1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// @file
11 /// This file contains the declarations for metadata subclasses.
12 /// They represent the different flavors of metadata that live in LLVM.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_IR_METADATA_H
17 #define LLVM_IR_METADATA_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseMapInfo.h"
22 #include "llvm/ADT/ilist_node.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/ADT/None.h"
25 #include "llvm/ADT/PointerUnion.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <memory>
39 #include <string>
40 #include <type_traits>
41 #include <utility>
42
43 namespace llvm {
44
45 class Module;
46 class ModuleSlotTracker;
47
48 enum LLVMConstants : uint32_t {
49 DEBUG_METADATA_VERSION = 3 // Current debug info version number.
50 };
51
52 /// \brief Root of the metadata hierarchy.
53 ///
54 /// This is a root class for typeless data in the IR.
55 class Metadata {
56 friend class ReplaceableMetadataImpl;
57
58 /// \brief RTTI.
59 const unsigned char SubclassID;
60
61 protected:
62 /// \brief Active type of storage.
63 enum StorageType { Uniqued, Distinct, Temporary };
64
65 /// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
66 unsigned char Storage;
67 // TODO: expose remaining bits to subclasses.
68
69 unsigned short SubclassData16;
70 unsigned SubclassData32;
71
72 public:
73 enum MetadataKind {
74 #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
75 #include "llvm/IR/Metadata.def"
76 };
77
78 protected:
Metadata(unsigned ID,StorageType Storage)79 Metadata(unsigned ID, StorageType Storage)
80 : SubclassID(ID), Storage(Storage), SubclassData16(0), SubclassData32(0) {
81 static_assert(sizeof(*this) == 8, "Metdata fields poorly packed");
82 }
83
84 ~Metadata() = default;
85
86 /// \brief Default handling of a changed operand, which asserts.
87 ///
88 /// If subclasses pass themselves in as owners to a tracking node reference,
89 /// they must provide an implementation of this method.
handleChangedOperand(void *,Metadata *)90 void handleChangedOperand(void *, Metadata *) {
91 llvm_unreachable("Unimplemented in Metadata subclass");
92 }
93
94 public:
getMetadataID()95 unsigned getMetadataID() const { return SubclassID; }
96
97 /// \brief User-friendly dump.
98 ///
99 /// If \c M is provided, metadata nodes will be numbered canonically;
100 /// otherwise, pointer addresses are substituted.
101 ///
102 /// Note: this uses an explicit overload instead of default arguments so that
103 /// the nullptr version is easy to call from a debugger.
104 ///
105 /// @{
106 void dump() const;
107 void dump(const Module *M) const;
108 /// @}
109
110 /// \brief Print.
111 ///
112 /// Prints definition of \c this.
113 ///
114 /// If \c M is provided, metadata nodes will be numbered canonically;
115 /// otherwise, pointer addresses are substituted.
116 /// @{
117 void print(raw_ostream &OS, const Module *M = nullptr,
118 bool IsForDebug = false) const;
119 void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
120 bool IsForDebug = false) const;
121 /// @}
122
123 /// \brief Print as operand.
124 ///
125 /// Prints reference of \c this.
126 ///
127 /// If \c M is provided, metadata nodes will be numbered canonically;
128 /// otherwise, pointer addresses are substituted.
129 /// @{
130 void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
131 void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
132 const Module *M = nullptr) const;
133 /// @}
134 };
135
136 #define HANDLE_METADATA(CLASS) class CLASS;
137 #include "llvm/IR/Metadata.def"
138
139 // Provide specializations of isa so that we don't need definitions of
140 // subclasses to see if the metadata is a subclass.
141 #define HANDLE_METADATA_LEAF(CLASS) \
142 template <> struct isa_impl<CLASS, Metadata> { \
143 static inline bool doit(const Metadata &MD) { \
144 return MD.getMetadataID() == Metadata::CLASS##Kind; \
145 } \
146 };
147 #include "llvm/IR/Metadata.def"
148
149 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
150 MD.print(OS);
151 return OS;
152 }
153
154 /// \brief Metadata wrapper in the Value hierarchy.
155 ///
156 /// A member of the \a Value hierarchy to represent a reference to metadata.
157 /// This allows, e.g., instrinsics to have metadata as operands.
158 ///
159 /// Notably, this is the only thing in either hierarchy that is allowed to
160 /// reference \a LocalAsMetadata.
161 class MetadataAsValue : public Value {
162 friend class ReplaceableMetadataImpl;
163 friend class LLVMContextImpl;
164
165 Metadata *MD;
166
167 MetadataAsValue(Type *Ty, Metadata *MD);
168 ~MetadataAsValue() override;
169
170 /// \brief Drop use of metadata (during teardown).
dropUse()171 void dropUse() { MD = nullptr; }
172
173 public:
174 static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
175 static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
getMetadata()176 Metadata *getMetadata() const { return MD; }
177
classof(const Value * V)178 static bool classof(const Value *V) {
179 return V->getValueID() == MetadataAsValueVal;
180 }
181
182 private:
183 void handleChangedMetadata(Metadata *MD);
184 void track();
185 void untrack();
186 };
187
188 /// \brief API for tracking metadata references through RAUW and deletion.
189 ///
190 /// Shared API for updating \a Metadata pointers in subclasses that support
191 /// RAUW.
192 ///
193 /// This API is not meant to be used directly. See \a TrackingMDRef for a
194 /// user-friendly tracking reference.
195 class MetadataTracking {
196 public:
197 /// \brief Track the reference to metadata.
