• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
20 // unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpander.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 #include <algorithm>
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-unroll"
46 
47 STATISTIC(NumRuntimeUnrolled,
48           "Number of loops unrolled with run-time trip counts");
49 static cl::opt<bool> UnrollRuntimeMultiExit(
50     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
51     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
52              "epilog is generated"));
53 
54 /// Connect the unrolling prolog code to the original loop.
55 /// The unrolling prolog code contains code to execute the
56 /// 'extra' iterations if the run-time trip count modulo the
57 /// unroll count is non-zero.
58 ///
59 /// This function performs the following:
60 /// - Create PHI nodes at prolog end block to combine values
61 ///   that exit the prolog code and jump around the prolog.
62 /// - Add a PHI operand to a PHI node at the loop exit block
63 ///   for values that exit the prolog and go around the loop.
64 /// - Branch around the original loop if the trip count is less
65 ///   than the unroll factor.
66 ///
ConnectProlog(Loop * L,Value * BECount,unsigned Count,BasicBlock * PrologExit,BasicBlock * OriginalLoopLatchExit,BasicBlock * PreHeader,BasicBlock * NewPreHeader,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)67 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
68                           BasicBlock *PrologExit,
69                           BasicBlock *OriginalLoopLatchExit,
70                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
71                           ValueToValueMapTy &VMap, DominatorTree *DT,
72                           LoopInfo *LI, bool PreserveLCSSA) {
73   BasicBlock *Latch = L->getLoopLatch();
74   assert(Latch && "Loop must have a latch");
75   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
76 
77   // Create a PHI node for each outgoing value from the original loop
78   // (which means it is an outgoing value from the prolog code too).
79   // The new PHI node is inserted in the prolog end basic block.
80   // The new PHI node value is added as an operand of a PHI node in either
81   // the loop header or the loop exit block.
82   for (BasicBlock *Succ : successors(Latch)) {
83     for (PHINode &PN : Succ->phis()) {
84       // Add a new PHI node to the prolog end block and add the
85       // appropriate incoming values.
86       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
87                                        PrologExit->getFirstNonPHI());
88       // Adding a value to the new PHI node from the original loop preheader.
89       // This is the value that skips all the prolog code.
90       if (L->contains(&PN)) {
91         NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
92                            PreHeader);
93       } else {
94         NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
95       }
96 
97       Value *V = PN.getIncomingValueForBlock(Latch);
98       if (Instruction *I = dyn_cast<Instruction>(V)) {
99         if (L->contains(I)) {
100           V = VMap.lookup(I);
101         }
102       }
103       // Adding a value to the new PHI node from the last prolog block
104       // that was created.
105       NewPN->addIncoming(V, PrologLatch);
106 
107       // Update the existing PHI node operand with the value from the
108       // new PHI node.  How this is done depends on if the existing
109       // PHI node is in the original loop block, or the exit block.
110       if (L->contains(&PN)) {
111         PN.setIncomingValue(PN.getBasicBlockIndex(NewPreHeader), NewPN);
112       } else {
113         PN.addIncoming(NewPN, PrologExit);
114       }
115     }
116   }
117 
118   // Make sure that created prolog loop is in simplified form
119   SmallVector<BasicBlock *, 4> PrologExitPreds;
120   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
121   if (PrologLoop) {
122     for (BasicBlock *PredBB : predecessors(PrologExit))
123       if (PrologLoop->contains(PredBB))
124         PrologExitPreds.push_back(PredBB);
125 
126     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
127                            PreserveLCSSA);
128   }
129 
130   // Create a branch around the original loop, which is taken if there are no
131   // iterations remaining to be executed after running the prologue.
132   Instruction *InsertPt = PrologExit->getTerminator();
133   IRBuilder<> B(InsertPt);
134 
135   assert(Count != 0 && "nonsensical Count!");
136 
137   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
138   // This means %xtraiter is (BECount + 1) and all of the iterations of this
139   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
140   // then (BECount + 1) cannot unsigned-overflow.
