• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1; RUN: llc < %s -asm-verbose=false -disable-wasm-fallthrough-return-opt | FileCheck %s
2
3; Test that basic 32-bit floating-point operations assemble as expected.
4
5target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128"
6target triple = "wasm32-unknown-unknown"
7
8declare float @llvm.fabs.f32(float)
9declare float @llvm.copysign.f32(float, float)
10declare float @llvm.sqrt.f32(float)
11declare float @llvm.ceil.f32(float)
12declare float @llvm.floor.f32(float)
13declare float @llvm.trunc.f32(float)
14declare float @llvm.nearbyint.f32(float)
15declare float @llvm.rint.f32(float)
16declare float @llvm.fma.f32(float, float, float)
17
18; CHECK-LABEL: fadd32:
19; CHECK-NEXT: .param f32, f32{{$}}
20; CHECK-NEXT: .result f32{{$}}
21; CHECK-NEXT: get_local $push[[L0:[0-9]+]]=, 0{{$}}
22; CHECK-NEXT: get_local $push[[L1:[0-9]+]]=, 1{{$}}
23; CHECK-NEXT: f32.add $push[[LR:[0-9]+]]=, $pop[[L0]], $pop[[L1]]{{$}}
24; CHECK-NEXT: return $pop[[LR]]{{$}}
25define float @fadd32(float %x, float %y) {
26  %a = fadd float %x, %y
27  ret float %a
28}
29
30; CHECK-LABEL: fsub32:
31; CHECK: f32.sub $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}, $pop{{[0-9]+}}{{$}}
32; CHECK-NEXT: return $pop[[LR]]{{$}}
33define float @fsub32(float %x, float %y) {
34  %a = fsub float %x, %y
35  ret float %a
36}
37
38; CHECK-LABEL: fmul32:
39; CHECK: f32.mul $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}, $pop{{[0-9]+}}{{$}}
40; CHECK-NEXT: return $pop[[LR]]{{$}}
41define float @fmul32(float %x, float %y) {
42  %a = fmul float %x, %y
43  ret float %a
44}
45
46; CHECK-LABEL: fdiv32:
47; CHECK: f32.div $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}, $pop{{[0-9]+}}{{$}}
48; CHECK-NEXT: return $pop[[LR]]{{$}}
49define float @fdiv32(float %x, float %y) {
50  %a = fdiv float %x, %y
51  ret float %a
52}
53
54; CHECK-LABEL: fabs32:
55; CHECK: f32.abs $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
56; CHECK-NEXT: return $pop[[LR]]{{$}}
57define float @fabs32(float %x) {
58  %a = call float @llvm.fabs.f32(float %x)
59  ret float %a
60}
61
62; CHECK-LABEL: fneg32:
63; CHECK: f32.neg $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
64; CHECK-NEXT: return $pop[[LR]]{{$}}
65define float @fneg32(float %x) {
66  %a = fsub float -0., %x
67  ret float %a
68}
69
70; CHECK-LABEL: copysign32:
71; CHECK: f32.copysign $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}, $pop{{[0-9]+}}{{$}}
72; CHECK-NEXT: return $pop[[LR]]{{$}}
73define float @copysign32(float %x, float %y) {
74  %a = call float @llvm.copysign.f32(float %x, float %y)
75  ret float %a
76}
77
78; CHECK-LABEL: sqrt32:
79; CHECK: f32.sqrt $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
80; CHECK-NEXT: return $pop[[LR]]{{$}}
81define float @sqrt32(float %x) {
82  %a = call float @llvm.sqrt.f32(float %x)
83  ret float %a
84}
85
86; CHECK-LABEL: ceil32:
87; CHECK: f32.ceil $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
88; CHECK-NEXT: return $pop[[LR]]{{$}}
89define float @ceil32(float %x) {
90  %a = call float @llvm.ceil.f32(float %x)
91  ret float %a
92}
93
94; CHECK-LABEL: floor32:
95; CHECK: f32.floor $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
96; CHECK-NEXT: return $pop[[LR]]{{$}}
97define float @floor32(float %x) {
98  %a = call float @llvm.floor.f32(float %x)
99  ret float %a
100}
101
102; CHECK-LABEL: trunc32:
103; CHECK: f32.trunc $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
104; CHECK-NEXT: return $pop[[LR]]{{$}}
105define float @trunc32(float %x) {
106  %a = call float @llvm.trunc.f32(float %x)
107  ret float %a
108}
109
110; CHECK-LABEL: nearest32:
111; CHECK: f32.nearest $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
112; CHECK-NEXT: return $pop[[LR]]{{$}}
113define float @nearest32(float %x) {
114  %a = call float @llvm.nearbyint.f32(float %x)
115  ret float %a
116}
117
118; CHECK-LABEL: nearest32_via_rint:
119; CHECK: f32.nearest $push[[LR:[0-9]+]]=, $pop{{[0-9]+}}{{$}}
120; CHECK-NEXT: return $pop[[LR]]{{$}}
121define float @nearest32_via_rint(float %x) {
122  %a = call float @llvm.rint.f32(float %x)
123  ret float %a
124}
125
126; Min and max tests. LLVM currently only forms fminnan and fmaxnan nodes in
127; cases where there's a single fcmp with a select and it can prove that one
128; of the arms is never NaN, so we only test that case. In the future if LLVM
129; learns to form fminnan/fmaxnan in more cases, we can write more general
130; tests.
131
132; CHECK-LABEL: fmin32:
133; CHECK: f32.min $push1=, $pop{{[0-9]+}}, $pop[[LR]]{{$}}
134; CHECK-NEXT: return $pop1{{$}}
135define float @fmin32(float %x) {
136  %a = fcmp ult float %x, 0.0
137  %b = select i1 %a, float %x, float 0.0
138  ret float %b
139}
140
141; CHECK-LABEL: fmax32:
142; CHECK: f32.max $push1=, $pop{{[0-9]+}}, $pop[[LR]]{{$}}
143; CHECK-NEXT: return $pop1{{$}}
144define float @fmax32(float %x) {
145  %a = fcmp ugt float %x, 0.0
146  %b = select i1 %a, float %x, float 0.0
147  ret float %b
148}
149
150; CHECK-LABEL: fma32:
151; CHECK: {{^}} f32.call $push[[LR:[0-9]+]]=, fmaf@FUNCTION, $pop{{[0-9]+}}, $pop{{[0-9]+}}, $pop{{[0-9]+}}{{$}}
152; CHECK-NEXT: return $pop[[LR]]{{$}}
153define float @fma32(float %a, float %b, float %c) {
154  %d = call float @llvm.fma.f32(float %a, float %b, float %c)
155  ret float %d
156}
157