         GV.setInitializer(nullptr);
217         if (isSafeToDestroyConstant(Init))
218           Init->destroyConstant();
219       }
220     }
221 
222   // The second pass drops the bodies of functions which are dead...
223   std::vector<Function *> DeadFunctions;
224   for (Function &F : M)
225     if (!AliveGlobals.count(&F)) {
226       DeadFunctions.push_back(&F);         // Keep track of dead globals
227       if (!F.isDeclaration())
228         F.deleteBody();
229     }
230 
231   // The third pass drops targets of aliases which are dead...
232   std::vector<GlobalAlias*> DeadAliases;
233   for (GlobalAlias &GA : M.aliases())
234     if (!AliveGlobals.count(&GA)) {
235       DeadAliases.push_back(&GA);
236       GA.setAliasee(nullptr);
237     }
238 
239   // The fourth pass drops targets of ifuncs which are dead...
240   std::vector<GlobalIFunc*> DeadIFuncs;
241   for (GlobalIFunc &GIF : M.ifuncs())
242     if (!AliveGlobals.count(&GIF)) {
243       DeadIFuncs.push_back(&GIF);
244       GIF.setResolver(nullptr);
245     }
246 
247   // Now that all interferences have been dropped, delete the actual objects
248   // themselves.
249   auto EraseUnusedGlobalValue = [&](GlobalValue *GV) {
250     RemoveUnusedGlobalValue(*GV);
251     GV->eraseFromParent();
252     Changed = true;
253   };
254 
255   NumFunctions += DeadFunctions.size();
256   for (Function *F : DeadFunctions)
257     EraseUnusedGlobalValue(F);
258 
259   NumVariables += DeadGlobalVars.size();
260   for (GlobalVariable *GV : DeadGlobalVars)
261     EraseUnusedGlobalValue(GV);
262 
263   NumAliases += DeadAliases.size();
264   for (GlobalAlias *GA : DeadAliases)
265     EraseUnusedGlobalValue(GA);
266 
267   NumIFuncs += DeadIFuncs.size();
268   for (GlobalIFunc *GIF : DeadIFuncs)
269     EraseUnusedGlobalValue(GIF);
270 
271   // Make sure that all memory is released
272   AliveGlobals.clear();
273   ConstantDependenciesCache.clear();
274   GVDependencies.clear();
275   ComdatMembers.clear();
276 
277   if (Changed)
278     return PreservedAnalyses::none();
279   return PreservedAnalyses::all();
280 }
281 
282 // RemoveUnusedGlobalValue - Loop over all of the uses of the specified
283 // GlobalValue, looking for the constant pointer ref that may be pointing to it.
284 // If found, check to see if the constant pointer ref is safe to destroy, and if
285 // so, nuke it.  This will reduce the reference count on the global value, which
286 // might make it deader.
287 //
RemoveUnusedGlobalValue(GlobalValue & GV)288 bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) {
289   if (GV.use_empty())
290     return false;
291   GV.removeDeadConstantUsers();
292   return GV.use_empty();
293 }
294