1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2002
4 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
5 */
6
7 #include <common.h>
8 #include <malloc.h>
9 #include <net.h>
10 #include <netdev.h>
11 #include <asm/io.h>
12 #include <pci.h>
13 #include <miiphy.h>
14
15 #undef DEBUG
16
17 /* Ethernet chip registers.
18 */
19 #define SCBStatus 0 /* Rx/Command Unit Status *Word* */
20 #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
21 #define SCBCmd 2 /* Rx/Command Unit Command *Word* */
22 #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
23 #define SCBPointer 4 /* General purpose pointer. */
24 #define SCBPort 8 /* Misc. commands and operands. */
25 #define SCBflash 12 /* Flash memory control. */
26 #define SCBeeprom 14 /* EEPROM memory control. */
27 #define SCBCtrlMDI 16 /* MDI interface control. */
28 #define SCBEarlyRx 20 /* Early receive byte count. */
29 #define SCBGenControl 28 /* 82559 General Control Register */
30 #define SCBGenStatus 29 /* 82559 General Status register */
31
32 /* 82559 SCB status word defnitions
33 */
34 #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
35 #define SCB_STATUS_FR 0x4000 /* frame received */
36 #define SCB_STATUS_CNA 0x2000 /* CU left active state */
37 #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
38 #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
39 #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
40 #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
41
42 #define SCB_INTACK_MASK 0xFD00 /* all the above */
43
44 #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
45 #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
46
47 /* System control block commands
48 */
49 /* CU Commands */
50 #define CU_NOP 0x0000
51 #define CU_START 0x0010
52 #define CU_RESUME 0x0020
53 #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
54 #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
55 #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
56 #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
57
58 /* RUC Commands */
59 #define RUC_NOP 0x0000
60 #define RUC_START 0x0001
61 #define RUC_RESUME 0x0002
62 #define RUC_ABORT 0x0004
63 #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
64 #define RUC_RESUMENR 0x0007
65
66 #define CU_CMD_MASK 0x00f0
67 #define RU_CMD_MASK 0x0007
68
69 #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
70 #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
71
72 #define CU_STATUS_MASK 0x00C0
73 #define RU_STATUS_MASK 0x003C
74
75 #define RU_STATUS_IDLE (0<<2)
76 #define RU_STATUS_SUS (1<<2)
77 #define RU_STATUS_NORES (2<<2)
78 #define RU_STATUS_READY (4<<2)
79 #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
80 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
81 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
82
83 /* 82559 Port interface commands.
84 */
85 #define I82559_RESET 0x00000000 /* Software reset */
86 #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
87 #define I82559_SELECTIVE_RESET 0x00000002
88 #define I82559_DUMP 0x00000003
89 #define I82559_DUMP_WAKEUP 0x00000007
90
91 /* 82559 Eeprom interface.
92 */
93 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
94 #define EE_CS 0x02 /* EEPROM chip select. */
95 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
96 #define EE_WRITE_0 0x01
97 #define EE_WRITE_1 0x05
98 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
99 #define EE_ENB (0x4800 | EE_CS)
100 #define EE_CMD_BITS 3
101 #define EE_DATA_BITS 16
102
103 /* The EEPROM commands include the alway-set leading bit.
104 */
105 #define EE_EWENB_CMD (4 << addr_len)
106 #define EE_WRITE_CMD (5 << addr_len)
107 #define EE_READ_CMD (6 << addr_len)
108 #define EE_ERASE_CMD (7 << addr_len)
109
110 /* Receive frame descriptors.
111 */
112 struct RxFD {
113 volatile u16 status;
114 volatile u16 control;
115 volatile u32 link; /* struct RxFD * */
116 volatile u32 rx_buf_addr; /* void * */
117 volatile u32 count;
118
119 volatile u8 data[PKTSIZE_ALIGN];
120 };
121
122 #define RFD_STATUS_C 0x8000 /* completion of received frame */
123 #define RFD_STATUS_OK 0x2000 /* frame received with no errors */
124
125 #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
126 #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
127 #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
128 #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
129
130 #define RFD_COUNT_MASK 0x3fff
131 #define RFD_COUNT_F 0x4000
132 #define RFD_COUNT_EOF 0x8000
133
134 #define RFD_RX_CRC 0x0800 /* crc error */
135 #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
136 #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
137 #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
138 #define RFD_RX_SHORT 0x0080 /* short frame error */
139 #define RFD_RX_LENGTH 0x0020
140 #define RFD_RX_ERROR 0x0010 /* receive error */
141 #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
142 #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
143 #define RFD_RX_TCO 0x0001 /* TCO indication */
144
145 /* Transmit frame descriptors
146 */
147 struct TxFD { /* Transmit frame descriptor set. */
148 volatile u16 status;
149 volatile u16 command;
150 volatile u32 link; /* void * */
151 volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
152 volatile s32 count;
153
154 volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
155 volatile s32 tx_buf_size0; /* Length of Tx frame. */
156 volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
157 volatile s32 tx_buf_size1; /* Length of Tx frame. */
158 };
159
160 #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
161 #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
162 #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
163 #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
164 #define TxCB_CMD_S 0x4000 /* suspend on completion */
165 #define TxCB_CMD_EL 0x8000 /* last command block in CBL */
166
167 #define TxCB_COUNT_MASK 0x3fff
168 #define TxCB_COUNT_EOF 0x8000
169
170 /* The Speedo3 Rx and Tx frame/buffer descriptors.
