1; Test 64-bit XORs in which the second operand is constant. 2; 3; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s 4 5; Check the lowest useful XILF value. 6define i64 @f1(i64 %a) { 7; CHECK-LABEL: f1: 8; CHECK: xilf %r2, 1 9; CHECK: br %r14 10 %xor = xor i64 %a, 1 11 ret i64 %xor 12} 13 14; Check the high end of the XILF range. 15define i64 @f2(i64 %a) { 16; CHECK-LABEL: f2: 17; CHECK: xilf %r2, 4294967295 18; CHECK: br %r14 19 %xor = xor i64 %a, 4294967295 20 ret i64 %xor 21} 22 23; Check the lowest useful XIHF value, which is one up from the above. 24define i64 @f3(i64 %a) { 25; CHECK-LABEL: f3: 26; CHECK: xihf %r2, 1 27; CHECK: br %r14 28 %xor = xor i64 %a, 4294967296 29 ret i64 %xor 30} 31 32; Check the next value up again, which needs a combination of XIHF and XILF. 33define i64 @f4(i64 %a) { 34; CHECK-LABEL: f4: 35; CHECK: xihf %r2, 1 36; CHECK: xilf %r2, 4294967295 37; CHECK: br %r14 38 %xor = xor i64 %a, 8589934591 39 ret i64 %xor 40} 41 42; Check the high end of the XIHF range. 43define i64 @f5(i64 %a) { 44; CHECK-LABEL: f5: 45; CHECK: xihf %r2, 4294967295 46; CHECK: br %r14 47 %xor = xor i64 %a, -4294967296 48 ret i64 %xor 49} 50 51; Check the next value up, which again must use XIHF and XILF. 52define i64 @f6(i64 %a) { 53; CHECK-LABEL: f6: 54; CHECK: xihf %r2, 4294967295 55; CHECK: xilf %r2, 1 56; CHECK: br %r14 57 %xor = xor i64 %a, -4294967295 58 ret i64 %xor 59} 60 61; Check full bitwise negation 62define i64 @f7(i64 %a) { 63; CHECK-LABEL: f7: 64; CHECK: xihf %r2, 4294967295 65; CHECK: xilf %r2, 4294967295 66; CHECK: br %r14 67 %xor = xor i64 %a, -1 68 ret i64 %xor 69} 70