1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides utilities to convert a loop into a loop with bottom test.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/CodeMetrics.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
40 #include "llvm/Transforms/Utils/ValueMapper.h"
41 using namespace llvm;
42
43 #define DEBUG_TYPE "loop-rotate"
44
45 STATISTIC(NumRotated, "Number of loops rotated");
46
47 namespace {
48 /// A simple loop rotation transformation.
49 class LoopRotate {
50 const unsigned MaxHeaderSize;
51 LoopInfo *LI;
52 const TargetTransformInfo *TTI;
53 AssumptionCache *AC;
54 DominatorTree *DT;
55 ScalarEvolution *SE;
56 const SimplifyQuery &SQ;
57 bool RotationOnly;
58 bool IsUtilMode;
59
60 public:
LoopRotate(unsigned MaxHeaderSize,LoopInfo * LI,const TargetTransformInfo * TTI,AssumptionCache * AC,DominatorTree * DT,ScalarEvolution * SE,const SimplifyQuery & SQ,bool RotationOnly,bool IsUtilMode)61 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
62 const TargetTransformInfo *TTI, AssumptionCache *AC,
63 DominatorTree *DT, ScalarEvolution *SE, const SimplifyQuery &SQ,
64 bool RotationOnly, bool IsUtilMode)
65 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
66 SQ(SQ), RotationOnly(RotationOnly), IsUtilMode(IsUtilMode) {}
67 bool processLoop(Loop *L);
68
69 private:
70 bool rotateLoop(Loop *L, bool SimplifiedLatch);
71 bool simplifyLoopLatch(Loop *L);
72 };
73 } // end anonymous namespace
74
75 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
76 /// old header into the preheader. If there were uses of the values produced by
77 /// these instruction that were outside of the loop, we have to insert PHI nodes
78 /// to merge the two values. Do this now.
RewriteUsesOfClonedInstructions(BasicBlock * OrigHeader,BasicBlock * OrigPreheader,ValueToValueMapTy & ValueMap,SmallVectorImpl<PHINode * > * InsertedPHIs)79 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
80 BasicBlock *OrigPreheader,
81 ValueToValueMapTy &ValueMap,
82 SmallVectorImpl<PHINode*> *InsertedPHIs) {
83 // Remove PHI node entries that are no longer live.
84 BasicBlock::iterator I, E = OrigHeader->end();
85 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
86 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
87
88 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
89 // as necessary.
90 SSAUpdater SSA(InsertedPHIs);
91 for (I = OrigHeader->begin(); I != E; ++I) {
92 Value *OrigHeaderVal = &*I;
93
94 // If there are no uses of the value (e.g. because it returns void), there
95 // is nothing to rewrite.
96 if (OrigHeaderVal->use_empty())
97 continue;
98
99 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
100
101 // The value now exits in two versions: the initial value in the preheader
102 // and the loop "next" value in the original header.
103 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
104 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
105 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
106
107 // Visit each use of the OrigHeader instruction.
108 for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
109 UE = OrigHeaderVal->use_end();
110 UI != UE;) {
111 // Grab the use before incrementing the iterator.
112 Use &U = *UI;
113
114 // Increment the iterator before removing the use from the list.
115 ++UI;
116
117 // SSAUpdater can't handle a non-PHI use in the same block as an
118 // earlier def. We can easily handle those cases manually.
119 Instruction *UserInst = cast<Instruction>(U.getUser());
120 if (!isa<PHINode>(UserInst)) {
121 BasicBlock *UserBB = UserInst->getParent();
122
123 // The original users in the OrigHeader are already using the
124 // original definitions.
125 if (UserBB == OrigHeader)
126 continue;
127
128 // Users in the OrigPreHeader need to use the value to which the
129 // original definitions are mapped.
130 if (UserBB == OrigPreheader) {
131 U = OrigPreHeaderVal;
132 continue;
133 }
134 }
135
136 // Anything else can be handled by SSAUpdater.
137 SSA.RewriteUse(U);
138 }
139
140 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
141 // intrinsics.
142 SmallVector<DbgValueInst *, 1> DbgValues;
143 llvm::findDbgValues(DbgValues, OrigHeaderVal);
144 for (auto &DbgValue : DbgValues) {
145 // The original users in the OrigHeader are already using the original
146 // definitions.
147 BasicBlock *UserBB = DbgValue->getParent();
148 if (UserBB == OrigHeader)
149 continue;
150
151 // Users in the OrigPreHeader need to use the value to which the
152 // original definitions are mapped and anything else can be handled by
153 // the SSAUpdater. To avoid adding PHINodes, check if the value is
154 // available in UserBB, if not substitute undef.