198 ///
199 /// Register \c MD with \c *MD, if the subclass supports tracking. If \c *MD
200 /// gets RAUW'ed, \c MD will be updated to the new address. If \c *MD gets
201 /// deleted, \c MD will be set to \c nullptr.
202 ///
203 /// If tracking isn't supported, \c *MD will not change.
204 ///
205 /// \return true iff tracking is supported by \c MD.
track(Metadata * & MD)206 static bool track(Metadata *&MD) {
207 return track(&MD, *MD, static_cast<Metadata *>(nullptr));
208 }
209
210 /// \brief Track the reference to metadata for \a Metadata.
211 ///
212 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
213 /// tell it that its operand changed. This could trigger \c Owner being
214 /// re-uniqued.
track(void * Ref,Metadata & MD,Metadata & Owner)215 static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
216 return track(Ref, MD, &Owner);
217 }
218
219 /// \brief Track the reference to metadata for \a MetadataAsValue.
220 ///
221 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
222 /// tell it that its operand changed. This could trigger \c Owner being
223 /// re-uniqued.
track(void * Ref,Metadata & MD,MetadataAsValue & Owner)224 static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
225 return track(Ref, MD, &Owner);
226 }
227
228 /// \brief Stop tracking a reference to metadata.
229 ///
230 /// Stops \c *MD from tracking \c MD.
untrack(Metadata * & MD)231 static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
232 static void untrack(void *Ref, Metadata &MD);
233
234 /// \brief Move tracking from one reference to another.
235 ///
236 /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
237 /// except that ownership callbacks are maintained.
238 ///
239 /// Note: it is an error if \c *MD does not equal \c New.
240 ///
241 /// \return true iff tracking is supported by \c MD.
retrack(Metadata * & MD,Metadata * & New)242 static bool retrack(Metadata *&MD, Metadata *&New) {
243 return retrack(&MD, *MD, &New);
244 }
245 static bool retrack(void *Ref, Metadata &MD, void *New);
246
247 /// \brief Check whether metadata is replaceable.
248 static bool isReplaceable(const Metadata &MD);
249
250 typedef PointerUnion<MetadataAsValue *, Metadata *> OwnerTy;
251
252 private:
253 /// \brief Track a reference to metadata for an owner.
254 ///
255 /// Generalized version of tracking.
256 static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
257 };
258
259 /// \brief Shared implementation of use-lists for replaceable metadata.
260 ///
261 /// Most metadata cannot be RAUW'ed. This is a shared implementation of
262 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
263 /// and \a TempMDNode).
264 class ReplaceableMetadataImpl {
265 friend class MetadataTracking;
266
267 public:
268 typedef MetadataTracking::OwnerTy OwnerTy;
269
270 private:
271 LLVMContext &Context;
272 uint64_t NextIndex;
273 SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
274
275 public:
ReplaceableMetadataImpl(LLVMContext & Context)276 ReplaceableMetadataImpl(LLVMContext &Context)
277 : Context(Context), NextIndex(0) {}
278
~ReplaceableMetadataImpl()279 ~ReplaceableMetadataImpl() {
280 assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
281 }
282
getContext()283 LLVMContext &getContext() const { return Context; }
284
285 /// \brief Replace all uses of this with MD.
286 ///
287 /// Replace all uses of this with \c MD, which is allowed to be null.
288 void replaceAllUsesWith(Metadata *MD);
289
290 /// \brief Resolve all uses of this.
291 ///
292 /// Resolve all uses of this, turning off RAUW permanently. If \c
293 /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
294 /// is resolved.
295 void resolveAllUses(bool ResolveUsers = true);
296
297 private:
298 void addRef(void *Ref, OwnerTy Owner);
299 void dropRef(void *Ref);
300 void moveRef(void *Ref, void *New, const Metadata &MD);
301
302 /// Lazily construct RAUW support on MD.
303 ///
304 /// If this is an unresolved MDNode, RAUW support will be created on-demand.
305 /// ValueAsMetadata always has RAUW support.
306 static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
307
308 /// Get RAUW support on MD, if it exists.
309 static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
310
311 /// Check whether this node will support RAUW.
312 ///
313 /// Returns \c true unless getOrCreate() would return null.
314 static bool isReplaceable(const Metadata &MD);
315 };
316
317 /// \brief Value wrapper in the Metadata hierarchy.
318 ///
319 /// This is a custom value handle that allows other metadata to refer to
320 /// classes in the Value hierarchy.
321 ///
322 /// Because of full uniquing support, each value is only wrapped by a single \a
323 /// ValueAsMetadata object, so the lookup maps are far more efficient than
324 /// those using ValueHandleBase.
325 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
326 friend class ReplaceableMetadataImpl;
327 friend class LLVMContextImpl;
328
329 Value *V;
330
331 /// \brief Drop users without RAUW (during teardown).
