• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop reroller.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AliasSetTracker.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/Analysis/ScalarEvolutionExpander.h"
29 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils.h"
56 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
57 #include "llvm/Transforms/Utils/LoopUtils.h"
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <iterator>
63 #include <map>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "loop-reroll"
69 
70 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
71 
72 static cl::opt<unsigned>
73 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
74                           cl::Hidden,
75                           cl::desc("The maximum number of failures to tolerate"
76                                    " during fuzzy matching. (default: 400)"));
77 
78 // This loop re-rolling transformation aims to transform loops like this:
79 //
80 // int foo(int a);
81 // void bar(int *x) {
82 //   for (int i = 0; i < 500; i += 3) {
83 //     foo(i);
84 //     foo(i+1);
85 //     foo(i+2);
86 //   }
87 // }
88 //
89 // into a loop like this:
90 //
91 // void bar(int *x) {
92 //   for (int i = 0; i < 500; ++i)
93 //     foo(i);
94 // }
95 //
96 // It does this by looking for loops that, besides the latch code, are composed
97 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
98 // to the induction variable, and where each DAG is isomorphic to the DAG
99 // rooted at the induction variable (excepting the sub-DAGs which root the
100 // other induction-variable increments). In other words, we're looking for loop
101 // bodies of the form:
102 //
103 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
104 // f(%iv)
105 // %iv.1 = add %iv, 1                <-- a root increment
106 // f(%iv.1)
107 // %iv.2 = add %iv, 2                <-- a root increment
108 // f(%iv.2)
109 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
110 // f(%iv.scale_m_1)
111 // ...
112 // %iv.next = add %iv, scale
113 // %cmp = icmp(%iv, ...)
114 // br %cmp, header, exit
115 //
116 // where each f(i) is a set of instructions that, collectively, are a function
117 // only of i (and other loop-invariant values).
118 //
119 // As a special case, we can also reroll loops like this:
120 //
121 // int foo(int);
122 // void bar(int *x) {
123 //   for (int i = 0; i < 500; ++i) {
124 //     x[3*i] = foo(0);
125 //     x[3*i+1] = foo(0);
126 //     x[3*i+2] = foo(0);
127 //   }
128 // }
129 //
130 // into this:
131 //
132 // void bar(int *x) {
133 //   for (int i = 0; i < 1500; ++i)
134 //     x[i] = foo(0);
135 // }
136 //
137 // in which case, we're looking for inputs like this:
138 //
139 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
140 // %scaled.iv = mul %iv, scale
141 // f(%scaled.iv)
142 // %scaled.iv.1 = add %scaled.iv, 1
143 // f(%scaled.iv.1)
144 // %scaled.iv.2 = add %scaled.iv, 2
145 // f(%scaled.iv.2)
146 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
147 // f(%scaled.iv.scale_m_1)
148 // ...
149 // %iv.next = add %iv, 1
150 // %cmp = icmp(%iv, ...)
151 // br %cmp, header, exit
152 
153 namespace {
154 
155   enum IterationLimits {
156     /// The maximum number of iterations that we'll try and reroll.
157     IL_MaxRerollIterations = 32,
158     /// The bitvector index used by loop induction variables and other
159     /// instructions that belong to all iterations.
160     IL_All,
161     IL_End
162   };
163 
164   class LoopReroll : public LoopPass {
165   public:
166     static char ID; // Pass ID, replacement for typeid
167 
LoopReroll()168     LoopReroll() : LoopPass(ID) {
169       initializeLoopRerollPass(*PassRegistry::getPassRegistry());
170     }
171 
172     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
173 
getAnalysisUsage(AnalysisUsage & AU) const174     void getAnalysisUsage(AnalysisUsage &AU) const override {
175       AU.addRequired<TargetLibraryInfoWrapperPass>();
176       getLoopAnalysisUsage(AU);
177     }
178 
179   protected:
180     AliasAnalysis *AA;
181     LoopInfo *LI;
182     ScalarEvolution *SE;
183     TargetLibraryInfo *TLI;
184     DominatorTree *DT;
185     bool PreserveLCSSA;
186 
187     using SmallInstructionVector = SmallVector<Instruction *, 16>;
188     using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;
189 
190     // Map between induction variable and its increment
191     DenseMap<Instruction *, int64_t> IVToIncMap;
192 
193     // For loop with multiple induction variable, remember the one used only to
194     // control the loop.
195     Instruction *LoopControlIV;
196 
197     // A chain of isomorphic instructions, identified by a single-use PHI
198     // representing a reduction. Only the last value may be used outside the
199     // loop.
200     struct SimpleLoopReduction {
SimpleLoopReduction__anona66d3d370111::LoopReroll::SimpleLoopReduction201       SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
202         assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
203         add(L);
204       }
205 
valid__anona66d3d370111::LoopReroll::SimpleLoopReduction206       bool valid() const {
207         return Valid;
208       }
209 
getPHI__anona66d3d370111::LoopReroll::SimpleLoopReduction210       Instruction *getPHI() const {
211         assert(Valid && "Using invalid reduction");
212         return Instructions.front();
213       }
214 
getReducedValue__anona66d3d370111::LoopReroll::SimpleLoopReduction215       Instruction *getReducedValue() const {
216         assert(Valid && "Using invalid reduction");
217         return Instructions.back();
218       }
219 
get__anona66d3d370111::LoopReroll::SimpleLoopReduction220       Instruction *get(size_t i) const {
221         assert(Valid && "Using invalid reduction");
222         return Instructions[i+1];
223       }
224 
operator []__anona66d3d370111::LoopReroll::SimpleLoopReduction225       Instruction *operator [] (size_t i) const { return get(i); }
226 
227       // The size, ignoring the initial PHI.
size__anona66d3d370111::LoopReroll::SimpleLoopReduction228       size_t size() const {
229         assert(Valid && "Using invalid reduction");
230         return Instructions.size()-1;
231       }
232 
233       using iterator = SmallInstructionVector::iterator;
234       using const_iterator = SmallInstructionVector::const_iterator;
235 
begin__anona66d3d370111::LoopReroll::SimpleLoopReduction236       iterator begin() {
237         assert(Valid && "Using invalid reduction");
238         return std::next(Instructions.begin());
239       }
240 
begin__anona66d3d370111::LoopReroll::SimpleLoopReduction241       const_iterator begin() const {
242         assert(Valid && "Using invalid reduction");
243         return std::next(Instructions.begin());
244       }
245 
end__anona66d3d370111::LoopReroll::SimpleLoopReduction246       iterator end() { return Instructions.end(); }
end__anona66d3d370111::LoopReroll::SimpleLoopReduction247       const_iterator end() const { return Instructions.end(); }
248 
249     protected:
250       bool Valid = false;
251       SmallInstructionVector Instructions;
252 
253       void add(Loop *L);
254     };
255 
256     // The set of all reductions, and state tracking of possible reductions
257     // during loop instruction processing.
258     struct ReductionTracker {
259       using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;
260 
261       // Add a new possible reduction.
addSLR__anona66d3d370111::LoopReroll::ReductionTracker262       void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
263 
264       // Setup to track possible reductions corresponding to the provided
265       // rerolling scale. Only reductions with a number of non-PHI instructions
266       // that is divisible by the scale are considered. Three instructions sets
267       // are filled in:
268       //   - A set of all possible instructions in eligible reductions.