155 Value *NewVal;
156 if (UserBB == OrigPreheader)
157 NewVal = OrigPreHeaderVal;
158 else if (SSA.HasValueForBlock(UserBB))
159 NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
160 else
161 NewVal = UndefValue::get(OrigHeaderVal->getType());
162 DbgValue->setOperand(0,
163 MetadataAsValue::get(OrigHeaderVal->getContext(),
164 ValueAsMetadata::get(NewVal)));
165 }
166 }
167 }
168
169 // Look for a phi which is only used outside the loop (via a LCSSA phi)
170 // in the exit from the header. This means that rotating the loop can
171 // remove the phi.
shouldRotateLoopExitingLatch(Loop * L)172 static bool shouldRotateLoopExitingLatch(Loop *L) {
173 BasicBlock *Header = L->getHeader();
174 BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0);
175 if (L->contains(HeaderExit))
176 HeaderExit = Header->getTerminator()->getSuccessor(1);
177
178 for (auto &Phi : Header->phis()) {
179 // Look for uses of this phi in the loop/via exits other than the header.
180 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
181 return cast<Instruction>(U)->getParent() != HeaderExit;
182 }))
183 continue;
184 return true;
185 }
186
187 return false;
188 }
189
190 /// Rotate loop LP. Return true if the loop is rotated.
191 ///
192 /// \param SimplifiedLatch is true if the latch was just folded into the final
193 /// loop exit. In this case we may want to rotate even though the new latch is
194 /// now an exiting branch. This rotation would have happened had the latch not
195 /// been simplified. However, if SimplifiedLatch is false, then we avoid
196 /// rotating loops in which the latch exits to avoid excessive or endless
197 /// rotation. LoopRotate should be repeatable and converge to a canonical
198 /// form. This property is satisfied because simplifying the loop latch can only
199 /// happen once across multiple invocations of the LoopRotate pass.
rotateLoop(Loop * L,bool SimplifiedLatch)200 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
201 // If the loop has only one block then there is not much to rotate.
202 if (L->getBlocks().size() == 1)
203 return false;
204
205 BasicBlock *OrigHeader = L->getHeader();
206 BasicBlock *OrigLatch = L->getLoopLatch();
207
208 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
209 if (!BI || BI->isUnconditional())
210 return false;
211
212 // If the loop header is not one of the loop exiting blocks then
213 // either this loop is already rotated or it is not
214 // suitable for loop rotation transformations.
215 if (!L->isLoopExiting(OrigHeader))
216 return false;
217
218 // If the loop latch already contains a branch that leaves the loop then the
219 // loop is already rotated.
220 if (!OrigLatch)
221 return false;
222
223 // Rotate if either the loop latch does *not* exit the loop, or if the loop
224 // latch was just simplified. Or if we think it will be profitable.
225 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
226 !shouldRotateLoopExitingLatch(L))
227 return false;
228
229 // Check size of original header and reject loop if it is very big or we can't
230 // duplicate blocks inside it.
231 {
232 SmallPtrSet<const Value *, 32> EphValues;
233 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
234
235 CodeMetrics Metrics;
236 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
237 if (Metrics.notDuplicatable) {
238 LLVM_DEBUG(
239 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
240 << " instructions: ";
241 L->dump());
242 return false;
243 }
244 if (Metrics.convergent) {
245 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
246 "instructions: ";
247 L->dump());
248 return false;
249 }
250 if (Metrics.NumInsts > MaxHeaderSize)
251 return false;
252 }
253
254 // Now, this loop is suitable for rotation.
255 BasicBlock *OrigPreheader = L->getLoopPreheader();
256
257 // If the loop could not be converted to canonical form, it must have an
258 // indirectbr in it, just give up.
259 if (!OrigPreheader || !L->hasDedicatedExits())
260 return false;
261
262 // Anything ScalarEvolution may know about this loop or the PHI nodes
263 // in its header will soon be invalidated. We should also invalidate
264 // all outer loops because insertion and deletion of blocks that happens
265 // during the rotation may violate invariants related to backedge taken
266 // infos in them.
267 if (SE)
268 SE->forgetTopmostLoop(L);
269
270 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
271
272 // Find new Loop header. NewHeader is a Header's one and only successor
273 // that is inside loop. Header's other successor is outside the
274 // loop. Otherwise loop is not suitable for rotation.
