• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2011
4  * eInfochips Ltd. <www.einfochips.com>
5  * Written-by: Ajay Bhargav <contact@8051projects.net>
6  *
7  * (C) Copyright 2010
8  * Marvell Semiconductor <www.marvell.com>
9  * Contributor: Mahavir Jain <mjain@marvell.com>
10  */
11 
12 #include <common.h>
13 #include <net.h>
14 #include <malloc.h>
15 #include <miiphy.h>
16 #include <netdev.h>
17 #include <asm/types.h>
18 #include <asm/byteorder.h>
19 #include <linux/err.h>
20 #include <linux/mii.h>
21 #include <asm/io.h>
22 #include <asm/arch/armada100.h>
23 #include "armada100_fec.h"
24 
25 #define  PHY_ADR_REQ     0xFF	/* Magic number to read/write PHY address */
26 
27 #ifdef DEBUG
eth_dump_regs(struct eth_device * dev)28 static int eth_dump_regs(struct eth_device *dev)
29 {
30 	struct armdfec_device *darmdfec = to_darmdfec(dev);
31 	struct armdfec_reg *regs = darmdfec->regs;
32 	unsigned int i = 0;
33 
34 	printf("\noffset: phy_adr, value: 0x%x\n", readl(&regs->phyadr));
35 	printf("offset: smi, value: 0x%x\n", readl(&regs->smi));
36 	for (i = 0x400; i <= 0x4e4; i += 4)
37 		printf("offset: 0x%x, value: 0x%x\n",
38 			i, readl(ARMD1_FEC_BASE + i));
39 	return 0;
40 }
41 #endif
42 
armdfec_phy_timeout(u32 * reg,u32 flag,int cond)43 static int armdfec_phy_timeout(u32 *reg, u32 flag, int cond)
44 {
45 	u32 timeout = PHY_WAIT_ITERATIONS;
46 	u32 reg_val;
47 
48 	while (--timeout) {
49 		reg_val = readl(reg);
50 		if (cond && (reg_val & flag))
51 			break;
52 		else if (!cond && !(reg_val & flag))
53 			break;
54 		udelay(PHY_WAIT_MICRO_SECONDS);
55 	}
56 	return !timeout;
57 }
58 
smi_reg_read(struct mii_dev * bus,int phy_addr,int devad,int phy_reg)59 static int smi_reg_read(struct mii_dev *bus, int phy_addr, int devad,
60 			int phy_reg)
61 {
62 	u16 value = 0;
63 	struct eth_device *dev = eth_get_dev_by_name(bus->name);
64 	struct armdfec_device *darmdfec = to_darmdfec(dev);
65 	struct armdfec_reg *regs = darmdfec->regs;
66 	u32 val;
67 
68 	if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) {
69 		val = readl(&regs->phyadr);
70 		value = val & 0x1f;
71 		return value;
72 	}
73 
74 	/* check parameters */
75 	if (phy_addr > PHY_MASK) {
76 		printf("ARMD100 FEC: (%s) Invalid phy address: 0x%X\n",
77 				__func__, phy_addr);
78 		return -EINVAL;
79 	}
80 	if (phy_reg > PHY_MASK) {
81 		printf("ARMD100 FEC: (%s) Invalid register offset: 0x%X\n",
82 				__func__, phy_reg);
83 		return -EINVAL;
84 	}
85 
86 	/* wait for the SMI register to become available */
87 	if (armdfec_phy_timeout(&regs->smi, SMI_BUSY, false)) {
88 		printf("ARMD100 FEC: (%s) PHY busy timeout\n",	__func__);
89 		return -1;
90 	}
91 
92 	writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_R, &regs->smi);
93 
94 	/* now wait for the data to be valid */
95 	if (armdfec_phy_timeout(&regs->smi, SMI_R_VALID, true)) {
96 		val = readl(&regs->smi);
97 		printf("ARMD100 FEC: (%s) PHY Read timeout, val=0x%x\n",
98 				__func__, val);