269       //   - A set of all PHIs in eligible reductions
270       //   - A set of all reduced values (last instructions) in eligible
271       //     reductions.
restrictToScale__anona66d3d370111::LoopReroll::ReductionTracker272       void restrictToScale(uint64_t Scale,
273                            SmallInstructionSet &PossibleRedSet,
274                            SmallInstructionSet &PossibleRedPHISet,
275                            SmallInstructionSet &PossibleRedLastSet) {
276         PossibleRedIdx.clear();
277         PossibleRedIter.clear();
278         Reds.clear();
279 
280         for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
281           if (PossibleReds[i].size() % Scale == 0) {
282             PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
283             PossibleRedPHISet.insert(PossibleReds[i].getPHI());
284 
285             PossibleRedSet.insert(PossibleReds[i].getPHI());
286             PossibleRedIdx[PossibleReds[i].getPHI()] = i;
287             for (Instruction *J : PossibleReds[i]) {
288               PossibleRedSet.insert(J);
289               PossibleRedIdx[J] = i;
290             }
291           }
292       }
293 
294       // The functions below are used while processing the loop instructions.
295 
296       // Are the two instructions both from reductions, and furthermore, from
297       // the same reduction?
isPairInSame__anona66d3d370111::LoopReroll::ReductionTracker298       bool isPairInSame(Instruction *J1, Instruction *J2) {
299         DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
300         if (J1I != PossibleRedIdx.end()) {
301           DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
302           if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
303             return true;
304         }
305 
306         return false;
307       }
308 
309       // The two provided instructions, the first from the base iteration, and
310       // the second from iteration i, form a matched pair. If these are part of
311       // a reduction, record that fact.
recordPair__anona66d3d370111::LoopReroll::ReductionTracker312       void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
313         if (PossibleRedIdx.count(J1)) {
314           assert(PossibleRedIdx.count(J2) &&
315                  "Recording reduction vs. non-reduction instruction?");
316 
317           PossibleRedIter[J1] = 0;
318           PossibleRedIter[J2] = i;
319 
320           int Idx = PossibleRedIdx[J1];
321           assert(Idx == PossibleRedIdx[J2] &&
322                  "Recording pair from different reductions?");
323           Reds.insert(Idx);
324         }
325       }
326 
327       // The functions below can be called after we've finished processing all
328       // instructions in the loop, and we know which reductions were selected.
329 
330       bool validateSelected();
331       void replaceSelected();
332 
333     protected:
334       // The vector of all possible reductions (for any scale).
335       SmallReductionVector PossibleReds;
336 
337       DenseMap<Instruction *, int> PossibleRedIdx;
338       DenseMap<Instruction *, int> PossibleRedIter;
339       DenseSet<int> Reds;
340     };
341 
342     // A DAGRootSet models an induction variable being used in a rerollable
343     // loop. For example,
344     //
345     //   x[i*3+0] = y1
346     //   x[i*3+1] = y2
347     //   x[i*3+2] = y3
348     //
349     //   Base instruction -> i*3
350     //                    +---+----+
351     //                   /    |     \
352     //               ST[y1]  +1     +2  <-- Roots
353     //                        |      |
354     //                      ST[y2] ST[y3]
355     //
356     // There may be multiple DAGRoots, for example:
357     //
358     //   x[i*2+0] = ...   (1)
359     //   x[i*2+1] = ...   (1)
360     //   x[i*2+4] = ...   (2)
361     //   x[i*2+5] = ...   (2)
362     //   x[(i+1234)*2+5678] = ... (3)
363     //   x[(i+1234)*2+5679] = ... (3)
364     //
365     // The loop will be rerolled by adding a new loop induction variable,
366     // one for the Base instruction in each DAGRootSet.
367     //
368     struct DAGRootSet {
369       Instruction *BaseInst;
370       SmallInstructionVector Roots;
371 
372       // The instructions between IV and BaseInst (but not including BaseInst).
373       SmallInstructionSet SubsumedInsts;
374     };
375 
376     // The set of all DAG roots, and state tracking of all roots
377     // for a particular induction variable.
378     struct DAGRootTracker {
DAGRootTracker__anona66d3d370111::LoopReroll::DAGRootTracker379       DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
380                      ScalarEvolution *SE, AliasAnalysis *AA,
381                      TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
382                      bool PreserveLCSSA,
383                      DenseMap<Instruction *, int64_t> &IncrMap,
384                      Instruction *LoopCtrlIV)
385           : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
386             PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
387             LoopControlIV(LoopCtrlIV) {}
388 
389       /// Stage 1: Find all the DAG roots for the induction variable.
390       bool findRoots();
391 
392       /// Stage 2: Validate if the found roots are valid.
393       bool validate(ReductionTracker &Reductions);
394 
395       /// Stage 3: Assuming validate() returned true, perform the
396       /// replacement.
397       /// @param BackedgeTakenCount The backedge-taken count of L.
398       void replace(const SCEV *BackedgeTakenCount);
399 
400     protected:
401       using UsesTy = MapVector<Instruction *, BitVector>;
402 
403       void findRootsRecursive(Instruction *IVU,
404                               SmallInstructionSet SubsumedInsts);
405       bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
406       bool collectPossibleRoots(Instruction *Base,
407                                 std::map<int64_t,Instruction*> &Roots);
408       bool validateRootSet(DAGRootSet &DRS);
409 
410       bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
411       void collectInLoopUserSet(const SmallInstructionVector &Roots,
412                                 const SmallInstructionSet &Exclude,
413                                 const SmallInstructionSet &Final,
414                                 DenseSet<Instruction *> &Users);
415       void collectInLoopUserSet(Instruction *Root,
416                                 const SmallInstructionSet &Exclude,
417                                 const SmallInstructionSet &Final,
418                                 DenseSet<Instruction *> &Users);
419 
420       UsesTy::iterator nextInstr(int Val, UsesTy &In,
421                                  const SmallInstructionSet &Exclude,
422                                  UsesTy::iterator *StartI=nullptr);
423       bool isBaseInst(Instruction *I);
424       bool isRootInst(Instruction *I);
425       bool instrDependsOn(Instruction *I,
426                           UsesTy::iterator Start,
427                           UsesTy::iterator End);
428       void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);
429 
430       LoopReroll *Parent;
431 
432       // Members of Parent, replicated here for brevity.
433       Loop *L;
434       ScalarEvolution *SE;
435       AliasAnalysis *AA;
436       TargetLibraryInfo *TLI;
437       DominatorTree *DT;
438       LoopInfo *LI;
439       bool PreserveLCSSA;
440 
441       // The loop induction variable.
442       Instruction *IV;
443 
444       // Loop step amount.
445       int64_t Inc;
446 
447       // Loop reroll count; if Inc == 1, this records the scaling applied
448       // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
449       // If Inc is not 1, Scale = Inc.
450       uint64_t Scale;
451 
452       // The roots themselves.
453       SmallVector<DAGRootSet,16> RootSets;
454 
455       // All increment instructions for IV.
456       SmallInstructionVector LoopIncs;
457 
458       // Map of all instructions in the loop (in order) to the iterations
459       // they are used in (or specially, IL_All for instructions
460       // used in the loop increment mechanism).