275 BasicBlock *Exit = BI->getSuccessor(0);
276 BasicBlock *NewHeader = BI->getSuccessor(1);
277 if (L->contains(Exit))
278 std::swap(Exit, NewHeader);
279 assert(NewHeader && "Unable to determine new loop header");
280 assert(L->contains(NewHeader) && !L->contains(Exit) &&
281 "Unable to determine loop header and exit blocks");
282
283 // This code assumes that the new header has exactly one predecessor.
284 // Remove any single-entry PHI nodes in it.
285 assert(NewHeader->getSinglePredecessor() &&
286 "New header doesn't have one pred!");
287 FoldSingleEntryPHINodes(NewHeader);
288
289 // Begin by walking OrigHeader and populating ValueMap with an entry for
290 // each Instruction.
291 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
292 ValueToValueMapTy ValueMap;
293
294 // For PHI nodes, the value available in OldPreHeader is just the
295 // incoming value from OldPreHeader.
296 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
297 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
298
299 // For the rest of the instructions, either hoist to the OrigPreheader if
300 // possible or create a clone in the OldPreHeader if not.
301 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
302
303 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
304 using DbgIntrinsicHash =
305 std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
306 auto makeHash = [](DbgInfoIntrinsic *D) -> DbgIntrinsicHash {
307 return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
308 };
309 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
310 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
311 I != E; ++I) {
312 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&*I))
313 DbgIntrinsics.insert(makeHash(DII));
314 else
315 break;
316 }
317
318 while (I != E) {
319 Instruction *Inst = &*I++;
320
321 // If the instruction's operands are invariant and it doesn't read or write
322 // memory, then it is safe to hoist. Doing this doesn't change the order of
323 // execution in the preheader, but does prevent the instruction from
324 // executing in each iteration of the loop. This means it is safe to hoist
325 // something that might trap, but isn't safe to hoist something that reads
326 // memory (without proving that the loop doesn't write).
327 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
328 !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) &&
329 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
330 Inst->moveBefore(LoopEntryBranch);
331 continue;
332 }
333
334 // Otherwise, create a duplicate of the instruction.
335 Instruction *C = Inst->clone();
336
337 // Eagerly remap the operands of the instruction.
338 RemapInstruction(C, ValueMap,
339 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
340
341 // Avoid inserting the same intrinsic twice.
342 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(C))
343 if (DbgIntrinsics.count(makeHash(DII))) {
344 C->deleteValue();
345 continue;
346 }
347
348 // With the operands remapped, see if the instruction constant folds or is
349 // otherwise simplifyable. This commonly occurs because the entry from PHI
350 // nodes allows icmps and other instructions to fold.
351 Value *V = SimplifyInstruction(C, SQ);
352 if (V && LI->replacementPreservesLCSSAForm(C, V)) {
353 // If so, then delete the temporary instruction and stick the folded value
354 // in the map.
355 ValueMap[Inst] = V;
356 if (!C->mayHaveSideEffects()) {
357 C->deleteValue();
358 C = nullptr;
359 }
360 } else {
361 ValueMap[Inst] = C;
362 }
363 if (C) {
364 // Otherwise, stick the new instruction into the new block!
365 C->setName(Inst->getName());
366 C->insertBefore(LoopEntryBranch);
367
368 if (auto *II = dyn_cast<IntrinsicInst>(C))
369 if (II->getIntrinsicID() == Intrinsic::assume)
370 AC->registerAssumption(II);
371 }
372 }
373
374 // Along with all the other instructions, we just cloned OrigHeader's
375 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
376 // successors by duplicating their incoming values for OrigHeader.
377 TerminatorInst *TI = OrigHeader->getTerminator();
378 for (BasicBlock *SuccBB : TI->successors())
379 for (BasicBlock::iterator BI = SuccBB->begin();
380 PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
381 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
382
383 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
384 // OrigPreHeader's old terminator (the original branch into the loop), and
385 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
386 LoopEntryBranch->eraseFromParent();
387
388
389 SmallVector<PHINode*, 2> InsertedPHIs;
390 // If there were any uses of instructions in the duplicated block outside the
391 // loop, update them, inserting PHI nodes as required
392 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
393 &InsertedPHIs);
394
395 // Attach dbg.value intrinsics to the new phis if that phi uses a value that
396 // previously had debug metadata attached. This keeps the debug info
397 // up-to-date in the loop body.
398 if (!InsertedPHIs.empty())
399 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
400
401 // NewHeader is now the header of the loop.