141   Value *BrLoopExit =
142       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
143   // Split the exit to maintain loop canonicalization guarantees
144   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
145   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
146                          PreserveLCSSA);
147   // Add the branch to the exit block (around the unrolled loop)
148   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
149   InsertPt->eraseFromParent();
150   if (DT)
151     DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
152 }
153 
154 /// Connect the unrolling epilog code to the original loop.
155 /// The unrolling epilog code contains code to execute the
156 /// 'extra' iterations if the run-time trip count modulo the
157 /// unroll count is non-zero.
158 ///
159 /// This function performs the following:
160 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
161 /// - Create PHI nodes at the unrolling loop exit to combine
162 ///   values that exit the unrolling loop code and jump around it.
163 /// - Update PHI operands in the epilog loop by the new PHI nodes
164 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
165 ///
ConnectEpilog(Loop * L,Value * ModVal,BasicBlock * NewExit,BasicBlock * Exit,BasicBlock * PreHeader,BasicBlock * EpilogPreHeader,BasicBlock * NewPreHeader,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)166 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
167                           BasicBlock *Exit, BasicBlock *PreHeader,
168                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
169                           ValueToValueMapTy &VMap, DominatorTree *DT,
170                           LoopInfo *LI, bool PreserveLCSSA)  {
171   BasicBlock *Latch = L->getLoopLatch();
172   assert(Latch && "Loop must have a latch");
173   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
174 
175   // Loop structure should be the following:
176   //
177   // PreHeader
178   // NewPreHeader
179   //   Header
180   //   ...
181   //   Latch
182   // NewExit (PN)
183   // EpilogPreHeader
184   //   EpilogHeader
185   //   ...
186   //   EpilogLatch
187   // Exit (EpilogPN)
188 
189   // Update PHI nodes at NewExit and Exit.
190   for (PHINode &PN : NewExit->phis()) {
191     // PN should be used in another PHI located in Exit block as
192     // Exit was split by SplitBlockPredecessors into Exit and NewExit
193     // Basicaly it should look like:
194     // NewExit:
195     //   PN = PHI [I, Latch]
196     // ...
197     // Exit:
198     //   EpilogPN = PHI [PN, EpilogPreHeader]
199     //
200     // There is EpilogPreHeader incoming block instead of NewExit as
201     // NewExit was spilt 1 more time to get EpilogPreHeader.
202     assert(PN.hasOneUse() && "The phi should have 1 use");
203     PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
204     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
205 
206     // Add incoming PreHeader from branch around the Loop
207     PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
208 
209     Value *V = PN.getIncomingValueForBlock(Latch);
210     Instruction *I = dyn_cast<Instruction>(V);
211     if (I && L->contains(I))
212       // If value comes from an instruction in the loop add VMap value.
213       V = VMap.lookup(I);
214     // For the instruction out of the loop, constant or undefined value
215     // insert value itself.
216     EpilogPN->addIncoming(V, EpilogLatch);
217 
218     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
219           "EpilogPN should have EpilogPreHeader incoming block");
220     // Change EpilogPreHeader incoming block to NewExit.
221     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
222                                NewExit);
223     // Now PHIs should look like:
224     // NewExit:
225     //   PN = PHI [I, Latch], [undef, PreHeader]
226     // ...
227     // Exit:
228     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
229   }
230 
231   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
232   // Update corresponding PHI nodes in epilog loop.
233   for (BasicBlock *Succ : successors(Latch)) {
234     // Skip this as we already updated phis in exit blocks.
235     if (!L->contains(Succ))
236       continue;
237     for (PHINode &PN : Succ->phis()) {
238       // Add new PHI nodes to the loop exit block and update epilog
239       // PHIs with the new PHI values.
240       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
241                                        NewExit->getFirstNonPHI());
242       // Adding a value to the new PHI node from the unrolling loop preheader.
243       NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
244       // Adding a value to the new PHI node from the unrolling loop latch.
245       NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
246 
247       // Update the existing PHI node operand with the value from the new PHI
248       // node.  Corresponding instruction in epilog loop should be PHI.