461       UsesTy Uses;
462 
463       // Map between induction variable and its increment
464       DenseMap<Instruction *, int64_t> &IVToIncMap;
465 
466       Instruction *LoopControlIV;
467     };
468 
469     // Check if it is a compare-like instruction whose user is a branch
isCompareUsedByBranch(Instruction * I)470     bool isCompareUsedByBranch(Instruction *I) {
471       auto *TI = I->getParent()->getTerminator();
472       if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
473         return false;
474       return I->hasOneUse() && TI->getOperand(0) == I;
475     };
476 
477     bool isLoopControlIV(Loop *L, Instruction *IV);
478     void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
479     void collectPossibleReductions(Loop *L,
480            ReductionTracker &Reductions);
481     bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
482                 const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
483   };
484 
485 } // end anonymous namespace
486 
487 char LoopReroll::ID = 0;
488 
489 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)490 INITIALIZE_PASS_DEPENDENCY(LoopPass)
491 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
492 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
493 
494 Pass *llvm::createLoopRerollPass() {
495   return new LoopReroll;
496 }
497 
498 // Returns true if the provided instruction is used outside the given loop.
499 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
500 // non-loop blocks to be outside the loop.
hasUsesOutsideLoop(Instruction * I,Loop * L)501 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
502   for (User *U : I->users()) {
503     if (!L->contains(cast<Instruction>(U)))
504       return true;
505   }
506   return false;
507 }
508 
509 // Check if an IV is only used to control the loop. There are two cases:
510 // 1. It only has one use which is loop increment, and the increment is only
511 // used by comparison and the PHI (could has sext with nsw in between), and the
512 // comparison is only used by branch.
513 // 2. It is used by loop increment and the comparison, the loop increment is
514 // only used by the PHI, and the comparison is used only by the branch.
isLoopControlIV(Loop * L,Instruction * IV)515 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
516   unsigned IVUses = IV->getNumUses();
517   if (IVUses != 2 && IVUses != 1)
518     return false;
519 
520   for (auto *User : IV->users()) {
521     int32_t IncOrCmpUses = User->getNumUses();
522     bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
523 
524     // User can only have one or two uses.
525     if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
526       return false;
527 
528     // Case 1
529     if (IVUses == 1) {
530       // The only user must be the loop increment.
531       // The loop increment must have two uses.
532       if (IsCompInst || IncOrCmpUses != 2)
533         return false;
534     }
535 
536     // Case 2
537     if (IVUses == 2 && IncOrCmpUses != 1)
538       return false;
539 
540     // The users of the IV must be a binary operation or a comparison
541     if (auto *BO = dyn_cast<BinaryOperator>(User)) {
542       if (BO->getOpcode() == Instruction::Add) {
543         // Loop Increment
544         // User of Loop Increment should be either PHI or CMP
545         for (auto *UU : User->users()) {
546           if (PHINode *PN = dyn_cast<PHINode>(UU)) {
547             if (PN != IV)
548               return false;
549           }
550           // Must be a CMP or an ext (of a value with nsw) then CMP
551           else {
552             Instruction *UUser = dyn_cast<Instruction>(UU);
553             // Skip SExt if we are extending an nsw value
554             // TODO: Allow ZExt too
555             if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() &&
556                 isa<SExtInst>(UUser))
557               UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
558             if (!isCompareUsedByBranch(UUser))
559               return false;
560           }
561         }
562       } else
563         return false;
564       // Compare : can only have one use, and must be branch
565     } else if (!IsCompInst)
566       return false;
567   }
568   return true;
569 }
570 
571 // Collect the list of loop induction variables with respect to which it might
572 // be possible to reroll the loop.
collectPossibleIVs(Loop * L,SmallInstructionVector & PossibleIVs)573 void LoopReroll::collectPossibleIVs(Loop *L,
574                                     SmallInstructionVector &PossibleIVs) {
575   BasicBlock *Header = L->getHeader();
576   for (BasicBlock::iterator I = Header->begin(),
577        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
578     if (!isa<PHINode>(I))
579       continue;
580     if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
581       continue;
582 
583     if (const SCEVAddRecExpr *PHISCEV =
584             dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
585       if (PHISCEV->getLoop() != L)
586         continue;
587       if (!PHISCEV->isAffine())
588         continue;
589       auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
590       if (IncSCEV) {
591         IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
592         LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
593                           << "\n");
594 
595         if (isLoopControlIV(L, &*I)) {
596           assert(!LoopControlIV && "Found two loop control only IV");
597           LoopControlIV = &(*I);
598           LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I
599                             << " = " << *PHISCEV << "\n");
600         } else
601           PossibleIVs.push_back(&*I);
602       }
603     }
604   }
605 }
606 
607 // Add the remainder of the reduction-variable chain to the instruction vector
608 // (the initial PHINode has already been added). If successful, the object is
609 // marked as valid.
add(Loop * L)610 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
611   assert(!Valid && "Cannot add to an already-valid chain");
612 
613   // The reduction variable must be a chain of single-use instructions
614   // (including the PHI), except for the last value (which is used by the PHI
615   // and also outside the loop).
616   Instruction *C = Instructions.front();
617   if (C->user_empty())
618     return;
619 
620   do {
621     C = cast<Instruction>(*C->user_begin());
622     if (C->hasOneUse()) {
623       if (!C->isBinaryOp())
624         return;
625 
626       if (!(isa<PHINode>(Instructions.back()) ||
627             C->isSameOperationAs(Instructions.back())))
628         return;
629 
630       Instructions.push_back(C);
631     }
632   } while (C->hasOneUse());
633 
634   if (Instructions.size() < 2 ||
635       !C->isSameOperationAs(Instructions.back()) ||
636       C->use_empty())
637     return;
638 
639   // C is now the (potential) last instruction in the reduction chain.
640   for (User *U : C->users()) {
641     // The only in-loop user can be the initial PHI.
642     if (L->contains(cast<Instruction>(U)))
643       if (cast<Instruction>(U) != Instructions.front())
644         return;
645   }
646 
647   Instructions.push_back(C);
648   Valid = true;
649 }
650 
651 // Collect the vector of possible reduction variables.
collectPossibleReductions(Loop * L,ReductionTracker & Reductions)652 void LoopReroll::collectPossibleReductions(Loop *L,
653   ReductionTracker &Reductions) {
654   BasicBlock *Header = L->getHeader();
655   for (BasicBlock::iterator I = Header->begin(),
656        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
657     if (!isa<PHINode>(I))
658       continue;
659     if (!I->getType()->isSingleValueType())
660       continue;
661 
662     SimpleLoopReduction SLR(&*I, L);
663     if (!SLR.valid())
664       continue;
665 
666     LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
667                       << SLR.size() << " chained instructions)\n");
668     Reductions.addSLR(SLR);
669   }
670 }
671 
672 // Collect the set of all users of the provided root instruction. This set of
673 // users contains not only the direct users of the root instruction, but also
674 // all users of those users, and so on. There are two exceptions:
675 //
676 //   1. Instructions in the set of excluded instructions are never added to the
677 //   use set (even if they are users). This is used, for example, to exclude
678 //   including root increments in the use set of the primary IV.