dropUsers()332 void dropUsers() {
333 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
334 }
335
336 protected:
ValueAsMetadata(unsigned ID,Value * V)337 ValueAsMetadata(unsigned ID, Value *V)
338 : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
339 assert(V && "Expected valid value");
340 }
341
342 ~ValueAsMetadata() = default;
343
344 public:
345 static ValueAsMetadata *get(Value *V);
getConstant(Value * C)346 static ConstantAsMetadata *getConstant(Value *C) {
347 return cast<ConstantAsMetadata>(get(C));
348 }
getLocal(Value * Local)349 static LocalAsMetadata *getLocal(Value *Local) {
350 return cast<LocalAsMetadata>(get(Local));
351 }
352
353 static ValueAsMetadata *getIfExists(Value *V);
getConstantIfExists(Value * C)354 static ConstantAsMetadata *getConstantIfExists(Value *C) {
355 return cast_or_null<ConstantAsMetadata>(getIfExists(C));
356 }
getLocalIfExists(Value * Local)357 static LocalAsMetadata *getLocalIfExists(Value *Local) {
358 return cast_or_null<LocalAsMetadata>(getIfExists(Local));
359 }
360
getValue()361 Value *getValue() const { return V; }
getType()362 Type *getType() const { return V->getType(); }
getContext()363 LLVMContext &getContext() const { return V->getContext(); }
364
365 static void handleDeletion(Value *V);
366 static void handleRAUW(Value *From, Value *To);
367
368 protected:
369 /// \brief Handle collisions after \a Value::replaceAllUsesWith().
370 ///
371 /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
372 /// \a Value gets RAUW'ed and the target already exists, this is used to
373 /// merge the two metadata nodes.
replaceAllUsesWith(Metadata * MD)374 void replaceAllUsesWith(Metadata *MD) {
375 ReplaceableMetadataImpl::replaceAllUsesWith(MD);
376 }
377
378 public:
classof(const Metadata * MD)379 static bool classof(const Metadata *MD) {
380 return MD->getMetadataID() == LocalAsMetadataKind ||
381 MD->getMetadataID() == ConstantAsMetadataKind;
382 }
383 };
384
385 class ConstantAsMetadata : public ValueAsMetadata {
386 friend class ValueAsMetadata;
387
ConstantAsMetadata(Constant * C)388 ConstantAsMetadata(Constant *C)
389 : ValueAsMetadata(ConstantAsMetadataKind, C) {}
390
391 public:
get(Constant * C)392 static ConstantAsMetadata *get(Constant *C) {
393 return ValueAsMetadata::getConstant(C);
394 }
395
getIfExists(Constant * C)396 static ConstantAsMetadata *getIfExists(Constant *C) {
397 return ValueAsMetadata::getConstantIfExists(C);
398 }
399
getValue()400 Constant *getValue() const {
401 return cast<Constant>(ValueAsMetadata::getValue());
402 }
403
classof(const Metadata * MD)404 static bool classof(const Metadata *MD) {
405 return MD->getMetadataID() == ConstantAsMetadataKind;
406 }
407 };
408
409 class LocalAsMetadata : public ValueAsMetadata {
410 friend class ValueAsMetadata;
411
LocalAsMetadata(Value * Local)412 LocalAsMetadata(Value *Local)
413 : ValueAsMetadata(LocalAsMetadataKind, Local) {
414 assert(!isa<Constant>(Local) && "Expected local value");
415 }
416
417 public:
get(Value * Local)418 static LocalAsMetadata *get(Value *Local) {
419 return ValueAsMetadata::getLocal(Local);
420 }
421
getIfExists(Value * Local)422 static LocalAsMetadata *getIfExists(Value *Local) {
423 return ValueAsMetadata::getLocalIfExists(Local);
424 }
425
classof(const Metadata * MD)426 static bool classof(const Metadata *MD) {
427 return MD->getMetadataID() == LocalAsMetadataKind;
428 }
429 };
430
431 /// \brief Transitional API for extracting constants from Metadata.
432 ///
433 /// This namespace contains transitional functions for metadata that points to
434 /// \a Constants.
435 ///
436 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
437 /// operands could refer to any \a Value. There's was a lot of code like this:
438 ///
439 /// \code
440 /// MDNode *N = ...;
441 /// auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
442 /// \endcode
443 ///
444 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
445 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
446 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
447 /// cast in the \a Value hierarchy. Besides creating boiler-plate, this
448 /// requires subtle control flow changes.
449 ///
450 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
451 /// so that metadata can refer to numbers without traversing a bridge to the \a
452 /// Value hierarchy. In this final state, the code above would look like this:
453 ///
454 /// \code
455 /// MDNode *N = ...;
456 /// auto *MI = dyn_cast<MDInt>(N->getOperand(2));
457 /// \endcode
458 ///
459 /// The API in this namespace supports the transition. \a MDInt doesn't exist
460 /// yet, and even once it does, changing each metadata schema to use it is its
461 /// own mini-project. In the meantime this API prevents us from introducing
462 /// complex and bug-prone control flow that will disappear in the end. In
463 /// particular, the above code looks like this:
464 ///
465 /// \code
466 /// MDNode *N = ...;
467 /// auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
468 /// \endcode
469 ///
470 /// The full set of provided functions includes:
471 ///
472 /// mdconst::hasa <=> isa
473 /// mdconst::extract <=> cast
474 /// mdconst::extract_or_null <=> cast_or_null
475 /// mdconst::dyn_extract <=> dyn_cast
476 /// mdconst::dyn_extract_or_null <=> dyn_cast_or_null
477 ///
478 /// The target of the cast must be a subclass of \a Constant.
479 namespace mdconst {
480
481 namespace detail {
482
483 template <class T> T &make();
484 template <class T, class Result> struct HasDereference {
485 typedef char Yes[1];
486 typedef char No[2];
487 template <size_t N> struct SFINAE {};
488
489 template <class U, class V>
490 static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
491 template <class U, class V> static No &hasDereference(...);
492
493 static const bool value =
494 sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
495 };
496 template <class V, class M> struct IsValidPointer {
497 static const bool value = std::is_base_of<Constant, V>::value &&
498 HasDereference<M, const Metadata &>::value;
499 };
500 template <class V, class M> struct IsValidReference {
501 static const bool value = std::is_base_of<Constant, V>::value &&
502 std::is_convertible<M, const Metadata &>::value;
503 };
504
505 } // end namespace detail
506
507 /// \brief Check whether Metadata has a Value.