249       PHINode *VPN = cast<PHINode>(VMap[&PN]);
250       VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
251     }
252   }
253 
254   Instruction *InsertPt = NewExit->getTerminator();
255   IRBuilder<> B(InsertPt);
256   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
257   assert(Exit && "Loop must have a single exit block only");
258   // Split the epilogue exit to maintain loop canonicalization guarantees
259   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
260   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
261                          PreserveLCSSA);
262   // Add the branch to the exit block (around the unrolling loop)
263   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
264   InsertPt->eraseFromParent();
265   if (DT)
266     DT->changeImmediateDominator(Exit, NewExit);
267 
268   // Split the main loop exit to maintain canonicalization guarantees.
269   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
270   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI,
271                          PreserveLCSSA);
272 }
273 
274 /// Create a clone of the blocks in a loop and connect them together.
275 /// If CreateRemainderLoop is false, loop structure will not be cloned,
276 /// otherwise a new loop will be created including all cloned blocks, and the
277 /// iterator of it switches to count NewIter down to 0.
278 /// The cloned blocks should be inserted between InsertTop and InsertBot.
279 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
280 /// new loop exit.
281 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
282 static Loop *
CloneLoopBlocks(Loop * L,Value * NewIter,const bool CreateRemainderLoop,const bool UseEpilogRemainder,const bool UnrollRemainder,BasicBlock * InsertTop,BasicBlock * InsertBot,BasicBlock * Preheader,std::vector<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,DominatorTree * DT,LoopInfo * LI)283 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
284                 const bool UseEpilogRemainder, const bool UnrollRemainder,
285                 BasicBlock *InsertTop,
286                 BasicBlock *InsertBot, BasicBlock *Preheader,
287                 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
288                 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
289   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
290   BasicBlock *Header = L->getHeader();
291   BasicBlock *Latch = L->getLoopLatch();
292   Function *F = Header->getParent();
293   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
294   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
295   Loop *ParentLoop = L->getParentLoop();
296   NewLoopsMap NewLoops;
297   NewLoops[ParentLoop] = ParentLoop;
298   if (!CreateRemainderLoop)
299     NewLoops[L] = ParentLoop;
300 
301   // For each block in the original loop, create a new copy,
302   // and update the value map with the newly created values.
303   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
304     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
305     NewBlocks.push_back(NewBB);
306 
307     // If we're unrolling the outermost loop, there's no remainder loop,
308     // and this block isn't in a nested loop, then the new block is not
309     // in any loop. Otherwise, add it to loopinfo.
310     if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
311       addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
312 
313     VMap[*BB] = NewBB;
314     if (Header == *BB) {
315       // For the first block, add a CFG connection to this newly
316       // created block.
317       InsertTop->getTerminator()->setSuccessor(0, NewBB);
318     }
319 
320     if (DT) {
321       if (Header == *BB) {
322         // The header is dominated by the preheader.
323         DT->addNewBlock(NewBB, InsertTop);
324       } else {
325         // Copy information from original loop to unrolled loop.
326         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
327         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
328       }
329     }
330 
331     if (Latch == *BB) {
332       // For the last block, if CreateRemainderLoop is false, create a direct
333       // jump to InsertBot. If not, create a loop back to cloned head.
334       VMap.erase((*BB)->getTerminator());
335       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
336       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
337       IRBuilder<> Builder(LatchBR);
338       if (!CreateRemainderLoop) {
339         Builder.CreateBr(InsertBot);
340       } else {
341         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
342                                           suffix + ".iter",
343                                           FirstLoopBB->getFirstNonPHI());
344         Value *IdxSub =
345             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
346                               NewIdx->getName() + ".sub");
347         Value *IdxCmp =
348             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
349         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
350         NewIdx->addIncoming(NewIter, InsertTop);
351         NewIdx->addIncoming(IdxSub, NewBB);
352       }
353       LatchBR->eraseFromParent();
354     }
355   }
356 
357   // Change the incoming values to the ones defined in the preheader or
358   // cloned loop.