99 		return -1;
100 	}
101 	val = readl(&regs->smi);
102 	value = val & 0xffff;
103 
104 	return value;
105 }
106 
smi_reg_write(struct mii_dev * bus,int phy_addr,int devad,int phy_reg,u16 value)107 static int smi_reg_write(struct mii_dev *bus, int phy_addr, int devad,
108 			 int phy_reg, u16 value)
109 {
110 	struct eth_device *dev = eth_get_dev_by_name(bus->name);
111 	struct armdfec_device *darmdfec = to_darmdfec(dev);
112 	struct armdfec_reg *regs = darmdfec->regs;
113 
114 	if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) {
115 		clrsetbits_le32(&regs->phyadr, 0x1f, value & 0x1f);
116 		return 0;
117 	}
118 
119 	/* check parameters */
120 	if (phy_addr > PHY_MASK) {
121 		printf("ARMD100 FEC: (%s) Invalid phy address\n", __func__);
122 		return -EINVAL;
123 	}
124 	if (phy_reg > PHY_MASK) {
125 		printf("ARMD100 FEC: (%s) Invalid register offset\n", __func__);
126 		return -EINVAL;
127 	}
128 
129 	/* wait for the SMI register to become available */
130 	if (armdfec_phy_timeout(&regs->smi, SMI_BUSY, false)) {
131 		printf("ARMD100 FEC: (%s) PHY busy timeout\n",	__func__);
132 		return -1;
133 	}
134 
135 	writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_W | (value & 0xffff),
136 			&regs->smi);
137 	return 0;
138 }
139 
140 /*
141  * Abort any transmit and receive operations and put DMA
142  * in idle state. AT and AR bits are cleared upon entering
143  * in IDLE state. So poll those bits to verify operation.
144  */
abortdma(struct eth_device * dev)145 static void abortdma(struct eth_device *dev)
146 {
147 	struct armdfec_device *darmdfec = to_darmdfec(dev);
148 	struct armdfec_reg *regs = darmdfec->regs;
149 	int delay;
150 	int maxretries = 40;
151 	u32 tmp;
152 
153 	while (--maxretries) {
154 		writel(SDMA_CMD_AR | SDMA_CMD_AT, &regs->sdma_cmd);
155 		udelay(100);
156 
157 		delay = 10;
158 		while (--delay) {
159 			tmp = readl(&regs->sdma_cmd);
160 			if (!(tmp & (SDMA_CMD_AR | SDMA_CMD_AT)))
161 				break;
162 			udelay(10);
163 		}
164 		if (delay)
165 			break;
166 	}
167 
168 	if (!maxretries)
169 		printf("ARMD100 FEC: (%s) DMA Stuck\n", __func__);
170 }
171 
nibble_swapping_32_bit(u32 x)172 static inline u32 nibble_swapping_32_bit(u32 x)
173 {
174 	return ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4);
175 }
176 
nibble_swapping_16_bit(u32 x)177 static inline u32 nibble_swapping_16_bit(u32 x)
178 {
179 	return ((x & 0x0000f0f0) >> 4) | ((x & 0x00000f0f) << 4);
180 }
181 
flip_4_bits(u32 x)182 static inline u32 flip_4_bits(u32 x)
183 {
184 	return ((x & 0x01) << 3) | ((x & 0x002) << 1)
185 		| ((x & 0x04) >> 1) | ((x & 0x008) >> 3);
186 }
187 
188 /*
189  * This function will calculate the hash function of the address.
190  * depends on the hash mode and hash size.
191  * Inputs
192  * mach             - the 2 most significant bytes of the MAC address.
193  * macl             - the 4 least significant bytes of the MAC address.
194  * Outputs
195  * return the calculated entry.