679 //
680 //   2. Instructions in the set of final instructions are added to the use set
681 //   if they are users, but their users are not added. This is used, for
682 //   example, to prevent a reduction update from forcing all later reduction
683 //   updates into the use set.
collectInLoopUserSet(Instruction * Root,const SmallInstructionSet & Exclude,const SmallInstructionSet & Final,DenseSet<Instruction * > & Users)684 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
685   Instruction *Root, const SmallInstructionSet &Exclude,
686   const SmallInstructionSet &Final,
687   DenseSet<Instruction *> &Users) {
688   SmallInstructionVector Queue(1, Root);
689   while (!Queue.empty()) {
690     Instruction *I = Queue.pop_back_val();
691     if (!Users.insert(I).second)
692       continue;
693 
694     if (!Final.count(I))
695       for (Use &U : I->uses()) {
696         Instruction *User = cast<Instruction>(U.getUser());
697         if (PHINode *PN = dyn_cast<PHINode>(User)) {
698           // Ignore "wrap-around" uses to PHIs of this loop's header.
699           if (PN->getIncomingBlock(U) == L->getHeader())
700             continue;
701         }
702 
703         if (L->contains(User) && !Exclude.count(User)) {
704           Queue.push_back(User);
705         }
706       }
707 
708     // We also want to collect single-user "feeder" values.
709     for (User::op_iterator OI = I->op_begin(),
710          OIE = I->op_end(); OI != OIE; ++OI) {
711       if (Instruction *Op = dyn_cast<Instruction>(*OI))
712         if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
713             !Final.count(Op))
714           Queue.push_back(Op);
715     }
716   }
717 }
718 
719 // Collect all of the users of all of the provided root instructions (combined
720 // into a single set).
collectInLoopUserSet(const SmallInstructionVector & Roots,const SmallInstructionSet & Exclude,const SmallInstructionSet & Final,DenseSet<Instruction * > & Users)721 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
722   const SmallInstructionVector &Roots,
723   const SmallInstructionSet &Exclude,
724   const SmallInstructionSet &Final,
725   DenseSet<Instruction *> &Users) {
726   for (Instruction *Root : Roots)
727     collectInLoopUserSet(Root, Exclude, Final, Users);
728 }
729 
isUnorderedLoadStore(Instruction * I)730 static bool isUnorderedLoadStore(Instruction *I) {
731   if (LoadInst *LI = dyn_cast<LoadInst>(I))
732     return LI->isUnordered();
733   if (StoreInst *SI = dyn_cast<StoreInst>(I))
734     return SI->isUnordered();
735   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
736     return !MI->isVolatile();
737   return false;
738 }
739 
740 /// Return true if IVU is a "simple" arithmetic operation.
741 /// This is used for narrowing the search space for DAGRoots; only arithmetic
742 /// and GEPs can be part of a DAGRoot.
isSimpleArithmeticOp(User * IVU)743 static bool isSimpleArithmeticOp(User *IVU) {
744   if (Instruction *I = dyn_cast<Instruction>(IVU)) {
745     switch (I->getOpcode()) {
746     default: return false;
747     case Instruction::Add:
748     case Instruction::Sub:
749     case Instruction::Mul:
750     case Instruction::Shl:
751     case Instruction::AShr:
752     case Instruction::LShr:
753     case Instruction::GetElementPtr:
754     case Instruction::Trunc:
755     case Instruction::ZExt:
756     case Instruction::SExt:
757       return true;
758     }
759   }
760   return false;
761 }
762 
isLoopIncrement(User * U,Instruction * IV)763 static bool isLoopIncrement(User *U, Instruction *IV) {
764   BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
765 
766   if ((BO && BO->getOpcode() != Instruction::Add) ||
767       (!BO && !isa<GetElementPtrInst>(U)))
768     return false;
769 
770   for (auto *UU : U->users()) {
771     PHINode *PN = dyn_cast<PHINode>(UU);
772     if (PN && PN == IV)
773       return true;
774   }
775   return false;
776 }
777 
778 bool LoopReroll::DAGRootTracker::
collectPossibleRoots(Instruction * Base,std::map<int64_t,Instruction * > & Roots)779 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
780   SmallInstructionVector BaseUsers;
781 
782   for (auto *I : Base->users()) {
783     ConstantInt *CI = nullptr;
784 
785     if (isLoopIncrement(I, IV)) {
786       LoopIncs.push_back(cast<Instruction>(I));
787       continue;
788     }
789 
790     // The root nodes must be either GEPs, ORs or ADDs.
791     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
792       if (BO->getOpcode() == Instruction::Add ||
793           BO->getOpcode() == Instruction::Or)
794         CI = dyn_cast<ConstantInt>(BO->getOperand(1));
795     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
796       Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
797       CI = dyn_cast<ConstantInt>(LastOperand);
798     }
799 
800     if (!CI) {
801       if (Instruction *II = dyn_cast<Instruction>(I)) {
802         BaseUsers.push_back(II);
803         continue;
804       } else {
805         LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
806                           << "\n");
807         return false;
808       }
809     }
810 
811     int64_t V = std::abs(CI->getValue().getSExtValue());
812     if (Roots.find(V) != Roots.end())
813       // No duplicates, please.
814       return false;
815 
816     Roots[V] = cast<Instruction>(I);
817   }
818 
819   // Make sure we have at least two roots.
820   if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
821     return false;
822 
823   // If we found non-loop-inc, non-root users of Base, assume they are
824   // for the zeroth root index. This is because "add %a, 0" gets optimized
825   // away.
826   if (BaseUsers.size()) {
827     if (Roots.find(0) != Roots.end()) {
828       LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
829       return false;
830     }
831     Roots[0] = Base;
832   }
833 
834   // Calculate the number of users of the base, or lowest indexed, iteration.
835   unsigned NumBaseUses = BaseUsers.size();
836   if (NumBaseUses == 0)
837     NumBaseUses = Roots.begin()->second->getNumUses();
838 
839   // Check that every node has the same number of users.
840   for (auto &KV : Roots) {
841     if (KV.first == 0)
842       continue;
843     if (!KV.second->hasNUses(NumBaseUses)) {
844       LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
845                         << "#Base=" << NumBaseUses
846                         << ", #Root=" << KV.second->getNumUses() << "\n");
847       return false;
848     }
849   }
850 
851   return true;
852 }
853 
854 void LoopReroll::DAGRootTracker::
findRootsRecursive(Instruction * I,SmallInstructionSet SubsumedInsts)855 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
856   // Does the user look like it could be part of a root set?
857   // All its users must be simple arithmetic ops.
858   if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
859     return;
860 
861   if (I != IV && findRootsBase(I, SubsumedInsts))
862     return;
863 
864   SubsumedInsts.insert(I);
865 
866   for (User *V : I->users()) {
867     Instruction *I = cast<Instruction>(V);
868     if (is_contained(LoopIncs, I))
869       continue;
870 
871     if (!isSimpleArithmeticOp(I))
872       continue;
873 
874     // The recursive call makes a copy of SubsumedInsts.
875     findRootsRecursive(I, SubsumedInsts);
876   }
877 }
878 
validateRootSet(DAGRootSet & DRS)879 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
880   if (DRS.Roots.empty())
881     return false;
882 
883   // Consider a DAGRootSet with N-1 roots (so N different values including
884   //   BaseInst).
