1; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py 2; RUN: llc < %s -mtriple=i686-unknown-unknown -mattr=+sse | FileCheck %s --check-prefix=X32-SSE --check-prefix=X32-SSE1 3; RUN: llc < %s -mtriple=i686-unknown-unknown -mattr=+sse2 | FileCheck %s --check-prefix=X32-SSE --check-prefix=X32-SSE2 4; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=-sse2 | FileCheck %s --check-prefix=X64-SSE --check-prefix=X64-SSE1 5; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+sse2 | FileCheck %s --check-prefix=X64-SSE --check-prefix=X64-SSE2 6 7; FNEG is defined as subtraction from -0.0. 8 9; This test verifies that we use an xor with a constant to flip the sign bits; no subtraction needed. 10define <4 x float> @t1(<4 x float> %Q) nounwind { 11; X32-SSE-LABEL: t1: 12; X32-SSE: # %bb.0: 13; X32-SSE-NEXT: xorps {{\.LCPI.*}}, %xmm0 14; X32-SSE-NEXT: retl 15; 16; X64-SSE-LABEL: t1: 17; X64-SSE: # %bb.0: 18; X64-SSE-NEXT: xorps {{.*}}(%rip), %xmm0 19; X64-SSE-NEXT: retq 20 %tmp = fsub <4 x float> < float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00 >, %Q 21 ret <4 x float> %tmp 22} 23 24; This test verifies that we generate an FP subtraction because "0.0 - x" is not an fneg. 25define <4 x float> @t2(<4 x float> %Q) nounwind { 26; X32-SSE-LABEL: t2: 27; X32-SSE: # %bb.0: 28; X32-SSE-NEXT: xorps %xmm1, %xmm1 29; X32-SSE-NEXT: subps %xmm0, %xmm1 30; X32-SSE-NEXT: movaps %xmm1, %xmm0 31; X32-SSE-NEXT: retl 32; 33; X64-SSE-LABEL: t2: 34; X64-SSE: # %bb.0: 35; X64-SSE-NEXT: xorps %xmm1, %xmm1 36; X64-SSE-NEXT: subps %xmm0, %xmm1 37; X64-SSE-NEXT: movaps %xmm1, %xmm0 38; X64-SSE-NEXT: retq 39 %tmp = fsub <4 x float> zeroinitializer, %Q 40 ret <4 x float> %tmp 41} 42 43; If we're bitcasting an integer to an FP vector, we should avoid the FPU/vector unit entirely. 44; Make sure that we're flipping the sign bit and only the sign bit of each float. 45; So instead of something like this: 46; movd %rdi, %xmm0 47; xorps .LCPI2_0(%rip), %xmm0 48; 49; We should generate: 50; movabsq (put sign bit mask in integer register)) 51; xorq (flip sign bits) 52; movd (move to xmm return register) 53 54define <2 x float> @fneg_bitcast(i64 %i) nounwind { 55; X32-SSE1-LABEL: fneg_bitcast: 56; X32-SSE1: # %bb.0: 57; X32-SSE1-NEXT: pushl %ebp 58; X32-SSE1-NEXT: movl %esp, %ebp 59; X32-SSE1-NEXT: andl $-16, %esp 60; X32-SSE1-NEXT: subl $32, %esp 61; X32-SSE1-NEXT: movl $-2147483648, %eax # imm = 0x80000000 62; X32-SSE1-NEXT: movl 12(%ebp), %ecx 63; X32-SSE1-NEXT: xorl %eax, %ecx 64; X32-SSE1-NEXT: movl %ecx, {{[0-9]+}}(%esp) 65; X32-SSE1-NEXT: xorl 8(%ebp), %eax 66; X32-SSE1-NEXT: movl %eax, (%esp) 67; X32-SSE1-NEXT: movaps (%esp), %xmm0 68; X32-SSE1-NEXT: movl %ebp, %esp 69; X32-SSE1-NEXT: popl %ebp 70; X32-SSE1-NEXT: retl 71; 72; X32-SSE2-LABEL: fneg_bitcast: 73; X32-SSE2: # %bb.0: 74; X32-SSE2-NEXT: movl $-2147483648, %eax # imm = 0x80000000 75; X32-SSE2-NEXT: movl {{[0-9]+}}(%esp), %ecx 76; X32-SSE2-NEXT: xorl %eax, %ecx 77; X32-SSE2-NEXT: movd %ecx, %xmm1 78; X32-SSE2-NEXT: xorl {{[0-9]+}}(%esp), %eax 79; X32-SSE2-NEXT: movd %eax, %xmm0 80; X32-SSE2-NEXT: punpckldq {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1] 81; X32-SSE2-NEXT: retl 82; 83; X64-SSE1-LABEL: fneg_bitcast: 84; X64-SSE1: # %bb.0: 85; X64-SSE1-NEXT: movabsq $-9223372034707292160, %rax # imm = 0x8000000080000000 86; X64-SSE1-NEXT: xorq %rdi, %rax 87; X64-SSE1-NEXT: movq %rax, -{{[0-9]+}}(%rsp) 88; X64-SSE1-NEXT: movaps -{{[0-9]+}}(%rsp), %xmm0 89; X64-SSE1-NEXT: retq 90; 91; X64-SSE2-LABEL: fneg_bitcast: 92; X64-SSE2: # %bb.0: 93; X64-SSE2-NEXT: movabsq $-9223372034707292160, %rax # imm = 0x8000000080000000 94; X64-SSE2-NEXT: xorq %rdi, %rax 95; X64-SSE2-NEXT: movq %rax, %xmm0 96; X64-SSE2-NEXT: retq 97 %bitcast = bitcast i64 %i to <2 x float> 98 %fneg = fsub <2 x float> <float -0.0, float -0.0>, %bitcast 99 ret <2 x float> %fneg 100} 101