196  */
hash_function(u32 mach,u32 macl)197 static u32 hash_function(u32 mach, u32 macl)
198 {
199 	u32 hashresult;
200 	u32 addrh;
201 	u32 addrl;
202 	u32 addr0;
203 	u32 addr1;
204 	u32 addr2;
205 	u32 addr3;
206 	u32 addrhswapped;
207 	u32 addrlswapped;
208 
209 	addrh = nibble_swapping_16_bit(mach);
210 	addrl = nibble_swapping_32_bit(macl);
211 
212 	addrhswapped = flip_4_bits(addrh & 0xf)
213 		+ ((flip_4_bits((addrh >> 4) & 0xf)) << 4)
214 		+ ((flip_4_bits((addrh >> 8) & 0xf)) << 8)
215 		+ ((flip_4_bits((addrh >> 12) & 0xf)) << 12);
216 
217 	addrlswapped = flip_4_bits(addrl & 0xf)
218 		+ ((flip_4_bits((addrl >> 4) & 0xf)) << 4)
219 		+ ((flip_4_bits((addrl >> 8) & 0xf)) << 8)
220 		+ ((flip_4_bits((addrl >> 12) & 0xf)) << 12)
221 		+ ((flip_4_bits((addrl >> 16) & 0xf)) << 16)
222 		+ ((flip_4_bits((addrl >> 20) & 0xf)) << 20)
223 		+ ((flip_4_bits((addrl >> 24) & 0xf)) << 24)
224 		+ ((flip_4_bits((addrl >> 28) & 0xf)) << 28);
225 
226 	addrh = addrhswapped;
227 	addrl = addrlswapped;
228 
229 	addr0 = (addrl >> 2) & 0x03f;
230 	addr1 = (addrl & 0x003) | (((addrl >> 8) & 0x7f) << 2);
231 	addr2 = (addrl >> 15) & 0x1ff;
232 	addr3 = ((addrl >> 24) & 0x0ff) | ((addrh & 1) << 8);
233 
234 	hashresult = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
235 	hashresult = hashresult & 0x07ff;
236 	return hashresult;
237 }
238 
239 /*
240  * This function will add an entry to the address table.
241  * depends on the hash mode and hash size that was initialized.
242  * Inputs
243  * mach - the 2 most significant bytes of the MAC address.
244  * macl - the 4 least significant bytes of the MAC address.
245  * skip - if 1, skip this address.
246  * rd   - the RD field in the address table.
247  * Outputs
248  * address table entry is added.
249  * 0 if success.
250  * -ENOSPC if table full
251  */
add_del_hash_entry(struct armdfec_device * darmdfec,u32 mach,u32 macl,u32 rd,u32 skip,int del)252 static int add_del_hash_entry(struct armdfec_device *darmdfec, u32 mach,
253 			      u32 macl, u32 rd, u32 skip, int del)
254 {
255 	struct addr_table_entry_t *entry, *start;
256 	u32 newhi;
257 	u32 newlo;
258 	u32 i;
259 
260 	newlo = (((mach >> 4) & 0xf) << 15)
261 		| (((mach >> 0) & 0xf) << 11)
262 		| (((mach >> 12) & 0xf) << 7)
263 		| (((mach >> 8) & 0xf) << 3)
264 		| (((macl >> 20) & 0x1) << 31)
265 		| (((macl >> 16) & 0xf) << 27)
266 		| (((macl >> 28) & 0xf) << 23)
267 		| (((macl >> 24) & 0xf) << 19)
268 		| (skip << HTESKIP) | (rd << HTERDBIT)
269 		| HTEVALID;
270 
271 	newhi = (((macl >> 4) & 0xf) << 15)
272 		| (((macl >> 0) & 0xf) << 11)
273 		| (((macl >> 12) & 0xf) << 7)
274 		| (((macl >> 8) & 0xf) << 3)
275 		| (((macl >> 21) & 0x7) << 0);
276 
277 	/*
278 	 * Pick the appropriate table, start scanning for free/reusable
279 	 * entries at the index obtained by hashing the specified MAC address
280 	 */
281 	start = (struct addr_table_entry_t *)(darmdfec->htpr);
282 	entry = start + hash_function(mach, macl);
283 	for (i = 0; i < HOP_NUMBER; i++) {
284 		if (!(entry->lo & HTEVALID)) {
285 			break;
286 		} else {
287 			/* if same address put in same position */
288 			if (((entry->lo & 0xfffffff8) == (newlo & 0xfffffff8))
289 					&& (entry->hi == newhi))
290 				break;
291 		}
292 		if (entry == start + 0x7ff)
293 			entry = start;
294 		else
295 			entry++;
296 	}
297 
298 	if (((entry->lo & 0xfffffff8) != (newlo & 0xfffffff8)) &&
299 		(entry->hi != newhi) && del)
300 		return 0;
301 
302 	if (i == HOP_NUMBER) {
303 		if (!del) {
304 			printf("ARMD100 FEC: (%s) table section is full\n",
305 					__func__);
306 			return -ENOSPC;
307 		} else {
308 			return 0;
309 		}
310 	}
311 
312 	/*
313 	 * Update the selected entry
314 	 */
315 	if (del) {
316 		entry->hi = 0;
317 		entry->lo = 0;