359   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
360     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
361     if (!CreateRemainderLoop) {
362       if (UseEpilogRemainder) {
363         unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
364         NewPHI->setIncomingBlock(idx, InsertTop);
365         NewPHI->removeIncomingValue(Latch, false);
366       } else {
367         VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
368         cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
369       }
370     } else {
371       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
372       NewPHI->setIncomingBlock(idx, InsertTop);
373       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
374       idx = NewPHI->getBasicBlockIndex(Latch);
375       Value *InVal = NewPHI->getIncomingValue(idx);
376       NewPHI->setIncomingBlock(idx, NewLatch);
377       if (Value *V = VMap.lookup(InVal))
378         NewPHI->setIncomingValue(idx, V);
379     }
380   }
381   if (CreateRemainderLoop) {
382     Loop *NewLoop = NewLoops[L];
383     assert(NewLoop && "L should have been cloned");
384 
385     // Only add loop metadata if the loop is not going to be completely
386     // unrolled.
387     if (UnrollRemainder)
388       return NewLoop;
389 
390     // Add unroll disable metadata to disable future unrolling for this loop.
391     NewLoop->setLoopAlreadyUnrolled();
392     return NewLoop;
393   }
394   else
395     return nullptr;
396 }
397 
398 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
399 /// is populated with all the loop exit blocks other than the LatchExit block.
400 static bool
canSafelyUnrollMultiExitLoop(Loop * L,SmallVectorImpl<BasicBlock * > & OtherExits,BasicBlock * LatchExit,bool PreserveLCSSA,bool UseEpilogRemainder)401 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits,
402                              BasicBlock *LatchExit, bool PreserveLCSSA,
403                              bool UseEpilogRemainder) {
404 
405   // We currently have some correctness constrains in unrolling a multi-exit
406   // loop. Check for these below.
407 
408   // We rely on LCSSA form being preserved when the exit blocks are transformed.
409   if (!PreserveLCSSA)
410     return false;
411   SmallVector<BasicBlock *, 4> Exits;
412   L->getUniqueExitBlocks(Exits);
413   for (auto *BB : Exits)
414     if (BB != LatchExit)
415       OtherExits.push_back(BB);
416 
417   // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
418   // UnrollRuntimeMultiExit is true. This will need updating the logic in
419   // connectEpilog/connectProlog.
420   if (!LatchExit->getSinglePredecessor()) {
421     LLVM_DEBUG(
422         dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
423                   "predecessor.\n");
424     return false;
425   }
426   // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
427   // and L is an inner loop. This is because in presence of multiple exits, the
428   // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
429   // outer loop. This is automatically handled in the prolog case, so we do not
430   // have that bug in prolog generation.
431   if (UseEpilogRemainder && L->getParentLoop())
432     return false;
433 
434   // All constraints have been satisfied.
435   return true;
436 }
437 
438 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
439 /// we return true only if UnrollRuntimeMultiExit is set to true.
canProfitablyUnrollMultiExitLoop(Loop * L,SmallVectorImpl<BasicBlock * > & OtherExits,BasicBlock * LatchExit,bool PreserveLCSSA,bool UseEpilogRemainder)440 static bool canProfitablyUnrollMultiExitLoop(
441     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
442     bool PreserveLCSSA, bool UseEpilogRemainder) {
443 
444 #if !defined(NDEBUG)
445   SmallVector<BasicBlock *, 8> OtherExitsDummyCheck;
446   assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit,
447                                       PreserveLCSSA, UseEpilogRemainder) &&
448          "Should be safe to unroll before checking profitability!");
449 #endif
450 
451   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
452   if (UnrollRuntimeMultiExit.getNumOccurrences())
453     return UnrollRuntimeMultiExit;
454 
455   // The main pain point with multi-exit loop unrolling is that once unrolled,
456   // we will not be able to merge all blocks into a straight line code.
457   // There are branches within the unrolled loop that go to the OtherExits.
458   // The second point is the increase in code size, but this is true
459   // irrespective of multiple exits.
460 
461   // Note: Both the heuristics below are coarse grained. We are essentially
462   // enabling unrolling of loops that have a single side exit other than the
463   // normal LatchExit (i.e. exiting into a deoptimize block).
464   // The heuristics considered are:
465   // 1. low number of branches in the unrolled version.
466   // 2. high predictability of these extra branches.
467   // We avoid unrolling loops that have more than two exiting blocks. This
468   // limits the total number of branches in the unrolled loop to be atmost
469   // the unroll factor (since one of the exiting blocks is the latch block).