885   // Define d = Roots[0] - BaseInst, which should be the same as
886   //   Roots[I] - Roots[I-1] for all I in [1..N).
887   // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
888   //   loop iteration J.
889   //
890   // Now, For the loop iterations to be consecutive:
891   //   D = d * N
892   const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
893   if (!ADR)
894     return false;
895   unsigned N = DRS.Roots.size() + 1;
896   const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
897   const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
898   if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
899     return false;
900 
901   return true;
902 }
903 
904 bool LoopReroll::DAGRootTracker::
findRootsBase(Instruction * IVU,SmallInstructionSet SubsumedInsts)905 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
906   // The base of a RootSet must be an AddRec, so it can be erased.
907   const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
908   if (!IVU_ADR || IVU_ADR->getLoop() != L)
909     return false;
910 
911   std::map<int64_t, Instruction*> V;
912   if (!collectPossibleRoots(IVU, V))
913     return false;
914 
915   // If we didn't get a root for index zero, then IVU must be
916   // subsumed.
917   if (V.find(0) == V.end())
918     SubsumedInsts.insert(IVU);
919 
920   // Partition the vector into monotonically increasing indexes.
921   DAGRootSet DRS;
922   DRS.BaseInst = nullptr;
923 
924   SmallVector<DAGRootSet, 16> PotentialRootSets;
925 
926   for (auto &KV : V) {
927     if (!DRS.BaseInst) {
928       DRS.BaseInst = KV.second;
929       DRS.SubsumedInsts = SubsumedInsts;
930     } else if (DRS.Roots.empty()) {
931       DRS.Roots.push_back(KV.second);
932     } else if (V.find(KV.first - 1) != V.end()) {
933       DRS.Roots.push_back(KV.second);
934     } else {
935       // Linear sequence terminated.
936       if (!validateRootSet(DRS))
937         return false;
938 
939       // Construct a new DAGRootSet with the next sequence.
940       PotentialRootSets.push_back(DRS);
941       DRS.BaseInst = KV.second;
942       DRS.Roots.clear();
943     }
944   }
945 
946   if (!validateRootSet(DRS))
947     return false;
948 
949   PotentialRootSets.push_back(DRS);
950 
951   RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
952 
953   return true;
954 }
955 
findRoots()956 bool LoopReroll::DAGRootTracker::findRoots() {
957   Inc = IVToIncMap[IV];
958 
959   assert(RootSets.empty() && "Unclean state!");
960   if (std::abs(Inc) == 1) {
961     for (auto *IVU : IV->users()) {
962       if (isLoopIncrement(IVU, IV))
963         LoopIncs.push_back(cast<Instruction>(IVU));
964     }
965     findRootsRecursive(IV, SmallInstructionSet());
966     LoopIncs.push_back(IV);
967   } else {
968     if (!findRootsBase(IV, SmallInstructionSet()))
969       return false;
970   }
971 
972   // Ensure all sets have the same size.
973   if (RootSets.empty()) {
974     LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
975     return false;
976   }
977   for (auto &V : RootSets) {
978     if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
979       LLVM_DEBUG(
980           dbgs()
981           << "LRR: Aborting because not all root sets have the same size\n");
982       return false;
983     }
984   }
985 
986   Scale = RootSets[0].Roots.size() + 1;
987 
988   if (Scale > IL_MaxRerollIterations) {
989     LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
990                       << "#Found=" << Scale
991                       << ", #Max=" << IL_MaxRerollIterations << "\n");
992     return false;
993   }
994 
995   LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
996                     << "\n");
997 
998   return true;
999 }
1000 
collectUsedInstructions(SmallInstructionSet & PossibleRedSet)1001 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
1002   // Populate the MapVector with all instructions in the block, in order first,
1003   // so we can iterate over the contents later in perfect order.
1004   for (auto &I : *L->getHeader()) {
1005     Uses[&I].resize(IL_End);
1006   }
1007 
1008   SmallInstructionSet Exclude;
1009   for (auto &DRS : RootSets) {
1010     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1011     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1012     Exclude.insert(DRS.BaseInst);
1013   }
1014   Exclude.insert(LoopIncs.begin(), LoopIncs.end());
1015 
1016   for (auto &DRS : RootSets) {
1017     DenseSet<Instruction*> VBase;
1018     collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
1019     for (auto *I : VBase) {
1020       Uses[I].set(0);
1021     }
1022 
1023     unsigned Idx = 1;
1024     for (auto *Root : DRS.Roots) {
1025       DenseSet<Instruction*> V;
1026       collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
1027 
1028       // While we're here, check the use sets are the same size.
1029       if (V.size() != VBase.size()) {
1030         LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1031         return false;
1032       }
1033 
1034       for (auto *I : V) {
1035         Uses[I].set(Idx);
1036       }
1037       ++Idx;
1038     }
1039 
1040     // Make sure our subsumed instructions are remembered too.
1041     for (auto *I : DRS.SubsumedInsts) {
1042       Uses[I].set(IL_All);
1043     }
1044   }
1045 
1046   // Make sure the loop increments are also accounted for.
1047 
1048   Exclude.clear();
1049   for (auto &DRS : RootSets) {
1050     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1051     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1052     Exclude.insert(DRS.BaseInst);
1053   }
1054 
1055   DenseSet<Instruction*> V;
1056   collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
1057   for (auto *I : V) {
1058     Uses[I].set(IL_All);
1059   }
1060 
1061   return true;
1062 }
1063 
1064 /// Get the next instruction in "In" that is a member of set Val.
1065 /// Start searching from StartI, and do not return anything in Exclude.
1066 /// If StartI is not given, start from In.begin().
1067 LoopReroll::DAGRootTracker::UsesTy::iterator
nextInstr(int Val,UsesTy & In,const SmallInstructionSet & Exclude,UsesTy::iterator * StartI)1068 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
1069                                       const SmallInstructionSet &Exclude,
1070                                       UsesTy::iterator *StartI) {
1071   UsesTy::iterator I = StartI ? *StartI : In.begin();
1072   while (I != In.end() && (I->second.test(Val) == 0 ||
1073                            Exclude.count(I->first) != 0))
1074     ++I;
1075   return I;
1076 }
1077 
isBaseInst(Instruction * I)1078 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
1079   for (auto &DRS : RootSets) {
1080     if (DRS.BaseInst == I)
1081       return true;
1082   }
1083   return false;
1084 }
1085 
isRootInst(Instruction * I)1086 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
1087   for (auto &DRS : RootSets) {
1088     if (is_contained(DRS.Roots, I))
1089       return true;
1090   }
1091   return false;
1092 }
1093 
1094 /// Return true if instruction I depends on any instruction between
1095 /// Start and End.