318 	} else {
319 		entry->hi = newhi;
320 		entry->lo = newlo;
321 	}
322 
323 	return 0;
324 }
325 
326 /*
327  *  Create an addressTable entry from MAC address info
328  *  found in the specifed net_device struct
329  *
330  *  Input : pointer to ethernet interface network device structure
331  *  Output : N/A
332  */
update_hash_table_mac_address(struct armdfec_device * darmdfec,u8 * oaddr,u8 * addr)333 static void update_hash_table_mac_address(struct armdfec_device *darmdfec,
334 					  u8 *oaddr, u8 *addr)
335 {
336 	u32 mach;
337 	u32 macl;
338 
339 	/* Delete old entry */
340 	if (oaddr) {
341 		mach = (oaddr[0] << 8) | oaddr[1];
342 		macl = (oaddr[2] << 24) | (oaddr[3] << 16) |
343 			(oaddr[4] << 8) | oaddr[5];
344 		add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_DELETE);
345 	}
346 
347 	/* Add new entry */
348 	mach = (addr[0] << 8) | addr[1];
349 	macl = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
350 	add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_ADD);
351 }
352 
353 /* Address Table Initialization */
init_hashtable(struct eth_device * dev)354 static void init_hashtable(struct eth_device *dev)
355 {
356 	struct armdfec_device *darmdfec = to_darmdfec(dev);
357 	struct armdfec_reg *regs = darmdfec->regs;
358 	memset(darmdfec->htpr, 0, HASH_ADDR_TABLE_SIZE);
359 	writel((u32)darmdfec->htpr, &regs->htpr);
360 }
361 
362 /*
363  * This detects PHY chip from address 0-31 by reading PHY status
364  * registers. PHY chip can be connected at any of this address.
365  */
ethernet_phy_detect(struct eth_device * dev)366 static int ethernet_phy_detect(struct eth_device *dev)
367 {
368 	u32 val;
369 	u16 tmp, mii_status;
370 	u8 addr;
371 
372 	for (addr = 0; addr < 32; addr++) {
373 		if (miiphy_read(dev->name, addr, MII_BMSR, &mii_status)	!= 0)
374 			/* try next phy */
375 			continue;
376 
377 		/* invalid MII status. More validation required here... */
378 		if (mii_status == 0 || mii_status == 0xffff)
379 			/* try next phy */
380 			continue;
381 
382 		if (miiphy_read(dev->name, addr, MII_PHYSID1, &tmp) != 0)
383 			/* try next phy */
384 			continue;
385 
386 		val = tmp << 16;
387 		if (miiphy_read(dev->name, addr, MII_PHYSID2, &tmp) != 0)
388 			/* try next phy */
389 			continue;
390 
391 		val |= tmp;
392 
393 		if ((val & 0xfffffff0) != 0)
394 			return addr;
395 	}
396 	return -1;
397 }
398 
armdfec_init_rx_desc_ring(struct armdfec_device * darmdfec)399 static void armdfec_init_rx_desc_ring(struct armdfec_device *darmdfec)
400 {
401 	struct rx_desc *p_rx_desc;
402 	int i;
403 
404 	/* initialize the Rx descriptors ring */
405 	p_rx_desc = darmdfec->p_rxdesc;
406 	for (i = 0; i < RINGSZ; i++) {
407 		p_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
408 		p_rx_desc->buf_size = PKTSIZE_ALIGN;
409 		p_rx_desc->byte_cnt = 0;
410 		p_rx_desc->buf_ptr = darmdfec->p_rxbuf + i * PKTSIZE_ALIGN;
411 		if (i == (RINGSZ - 1)) {
412 			p_rx_desc->nxtdesc_p = darmdfec->p_rxdesc;
413 		} else {
414 			p_rx_desc->nxtdesc_p = (struct rx_desc *)
415 			    ((u32)p_rx_desc + ARMDFEC_RXQ_DESC_ALIGNED_SIZE);
416 			p_rx_desc = p_rx_desc->nxtdesc_p;
417 		}
418 	}
419 	darmdfec->p_rxdesc_curr = darmdfec->p_rxdesc;
420 }
421 
armdfec_init(struct eth_device * dev,bd_t * bd)422 static int armdfec_init(struct eth_device *dev, bd_t *bd)
423 {
424 	struct armdfec_device *darmdfec = to_darmdfec(dev);
425 	struct armdfec_reg *regs = darmdfec->regs;
426 	int phy_adr;
427 	u32 temp;
428 
429 	armdfec_init_rx_desc_ring(darmdfec);
430 
431 	/* Disable interrupts */
432 	writel(0, &regs->im);
433 	writel(0, &regs->ic);
434 	/* Write to ICR to clear interrupts. */
435 	writel(0, &regs->iwc);
436 
437 	/*
438 	 * Abort any transmit and receive operations and put DMA
439 	 * in idle state.