470   SmallVector<BasicBlock*, 4> ExitingBlocks;
471   L->getExitingBlocks(ExitingBlocks);
472   if (ExitingBlocks.size() > 2)
473     return false;
474 
475   // The second heuristic is that L has one exit other than the latchexit and
476   // that exit is a deoptimize block. We know that deoptimize blocks are rarely
477   // taken, which also implies the branch leading to the deoptimize block is
478   // highly predictable.
479   return (OtherExits.size() == 1 &&
480           OtherExits[0]->getTerminatingDeoptimizeCall());
481   // TODO: These can be fine-tuned further to consider code size or deopt states
482   // that are captured by the deoptimize exit block.
483   // Also, we can extend this to support more cases, if we actually
484   // know of kinds of multiexit loops that would benefit from unrolling.
485 }
486 
487 /// Insert code in the prolog/epilog code when unrolling a loop with a
488 /// run-time trip-count.
489 ///
490 /// This method assumes that the loop unroll factor is total number
491 /// of loop bodies in the loop after unrolling. (Some folks refer
492 /// to the unroll factor as the number of *extra* copies added).
493 /// We assume also that the loop unroll factor is a power-of-two. So, after
494 /// unrolling the loop, the number of loop bodies executed is 2,
495 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
496 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
497 /// the switch instruction is generated.
498 ///
499 /// ***Prolog case***
500 ///        extraiters = tripcount % loopfactor
501 ///        if (extraiters == 0) jump Loop:
502 ///        else jump Prol:
503 /// Prol:  LoopBody;
504 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
505 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
506 ///        if (tripcount < loopfactor) jump End:
507 /// Loop:
508 /// ...
509 /// End:
510 ///
511 /// ***Epilog case***
512 ///        extraiters = tripcount % loopfactor
513 ///        if (tripcount < loopfactor) jump LoopExit:
514 ///        unroll_iters = tripcount - extraiters
515 /// Loop:  LoopBody; (executes unroll_iter times);
516 ///        unroll_iter -= 1
517 ///        if (unroll_iter != 0) jump Loop:
518 /// LoopExit:
519 ///        if (extraiters == 0) jump EpilExit:
520 /// Epil:  LoopBody; (executes extraiters times)
521 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
522 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
523 /// EpilExit:
524 
UnrollRuntimeLoopRemainder(Loop * L,unsigned Count,bool AllowExpensiveTripCount,bool UseEpilogRemainder,bool UnrollRemainder,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,bool PreserveLCSSA)525 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
526                                       bool AllowExpensiveTripCount,
527                                       bool UseEpilogRemainder,
528                                       bool UnrollRemainder,
529                                       LoopInfo *LI, ScalarEvolution *SE,
530                                       DominatorTree *DT, AssumptionCache *AC,
531                                       bool PreserveLCSSA) {
532   LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
533   LLVM_DEBUG(L->dump());
534   LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
535                                 : dbgs() << "Using prolog remainder.\n");
536 
537   // Make sure the loop is in canonical form.
538   if (!L->isLoopSimplifyForm()) {
539     LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
540     return false;
541   }
542 
543   // Guaranteed by LoopSimplifyForm.
544   BasicBlock *Latch = L->getLoopLatch();
545   BasicBlock *Header = L->getHeader();
546 
547   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
548   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
549   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
550   // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
551   // targets of the Latch be an exit block out of the loop. This needs
552   // to be guaranteed by the callers of UnrollRuntimeLoopRemainder.
553   assert(!L->contains(LatchExit) &&
554          "one of the loop latch successors should be the exit block!");
555   // These are exit blocks other than the target of the latch exiting block.
556   SmallVector<BasicBlock *, 4> OtherExits;
557   bool isMultiExitUnrollingEnabled =
558       canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
559                                    UseEpilogRemainder) &&
560       canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
561                                        UseEpilogRemainder);
562   // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
563   if (!isMultiExitUnrollingEnabled &&
564       (!L->getExitingBlock() || OtherExits.size())) {
565     LLVM_DEBUG(
566         dbgs()
567         << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
568            "enabled!\n");
569     return false;
570   }
571   // Use Scalar Evolution to compute the trip count. This allows more loops to
572   // be unrolled than relying on induction var simplification.