402 L->moveToHeader(NewHeader);
403 assert(L->getHeader() == NewHeader && "Latch block is our new header");
404
405 // Inform DT about changes to the CFG.
406 if (DT) {
407 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
408 // the DT about the removed edge to the OrigHeader (that got removed).
409 SmallVector<DominatorTree::UpdateType, 3> Updates;
410 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
411 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
412 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
413 DT->applyUpdates(Updates);
414 }
415
416 // At this point, we've finished our major CFG changes. As part of cloning
417 // the loop into the preheader we've simplified instructions and the
418 // duplicated conditional branch may now be branching on a constant. If it is
419 // branching on a constant and if that constant means that we enter the loop,
420 // then we fold away the cond branch to an uncond branch. This simplifies the
421 // loop in cases important for nested loops, and it also means we don't have
422 // to split as many edges.
423 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
424 assert(PHBI->isConditional() && "Should be clone of BI condbr!");
425 if (!isa<ConstantInt>(PHBI->getCondition()) ||
426 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
427 NewHeader) {
428 // The conditional branch can't be folded, handle the general case.
429 // Split edges as necessary to preserve LoopSimplify form.
430
431 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
432 // thus is not a preheader anymore.
433 // Split the edge to form a real preheader.
434 BasicBlock *NewPH = SplitCriticalEdge(
435 OrigPreheader, NewHeader,
436 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
437 NewPH->setName(NewHeader->getName() + ".lr.ph");
438
439 // Preserve canonical loop form, which means that 'Exit' should have only
440 // one predecessor. Note that Exit could be an exit block for multiple
441 // nested loops, causing both of the edges to now be critical and need to
442 // be split.
443 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
444 bool SplitLatchEdge = false;
445 for (BasicBlock *ExitPred : ExitPreds) {
446 // We only need to split loop exit edges.
447 Loop *PredLoop = LI->getLoopFor(ExitPred);
448 if (!PredLoop || PredLoop->contains(Exit))
449 continue;
450 if (isa<IndirectBrInst>(ExitPred->getTerminator()))
451 continue;
452 SplitLatchEdge |= L->getLoopLatch() == ExitPred;
453 BasicBlock *ExitSplit = SplitCriticalEdge(
454 ExitPred, Exit,
455 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
456 ExitSplit->moveBefore(Exit);
457 }
458 assert(SplitLatchEdge &&
459 "Despite splitting all preds, failed to split latch exit?");
460 } else {
461 // We can fold the conditional branch in the preheader, this makes things
462 // simpler. The first step is to remove the extra edge to the Exit block.
463 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
464 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
465 NewBI->setDebugLoc(PHBI->getDebugLoc());
466 PHBI->eraseFromParent();
467
468 // With our CFG finalized, update DomTree if it is available.
469 if (DT) DT->deleteEdge(OrigPreheader, Exit);
470 }
471
472 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
473 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
474
475 // Now that the CFG and DomTree are in a consistent state again, try to merge
476 // the OrigHeader block into OrigLatch. This will succeed if they are
477 // connected by an unconditional branch. This is just a cleanup so the
478 // emitted code isn't too gross in this common case.
479 MergeBlockIntoPredecessor(OrigHeader, DT, LI);
480
481 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
482
483 ++NumRotated;
484 return true;
485 }
486
487 /// Determine whether the instructions in this range may be safely and cheaply
488 /// speculated. This is not an important enough situation to develop complex
489 /// heuristics. We handle a single arithmetic instruction along with any type
490 /// conversions.
shouldSpeculateInstrs(BasicBlock::iterator Begin,BasicBlock::iterator End,Loop * L)491 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
492 BasicBlock::iterator End, Loop *L) {
493 bool seenIncrement = false;
494 bool MultiExitLoop = false;
495
496 if (!L->getExitingBlock())
497 MultiExitLoop = true;
498
499 for (BasicBlock::iterator I = Begin; I != End; ++I) {
500
501 if (!isSafeToSpeculativelyExecute(&*I))
502 return false;
503
504 if (isa<DbgInfoIntrinsic>(I))
505 continue;
506
507 switch (I->getOpcode()) {
508 default:
509 return false;
510 case Instruction::GetElementPtr:
511 // GEPs are cheap if all indices are constant.
