• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
2; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=sse2 < %s | FileCheck %s
3
4; PR22428: https://llvm.org/bugs/show_bug.cgi?id=22428
5; f1, f2, f3, and f4 should use an integer logic instruction.
6; f5, f6, f9, and f10 should use an FP (SSE) logic instruction.
7;
8; f7 and f8 are less clear.
9;
10; For f7 and f8, the SSE instructions don't take immediate operands, so if we
11; use one of those, we either have to load a constant from memory or move the
12; scalar immediate value from an integer register over to an SSE register.
13; Optimizing for size may affect that decision. Also, note that there are no
14; scalar versions of the FP logic ops, so if we want to fold a load into a
15; logic op, we have to load or splat a 16-byte vector constant.
16
17; 1 FP operand, 1 int operand, int result
18
19define i32 @f1(float %x, i32 %y) {
20; CHECK-LABEL: f1:
21; CHECK:       # %bb.0:
22; CHECK-NEXT:    movd %xmm0, %eax
23; CHECK-NEXT:    andl %edi, %eax
24; CHECK-NEXT:    retq
25  %bc1 = bitcast float %x to i32
26  %and = and i32 %bc1, %y
27  ret i32 %and
28}
29
30; Swap operands of the logic op.
31
32define i32 @f2(float %x, i32 %y) {
33; CHECK-LABEL: f2:
34; CHECK:       # %bb.0:
35; CHECK-NEXT:    movd %xmm0, %eax
36; CHECK-NEXT:    andl %edi, %eax
37; CHECK-NEXT:    retq
38  %bc1 = bitcast float %x to i32
39  %and = and i32 %y, %bc1
40  ret i32 %and
41}
42
43; 1 FP operand, 1 constant operand, int result
44
45define i32 @f3(float %x) {
46; CHECK-LABEL: f3:
47; CHECK:       # %bb.0:
48; CHECK-NEXT:    movd %xmm0, %eax
49; CHECK-NEXT:    andl $1, %eax
50; CHECK-NEXT:    retq
51  %bc1 = bitcast float %x to i32
52  %and = and i32 %bc1, 1
53  ret i32 %and
54}
55
56; Swap operands of the logic op.
57
58define i32 @f4(float %x) {
59; CHECK-LABEL: f4:
60; CHECK:       # %bb.0:
61; CHECK-NEXT:    movd %xmm0, %eax
62; CHECK-NEXT:    andl $2, %eax
63; CHECK-NEXT:    retq
64  %bc1 = bitcast float %x to i32
65  %and = and i32 2, %bc1
66  ret i32 %and
67}
68
69; 1 FP operand, 1 integer operand, FP result
70
71define float @f5(float %x, i32 %y) {
72; CHECK-LABEL: f5:
73; CHECK:       # %bb.0:
74; CHECK-NEXT:    movd %edi, %xmm1
75; CHECK-NEXT:    pand %xmm1, %xmm0
76; CHECK-NEXT:    retq
77  %bc1 = bitcast float %x to i32
78  %and = and i32 %bc1, %y
79  %bc2 = bitcast i32 %and to float
80  ret float %bc2
81}
82
83; Swap operands of the logic op.
84
85define float @f6(float %x, i32 %y) {
86; CHECK-LABEL: f6:
87; CHECK:       # %bb.0:
88; CHECK-NEXT:    movd %edi, %xmm1
89; CHECK-NEXT:    pand %xmm1, %xmm0
90; CHECK-NEXT:    retq
91  %bc1 = bitcast float %x to i32
92  %and = and i32 %y, %bc1
93  %bc2 = bitcast i32 %and to float
94  ret float %bc2
95}
96
97; 1 FP operand, 1 constant operand, FP result
98
99define float @f7(float %x) {
100; CHECK-LABEL: f7:
101; CHECK:       # %bb.0:
102; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
103; CHECK-NEXT:    andps %xmm1, %xmm0
104; CHECK-NEXT:    retq
105  %bc1 = bitcast float %x to i32
106  %and = and i32 %bc1, 3
107  %bc2 = bitcast i32 %and to float
108  ret float %bc2
109}
110
111; Swap operands of the logic op.