573   if (!SE)
574     return false;
575 
576   // Only unroll loops with a computable trip count, and the trip count needs
577   // to be an int value (allowing a pointer type is a TODO item).
578   // We calculate the backedge count by using getExitCount on the Latch block,
579   // which is proven to be the only exiting block in this loop. This is same as
580   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
581   // exiting blocks).
582   const SCEV *BECountSC = SE->getExitCount(L, Latch);
583   if (isa<SCEVCouldNotCompute>(BECountSC) ||
584       !BECountSC->getType()->isIntegerTy()) {
585     LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
586     return false;
587   }
588 
589   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
590 
591   // Add 1 since the backedge count doesn't include the first loop iteration.
592   const SCEV *TripCountSC =
593       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
594   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
595     LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
596     return false;
597   }
598 
599   BasicBlock *PreHeader = L->getLoopPreheader();
600   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
601   const DataLayout &DL = Header->getModule()->getDataLayout();
602   SCEVExpander Expander(*SE, DL, "loop-unroll");
603   if (!AllowExpensiveTripCount &&
604       Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) {
605     LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
606     return false;
607   }
608 
609   // This constraint lets us deal with an overflowing trip count easily; see the
610   // comment on ModVal below.
611   if (Log2_32(Count) > BEWidth) {
612     LLVM_DEBUG(
613         dbgs()
614         << "Count failed constraint on overflow trip count calculation.\n");
615     return false;
616   }
617 
618   // Loop structure is the following:
619   //
620   // PreHeader
621   //   Header
622   //   ...
623   //   Latch
624   // LatchExit
625 
626   BasicBlock *NewPreHeader;
627   BasicBlock *NewExit = nullptr;
628   BasicBlock *PrologExit = nullptr;
629   BasicBlock *EpilogPreHeader = nullptr;
630   BasicBlock *PrologPreHeader = nullptr;
631 
632   if (UseEpilogRemainder) {
633     // If epilog remainder
634     // Split PreHeader to insert a branch around loop for unrolling.
635     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
636     NewPreHeader->setName(PreHeader->getName() + ".new");
637     // Split LatchExit to create phi nodes from branch above.
638     SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
639     NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa",
640                                      DT, LI, PreserveLCSSA);
641     // NewExit gets its DebugLoc from LatchExit, which is not part of the
642     // original Loop.
643     // Fix this by setting Loop's DebugLoc to NewExit.
644     auto *NewExitTerminator = NewExit->getTerminator();
645     NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
646     // Split NewExit to insert epilog remainder loop.
647     EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
648     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
649   } else {
650     // If prolog remainder
651     // Split the original preheader twice to insert prolog remainder loop
652     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
653     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
654     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
655                             DT, LI);
656     PrologExit->setName(Header->getName() + ".prol.loopexit");
657     // Split PrologExit to get NewPreHeader.
658     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
659     NewPreHeader->setName(PreHeader->getName() + ".new");
660   }
661   // Loop structure should be the following:
662   //  Epilog             Prolog
663   //
664   // PreHeader         PreHeader
665   // *NewPreHeader     *PrologPreHeader
666   //   Header          *PrologExit
667   //   ...             *NewPreHeader
668   //   Latch             Header
669   // *NewExit            ...
670   // *EpilogPreHeader    Latch
671   // LatchExit              LatchExit
672 
673   // Calculate conditions for branch around loop for unrolling
674   // in epilog case and around prolog remainder loop in prolog case.
675   // Compute the number of extra iterations required, which is:
676   //  extra iterations = run-time trip count % loop unroll factor
677   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
678   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
679                                             PreHeaderBR);
680   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
681                                           PreHeaderBR);
682   IRBuilder<> B(PreHeaderBR);
683   Value *ModVal;
684   // Calculate ModVal = (BECount + 1) % Count.
685   // Note that TripCount is BECount + 1.
686   if (isPowerOf2_32(Count)) {
687     // When Count is power of 2 we don't BECount for epilog case, however we'll
688     // need it for a branch around unrolling loop for prolog case.
689     ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
690     //  1. There are no iterations to be run in the prolog/epilog loop.
691     // OR
692     //  2. The addition computing TripCount overflowed.
