1 //===-- llvm/BasicBlock.h - Represent a basic block in the VM ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declaration of the BasicBlock class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_IR_BASICBLOCK_H 15 #define LLVM_IR_BASICBLOCK_H 16 17 #include "llvm/ADT/ilist.h" 18 #include "llvm/ADT/ilist_node.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/IR/Instruction.h" 21 #include "llvm/IR/SymbolTableListTraits.h" 22 #include "llvm/IR/Value.h" 23 #include "llvm/Support/CBindingWrapping.h" 24 #include "llvm-c/Types.h" 25 #include <cassert> 26 #include <cstddef> 27 28 namespace llvm { 29 30 class CallInst; 31 class Function; 32 class LandingPadInst; 33 class LLVMContext; 34 class TerminatorInst; 35 36 /// \brief LLVM Basic Block Representation 37 /// 38 /// This represents a single basic block in LLVM. A basic block is simply a 39 /// container of instructions that execute sequentially. Basic blocks are Values 40 /// because they are referenced by instructions such as branches and switch 41 /// tables. The type of a BasicBlock is "Type::LabelTy" because the basic block 42 /// represents a label to which a branch can jump. 43 /// 44 /// A well formed basic block is formed of a list of non-terminating 45 /// instructions followed by a single TerminatorInst instruction. 46 /// TerminatorInst's may not occur in the middle of basic blocks, and must 47 /// terminate the blocks. The BasicBlock class allows malformed basic blocks to 48 /// occur because it may be useful in the intermediate stage of constructing or 49 /// modifying a program. However, the verifier will ensure that basic blocks 50 /// are "well formed". 51 class BasicBlock : public Value, // Basic blocks are data objects also 52 public ilist_node_with_parent<BasicBlock, Function> { 53 public: 54 typedef SymbolTableList<Instruction> InstListType; 55 56 private: 57 friend class BlockAddress; 58 friend class SymbolTableListTraits<BasicBlock>; 59 60 InstListType InstList; 61 Function *Parent; 62 63 void setParent(Function *parent); 64 65 /// \brief Constructor. 66 /// 67 /// If the function parameter is specified, the basic block is automatically 68 /// inserted at either the end of the function (if InsertBefore is null), or 69 /// before the specified basic block. 70 explicit BasicBlock(LLVMContext &C, const Twine &Name = "", 71 Function *Parent = nullptr, 72 BasicBlock *InsertBefore = nullptr); 73 74 public: 75 BasicBlock(const BasicBlock &) = delete; 76 BasicBlock &operator=(const BasicBlock &) = delete; 77 ~BasicBlock() override; 78 79 /// \brief Get the context in which this basic block lives. 80 LLVMContext &getContext() const; 81 82 /// Instruction iterators... 83 typedef InstListType::iterator iterator; 84 typedef InstListType::const_iterator const_iterator; 85 typedef InstListType::reverse_iterator reverse_iterator; 86 typedef InstListType::const_reverse_iterator const_reverse_iterator; 87 88 /// \brief Creates a new BasicBlock. 89 /// 90 /// If the Parent parameter is specified, the basic block is automatically 91 /// inserted at either the end of the function (if InsertBefore is 0), or 92 /// before the specified basic block. 93 static BasicBlock *Create(LLVMContext &Context, const Twine &Name = "", 94 Function *Parent = nullptr, 95 BasicBlock *InsertBefore = nullptr) { 96 return new BasicBlock(Context, Name, Parent, InsertBefore); 97 } 98 99 /// \brief Return the enclosing method, or null if none. getParent()100 const Function *getParent() const { return Parent; } getParent()101 Function *getParent() { return Parent; } 102 103 /// \brief Return the module owning the function this basic block belongs to, 104 /// or nullptr it the function does not have a module. 105 /// 106 /// Note: this is undefined behavior if the block does not have a parent. 107 const Module *getModule() const; 108 Module *getModule(); 109 110 /// \brief Returns the terminator instruction if the block is well formed or 111 /// null if the block is not well formed. 112 TerminatorInst *getTerminator(); 113 const TerminatorInst *getTerminator() const; 114 115 /// \brief Returns the call instruction calling @llvm.experimental.deoptimize 116 /// prior to the terminating return instruction of this basic block, if such a 117 /// call is present. Otherwise, returns null. 118 CallInst *getTerminatingDeoptimizeCall(); getTerminatingDeoptimizeCall()119 const CallInst *getTerminatingDeoptimizeCall() const { 120 return const_cast<BasicBlock *>(this)->getTerminatingDeoptimizeCall(); 121 } 122 123 /// \brief Returns the call instruction marked 'musttail' prior to the 124 /// terminating return instruction of this basic block, if such a call is 125 /// present. Otherwise, returns null. 126 CallInst *getTerminatingMustTailCall(); getTerminatingMustTailCall()127 const CallInst *getTerminatingMustTailCall() const { 128 return const_cast<BasicBlock *>(this)->getTerminatingMustTailCall(); 129 } 130 131 /// \brief Returns a pointer to the first instruction in this block that is 132 /// not a PHINode instruction. 