508 ///
509 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
510 /// type \c X.
511 template <class X, class Y>
512 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
hasa(Y && MD)513 hasa(Y &&MD) {
514 assert(MD && "Null pointer sent into hasa");
515 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
516 return isa<X>(V->getValue());
517 return false;
518 }
519 template <class X, class Y>
520 inline
521 typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
hasa(Y & MD)522 hasa(Y &MD) {
523 return hasa(&MD);
524 }
525
526 /// \brief Extract a Value from Metadata.
527 ///
528 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
529 template <class X, class Y>
530 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract(Y && MD)531 extract(Y &&MD) {
532 return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
533 }
534 template <class X, class Y>
535 inline
536 typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
extract(Y & MD)537 extract(Y &MD) {
538 return extract(&MD);
539 }
540
541 /// \brief Extract a Value from Metadata, allowing null.
542 ///
543 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
544 /// from \c MD, allowing \c MD to be null.
545 template <class X, class Y>
546 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract_or_null(Y && MD)547 extract_or_null(Y &&MD) {
548 if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
549 return cast<X>(V->getValue());
550 return nullptr;
551 }
552
553 /// \brief Extract a Value from Metadata, if any.
554 ///
555 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
556 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
557 /// Value it does contain is of the wrong subclass.
558 template <class X, class Y>
559 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract(Y && MD)560 dyn_extract(Y &&MD) {
561 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
562 return dyn_cast<X>(V->getValue());
563 return nullptr;
564 }
565
566 /// \brief Extract a Value from Metadata, if any, allowing null.
567 ///
568 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
569 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
570 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
571 template <class X, class Y>
572 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract_or_null(Y && MD)573 dyn_extract_or_null(Y &&MD) {
574 if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
575 return dyn_cast<X>(V->getValue());
576 return nullptr;
577 }
578
579 } // end namespace mdconst
580
581 //===----------------------------------------------------------------------===//
582 /// \brief A single uniqued string.
583 ///
584 /// These are used to efficiently contain a byte sequence for metadata.
585 /// MDString is always unnamed.
586 class MDString : public Metadata {
587 friend class StringMapEntry<MDString>;
588
589 StringMapEntry<MDString> *Entry;
MDString()590 MDString() : Metadata(MDStringKind, Uniqued), Entry(nullptr) {}
591
592 public:
593 MDString(const MDString &) = delete;
594 MDString &operator=(MDString &&) = delete;
595 MDString &operator=(const MDString &) = delete;
596
597 static MDString *get(LLVMContext &Context, StringRef Str);
get(LLVMContext & Context,const char * Str)598 static MDString *get(LLVMContext &Context, const char *Str) {
599 return get(Context, Str ? StringRef(Str) : StringRef());
600 }
601
602 StringRef getString() const;
603
getLength()604 unsigned getLength() const { return (unsigned)getString().size(); }
605
606 typedef StringRef::iterator iterator;
607
608 /// \brief Pointer to the first byte of the string.
begin()609 iterator begin() const { return getString().begin(); }
610
611 /// \brief Pointer to one byte past the end of the string.
end()612 iterator end() const { return getString().end(); }
613
bytes_begin()614 const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
bytes_end()615 const unsigned char *bytes_end() const { return getString().bytes_end(); }
616
617 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Metadata * MD)618 static bool classof(const Metadata *MD) {
619 return MD->getMetadataID() == MDStringKind;
620 }
621 };
622
623 /// \brief A collection of metadata nodes that might be associated with a
624 /// memory access used by the alias-analysis infrastructure.
625 struct AAMDNodes {
626 explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
627 MDNode *N = nullptr)
TBAAAAMDNodes628 : TBAA(T), Scope(S), NoAlias(N) {}
629
630 bool operator==(const AAMDNodes &A) const {
631 return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
632 }
633
634 bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
635
636 explicit operator bool() const { return TBAA || Scope || NoAlias; }
637
638 /// \brief The tag for type-based alias analysis.
639 MDNode *TBAA;
640
641 /// \brief The tag for alias scope specification (used with noalias).
642 MDNode *Scope;
643
644 /// \brief The tag specifying the noalias scope.
645 MDNode *NoAlias;
646 };
647
648 // Specialize DenseMapInfo for AAMDNodes.
649 template<>
650 struct DenseMapInfo<AAMDNodes> {
651 static inline AAMDNodes getEmptyKey() {
652 return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
653 nullptr, nullptr);
654 }
655
656 static inline AAMDNodes getTombstoneKey() {
657 return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
658 nullptr, nullptr);
659 }
660
661 static unsigned getHashValue(const AAMDNodes &Val) {
662 return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
663 DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
664 DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
665 }
666
667 static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
668 return LHS == RHS;
669 }
670 };
671
672 /// \brief Tracking metadata reference owned by Metadata.
673 ///
674 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
675 /// of \a Metadata, which has the option of registering itself for callbacks to
676 /// re-unique itself.
677 ///
678 /// In particular, this is used by \a MDNode.