512 if (!cast<GEPOperator>(I)->hasAllConstantIndices())
513 return false;
514 // fall-thru to increment case
515 LLVM_FALLTHROUGH;
516 case Instruction::Add:
517 case Instruction::Sub:
518 case Instruction::And:
519 case Instruction::Or:
520 case Instruction::Xor:
521 case Instruction::Shl:
522 case Instruction::LShr:
523 case Instruction::AShr: {
524 Value *IVOpnd =
525 !isa<Constant>(I->getOperand(0))
526 ? I->getOperand(0)
527 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
528 if (!IVOpnd)
529 return false;
530
531 // If increment operand is used outside of the loop, this speculation
532 // could cause extra live range interference.
533 if (MultiExitLoop) {
534 for (User *UseI : IVOpnd->users()) {
535 auto *UserInst = cast<Instruction>(UseI);
536 if (!L->contains(UserInst))
537 return false;
538 }
539 }
540
541 if (seenIncrement)
542 return false;
543 seenIncrement = true;
544 break;
545 }
546 case Instruction::Trunc:
547 case Instruction::ZExt:
548 case Instruction::SExt:
549 // ignore type conversions
550 break;
551 }
552 }
553 return true;
554 }
555
556 /// Fold the loop tail into the loop exit by speculating the loop tail
557 /// instructions. Typically, this is a single post-increment. In the case of a
558 /// simple 2-block loop, hoisting the increment can be much better than
559 /// duplicating the entire loop header. In the case of loops with early exits,
560 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
561 /// canonical form so downstream passes can handle it.
562 ///
563 /// I don't believe this invalidates SCEV.
simplifyLoopLatch(Loop * L)564 bool LoopRotate::simplifyLoopLatch(Loop *L) {
565 BasicBlock *Latch = L->getLoopLatch();
566 if (!Latch || Latch->hasAddressTaken())
567 return false;
568
569 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
570 if (!Jmp || !Jmp->isUnconditional())
571 return false;
572
573 BasicBlock *LastExit = Latch->getSinglePredecessor();
574 if (!LastExit || !L->isLoopExiting(LastExit))
575 return false;
576
577 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
578 if (!BI)
579 return false;
580
581 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
582 return false;
583
584 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
585 << LastExit->getName() << "\n");
586
587 // Hoist the instructions from Latch into LastExit.
588 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
589 Latch->begin(), Jmp->getIterator());
590
591 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
592 BasicBlock *Header = Jmp->getSuccessor(0);
593 assert(Header == L->getHeader() && "expected a backward branch");
594
595 // Remove Latch from the CFG so that LastExit becomes the new Latch.
596 BI->setSuccessor(FallThruPath, Header);
597 Latch->replaceSuccessorsPhiUsesWith(LastExit);
598 Jmp->eraseFromParent();
599
600 // Nuke the Latch block.
601 assert(Latch->empty() && "unable to evacuate Latch");
602 LI->removeBlock(Latch);
603 if (DT)
604 DT->eraseNode(Latch);
605 Latch->eraseFromParent();
606 return true;
607 }
608
609 /// Rotate \c L, and return true if any modification was made.
processLoop(Loop * L)610 bool LoopRotate::processLoop(Loop *L) {
611 // Save the loop metadata.
612 MDNode *LoopMD = L->getLoopID();
613
614 bool SimplifiedLatch = false;
615
616 // Simplify the loop latch before attempting to rotate the header
617 // upward. Rotation may not be needed if the loop tail can be folded into the
618 // loop exit.
619 if (!RotationOnly)
620 SimplifiedLatch = simplifyLoopLatch(L);
621
622 bool MadeChange = rotateLoop(L, SimplifiedLatch);
623 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
624 "Loop latch should be exiting after loop-rotate.");
625
626 // Restore the loop metadata.
627 // NB! We presume LoopRotation DOESN'T ADD its own metadata.
628 if ((MadeChange || SimplifiedLatch) && LoopMD)
629 L->setLoopID(LoopMD);
630
631 return MadeChange || SimplifiedLatch;
632 }
633
634
635 /// The utility to convert a loop into a loop with bottom test.
LoopRotation(Loop * L,LoopInfo * LI,const TargetTransformInfo * TTI,AssumptionCache * AC,DominatorTree * DT,ScalarEvolution * SE,const SimplifyQuery & SQ,bool RotationOnly=true,unsigned Threshold=unsigned (-1),bool IsUtilMode=true)636 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
637 AssumptionCache *AC, DominatorTree *DT,
638 ScalarEvolution *SE, const SimplifyQuery &SQ,
639 bool RotationOnly = true,
640 unsigned Threshold = unsigned(-1),
641 bool IsUtilMode = true) {
642 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, SQ, RotationOnly, IsUtilMode);
643
644 return LR.processLoop(L);
645 }
646