133 /// 134 /// When adding instructions to the beginning of the basic block, they should 135 /// be added before the returned value, not before the first instruction, 136 /// which might be PHI. Returns 0 is there's no non-PHI instruction. 137 Instruction* getFirstNonPHI(); getFirstNonPHI()138 const Instruction* getFirstNonPHI() const { 139 return const_cast<BasicBlock*>(this)->getFirstNonPHI(); 140 } 141 142 /// \brief Returns a pointer to the first instruction in this block that is not 143 /// a PHINode or a debug intrinsic. 144 Instruction* getFirstNonPHIOrDbg(); getFirstNonPHIOrDbg()145 const Instruction* getFirstNonPHIOrDbg() const { 146 return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbg(); 147 } 148 149 /// \brief Returns a pointer to the first instruction in this block that is not 150 /// a PHINode, a debug intrinsic, or a lifetime intrinsic. 151 Instruction* getFirstNonPHIOrDbgOrLifetime(); getFirstNonPHIOrDbgOrLifetime()152 const Instruction* getFirstNonPHIOrDbgOrLifetime() const { 153 return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbgOrLifetime(); 154 } 155 156 /// \brief Returns an iterator to the first instruction in this block that is 157 /// suitable for inserting a non-PHI instruction. 158 /// 159 /// In particular, it skips all PHIs and LandingPad instructions. 160 iterator getFirstInsertionPt(); getFirstInsertionPt()161 const_iterator getFirstInsertionPt() const { 162 return const_cast<BasicBlock*>(this)->getFirstInsertionPt(); 163 } 164 165 /// \brief Unlink 'this' from the containing function, but do not delete it. 166 void removeFromParent(); 167 168 /// \brief Unlink 'this' from the containing function and delete it. 169 /// 170 // \returns an iterator pointing to the element after the erased one. 171 SymbolTableList<BasicBlock>::iterator eraseFromParent(); 172 173 /// \brief Unlink this basic block from its current function and insert it 174 /// into the function that \p MovePos lives in, right before \p MovePos. 175 void moveBefore(BasicBlock *MovePos); 176 177 /// \brief Unlink this basic block from its current function and insert it 178 /// right after \p MovePos in the function \p MovePos lives in. 179 void moveAfter(BasicBlock *MovePos); 180 181 /// \brief Insert unlinked basic block into a function. 182 /// 183 /// Inserts an unlinked basic block into \c Parent. If \c InsertBefore is 184 /// provided, inserts before that basic block, otherwise inserts at the end. 185 /// 186 /// \pre \a getParent() is \c nullptr. 187 void insertInto(Function *Parent, BasicBlock *InsertBefore = nullptr); 188 189 /// \brief Return the predecessor of this block if it has a single predecessor 190 /// block. Otherwise return a null pointer. 191 BasicBlock *getSinglePredecessor(); getSinglePredecessor()192 const BasicBlock *getSinglePredecessor() const { 193 return const_cast<BasicBlock*>(this)->getSinglePredecessor(); 194 } 195 196 /// \brief Return the predecessor of this block if it has a unique predecessor 197 /// block. Otherwise return a null pointer. 198 /// 199 /// Note that unique predecessor doesn't mean single edge, there can be 200 /// multiple edges from the unique predecessor to this block (for example a 201 /// switch statement with multiple cases having the same destination). 202 BasicBlock *getUniquePredecessor(); getUniquePredecessor()203 const BasicBlock *getUniquePredecessor() const { 204 return const_cast<BasicBlock*>(this)->getUniquePredecessor(); 205 } 206 207 /// \brief Return the successor of this block if it has a single successor. 208 /// Otherwise return a null pointer. 209 /// 210 /// This method is analogous to getSinglePredecessor above. 211 BasicBlock *getSingleSuccessor(); getSingleSuccessor()212 const BasicBlock *getSingleSuccessor() const { 213 return const_cast<BasicBlock*>(this)->getSingleSuccessor(); 214 } 215 216 /// \brief Return the successor of this block if it has a unique successor. 217 /// Otherwise return a null pointer. 218 /// 219 /// This method is analogous to getUniquePredecessor above. 220 BasicBlock *getUniqueSuccessor(); getUniqueSuccessor()221 const BasicBlock *getUniqueSuccessor() const { 222 return const_cast<BasicBlock*>(this)->getUniqueSuccessor(); 223 } 224 225 //===--------------------------------------------------------------------===// 226 /// Instruction iterator methods 227 /// begin()228 inline iterator begin() { return InstList.begin(); } begin()229 inline const_iterator begin() const { return InstList.begin(); } end()230 inline iterator end () { return InstList.end(); } end()231 inline const_iterator end () const { return InstList.end(); } 232 rbegin()233 inline reverse_iterator rbegin() { return InstList.rbegin(); } rbegin()234 inline const_reverse_iterator rbegin() const { return InstList.rbegin(); } rend()235 inline reverse_iterator rend () { return InstList.rend(); } rend()236 inline const_reverse_iterator rend () const { return InstList.rend(); } 237 size()238 inline size_t size() const { return InstList.size(); } empty()239 inline bool empty() const { return InstList.empty(); } front()240 inline const Instruction &front() const { return InstList.front(); } front()241 inline Instruction &front() { return InstList.front(); } back()242 inline const Instruction &back() const { return InstList.back(); } back()243 inline Instruction &back() { return InstList.back(); } 244 245 /// \brief Return the underlying instruction list container. 