instrDependsOn(Instruction * I,UsesTy::iterator Start,UsesTy::iterator End)1096 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
1097                                                 UsesTy::iterator Start,
1098                                                 UsesTy::iterator End) {
1099   for (auto *U : I->users()) {
1100     for (auto It = Start; It != End; ++It)
1101       if (U == It->first)
1102         return true;
1103   }
1104   return false;
1105 }
1106 
isIgnorableInst(const Instruction * I)1107 static bool isIgnorableInst(const Instruction *I) {
1108   if (isa<DbgInfoIntrinsic>(I))
1109     return true;
1110   const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
1111   if (!II)
1112     return false;
1113   switch (II->getIntrinsicID()) {
1114     default:
1115       return false;
1116     case Intrinsic::annotation:
1117     case Intrinsic::ptr_annotation:
1118     case Intrinsic::var_annotation:
1119     // TODO: the following intrinsics may also be whitelisted:
1120     //   lifetime_start, lifetime_end, invariant_start, invariant_end
1121       return true;
1122   }
1123   return false;
1124 }
1125 
validate(ReductionTracker & Reductions)1126 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
1127   // We now need to check for equivalence of the use graph of each root with
1128   // that of the primary induction variable (excluding the roots). Our goal
1129   // here is not to solve the full graph isomorphism problem, but rather to
1130   // catch common cases without a lot of work. As a result, we will assume
1131   // that the relative order of the instructions in each unrolled iteration
1132   // is the same (although we will not make an assumption about how the
1133   // different iterations are intermixed). Note that while the order must be
1134   // the same, the instructions may not be in the same basic block.
1135 
1136   // An array of just the possible reductions for this scale factor. When we
1137   // collect the set of all users of some root instructions, these reduction
1138   // instructions are treated as 'final' (their uses are not considered).
1139   // This is important because we don't want the root use set to search down
1140   // the reduction chain.
1141   SmallInstructionSet PossibleRedSet;
1142   SmallInstructionSet PossibleRedLastSet;
1143   SmallInstructionSet PossibleRedPHISet;
1144   Reductions.restrictToScale(Scale, PossibleRedSet,
1145                              PossibleRedPHISet, PossibleRedLastSet);
1146 
1147   // Populate "Uses" with where each instruction is used.
1148   if (!collectUsedInstructions(PossibleRedSet))
1149     return false;
1150 
1151   // Make sure we mark the reduction PHIs as used in all iterations.
1152   for (auto *I : PossibleRedPHISet) {
1153     Uses[I].set(IL_All);
1154   }
1155 
1156   // Make sure we mark loop-control-only PHIs as used in all iterations. See
1157   // comment above LoopReroll::isLoopControlIV for more information.
1158   BasicBlock *Header = L->getHeader();
1159   if (LoopControlIV && LoopControlIV != IV) {
1160     for (auto *U : LoopControlIV->users()) {
1161       Instruction *IVUser = dyn_cast<Instruction>(U);
1162       // IVUser could be loop increment or compare
1163       Uses[IVUser].set(IL_All);
1164       for (auto *UU : IVUser->users()) {
1165         Instruction *UUser = dyn_cast<Instruction>(UU);
1166         // UUser could be compare, PHI or branch
1167         Uses[UUser].set(IL_All);
1168         // Skip SExt
1169         if (isa<SExtInst>(UUser)) {
1170           UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
1171           Uses[UUser].set(IL_All);
1172         }
1173         // Is UUser a compare instruction?
1174         if (UU->hasOneUse()) {
1175           Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
1176           if (BI == cast<BranchInst>(Header->getTerminator()))
1177             Uses[BI].set(IL_All);
1178         }
1179       }
1180     }
1181   }
1182 
1183   // Make sure all instructions in the loop are in one and only one
1184   // set.
1185   for (auto &KV : Uses) {
1186     if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
1187       LLVM_DEBUG(
1188           dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1189                  << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1190       return false;
1191     }
1192   }
1193 
1194   LLVM_DEBUG(for (auto &KV
1195                   : Uses) {
1196     dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1197   });
1198 
1199   for (unsigned Iter = 1; Iter < Scale; ++Iter) {
1200     // In addition to regular aliasing information, we need to look for
1201     // instructions from later (future) iterations that have side effects
1202     // preventing us from reordering them past other instructions with side
1203     // effects.
1204     bool FutureSideEffects = false;
1205     AliasSetTracker AST(*AA);
1206     // The map between instructions in f(%iv.(i+1)) and f(%iv).
1207     DenseMap<Value *, Value *> BaseMap;
1208 
1209     // Compare iteration Iter to the base.
1210     SmallInstructionSet Visited;
1211     auto BaseIt = nextInstr(0, Uses, Visited);
1212     auto RootIt = nextInstr(Iter, Uses, Visited);
1213     auto LastRootIt = Uses.begin();
1214 
1215     while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1216       Instruction *BaseInst = BaseIt->first;
1217       Instruction *RootInst = RootIt->first;
1218 
1219       // Skip over the IV or root instructions; only match their users.
1220       bool Continue = false;
1221       if (isBaseInst(BaseInst)) {
1222         Visited.insert(BaseInst);
1223         BaseIt = nextInstr(0, Uses, Visited);
1224         Continue = true;
1225       }
1226       if (isRootInst(RootInst)) {
1227         LastRootIt = RootIt;
1228         Visited.insert(RootInst);
1229         RootIt = nextInstr(Iter, Uses, Visited);
1230         Continue = true;
1231       }
1232       if (Continue) continue;
1233 
1234       if (!BaseInst->isSameOperationAs(RootInst)) {
1235         // Last chance saloon. We don't try and solve the full isomorphism
1236         // problem, but try and at least catch the case where two instructions
1237         // *of different types* are round the wrong way. We won't be able to
1238         // efficiently tell, given two ADD instructions, which way around we
1239         // should match them, but given an ADD and a SUB, we can at least infer
1240         // which one is which.
1241         //
1242         // This should allow us to deal with a greater subset of the isomorphism
1243         // problem. It does however change a linear algorithm into a quadratic
1244         // one, so limit the number of probes we do.
1245         auto TryIt = RootIt;
1246         unsigned N = NumToleratedFailedMatches;
1247         while (TryIt != Uses.end() &&
1248                !BaseInst->isSameOperationAs(TryIt->first) &&
1249                N--) {
1250           ++TryIt;
1251           TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1252         }
1253 
1254         if (TryIt == Uses.end() || TryIt == RootIt ||
1255             instrDependsOn(TryIt->first, RootIt, TryIt)) {
1256           LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1257                             << *BaseInst << " vs. " << *RootInst << "\n");
1258           return false;
1259         }
1260 
1261         RootIt = TryIt;
1262         RootInst = TryIt->first;
1263       }
1264 
1265       // All instructions between the last root and this root
1266       // may belong to some other iteration. If they belong to a
1267       // future iteration, then they're dangerous to alias with.
1268       //
1269       // Note that because we allow a limited amount of flexibility in the order
1270       // that we visit nodes, LastRootIt might be *before* RootIt, in which
1271       // case we've already checked this set of instructions so we shouldn't
1272       // do anything.
1273       for (; LastRootIt < RootIt; ++LastRootIt) {
1274         Instruction *I = LastRootIt->first;
1275         if (LastRootIt->second.find_first() < (int)Iter)
1276           continue;
1277         if (I->mayWriteToMemory())
1278           AST.add(I);
1279         // Note: This is specifically guarded by a check on isa<PHINode>,
1280         // which while a valid (somewhat arbitrary) micro-optimization, is
1281         // needed because otherwise isSafeToSpeculativelyExecute returns
1282         // false on PHI nodes.
