• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1; In this test we check how heuristics for complete unrolling work. We have
2; three knobs:
3;  1) -unroll-threshold
4;  3) -unroll-percent-dynamic-cost-saved-threshold and
5;  2) -unroll-dynamic-cost-savings-discount
6;
7; They control loop-unrolling according to the following rules:
8;  * If size of unrolled loop exceeds the absoulte threshold, we don't unroll
9;    this loop under any circumstances.
10;  * If size of unrolled loop is below the '-unroll-threshold', then we'll
11;    consider this loop as a very small one, and completely unroll it.
12;  * If a loop size is between these two tresholds, we only do complete unroll
13;    it if estimated number of potentially optimized instructions is high (we
14;    specify the minimal percent of such instructions).
15
16; In this particular test-case, complete unrolling will allow later
17; optimizations to remove ~55% of the instructions, the loop body size is 9,
18; and unrolled size is 65.
19
20; RUN: opt < %s -S -loop-unroll -unroll-max-iteration-count-to-analyze=1000 -unroll-threshold=10 -unroll-max-percent-threshold-boost=100 | FileCheck %s -check-prefix=TEST1
21; RUN: opt < %s -S -loop-unroll -unroll-max-iteration-count-to-analyze=1000 -unroll-threshold=20 -unroll-max-percent-threshold-boost=200 | FileCheck %s -check-prefix=TEST2
22; RUN: opt < %s -S -loop-unroll -unroll-max-iteration-count-to-analyze=1000 -unroll-threshold=20 -unroll-max-percent-threshold-boost=100 | FileCheck %s -check-prefix=TEST3
23
24; RUN: opt < %s -S -passes='require<opt-remark-emit>,loop(unroll-full)' -unroll-max-iteration-count-to-analyze=1000 -unroll-threshold=10 -unroll-max-percent-threshold-boost=100 | FileCheck %s -check-prefix=TEST1
25; RUN: opt < %s -S -passes='require<opt-remark-emit>,loop(unroll-full)' -unroll-max-iteration-count-to-analyze=1000 -unroll-threshold=20 -unroll-max-percent-threshold-boost=200 | FileCheck %s -check-prefix=TEST2
26; RUN: opt < %s -S -passes='require<opt-remark-emit>,loop(unroll-full)' -unroll-max-iteration-count-to-analyze=1000 -unroll-threshold=20 -unroll-max-percent-threshold-boost=100 | FileCheck %s -check-prefix=TEST3
27
28; Check that these work when the unroller has partial unrolling enabled too.
29; RUN: opt < %s -S -passes='require<opt-remark-emit>,unroll' -unroll-max-iteration-count-to-analyze=1000 -unroll-threshold=10 -unroll-max-percent-threshold-boost=100 | FileCheck %s -check-prefix=TEST1
30; RUN: opt < %s -S -passes='require<opt-remark-emit>,unroll' -unroll-max-iteration-count-to-analyze=1000 -unroll-threshold=20 -unroll-max-percent-threshold-boost=200 | FileCheck %s -check-prefix=TEST2
31; RUN: opt < %s -S -passes='require<opt-remark-emit>,unroll' -unroll-max-iteration-count-to-analyze=1000 -unroll-threshold=20 -unroll-max-percent-threshold-boost=100 | FileCheck %s -check-prefix=TEST3
32
33; If the absolute threshold is too low, we should not unroll:
34; TEST1: %array_const_idx = getelementptr inbounds [9 x i32], [9 x i32]* @known_constant, i64 0, i64 %iv
35
36; Otherwise, we should:
37; TEST2-NOT: %array_const_idx = getelementptr inbounds [9 x i32], [9 x i32]* @known_constant, i64 0, i64 %iv
38
39; If we do not boost threshold, the unroll will not happen:
40; TEST3: %array_const_idx = getelementptr inbounds [9 x i32], [9 x i32]* @known_constant, i64 0, i64 %iv
41
42; And check that we don't crash when we're not allowed to do any analysis.
43; RUN: opt < %s -loop-unroll -unroll-max-iteration-count-to-analyze=0 -disable-output
44; RUN: opt < %s -passes='require<opt-remark-emit>,loop(unroll-full)' -unroll-max-iteration-count-to-analyze=0 -disable-output
45target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
46
47@known_constant = internal unnamed_addr constant [9 x i32] [i32 0, i32 -1, i32 0, i32 -1, i32 5, i32 -1, i32 0, i32 -1, i32 0], align 16
48
49define i32 @foo(i32* noalias nocapture readonly %src) {
50entry:
51  br label %loop
52
53loop:                                                ; preds = %loop, %entry
54  %iv = phi i64 [ 0, %entry ], [ %inc, %loop ]
55  %r  = phi i32 [ 0, %entry ], [ %add, %loop ]
56  %arrayidx = getelementptr inbounds i32, i32* %src, i64 %iv
57  %src_element = load i32, i32* %arrayidx, align 4
58  %array_const_idx = getelementptr inbounds [9 x i32], [9 x i32]* @known_constant, i64 0, i64 %iv
59  %const_array_element = load i32, i32* %array_const_idx, align 4
60  %mul = mul nsw i32 %src_element, %const_array_element
61  %add = add nsw i32 %mul, %r
62  %inc = add nuw nsw i64 %iv, 1
63  %exitcond86.i = icmp eq i64 %inc, 9
64  br i1 %exitcond86.i, label %loop.end, label %loop
65
66loop.end:                                            ; preds = %loop
67  %r.lcssa = phi i32 [ %r, %loop ]
68  ret i32 %r.lcssa
69}
70