440 	 */
441 	abortdma(dev);
442 
443 	/* Initialize address hash table */
444 	init_hashtable(dev);
445 
446 	/* SDMA configuration */
447 	writel(SDCR_BSZ8 |	/* Burst size = 32 bytes */
448 		SDCR_RIFB |	/* Rx interrupt on frame */
449 		SDCR_BLMT |	/* Little endian transmit */
450 		SDCR_BLMR |	/* Little endian receive */
451 		SDCR_RC_MAX_RETRANS,	/* Max retransmit count */
452 		&regs->sdma_conf);
453 	/* Port Configuration */
454 	writel(PCR_HS, &regs->pconf);	/* Hash size is 1/2kb */
455 
456 	/* Set extended port configuration */
457 	writel(PCXR_2BSM |		/* Two byte suffix aligns IP hdr */
458 		PCXR_DSCP_EN |		/* Enable DSCP in IP */
459 		PCXR_MFL_1536 |		/* Set MTU = 1536 */
460 		PCXR_FLP |		/* do not force link pass */
461 		PCXR_TX_HIGH_PRI,	/* Transmit - high priority queue */
462 		&regs->pconf_ext);
463 
464 	update_hash_table_mac_address(darmdfec, NULL, dev->enetaddr);
465 
466 	/* Update TX and RX queue descriptor register */
467 	temp = (u32)&regs->txcdp[TXQ];
468 	writel((u32)darmdfec->p_txdesc, temp);
469 	temp = (u32)&regs->rxfdp[RXQ];
470 	writel((u32)darmdfec->p_rxdesc, temp);
471 	temp = (u32)&regs->rxcdp[RXQ];
472 	writel((u32)darmdfec->p_rxdesc_curr, temp);
473 
474 	/* Enable Interrupts */
475 	writel(ALL_INTS, &regs->im);
476 
477 	/* Enable Ethernet Port */
478 	setbits_le32(&regs->pconf, PCR_EN);
479 
480 	/* Enable RX DMA engine */
481 	setbits_le32(&regs->sdma_cmd, SDMA_CMD_ERD);
482 
483 #ifdef DEBUG
484 	eth_dump_regs(dev);
485 #endif
486 
487 #if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII))
488 
489 #if defined(CONFIG_PHY_BASE_ADR)
490 	miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, CONFIG_PHY_BASE_ADR);
491 #else
492 	/* Search phy address from range 0-31 */
493 	phy_adr = ethernet_phy_detect(dev);
494 	if (phy_adr < 0) {
495 		printf("ARMD100 FEC: PHY not detected at address range 0-31\n");
496 		return -1;
497 	} else {
498 		debug("ARMD100 FEC: PHY detected at addr %d\n", phy_adr);
499 		miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, phy_adr);
500 	}
501 #endif
502 
503 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)
504 	/* Wait up to 5s for the link status */
505 	for (i = 0; i < 5; i++) {
506 		u16 phy_adr;
507 
508 		miiphy_read(dev->name, 0xFF, 0xFF, &phy_adr);
509 		/* Return if we get link up */
510 		if (miiphy_link(dev->name, phy_adr))
511 			return 0;
512 		udelay(1000000);
513 	}
514 
515 	printf("ARMD100 FEC: No link on %s\n", dev->name);
516 	return -1;
517 #endif
518 #endif
519 	return 0;
520 }
521 
armdfec_halt(struct eth_device * dev)522 static void armdfec_halt(struct eth_device *dev)
523 {
524 	struct armdfec_device *darmdfec = to_darmdfec(dev);
525 	struct armdfec_reg *regs = darmdfec->regs;
526 
527 	/* Stop RX DMA */
528 	clrbits_le32(&regs->sdma_cmd, SDMA_CMD_ERD);
529 
530 	/*
531 	 * Abort any transmit and receive operations and put DMA
532 	 * in idle state.
