• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Labels for TensorFlow
2
3LabeledTensor is a library for adding semantically meaningful dimension and
4coordinate labels to tensors in Tensorflow.
5
6LabeledTensor was inspired by [xarray](http://xarray.pydata.org) and
7[pandas](http://pandas.pydata.org), projects that adds labels to NumPy array.
8
9## Data model
10
11`LabeledTensor` is an immutable object consisting of two components:
12
13- `tensor`: the `tf.Tensor` object containing the labeled tensor's data.
14- `axes`: an OrderedDict-like object with keys given by axis names (e.g.,
15  ``"channel"``) and values given by `Axis` objects.
16
17`Axis` objects keep track of the size of a dimension and, optionally, coordinate
18labels along that axis (e.g., `("red", "green", "blue")`) in the form of a
19tuple stored in `Axis.labels`.
20
21Operations on `LabeledTensors` use, preserve and transform axis names and
22labels.
23
24## Quick start
25
26Try out the following snippet in a script or Jupyter notebook:
27
28    import tensorflow as tf
29
30    lt = tf.contrib.labeled_tensor
31
32    # Create two LabeledTensors:
33    raw_image = tf.ones((299, 299, 3))
34    axes = ['row', 'column', ('channel', ['red', 'green', 'blue'])]
35    image = lt.LabeledTensor(raw_image, axes)
36    assert image.tensor is raw_image
37    weights = lt.LabeledTensor(tf.constant([0.1, 0.3, 0.6]),
38                               [image.axes['channel']])
39
40    # Examples of valid operations:
41    lt.transpose(image, ['column', 'row', 'channel'])
42    lt.reshape(image, ['row', 'column'], ['pixel'])
43    lt.concat([image, image], 'row')
44    lt.reduce_sum(image, ['channel'])
45    lt.select(image, {'channel': 'red'})
46    lt.cast(image / 256.0, tf.uint8)
47    image * weights
48    lt.matmul(image[0, :, :], weights)
49    tf.cos(image)  # automatically converts to tf.Tensor
50
51## Adding a custom op
52
53LabeledTensor has wrappers for [quite a
54few](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/labeled_tensor/__init__.py)
55TensorFlow ops.
56
57To easily add your own, you can use the `define_unary_op`, `define_binary_op`
58and `define_reduce_op` functions, e.g.,
59
60    log = lt.define_unary_op('log', tf.log)
61
62## Questions
63
64Please reach out to the authors:
65
66- Stephan Hoyer (shoyer@google.com, github.com/shoyer)
67- Eric Christiansen (ericmc@google.com, github.com/emchristiansen)
68