246 /// 247 /// Currently you need to access the underlying instruction list container 248 /// directly if you want to modify it. getInstList()249 const InstListType &getInstList() const { return InstList; } getInstList()250 InstListType &getInstList() { return InstList; } 251 252 /// \brief Returns a pointer to a member of the instruction list. getSublistAccess(Instruction *)253 static InstListType BasicBlock::*getSublistAccess(Instruction*) { 254 return &BasicBlock::InstList; 255 } 256 257 /// \brief Returns a pointer to the symbol table if one exists. 258 ValueSymbolTable *getValueSymbolTable(); 259 260 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Value * V)261 static inline bool classof(const Value *V) { 262 return V->getValueID() == Value::BasicBlockVal; 263 } 264 265 /// \brief Cause all subinstructions to "let go" of all the references that 266 /// said subinstructions are maintaining. 267 /// 268 /// This allows one to 'delete' a whole class at a time, even though there may 269 /// be circular references... first all references are dropped, and all use 270 /// counts go to zero. Then everything is delete'd for real. Note that no 271 /// operations are valid on an object that has "dropped all references", 272 /// except operator delete. 273 void dropAllReferences(); 274 275 /// \brief Notify the BasicBlock that the predecessor \p Pred is no longer 276 /// able to reach it. 277 /// 278 /// This is actually not used to update the Predecessor list, but is actually 279 /// used to update the PHI nodes that reside in the block. Note that this 280 /// should be called while the predecessor still refers to this block. 281 void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs = false); 282 283 bool canSplitPredecessors() const; 284 285 /// \brief Split the basic block into two basic blocks at the specified 286 /// instruction. 287 /// 288 /// Note that all instructions BEFORE the specified iterator stay as part of 289 /// the original basic block, an unconditional branch is added to the original 290 /// BB, and the rest of the instructions in the BB are moved to the new BB, 291 /// including the old terminator. The newly formed BasicBlock is returned. 292 /// This function invalidates the specified iterator. 293 /// 294 /// Note that this only works on well formed basic blocks (must have a 295 /// terminator), and 'I' must not be the end of instruction list (which would 296 /// cause a degenerate basic block to be formed, having a terminator inside of 297 /// the basic block). 298 /// 299 /// Also note that this doesn't preserve any passes. To split blocks while 300 /// keeping loop information consistent, use the SplitBlock utility function. 301 BasicBlock *splitBasicBlock(iterator I, const Twine &BBName = ""); 302 BasicBlock *splitBasicBlock(Instruction *I, const Twine &BBName = "") { 303 return splitBasicBlock(I->getIterator(), BBName); 304 } 305 306 /// \brief Returns true if there are any uses of this basic block other than 307 /// direct branches, switches, etc. to it. hasAddressTaken()308 bool hasAddressTaken() const { return getSubclassDataFromValue() != 0; } 309 310 /// \brief Update all phi nodes in this basic block's successors to refer to 311 /// basic block \p New instead of to it. 312 void replaceSuccessorsPhiUsesWith(BasicBlock *New); 313 314 /// \brief Return true if this basic block is an exception handling block. isEHPad()315 bool isEHPad() const { return getFirstNonPHI()->isEHPad(); } 316 317 /// \brief Return true if this basic block is a landing pad. 318 /// 319 /// Being a ``landing pad'' means that the basic block is the destination of 320 /// the 'unwind' edge of an invoke instruction. 321 bool isLandingPad() const; 322 323 /// \brief Return the landingpad instruction associated with the landing pad. 324 LandingPadInst *getLandingPadInst(); 325 const LandingPadInst *getLandingPadInst() const; 326 327 private: 328 /// \brief Increment the internal refcount of the number of BlockAddresses 329 /// referencing this BasicBlock by \p Amt. 330 /// 331 /// This is almost always 0, sometimes one possibly, but almost never 2, and 332 /// inconceivably 3 or more. AdjustBlockAddressRefCount(int Amt)333 void AdjustBlockAddressRefCount(int Amt) { 334 setValueSubclassData(getSubclassDataFromValue()+Amt); 335 assert((int)(signed char)getSubclassDataFromValue() >= 0 && 336 "Refcount wrap-around"); 337 } 338 339 /// \brief Shadow Value::setValueSubclassData with a private forwarding method 340 /// so that any future subclasses cannot accidentally use it. setValueSubclassData(unsigned short D)341 void setValueSubclassData(unsigned short D) { 342 Value::setValueSubclassData(D); 343 } 344 }; 345 346 // Create wrappers for C Binding types (see CBindingWrapping.h). 347 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(BasicBlock, LLVMBasicBlockRef) 348 349 } // end namespace llvm 350 351 #endif // LLVM_IR_BASICBLOCK_H 352