693     //
694     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
695     // the number of iterations that remain to be run in the original loop is a
696     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
697     // explicitly check this above).
698   } else {
699     // As (BECount + 1) can potentially unsigned overflow we count
700     // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
701     Value *ModValTmp = B.CreateURem(BECount,
702                                     ConstantInt::get(BECount->getType(),
703                                                      Count));
704     Value *ModValAdd = B.CreateAdd(ModValTmp,
705                                    ConstantInt::get(ModValTmp->getType(), 1));
706     // At that point (BECount % Count) + 1 could be equal to Count.
707     // To handle this case we need to take mod by Count one more time.
708     ModVal = B.CreateURem(ModValAdd,
709                           ConstantInt::get(BECount->getType(), Count),
710                           "xtraiter");
711   }
712   Value *BranchVal =
713       UseEpilogRemainder ? B.CreateICmpULT(BECount,
714                                            ConstantInt::get(BECount->getType(),
715                                                             Count - 1)) :
716                            B.CreateIsNotNull(ModVal, "lcmp.mod");
717   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
718   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
719   // Branch to either remainder (extra iterations) loop or unrolling loop.
720   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
721   PreHeaderBR->eraseFromParent();
722   if (DT) {
723     if (UseEpilogRemainder)
724       DT->changeImmediateDominator(NewExit, PreHeader);
725     else
726       DT->changeImmediateDominator(PrologExit, PreHeader);
727   }
728   Function *F = Header->getParent();
729   // Get an ordered list of blocks in the loop to help with the ordering of the
730   // cloned blocks in the prolog/epilog code
731   LoopBlocksDFS LoopBlocks(L);
732   LoopBlocks.perform(LI);
733 
734   //
735   // For each extra loop iteration, create a copy of the loop's basic blocks
736   // and generate a condition that branches to the copy depending on the
737   // number of 'left over' iterations.
738   //
739   std::vector<BasicBlock *> NewBlocks;
740   ValueToValueMapTy VMap;
741 
742   // For unroll factor 2 remainder loop will have 1 iterations.
743   // Do not create 1 iteration loop.
744   bool CreateRemainderLoop = (Count != 2);
745 
746   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
747   // the loop, otherwise we create a cloned loop to execute the extra
748   // iterations. This function adds the appropriate CFG connections.
749   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
750   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
751   Loop *remainderLoop = CloneLoopBlocks(
752       L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
753       InsertTop, InsertBot,
754       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
755 
756   // Insert the cloned blocks into the function.
757   F->getBasicBlockList().splice(InsertBot->getIterator(),
758                                 F->getBasicBlockList(),
759                                 NewBlocks[0]->getIterator(),
760                                 F->end());
761 
762   // Now the loop blocks are cloned and the other exiting blocks from the
763   // remainder are connected to the original Loop's exit blocks. The remaining
764   // work is to update the phi nodes in the original loop, and take in the
765   // values from the cloned region. Also update the dominator info for
766   // OtherExits and their immediate successors, since we have new edges into
767   // OtherExits.
768   SmallPtrSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks;
769   for (auto *BB : OtherExits) {
770    for (auto &II : *BB) {
771 
772      // Given we preserve LCSSA form, we know that the values used outside the
773      // loop will be used through these phi nodes at the exit blocks that are
774      // transformed below.
775      if (!isa<PHINode>(II))
776        break;
777      PHINode *Phi = cast<PHINode>(&II);
778      unsigned oldNumOperands = Phi->getNumIncomingValues();
779      // Add the incoming values from the remainder code to the end of the phi
780      // node.
781      for (unsigned i =0; i < oldNumOperands; i++){
782        Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
783        // newVal can be a constant or derived from values outside the loop, and
784        // hence need not have a VMap value. Also, since lookup already generated
785        // a default "null" VMap entry for this value, we need to populate that
786        // VMap entry correctly, with the mapped entry being itself.
787        if (!newVal) {
788          newVal = Phi->getIncomingValue(i);
789          VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
790        }
791        Phi->addIncoming(newVal,
792                            cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
793      }
794    }
795 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
796     for (BasicBlock *SuccBB : successors(BB)) {
797       assert(!(any_of(OtherExits,
798                       [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
799                SuccBB == LatchExit) &&
800              "Breaks the definition of dedicated exits!");
801     }
802 #endif
803    // Update the dominator info because the immediate dominator is no longer the
804    // header of the original Loop. BB has edges both from L and remainder code.