533 	 */
534 	abortdma(dev);
535 
536 	/* Disable interrupts */
537 	writel(0, &regs->im);
538 	writel(0, &regs->ic);
539 	writel(0, &regs->iwc);
540 
541 	/* Disable Port */
542 	clrbits_le32(&regs->pconf, PCR_EN);
543 }
544 
armdfec_send(struct eth_device * dev,void * dataptr,int datasize)545 static int armdfec_send(struct eth_device *dev, void *dataptr, int datasize)
546 {
547 	struct armdfec_device *darmdfec = to_darmdfec(dev);
548 	struct armdfec_reg *regs = darmdfec->regs;
549 	struct tx_desc *p_txdesc = darmdfec->p_txdesc;
550 	void *p = (void *)dataptr;
551 	int retry = PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS;
552 	u32 cmd_sts, temp;
553 
554 	/* Copy buffer if it's misaligned */
555 	if ((u32)dataptr & 0x07) {
556 		if (datasize > PKTSIZE_ALIGN) {
557 			printf("ARMD100 FEC: Non-aligned data too large (%d)\n",
558 					datasize);
559 			return -1;
560 		}
561 		memcpy(darmdfec->p_aligned_txbuf, p, datasize);
562 		p = darmdfec->p_aligned_txbuf;
563 	}
564 
565 	p_txdesc->cmd_sts = TX_ZERO_PADDING | TX_GEN_CRC;
566 	p_txdesc->cmd_sts |= TX_FIRST_DESC | TX_LAST_DESC;
567 	p_txdesc->cmd_sts |= BUF_OWNED_BY_DMA;
568 	p_txdesc->cmd_sts |= TX_EN_INT;
569 	p_txdesc->buf_ptr = p;
570 	p_txdesc->byte_cnt = datasize;
571 
572 	/* Apply send command using high priority TX queue */
573 	temp = (u32)&regs->txcdp[TXQ];
574 	writel((u32)p_txdesc, temp);
575 	writel(SDMA_CMD_TXDL | SDMA_CMD_TXDH | SDMA_CMD_ERD, &regs->sdma_cmd);
576 
577 	/*
578 	 * wait for packet xmit completion
579 	 */
580 	cmd_sts = readl(&p_txdesc->cmd_sts);
581 	while (cmd_sts & BUF_OWNED_BY_DMA) {
582 		/* return fail if error is detected */
583 		if ((cmd_sts & (TX_ERROR | TX_LAST_DESC)) ==
584 			(TX_ERROR | TX_LAST_DESC)) {
585 			printf("ARMD100 FEC: (%s) in xmit packet\n", __func__);
586 			return -1;
587 		}
588 		cmd_sts = readl(&p_txdesc->cmd_sts);
589 		if (!(retry--)) {
590 			printf("ARMD100 FEC: (%s) xmit packet timeout!\n",
591 					__func__);
592 			return -1;
593 		}
594 	}
595 
596 	return 0;
597 }
598 
armdfec_recv(struct eth_device * dev)599 static int armdfec_recv(struct eth_device *dev)
600 {
601 	struct armdfec_device *darmdfec = to_darmdfec(dev);
602 	struct rx_desc *p_rxdesc_curr = darmdfec->p_rxdesc_curr;
603 	u32 cmd_sts;
604 	u32 timeout = 0;
605 	u32 temp;
606 
607 	/* wait untill rx packet available or timeout */
608 	do {
609 		if (timeout < PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS) {
610 			timeout++;
611 		} else {
612 			debug("ARMD100 FEC: %s time out...\n", __func__);
613 			return -1;
614 		}
615 	} while (readl(&p_rxdesc_curr->cmd_sts) & BUF_OWNED_BY_DMA);
616 
617 	if (p_rxdesc_curr->byte_cnt != 0) {
618 		debug("ARMD100 FEC: %s: Received %d byte Packet @ 0x%x"
619 				"(cmd_sts= %08x)\n", __func__,
620 				(u32)p_rxdesc_curr->byte_cnt,
621 				(u32)p_rxdesc_curr->buf_ptr,
622 				(u32)p_rxdesc_curr->cmd_sts);
623 	}
624 
625 	/*
626 	 * In case received a packet without first/last bits on
627 	 * OR the error summary bit is on,
628 	 * the packets needs to be dropeed.