679 class MDOperand {
680 Metadata *MD = nullptr;
681
682 public:
683 MDOperand() = default;
684 MDOperand(MDOperand &&) = delete;
685 MDOperand(const MDOperand &) = delete;
686 MDOperand &operator=(MDOperand &&) = delete;
687 MDOperand &operator=(const MDOperand &) = delete;
688 ~MDOperand() { untrack(); }
689
690 Metadata *get() const { return MD; }
691 operator Metadata *() const { return get(); }
692 Metadata *operator->() const { return get(); }
693 Metadata &operator*() const { return *get(); }
694
695 void reset() {
696 untrack();
697 MD = nullptr;
698 }
699 void reset(Metadata *MD, Metadata *Owner) {
700 untrack();
701 this->MD = MD;
702 track(Owner);
703 }
704
705 private:
706 void track(Metadata *Owner) {
707 if (MD) {
708 if (Owner)
709 MetadataTracking::track(this, *MD, *Owner);
710 else
711 MetadataTracking::track(MD);
712 }
713 }
714
715 void untrack() {
716 assert(static_cast<void *>(this) == &MD && "Expected same address");
717 if (MD)
718 MetadataTracking::untrack(MD);
719 }
720 };
721
722 template <> struct simplify_type<MDOperand> {
723 typedef Metadata *SimpleType;
724 static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
725 };
726
727 template <> struct simplify_type<const MDOperand> {
728 typedef Metadata *SimpleType;
729 static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
730 };
731
732 /// \brief Pointer to the context, with optional RAUW support.
733 ///
734 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
735 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
736 class ContextAndReplaceableUses {
737 PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
738
739 public:
740 ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
741 ContextAndReplaceableUses(
742 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
743 : Ptr(ReplaceableUses.release()) {
744 assert(getReplaceableUses() && "Expected non-null replaceable uses");
745 }
746 ContextAndReplaceableUses() = delete;
747 ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
748 ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
749 ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
750 ContextAndReplaceableUses &
751 operator=(const ContextAndReplaceableUses &) = delete;
752 ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
753
754 operator LLVMContext &() { return getContext(); }
755
756 /// \brief Whether this contains RAUW support.
757 bool hasReplaceableUses() const {
758 return Ptr.is<ReplaceableMetadataImpl *>();
759 }
760
761 LLVMContext &getContext() const {
762 if (hasReplaceableUses())
763 return getReplaceableUses()->getContext();
764 return *Ptr.get<LLVMContext *>();
765 }
766
767 ReplaceableMetadataImpl *getReplaceableUses() const {
768 if (hasReplaceableUses())
769 return Ptr.get<ReplaceableMetadataImpl *>();
770 return nullptr;
771 }
772
773 /// Ensure that this has RAUW support, and then return it.
774 ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
775 if (!hasReplaceableUses())
776 makeReplaceable(llvm::make_unique<ReplaceableMetadataImpl>(getContext()));
777 return getReplaceableUses();
778 }
779
780 /// \brief Assign RAUW support to this.
781 ///
782 /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
783 /// not be null).
784 void
785 makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
786 assert(ReplaceableUses && "Expected non-null replaceable uses");
787 assert(&ReplaceableUses->getContext() == &getContext() &&
788 "Expected same context");
789 delete getReplaceableUses();
790 Ptr = ReplaceableUses.release();
791 }
792
793 /// \brief Drop RAUW support.
794 ///
795 /// Cede ownership of RAUW support, returning it.
796 std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
797 assert(hasReplaceableUses() && "Expected to own replaceable uses");
798 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
799 getReplaceableUses());
800 Ptr = &ReplaceableUses->getContext();
801 return ReplaceableUses;
802 }
803 };
804
805 struct TempMDNodeDeleter {
806 inline void operator()(MDNode *Node) const;
807 };
808
809 #define HANDLE_MDNODE_LEAF(CLASS) \
810 typedef std::unique_ptr<CLASS, TempMDNodeDeleter> Temp##CLASS;
811 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
812 #include "llvm/IR/Metadata.def"
813
814 /// \brief Metadata node.
815 ///
816 /// Metadata nodes can be uniqued, like constants, or distinct. Temporary
817 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
818 /// until forward references are known. The basic metadata node is an \a
819 /// MDTuple.
820 ///
821 /// There is limited support for RAUW at construction time. At construction
822 /// time, if any operand is a temporary node (or an unresolved uniqued node,
823 /// which indicates a transitive temporary operand), the node itself will be
824 /// unresolved. As soon as all operands become resolved, it will drop RAUW
825 /// support permanently.
826 ///
827 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
828 /// to be called on some member of the cycle once all temporary nodes have been
829 /// replaced.
830 class MDNode : public Metadata {
831 friend class ReplaceableMetadataImpl;
832 friend class LLVMContextImpl;
833
834 unsigned NumOperands;
835 unsigned NumUnresolved;
836
837 ContextAndReplaceableUses Context;
838
839 protected:
840 void *operator new(size_t Size, unsigned NumOps);
841 void operator delete(void *Mem);
842
843 /// \brief Required by std, but never called.
844 void operator delete(void *, unsigned) {
845 llvm_unreachable("Constructor throws?");
846 }
847
848 /// \brief Required by std, but never called.
849 void operator delete(void *, unsigned, bool) {
850 llvm_unreachable("Constructor throws?");
851 }
852
853 MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
854 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
855 ~MDNode() = default;
856
857 void dropAllReferences();
858
859 MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
860 MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
861
862 typedef iterator_range<MDOperand *> mutable_op_range;
863 mutable_op_range mutable_operands() {
864 return mutable_op_range(mutable_begin(), mutable_end());
865 }
866
867 public:
868 MDNode(const MDNode &) = delete;
869 void operator=(const MDNode &) = delete;
870 void *operator new(size_t) = delete;
871
872 static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
873 static inline MDTuple *getIfExists(LLVMContext &Context,
874 ArrayRef<Metadata *> MDs);
875 static inline MDTuple *getDistinct(LLVMContext &Context,
876 ArrayRef<Metadata *> MDs);
877 static inline TempMDTuple getTemporary(LLVMContext &Context,
878 ArrayRef<Metadata *> MDs);
879
880 /// \brief Create a (temporary) clone of this.