805    // Since the preheader determines which loop is run (L or directly jump to
806    // the remainder code), we set the immediate dominator as the preheader.
807    if (DT) {
808      DT->changeImmediateDominator(BB, PreHeader);
809      // Also update the IDom for immediate successors of BB.  If the current
810      // IDom is the header, update the IDom to be the preheader because that is
811      // the nearest common dominator of all predecessors of SuccBB.  We need to
812      // check for IDom being the header because successors of exit blocks can
813      // have edges from outside the loop, and we should not incorrectly update
814      // the IDom in that case.
815      for (BasicBlock *SuccBB: successors(BB))
816        if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) {
817          if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) {
818            assert(!SuccBB->getSinglePredecessor() &&
819                   "BB should be the IDom then!");
820            DT->changeImmediateDominator(SuccBB, PreHeader);
821          }
822        }
823     }
824   }
825 
826   // Loop structure should be the following:
827   //  Epilog             Prolog
828   //
829   // PreHeader         PreHeader
830   // NewPreHeader      PrologPreHeader
831   //   Header            PrologHeader
832   //   ...               ...
833   //   Latch             PrologLatch
834   // NewExit           PrologExit
835   // EpilogPreHeader   NewPreHeader
836   //   EpilogHeader      Header
837   //   ...               ...
838   //   EpilogLatch       Latch
839   // LatchExit              LatchExit
840 
841   // Rewrite the cloned instruction operands to use the values created when the
842   // clone is created.
843   for (BasicBlock *BB : NewBlocks) {
844     for (Instruction &I : *BB) {
845       RemapInstruction(&I, VMap,
846                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
847     }
848   }
849 
850   if (UseEpilogRemainder) {
851     // Connect the epilog code to the original loop and update the
852     // PHI functions.
853     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
854                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
855                   PreserveLCSSA);
856 
857     // Update counter in loop for unrolling.
858     // I should be multiply of Count.
859     IRBuilder<> B2(NewPreHeader->getTerminator());
860     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
861     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
862     B2.SetInsertPoint(LatchBR);
863     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
864                                       Header->getFirstNonPHI());
865     Value *IdxSub =
866         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
867                      NewIdx->getName() + ".nsub");
868     Value *IdxCmp;
869     if (LatchBR->getSuccessor(0) == Header)
870       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
871     else
872       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
873     NewIdx->addIncoming(TestVal, NewPreHeader);
874     NewIdx->addIncoming(IdxSub, Latch);
875     LatchBR->setCondition(IdxCmp);
876   } else {
877     // Connect the prolog code to the original loop and update the
878     // PHI functions.
879     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
880                   NewPreHeader, VMap, DT, LI, PreserveLCSSA);
881   }
882 
883   // If this loop is nested, then the loop unroller changes the code in the any
884   // of its parent loops, so the Scalar Evolution pass needs to be run again.
885   SE->forgetTopmostLoop(L);
886 
887   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
888   // cannot rely on the LoopUnrollPass to do this because it only does
889   // canonicalization for parent/subloops and not the sibling loops.
890   if (OtherExits.size() > 0) {
891     // Generate dedicated exit blocks for the original loop, to preserve
892     // LoopSimplifyForm.
893     formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
894     // Generate dedicated exit blocks for the remainder loop if one exists, to
895     // preserve LoopSimplifyForm.
896     if (remainderLoop)
897       formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA);
898   }
899 
900   if (remainderLoop && UnrollRemainder) {
901     LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
902     UnrollLoop(remainderLoop, /*Count*/ Count - 1, /*TripCount*/ Count - 1,
903                /*Force*/ false, /*AllowRuntime*/ false,
904                /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
905                /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
906                /*PeelCount*/ 0, /*UnrollRemainder*/ false, LI, SE, DT, AC,
907                /*ORE*/ nullptr, PreserveLCSSA);
908   }
909 
910   NumRuntimeUnrolled++;
911   return true;
912 }
913