• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Unique element dataset transformations."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20from tensorflow.python.data.experimental.ops import unique as experimental_unique
21from tensorflow.python.util import deprecation
22
23
24@deprecation.deprecated(None, "Use `tf.data.experimental.unique()`.")
25def unique():
26  """Creates a `Dataset` from another `Dataset`, discarding duplicates.
27
28  Use this transformation to produce a dataset that contains one instance of
29  each unique element in the input. For example:
30
31  ```python
32  dataset = tf.data.Dataset.from_tensor_slices([1, 37, 2, 37, 2, 1])
33
34  # Using `unique()` will drop the duplicate elements.
35  dataset = dataset.apply(tf.contrib.data.unique())  # ==> { 1, 37, 2 }
36  ```
37
38  Returns:
39    A `Dataset` transformation function, which can be passed to
40    `tf.data.Dataset.apply`.
41  """
42  return experimental_unique.unique()
43