881 TempMDNode clone() const;
882
883 /// \brief Deallocate a node created by getTemporary.
884 ///
885 /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
886 /// references will be reset.
887 static void deleteTemporary(MDNode *N);
888
889 LLVMContext &getContext() const { return Context.getContext(); }
890
891 /// \brief Replace a specific operand.
892 void replaceOperandWith(unsigned I, Metadata *New);
893
894 /// \brief Check if node is fully resolved.
895 ///
896 /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
897 /// this always returns \c true.
898 ///
899 /// If \a isUniqued(), returns \c true if this has already dropped RAUW
900 /// support (because all operands are resolved).
901 ///
902 /// As forward declarations are resolved, their containers should get
903 /// resolved automatically. However, if this (or one of its operands) is
904 /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
905 bool isResolved() const { return !isTemporary() && !NumUnresolved; }
906
907 bool isUniqued() const { return Storage == Uniqued; }
908 bool isDistinct() const { return Storage == Distinct; }
909 bool isTemporary() const { return Storage == Temporary; }
910
911 /// \brief RAUW a temporary.
912 ///
913 /// \pre \a isTemporary() must be \c true.
914 void replaceAllUsesWith(Metadata *MD) {
915 assert(isTemporary() && "Expected temporary node");
916 if (Context.hasReplaceableUses())
917 Context.getReplaceableUses()->replaceAllUsesWith(MD);
918 }
919
920 /// \brief Resolve cycles.
921 ///
922 /// Once all forward declarations have been resolved, force cycles to be
923 /// resolved.
924 ///
925 /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
926 void resolveCycles();
927
928 /// \brief Replace a temporary node with a permanent one.
929 ///
930 /// Try to create a uniqued version of \c N -- in place, if possible -- and
931 /// return it. If \c N cannot be uniqued, return a distinct node instead.
932 template <class T>
933 static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
934 replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
935 return cast<T>(N.release()->replaceWithPermanentImpl());
936 }
937
938 /// \brief Replace a temporary node with a uniqued one.
939 ///
940 /// Create a uniqued version of \c N -- in place, if possible -- and return
941 /// it. Takes ownership of the temporary node.
942 ///
943 /// \pre N does not self-reference.
944 template <class T>
945 static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
946 replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
947 return cast<T>(N.release()->replaceWithUniquedImpl());
948 }
949
950 /// \brief Replace a temporary node with a distinct one.
951 ///
952 /// Create a distinct version of \c N -- in place, if possible -- and return
953 /// it. Takes ownership of the temporary node.
954 template <class T>
955 static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
956 replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
957 return cast<T>(N.release()->replaceWithDistinctImpl());
958 }
959
960 private:
961 MDNode *replaceWithPermanentImpl();
962 MDNode *replaceWithUniquedImpl();
963 MDNode *replaceWithDistinctImpl();
964
965 protected:
966 /// \brief Set an operand.
967 ///
968 /// Sets the operand directly, without worrying about uniquing.
969 void setOperand(unsigned I, Metadata *New);
970
971 void storeDistinctInContext();
972 template <class T, class StoreT>
973 static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
974 template <class T> static T *storeImpl(T *N, StorageType Storage);
975
976 private:
977 void handleChangedOperand(void *Ref, Metadata *New);
978
979 /// Resolve a unique, unresolved node.
980 void resolve();
981
982 /// Drop RAUW support, if any.
983 void dropReplaceableUses();
984
985 void resolveAfterOperandChange(Metadata *Old, Metadata *New);
986 void decrementUnresolvedOperandCount();
987 void countUnresolvedOperands();
988
989 /// \brief Mutate this to be "uniqued".
990 ///
991 /// Mutate this so that \a isUniqued().
992 /// \pre \a isTemporary().
993 /// \pre already added to uniquing set.
994 void makeUniqued();
995
996 /// \brief Mutate this to be "distinct".
997 ///
998 /// Mutate this so that \a isDistinct().
999 /// \pre \a isTemporary().
1000 void makeDistinct();
1001
1002 void deleteAsSubclass();
1003 MDNode *uniquify();
1004 void eraseFromStore();
1005
1006 template <class NodeTy> struct HasCachedHash;
1007 template <class NodeTy>
1008 static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1009 N->recalculateHash();
1010 }
1011 template <class NodeTy>
1012 static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1013 template <class NodeTy>
1014 static void dispatchResetHash(NodeTy *N, std::true_type) {
1015 N->setHash(0);
1016 }
1017 template <class NodeTy>
1018 static void dispatchResetHash(NodeTy *, std::false_type) {}
1019
1020 public:
1021 typedef const MDOperand *op_iterator;
1022 typedef iterator_range<op_iterator> op_range;
1023
1024 op_iterator op_begin() const {
1025 return const_cast<MDNode *>(this)->mutable_begin();
1026 }
1027
1028 op_iterator op_end() const {
1029 return const_cast<MDNode *>(this)->mutable_end();
1030 }
1031
1032 op_range operands() const { return op_range(op_begin(), op_end()); }
1033
1034 const MDOperand &getOperand(unsigned I) const {
1035 assert(I < NumOperands && "Out of range");
1036 return op_begin()[I];
1037 }
1038
1039 /// \brief Return number of MDNode operands.