629 	 */
630 	cmd_sts = readl(&p_rxdesc_curr->cmd_sts);
631 
632 	if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
633 			(RX_FIRST_DESC | RX_LAST_DESC)) {
634 		printf("ARMD100 FEC: (%s) Dropping packet spread on"
635 			" multiple descriptors\n", __func__);
636 	} else if (cmd_sts & RX_ERROR) {
637 		printf("ARMD100 FEC: (%s) Dropping packet with errors\n",
638 				__func__);
639 	} else {
640 		/* !!! call higher layer processing */
641 		debug("ARMD100 FEC: (%s) Sending Received packet to"
642 		      " upper layer (net_process_received_packet)\n", __func__);
643 
644 		/*
645 		 * let the upper layer handle the packet, subtract offset
646 		 * as two dummy bytes are added in received buffer see
647 		 * PORT_CONFIG_EXT register bit TWO_Byte_Stuff_Mode bit.
648 		 */
649 		net_process_received_packet(
650 			p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET,
651 			(int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET));
652 	}
653 	/*
654 	 * free these descriptors and point next in the ring
655 	 */
656 	p_rxdesc_curr->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
657 	p_rxdesc_curr->buf_size = PKTSIZE_ALIGN;
658 	p_rxdesc_curr->byte_cnt = 0;
659 
660 	temp = (u32)&darmdfec->p_rxdesc_curr;
661 	writel((u32)p_rxdesc_curr->nxtdesc_p, temp);
662 
663 	return 0;
664 }
665 
armada100_fec_register(unsigned long base_addr)666 int armada100_fec_register(unsigned long base_addr)
667 {
668 	struct armdfec_device *darmdfec;
669 	struct eth_device *dev;
670 
671 	darmdfec = malloc(sizeof(struct armdfec_device));
672 	if (!darmdfec)
673 		goto error;
674 
675 	memset(darmdfec, 0, sizeof(struct armdfec_device));
676 
677 	darmdfec->htpr = memalign(8, HASH_ADDR_TABLE_SIZE);
678 	if (!darmdfec->htpr)
679 		goto error1;
680 
681 	darmdfec->p_rxdesc = memalign(PKTALIGN,
682 			ARMDFEC_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1);
683 
684 	if (!darmdfec->p_rxdesc)
685 		goto error1;
686 
687 	darmdfec->p_rxbuf = memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1);
688 	if (!darmdfec->p_rxbuf)
689 		goto error1;
690 
691 	darmdfec->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN);
692 	if (!darmdfec->p_aligned_txbuf)
693 		goto error1;
694 
695 	darmdfec->p_txdesc = memalign(PKTALIGN, sizeof(struct tx_desc) + 1);
696 	if (!darmdfec->p_txdesc)
697 		goto error1;
698 
699 	dev = &darmdfec->dev;
700 	/* Assign ARMADA100 Fast Ethernet Controller Base Address */
701 	darmdfec->regs = (void *)base_addr;
702 
703 	/* must be less than sizeof(dev->name) */
704 	strcpy(dev->name, "armd-fec0");
705 
706 	dev->init = armdfec_init;
707 	dev->halt = armdfec_halt;
708 	dev->send = armdfec_send;
709 	dev->recv = armdfec_recv;
710 
711 	eth_register(dev);
712 
713 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
714 	int retval;
715 	struct mii_dev *mdiodev = mdio_alloc();
716 	if (!mdiodev)
717 		return -ENOMEM;
718 	strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
719 	mdiodev->read = smi_reg_read;
720 	mdiodev->write = smi_reg_write;
721 
722 	retval = mdio_register(mdiodev);
723 	if (retval < 0)
724 		return retval;
725 #endif
726 	return 0;
727 
728 error1:
729 	free(darmdfec->p_aligned_txbuf);
730 	free(darmdfec->p_rxbuf);
731 	free(darmdfec->p_rxdesc);
732 	free(darmdfec->htpr);
733 error:
734 	free(darmdfec);
735 	printf("AMD100 FEC: (%s) Failed to allocate memory\n", __func__);
736 	return -1;
737 }
738