1283         if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
1284             !isSafeToSpeculativelyExecute(I))
1285           // Intervening instructions cause side effects.
1286           FutureSideEffects = true;
1287       }
1288 
1289       // Make sure that this instruction, which is in the use set of this
1290       // root instruction, does not also belong to the base set or the set of
1291       // some other root instruction.
1292       if (RootIt->second.count() > 1) {
1293         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1294                           << " vs. " << *RootInst << " (prev. case overlap)\n");
1295         return false;
1296       }
1297 
1298       // Make sure that we don't alias with any instruction in the alias set
1299       // tracker. If we do, then we depend on a future iteration, and we
1300       // can't reroll.
1301       if (RootInst->mayReadFromMemory())
1302         for (auto &K : AST) {
1303           if (K.aliasesUnknownInst(RootInst, *AA)) {
1304             LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1305                               << *BaseInst << " vs. " << *RootInst
1306                               << " (depends on future store)\n");
1307             return false;
1308           }
1309         }
1310 
1311       // If we've past an instruction from a future iteration that may have
1312       // side effects, and this instruction might also, then we can't reorder
1313       // them, and this matching fails. As an exception, we allow the alias
1314       // set tracker to handle regular (unordered) load/store dependencies.
1315       if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
1316                                  !isSafeToSpeculativelyExecute(BaseInst)) ||
1317                                 (!isUnorderedLoadStore(RootInst) &&
1318                                  !isSafeToSpeculativelyExecute(RootInst)))) {
1319         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1320                           << " vs. " << *RootInst
1321                           << " (side effects prevent reordering)\n");
1322         return false;
1323       }
1324 
1325       // For instructions that are part of a reduction, if the operation is
1326       // associative, then don't bother matching the operands (because we
1327       // already know that the instructions are isomorphic, and the order
1328       // within the iteration does not matter). For non-associative reductions,
1329       // we do need to match the operands, because we need to reject
1330       // out-of-order instructions within an iteration!
1331       // For example (assume floating-point addition), we need to reject this:
1332       //   x += a[i]; x += b[i];
1333       //   x += a[i+1]; x += b[i+1];
1334       //   x += b[i+2]; x += a[i+2];
1335       bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
1336 
1337       if (!(InReduction && BaseInst->isAssociative())) {
1338         bool Swapped = false, SomeOpMatched = false;
1339         for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1340           Value *Op2 = RootInst->getOperand(j);
1341 
1342           // If this is part of a reduction (and the operation is not
1343           // associatve), then we match all operands, but not those that are
1344           // part of the reduction.
1345           if (InReduction)
1346             if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
1347               if (Reductions.isPairInSame(RootInst, Op2I))
1348                 continue;
1349 
1350           DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
1351           if (BMI != BaseMap.end()) {
1352             Op2 = BMI->second;
1353           } else {
1354             for (auto &DRS : RootSets) {
1355               if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1356                 Op2 = DRS.BaseInst;
1357                 break;
1358               }
1359             }
1360           }
1361 
1362           if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
1363             // If we've not already decided to swap the matched operands, and
1364             // we've not already matched our first operand (note that we could
1365             // have skipped matching the first operand because it is part of a
1366             // reduction above), and the instruction is commutative, then try
1367             // the swapped match.
1368             if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1369                 BaseInst->getOperand(!j) == Op2) {
1370               Swapped = true;
1371             } else {
1372               LLVM_DEBUG(dbgs()
1373                          << "LRR: iteration root match failed at " << *BaseInst
1374                          << " vs. " << *RootInst << " (operand " << j << ")\n");
1375               return false;
1376             }
1377           }
1378 
1379           SomeOpMatched = true;
1380         }
1381       }
1382 
1383       if ((!PossibleRedLastSet.count(BaseInst) &&
1384            hasUsesOutsideLoop(BaseInst, L)) ||
1385           (!PossibleRedLastSet.count(RootInst) &&
1386            hasUsesOutsideLoop(RootInst, L))) {
1387         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1388                           << " vs. " << *RootInst << " (uses outside loop)\n");
1389         return false;
1390       }
1391 
1392       Reductions.recordPair(BaseInst, RootInst, Iter);
1393       BaseMap.insert(std::make_pair(RootInst, BaseInst));
1394 
1395       LastRootIt = RootIt;
1396       Visited.insert(BaseInst);
1397       Visited.insert(RootInst);
1398       BaseIt = nextInstr(0, Uses, Visited);
1399       RootIt = nextInstr(Iter, Uses, Visited);
1400     }
1401     assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
1402            "Mismatched set sizes!");
1403   }
1404 
1405   LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
1406                     << "\n");
1407 
1408   return true;
1409 }
1410 
replace(const SCEV * BackedgeTakenCount)1411 void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
1412   BasicBlock *Header = L->getHeader();
1413 
1414   // Compute the start and increment for each BaseInst before we start erasing
1415   // instructions.
1416   SmallVector<const SCEV *, 8> StartExprs;
1417   SmallVector<const SCEV *, 8> IncrExprs;
1418   for (auto &DRS : RootSets) {
1419     const SCEVAddRecExpr *IVSCEV =
1420         cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
1421     StartExprs.push_back(IVSCEV->getStart());
1422     IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
1423   }
1424 
1425   // Remove instructions associated with non-base iterations.
1426   for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend();
1427        J != JE;) {
1428     unsigned I = Uses[&*J].find_first();
1429     if (I > 0 && I < IL_All) {
1430       LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n");
1431       J++->eraseFromParent();
1432       continue;
1433     }
1434 
1435     ++J;
1436   }
1437 
1438   // Rewrite each BaseInst using SCEV.
1439   for (size_t i = 0, e = RootSets.size(); i != e; ++i)
1440     // Insert the new induction variable.
1441     replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);
1442 
1443   { // Limit the lifetime of SCEVExpander.
1444     BranchInst *BI = cast<BranchInst>(Header->getTerminator());
1445     const DataLayout &DL = Header->getModule()->getDataLayout();
1446     SCEVExpander Expander(*SE, DL, "reroll");
1447     auto Zero = SE->getZero(BackedgeTakenCount->getType());
1448     auto One = SE->getOne(BackedgeTakenCount->getType());
1449     auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
1450     Value *NewIV =
1451         Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
1452                                Header->getFirstNonPHIOrDbg());
1453     // FIXME: This arithmetic can overflow.
1454     auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
1455     auto ScaledTripCount = SE->getMulExpr(
1456         TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
1457     auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
1458     Value *TakenCount =
1459         Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
1460                                Header->getFirstNonPHIOrDbg());
1461     Value *Cond =
1462         new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
1463     BI->setCondition(Cond);
1464 
1465     if (BI->getSuccessor(1) != Header)
1466       BI->swapSuccessors();
1467   }
1468 
1469   SimplifyInstructionsInBlock(Header, TLI);
1470   DeleteDeadPHIs(Header, TLI);
1471 }
1472 
replaceIV(DAGRootSet & DRS,const SCEV * Start,const SCEV * IncrExpr)1473 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
1474                                            const SCEV *Start,
1475                                            const SCEV *IncrExpr) {
1476   BasicBlock *Header = L->getHeader();
1477   Instruction *Inst = DRS.BaseInst;
1478 
1479   const SCEV *NewIVSCEV =
1480       SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
1481 
1482   { // Limit the lifetime of SCEVExpander.