1040 unsigned getNumOperands() const { return NumOperands; }
1041
1042 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
1043 static bool classof(const Metadata *MD) {
1044 switch (MD->getMetadataID()) {
1045 default:
1046 return false;
1047 #define HANDLE_MDNODE_LEAF(CLASS) \
1048 case CLASS##Kind: \
1049 return true;
1050 #include "llvm/IR/Metadata.def"
1051 }
1052 }
1053
1054 /// \brief Check whether MDNode is a vtable access.
1055 bool isTBAAVtableAccess() const;
1056
1057 /// \brief Methods for metadata merging.
1058 static MDNode *concatenate(MDNode *A, MDNode *B);
1059 static MDNode *intersect(MDNode *A, MDNode *B);
1060 static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1061 static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1062 static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1063 static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1064 static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1065
1066 };
1067
1068 /// \brief Tuple of metadata.
1069 ///
1070 /// This is the simple \a MDNode arbitrary tuple. Nodes are uniqued by
1071 /// default based on their operands.
1072 class MDTuple : public MDNode {
1073 friend class LLVMContextImpl;
1074 friend class MDNode;
1075
1076 MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1077 ArrayRef<Metadata *> Vals)
1078 : MDNode(C, MDTupleKind, Storage, Vals) {
1079 setHash(Hash);
1080 }
1081
1082 ~MDTuple() { dropAllReferences(); }
1083
1084 void setHash(unsigned Hash) { SubclassData32 = Hash; }
1085 void recalculateHash();
1086
1087 static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1088 StorageType Storage, bool ShouldCreate = true);
1089
1090 TempMDTuple cloneImpl() const {
1091 return getTemporary(getContext(),
1092 SmallVector<Metadata *, 4>(op_begin(), op_end()));
1093 }
1094
1095 public:
1096 /// \brief Get the hash, if any.
1097 unsigned getHash() const { return SubclassData32; }
1098
1099 static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1100 return getImpl(Context, MDs, Uniqued);
1101 }
1102
1103 static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1104 return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1105 }
1106
1107 /// \brief Return a distinct node.
1108 ///
1109 /// Return a distinct node -- i.e., a node that is not uniqued.
1110 static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1111 return getImpl(Context, MDs, Distinct);
1112 }
1113
1114 /// \brief Return a temporary node.
1115 ///
1116 /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1117 /// not uniqued, may be RAUW'd, and must be manually deleted with
1118 /// deleteTemporary.
1119 static TempMDTuple getTemporary(LLVMContext &Context,
1120 ArrayRef<Metadata *> MDs) {
1121 return TempMDTuple(getImpl(Context, MDs, Temporary));
1122 }
1123
1124 /// \brief Return a (temporary) clone of this.
1125 TempMDTuple clone() const { return cloneImpl(); }
1126
1127 static bool classof(const Metadata *MD) {
1128 return MD->getMetadataID() == MDTupleKind;
1129 }
1130 };
1131
1132 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1133 return MDTuple::get(Context, MDs);
1134 }
1135
1136 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1137 return MDTuple::getIfExists(Context, MDs);
1138 }
1139
1140 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1141 return MDTuple::getDistinct(Context, MDs);
1142 }
1143
1144 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1145 ArrayRef<Metadata *> MDs) {
1146 return MDTuple::getTemporary(Context, MDs);
1147 }
1148
1149 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1150 MDNode::deleteTemporary(Node);
1151 }
1152
1153 /// \brief Typed iterator through MDNode operands.
1154 ///
1155 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1156 /// particular Metadata subclass.
1157 template <class T>
1158 class TypedMDOperandIterator
1159 : std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void, T *> {
1160 MDNode::op_iterator I = nullptr;
1161
1162 public:
1163 TypedMDOperandIterator() = default;
1164 explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1165
1166 T *operator*() const { return cast_or_null<T>(*I); }
1167
1168 TypedMDOperandIterator &operator++() {
1169 ++I;
1170 return *this;
1171 }
1172
1173 TypedMDOperandIterator operator++(int) {
1174 TypedMDOperandIterator Temp(*this);
1175 ++I;
1176 return Temp;
1177 }
1178
1179 bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1180 bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1181 };
1182
1183 /// \brief Typed, array-like tuple of metadata.
1184 ///
1185 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1186 /// particular type of metadata.
1187 template <class T> class MDTupleTypedArrayWrapper {
1188 const MDTuple *N = nullptr;
1189
1190 public:
1191 MDTupleTypedArrayWrapper() = default;
1192 MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1193
1194 template <class U>
1195 MDTupleTypedArrayWrapper(
1196 const MDTupleTypedArrayWrapper<U> &Other,
1197 typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
1198 nullptr)
1199 : N(Other.get()) {}
1200
1201 template <class U>
1202 explicit MDTupleTypedArrayWrapper(
1203 const MDTupleTypedArrayWrapper<U> &Other,
1204 typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
1205 nullptr)
1206 : N(Other.get()) {}
1207
1208 explicit operator bool() const { return get(); }
1209 explicit operator MDTuple *() const { return get(); }
1210
1211 MDTuple *get() const { return const_cast<MDTuple *>(N); }
1212 MDTuple *operator->() const { return get(); }
1213 MDTuple &operator*() const { return *get(); }
1214
1215 // FIXME: Fix callers and remove condition on N.
