• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Tests for utilities working with arbitrarily nested structures."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21from tensorflow.python.data.util import random_seed as data_random_seed
22from tensorflow.python.eager import context
23from tensorflow.python.framework import constant_op
24from tensorflow.python.framework import dtypes
25from tensorflow.python.framework import ops
26from tensorflow.python.framework import random_seed
27from tensorflow.python.framework import test_util
28from tensorflow.python.platform import test
29
30
31class RandomSeedTest(test.TestCase):
32
33  @test_util.run_in_graph_and_eager_modes
34  def testRandomSeed(self):
35    zero_t = constant_op.constant(0, dtype=dtypes.int64, name='zero')
36    one_t = constant_op.constant(1, dtype=dtypes.int64, name='one')
37    intmax_t = constant_op.constant(
38        2**31 - 1, dtype=dtypes.int64, name='intmax')
39    test_cases = [
40        # Each test case is a tuple with input to get_seed:
41        # (input_graph_seed, input_op_seed)
42        # and output from get_seed:
43        # (output_graph_seed, output_op_seed)
44        ((None, None), (0, 0)),
45        ((None, 1), (random_seed.DEFAULT_GRAPH_SEED, 1)),
46        ((1, 1), (1, 1)),
47        ((0, 0), (0, 2**31 - 1)),  # Avoid nondeterministic (0, 0) output
48        ((2**31 - 1, 0), (0, 2**31 - 1)),  # Don't wrap to (0, 0) either
49        ((0, 2**31 - 1), (0, 2**31 - 1)),  # Wrapping for the other argument
50        # Once more, with tensor-valued arguments
51        ((None, one_t), (random_seed.DEFAULT_GRAPH_SEED, 1)),
52        ((1, one_t), (1, 1)),
53        ((0, zero_t), (0, 2**31 - 1)),  # Avoid nondeterministic (0, 0) output
54        ((2**31 - 1, zero_t), (0, 2**31 - 1)),  # Don't wrap to (0, 0) either
55        ((0, intmax_t), (0, 2**31 - 1)),  # Wrapping for the other argument
56    ]
57    for tc in test_cases:
58      tinput, toutput = tc[0], tc[1]
59      random_seed.set_random_seed(tinput[0])
60      g_seed, op_seed = data_random_seed.get_seed(tinput[1])
61      g_seed = self.evaluate(g_seed)
62      op_seed = self.evaluate(op_seed)
63      msg = 'test_case = {0}, got {1}, want {2}'.format(
64          tinput, (g_seed, op_seed), toutput)
65      self.assertEqual((g_seed, op_seed), toutput, msg=msg)
66      random_seed.set_random_seed(None)
67
68    if not context.executing_eagerly():
69      random_seed.set_random_seed(1)
70      tinput = (1, None)
71      toutput = (1, ops.get_default_graph()._last_id)  # pylint: disable=protected-access
72      random_seed.set_random_seed(tinput[0])
73      g_seed, op_seed = data_random_seed.get_seed(tinput[1])
74      g_seed = self.evaluate(g_seed)
75      op_seed = self.evaluate(op_seed)
76      msg = 'test_case = {0}, got {1}, want {2}'.format(1, (g_seed, op_seed),
77                                                        toutput)
78      self.assertEqual((g_seed, op_seed), toutput, msg=msg)
79      random_seed.set_random_seed(None)
80
81
82if __name__ == '__main__':
83  test.main()
84