1483     const DataLayout &DL = Header->getModule()->getDataLayout();
1484     SCEVExpander Expander(*SE, DL, "reroll");
1485     Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
1486                                           Header->getFirstNonPHIOrDbg());
1487 
1488     for (auto &KV : Uses)
1489       if (KV.second.find_first() == 0)
1490         KV.first->replaceUsesOfWith(Inst, NewIV);
1491   }
1492 }
1493 
1494 // Validate the selected reductions. All iterations must have an isomorphic
1495 // part of the reduction chain and, for non-associative reductions, the chain
1496 // entries must appear in order.
validateSelected()1497 bool LoopReroll::ReductionTracker::validateSelected() {
1498   // For a non-associative reduction, the chain entries must appear in order.
1499   for (int i : Reds) {
1500     int PrevIter = 0, BaseCount = 0, Count = 0;
1501     for (Instruction *J : PossibleReds[i]) {
1502       // Note that all instructions in the chain must have been found because
1503       // all instructions in the function must have been assigned to some
1504       // iteration.
1505       int Iter = PossibleRedIter[J];
1506       if (Iter != PrevIter && Iter != PrevIter + 1 &&
1507           !PossibleReds[i].getReducedValue()->isAssociative()) {
1508         LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
1509                           << J << "\n");
1510         return false;
1511       }
1512 
1513       if (Iter != PrevIter) {
1514         if (Count != BaseCount) {
1515           LLVM_DEBUG(dbgs()
1516                      << "LRR: Iteration " << PrevIter << " reduction use count "
1517                      << Count << " is not equal to the base use count "
1518                      << BaseCount << "\n");
1519           return false;
1520         }
1521 
1522         Count = 0;
1523       }
1524 
1525       ++Count;
1526       if (Iter == 0)
1527         ++BaseCount;
1528 
1529       PrevIter = Iter;
1530     }
1531   }
1532 
1533   return true;
1534 }
1535 
1536 // For all selected reductions, remove all parts except those in the first
1537 // iteration (and the PHI). Replace outside uses of the reduced value with uses
1538 // of the first-iteration reduced value (in other words, reroll the selected
1539 // reductions).
replaceSelected()1540 void LoopReroll::ReductionTracker::replaceSelected() {
1541   // Fixup reductions to refer to the last instruction associated with the
1542   // first iteration (not the last).
1543   for (int i : Reds) {
1544     int j = 0;
1545     for (int e = PossibleReds[i].size(); j != e; ++j)
1546       if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1547         --j;
1548         break;
1549       }
1550 
1551     // Replace users with the new end-of-chain value.
1552     SmallInstructionVector Users;
1553     for (User *U : PossibleReds[i].getReducedValue()->users()) {
1554       Users.push_back(cast<Instruction>(U));
1555     }
1556 
1557     for (Instruction *User : Users)
1558       User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1559                               PossibleReds[i][j]);
1560   }
1561 }
1562 
1563 // Reroll the provided loop with respect to the provided induction variable.
1564 // Generally, we're looking for a loop like this:
1565 //
1566 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
1567 // f(%iv)
1568 // %iv.1 = add %iv, 1                <-- a root increment
1569 // f(%iv.1)
1570 // %iv.2 = add %iv, 2                <-- a root increment
1571 // f(%iv.2)
1572 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
1573 // f(%iv.scale_m_1)
1574 // ...
1575 // %iv.next = add %iv, scale
1576 // %cmp = icmp(%iv, ...)
1577 // br %cmp, header, exit
1578 //
1579 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1580 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1581 // be intermixed with eachother. The restriction imposed by this algorithm is
1582 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1583 // etc. be the same.
1584 //
1585 // First, we collect the use set of %iv, excluding the other increment roots.
1586 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1587 // times, having collected the use set of f(%iv.(i+1)), during which we:
1588 //   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1589 //     the next unmatched instruction in f(%iv.(i+1)).
1590 //   - Ensure that both matched instructions don't have any external users
1591 //     (with the exception of last-in-chain reduction instructions).
1592 //   - Track the (aliasing) write set, and other side effects, of all
1593 //     instructions that belong to future iterations that come before the matched
1594 //     instructions. If the matched instructions read from that write set, then
1595 //     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1596 //     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1597 //     if any of these future instructions had side effects (could not be
1598 //     speculatively executed), and so do the matched instructions, when we
1599 //     cannot reorder those side-effect-producing instructions, and rerolling
1600 //     fails.
1601 //
1602 // Finally, we make sure that all loop instructions are either loop increment
1603 // roots, belong to simple latch code, parts of validated reductions, part of
1604 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1605 // have been validated), then we reroll the loop.
reroll(Instruction * IV,Loop * L,BasicBlock * Header,const SCEV * BackedgeTakenCount,ReductionTracker & Reductions)1606 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1607                         const SCEV *BackedgeTakenCount,
1608                         ReductionTracker &Reductions) {
1609   DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
1610                           IVToIncMap, LoopControlIV);
1611 
1612   if (!DAGRoots.findRoots())
1613     return false;
1614   LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
1615                     << "\n");
1616 
1617   if (!DAGRoots.validate(Reductions))
1618     return false;
1619   if (!Reductions.validateSelected())
1620     return false;
1621   // At this point, we've validated the rerolling, and we're committed to
1622   // making changes!
1623 
1624   Reductions.replaceSelected();
1625   DAGRoots.replace(BackedgeTakenCount);
1626 
1627   ++NumRerolledLoops;
1628   return true;
1629 }
1630 
runOnLoop(Loop * L,LPPassManager & LPM)1631 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
1632   if (skipLoop(L))
1633     return false;
1634 
1635   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1636   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1637   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1638   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1639   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1640   PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1641 
1642   BasicBlock *Header = L->getHeader();
1643   LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
1644                     << Header->getName() << " (" << L->getNumBlocks()
1645                     << " block(s))\n");
1646 
1647   // For now, we'll handle only single BB loops.
1648   if (L->getNumBlocks() > 1)
1649     return false;
1650 
1651   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1652     return false;
1653 
1654   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1655   LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
1656   LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
1657                << "\n");
1658 
1659   // First, we need to find the induction variable with respect to which we can
1660   // reroll (there may be several possible options).
1661   SmallInstructionVector PossibleIVs;
1662   IVToIncMap.clear();
1663   LoopControlIV = nullptr;
1664   collectPossibleIVs(L, PossibleIVs);
1665 
1666   if (PossibleIVs.empty()) {
1667     LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
1668     return false;
1669   }
1670 
1671   ReductionTracker Reductions;
1672   collectPossibleReductions(L, Reductions);
1673   bool Changed = false;
1674 
1675   // For each possible IV, collect the associated possible set of 'root' nodes
1676   // (i+1, i+2, etc.).
1677   for (Instruction *PossibleIV : PossibleIVs)
1678     if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
1679       Changed = true;
1680       break;
1681     }
1682   LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
1683 
1684   // Trip count of L has changed so SE must be re-evaluated.
1685   if (Changed)
1686     SE->forgetLoop(L);
1687 
1688   return Changed;
1689 }
1690