1216 unsigned size() const { return N ? N->getNumOperands() : 0u; }
1217 T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1218
1219 // FIXME: Fix callers and remove condition on N.
1220 typedef TypedMDOperandIterator<T> iterator;
1221 iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1222 iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1223 };
1224
1225 #define HANDLE_METADATA(CLASS) \
1226 typedef MDTupleTypedArrayWrapper<CLASS> CLASS##Array;
1227 #include "llvm/IR/Metadata.def"
1228
1229 /// Placeholder metadata for operands of distinct MDNodes.
1230 ///
1231 /// This is a lightweight placeholder for an operand of a distinct node. It's
1232 /// purpose is to help track forward references when creating a distinct node.
1233 /// This allows distinct nodes involved in a cycle to be constructed before
1234 /// their operands without requiring a heavyweight temporary node with
1235 /// full-blown RAUW support.
1236 ///
1237 /// Each placeholder supports only a single MDNode user. Clients should pass
1238 /// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1239 /// should be replaced with.
1240 ///
1241 /// While it would be possible to implement move operators, they would be
1242 /// fairly expensive. Leave them unimplemented to discourage their use
1243 /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1244 class DistinctMDOperandPlaceholder : public Metadata {
1245 friend class MetadataTracking;
1246
1247 Metadata **Use = nullptr;
1248
1249 public:
1250 explicit DistinctMDOperandPlaceholder(unsigned ID)
1251 : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1252 SubclassData32 = ID;
1253 }
1254
1255 DistinctMDOperandPlaceholder() = delete;
1256 DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1257 DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1258
1259 ~DistinctMDOperandPlaceholder() {
1260 if (Use)
1261 *Use = nullptr;
1262 }
1263
1264 unsigned getID() const { return SubclassData32; }
1265
1266 /// Replace the use of this with MD.
1267 void replaceUseWith(Metadata *MD) {
1268 if (!Use)
1269 return;
1270 *Use = MD;
1271 Use = nullptr;
1272 }
1273 };
1274
1275 //===----------------------------------------------------------------------===//
1276 /// \brief A tuple of MDNodes.
1277 ///
1278 /// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
1279 /// to modules, have names, and contain lists of MDNodes.
1280 ///
1281 /// TODO: Inherit from Metadata.
1282 class NamedMDNode : public ilist_node<NamedMDNode> {
1283 friend class LLVMContextImpl;
1284 friend class Module;
1285
1286 std::string Name;
1287 Module *Parent;
1288 void *Operands; // SmallVector<TrackingMDRef, 4>
1289
1290 void setParent(Module *M) { Parent = M; }
1291
1292 explicit NamedMDNode(const Twine &N);
1293
1294 template<class T1, class T2>
1295 class op_iterator_impl :
1296 public std::iterator<std::bidirectional_iterator_tag, T2> {
1297 const NamedMDNode *Node = nullptr;
1298 unsigned Idx = 0;
1299
1300 op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) { }
1301
1302 friend class NamedMDNode;
1303
1304 public:
1305 op_iterator_impl() = default;
1306
1307 bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1308 bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1309
1310 op_iterator_impl &operator++() {
1311 ++Idx;
1312 return *this;
1313 }
1314
1315 op_iterator_impl operator++(int) {
1316 op_iterator_impl tmp(*this);
1317 operator++();
1318 return tmp;
1319 }
1320
1321 op_iterator_impl &operator--() {
1322 --Idx;
1323 return *this;
1324 }
1325
1326 op_iterator_impl operator--(int) {
1327 op_iterator_impl tmp(*this);
1328 operator--();
1329 return tmp;
1330 }
1331
1332 T1 operator*() const { return Node->getOperand(Idx); }
1333 };
1334
1335 public:
1336 NamedMDNode(const NamedMDNode &) = delete;
1337 ~NamedMDNode();
1338
1339 /// \brief Drop all references and remove the node from parent module.
1340 void eraseFromParent();
1341
1342 /// Remove all uses and clear node vector.
1343 void dropAllReferences() { clearOperands(); }
1344 /// Drop all references to this node's operands.
1345 void clearOperands();
1346
1347 /// \brief Get the module that holds this named metadata collection.
1348 inline Module *getParent() { return Parent; }
1349 inline const Module *getParent() const { return Parent; }
1350
1351 MDNode *getOperand(unsigned i) const;
1352 unsigned getNumOperands() const;
1353 void addOperand(MDNode *M);
1354 void setOperand(unsigned I, MDNode *New);
1355 StringRef getName() const;
1356 void print(raw_ostream &ROS, bool IsForDebug = false) const;
1357 void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1358 bool IsForDebug = false) const;
1359 void dump() const;
1360
1361 // ---------------------------------------------------------------------------
1362 // Operand Iterator interface...
1363 //
1364 typedef op_iterator_impl<MDNode *, MDNode> op_iterator;
1365 op_iterator op_begin() { return op_iterator(this, 0); }
1366 op_iterator op_end() { return op_iterator(this, getNumOperands()); }
1367
1368 typedef op_iterator_impl<const MDNode *, MDNode> const_op_iterator;
1369 const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1370 const_op_iterator op_end() const { return const_op_iterator(this, getNumOperands()); }
1371
1372 inline iterator_range<op_iterator> operands() {
1373 return make_range(op_begin(), op_end());
1374 }
1375 inline iterator_range<const_op_iterator> operands() const {
1376 return make_range(op_begin(), op_end());
1377 }
1378 };
1379
1380 } // end namespace llvm
1381
1382 #endif // LLVM_IR_METADATA_H
1383