112
113define float @f8(float %x) {
114; CHECK-LABEL: f8:
115; CHECK:       # %bb.0:
116; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
117; CHECK-NEXT:    andps %xmm1, %xmm0
118; CHECK-NEXT:    retq
119  %bc1 = bitcast float %x to i32
120  %and = and i32 4, %bc1
121  %bc2 = bitcast i32 %and to float
122  ret float %bc2
123}
124
125; 2 FP operands, int result
126
127define i32 @f9(float %x, float %y) {
128; CHECK-LABEL: f9:
129; CHECK:       # %bb.0:
130; CHECK-NEXT:    pand %xmm1, %xmm0
131; CHECK-NEXT:    movd %xmm0, %eax
132; CHECK-NEXT:    retq
133  %bc1 = bitcast float %x to i32
134  %bc2 = bitcast float %y to i32
135  %and = and i32 %bc1, %bc2
136  ret i32 %and
137}
138
139; 2 FP operands, FP result
140
141define float @f10(float %x, float %y) {
142; CHECK-LABEL: f10:
143; CHECK:       # %bb.0:
144; CHECK-NEXT:    andps %xmm1, %xmm0
145; CHECK-NEXT:    retq
146  %bc1 = bitcast float %x to i32
147  %bc2 = bitcast float %y to i32
148  %and = and i32 %bc1, %bc2
149  %bc3 = bitcast i32 %and to float
150  ret float %bc3
151}
152
153define float @or(float %x, float %y) {
154; CHECK-LABEL: or:
155; CHECK:       # %bb.0:
156; CHECK-NEXT:    orps %xmm1, %xmm0
157; CHECK-NEXT:    retq
158  %bc1 = bitcast float %x to i32
159  %bc2 = bitcast float %y to i32
160  %and = or i32 %bc1, %bc2
161  %bc3 = bitcast i32 %and to float
162  ret float %bc3
163}
164
165define float @xor(float %x, float %y) {
166; CHECK-LABEL: xor:
167; CHECK:       # %bb.0:
168; CHECK-NEXT:    xorps %xmm1, %xmm0
169; CHECK-NEXT:    retq
170  %bc1 = bitcast float %x to i32
171  %bc2 = bitcast float %y to i32
172  %and = xor i32 %bc1, %bc2
173  %bc3 = bitcast i32 %and to float
174  ret float %bc3
175}
176
177define float @f7_or(float %x) {
178; CHECK-LABEL: f7_or:
179; CHECK:       # %bb.0:
180; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
181; CHECK-NEXT:    orps %xmm1, %xmm0
182; CHECK-NEXT:    retq
183  %bc1 = bitcast float %x to i32
184  %and = or i32 %bc1, 3
185  %bc2 = bitcast i32 %and to float
186  ret float %bc2
187}
188
189define float @f7_xor(float %x) {
190; CHECK-LABEL: f7_xor:
191; CHECK:       # %bb.0:
192; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
193; CHECK-NEXT:    xorps %xmm1, %xmm0
194; CHECK-NEXT:    retq
195  %bc1 = bitcast float %x to i32
196  %and = xor i32 %bc1, 3
197  %bc2 = bitcast i32 %and to float
198  ret float %bc2
199}
200
201; Make sure that doubles work too.
202
203define double @doubles(double %x, double %y) {
204; CHECK-LABEL: doubles:
205; CHECK:       # %bb.0:
206; CHECK-NEXT:    andps %xmm1, %xmm0
207; CHECK-NEXT:    retq
208  %bc1 = bitcast double %x to i64
209  %bc2 = bitcast double %y to i64
210  %and = and i64 %bc1, %bc2
211  %bc3 = bitcast i64 %and to double
212  ret double %bc3
213}
214
215define double @f7_double(double %x) {
216; CHECK-LABEL: f7_double:
217; CHECK:       # %bb.0:
218; CHECK-NEXT:    movsd {{.*#+}} xmm1 = mem[0],zero
219; CHECK-NEXT:    andps %xmm1, %xmm0
220; CHECK-NEXT:    retq
221  %bc1 = bitcast double %x to i64
222  %and = and i64 %bc1, 3
223  %bc2 = bitcast i64 %and to double
224  ret double %bc2
225}
226
227; Grabbing the sign bit is a special case that could be handled
228; by movmskps/movmskpd, but if we're not shifting it over, then
229; a simple FP logic op is cheaper.
230
231define float @movmsk(float %x) {
232; CHECK-LABEL: movmsk:
233; CHECK:       # %bb.0:
234; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
235; CHECK-NEXT:    andps %xmm1, %xmm0
236; CHECK-NEXT:    retq
237  %bc1 = bitcast float %x to i32
238  %and = and i32 %bc1, 2147483648
239  %bc2 = bitcast i32 %and to float
240  ret float %bc2
241}
242
243define double @bitcast_fabs(double %x) {
244; CHECK-LABEL: bitcast_fabs:
245; CHECK:       # %bb.0:
246; CHECK-NEXT:    andps {{.*}}(%rip), %xmm0
247; CHECK-NEXT:    retq
248  %bc1 = bitcast double %x to i64
249  %and = and i64 %bc1, 9223372036854775807
250  %bc2 = bitcast i64 %and to double
251  ret double %bc2
252}
253
254define float @bitcast_fneg(float %x) {
255; CHECK-LABEL: bitcast_fneg:
256; CHECK:       # %bb.0:
257; CHECK-NEXT:    xorps {{.*}}(%rip), %xmm0
258; CHECK-NEXT:    retq
259  %bc1 = bitcast float %x to i32
260  %xor = xor i32 %bc1, 2147483648
261  %bc2 = bitcast i32 %xor to float
262  ret float %bc2
263}
264
265define <2 x double> @bitcast_fabs_vec(<2 x double> %x) {
266; CHECK-LABEL: bitcast_fabs_vec:
267; CHECK:       # %bb.0:
268; CHECK-NEXT:    andps {{.*}}(%rip), %xmm0
269; CHECK-NEXT:    retq
270  %bc1 = bitcast <2 x double> %x to <2 x i64>
271  %and = and <2 x i64> %bc1, <i64 9223372036854775807, i64 9223372036854775807>
272  %bc2 = bitcast <2 x i64> %and to <2 x double>
273  ret <2 x double> %bc2
274}
275
276define <4 x float> @bitcast_fneg_vec(<4 x float> %x) {
277; CHECK-LABEL: bitcast_fneg_vec:
278; CHECK:       # %bb.0:
279; CHECK-NEXT:    xorps {{.*}}(%rip), %xmm0
280; CHECK-NEXT:    retq
281  %bc1 = bitcast <4 x float> %x to <4 x i32>
282  %xor = xor <4 x i32> %bc1, <i32 2147483648, i32 2147483648, i32 2147483648, i32 2147483648>
283  %bc2 = bitcast <4 x i32> %xor to <4 x float>
284  ret <4 x float> %bc2
285}
286
287