171 */
172 struct descriptor { /* A generic descriptor. */
173 volatile u16 status;
174 volatile u16 command;
175 volatile u32 link; /* struct descriptor * */
176
177 unsigned char params[0];
178 };
179
180 #define CONFIG_SYS_CMD_EL 0x8000
181 #define CONFIG_SYS_CMD_SUSPEND 0x4000
182 #define CONFIG_SYS_CMD_INT 0x2000
183 #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */
184 #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */
185
186 #define CONFIG_SYS_STATUS_C 0x8000
187 #define CONFIG_SYS_STATUS_OK 0x2000
188
189 /* Misc.
190 */
191 #define NUM_RX_DESC PKTBUFSRX
192 #define NUM_TX_DESC 1 /* Number of TX descriptors */
193
194 #define TOUT_LOOP 1000000
195
196 #define ETH_ALEN 6
197
198 static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
199 static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
200 static int rx_next; /* RX descriptor ring pointer */
201 static int tx_next; /* TX descriptor ring pointer */
202 static int tx_threshold;
203
204 /*
205 * The parameters for a CmdConfigure operation.
206 * There are so many options that it would be difficult to document
207 * each bit. We mostly use the default or recommended settings.
208 */
209 static const char i82558_config_cmd[] = {
210 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
211 0, 0x2E, 0, 0x60, 0x08, 0x88,
212 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
213 0x31, 0x05,
214 };
215
216 static void init_rx_ring (struct eth_device *dev);
217 static void purge_tx_ring (struct eth_device *dev);
218
219 static void read_hw_addr (struct eth_device *dev, bd_t * bis);
220
221 static int eepro100_init (struct eth_device *dev, bd_t * bis);
222 static int eepro100_send(struct eth_device *dev, void *packet, int length);
223 static int eepro100_recv (struct eth_device *dev);
224 static void eepro100_halt (struct eth_device *dev);
225
226 #if defined(CONFIG_E500)
227 #define bus_to_phys(a) (a)
228 #define phys_to_bus(a) (a)
229 #else
230 #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
231 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
232 #endif
233
INW(struct eth_device * dev,u_long addr)234 static inline int INW (struct eth_device *dev, u_long addr)
235 {
236 return le16_to_cpu(*(volatile u16 *)(addr + (u_long)dev->iobase));
237 }
238
OUTW(struct eth_device * dev,int command,u_long addr)239 static inline void OUTW (struct eth_device *dev, int command, u_long addr)
240 {
241 *(volatile u16 *)((addr + (u_long)dev->iobase)) = cpu_to_le16(command);
242 }
243
OUTL(struct eth_device * dev,int command,u_long addr)244 static inline void OUTL (struct eth_device *dev, int command, u_long addr)
245 {
246 *(volatile u32 *)((addr + (u_long)dev->iobase)) = cpu_to_le32(command);
247 }
248
249 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
INL(struct eth_device * dev,u_long addr)250 static inline int INL (struct eth_device *dev, u_long addr)
251 {
252 return le32_to_cpu(*(volatile u32 *)(addr + (u_long)dev->iobase));
253 }
254
get_phyreg(struct eth_device * dev,unsigned char addr,unsigned char reg,unsigned short * value)255 static int get_phyreg (struct eth_device *dev, unsigned char addr,
256 unsigned char reg, unsigned short *value)
257 {
258 int cmd;
259 int timeout = 50;
260
261 /* read requested data */
262 cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
263 OUTL (dev, cmd, SCBCtrlMDI);
264
265 do {
266 udelay(1000);
267 cmd = INL (dev, SCBCtrlMDI);
268 } while (!(cmd & (1 << 28)) && (--timeout));
269
270 if (timeout == 0)
271 return -1;
272
273 *value = (unsigned short) (cmd & 0xffff);
274
275 return 0;
276 }
277
set_phyreg(struct eth_device * dev,unsigned char addr,unsigned char reg,unsigned short value)278 static int set_phyreg (struct eth_device *dev, unsigned char addr,
279 unsigned char reg, unsigned short value)
280 {
281 int cmd;
282 int timeout = 50;
283
284 /* write requested data */
285 cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
286 OUTL (dev, cmd | value, SCBCtrlMDI);
287
288 while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
289 udelay(1000);
290
291 if (timeout == 0)
292 return -1;
293
294 return 0;
295 }
296
297 /* Check if given phyaddr is valid, i.e. there is a PHY connected.
298 * Do this by checking model value field from ID2 register.
299 */
verify_phyaddr(const char * devname,unsigned char addr)300 static struct eth_device* verify_phyaddr (const char *devname,
301 unsigned char addr)
302 {
303 struct eth_device *dev;
304 unsigned short value;
305 unsigned char model;
306
307 dev = eth_get_dev_by_name(devname);
308 if (dev == NULL) {
309 printf("%s: no such device\n", devname);
310 return NULL;
311 }
312
313 /* read id2 register */
314 if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) {
315 printf("%s: mii read timeout!\n", devname);
316 return NULL;
317 }
318
319 /* get model */
320 model = (unsigned char)((value >> 4) & 0x003f);
321
322 if (model == 0) {
323 printf("%s: no PHY at address %d\n", devname, addr);
324 return NULL;
325 }
326
327 return dev;
328 }
329
eepro100_miiphy_read(struct mii_dev * bus,int addr,int devad,int reg)330 static int eepro100_miiphy_read(struct mii_dev *bus, int addr, int devad,
331 int reg)
332 {
333 unsigned short value = 0;
334 struct eth_device *dev;
335
336 dev = verify_phyaddr(bus->name, addr);
337 if (dev == NULL)
338 return -1;
339
340 if (get_phyreg(dev, addr, reg, &value) != 0) {
341 printf("%s: mii read timeout!\n", bus->name);
342 return -1;
343 }
344
345 return value;
346 }
347
eepro100_miiphy_write(struct mii_dev * bus,int addr,int devad,int reg,u16 value)348 static int eepro100_miiphy_write(struct mii_dev *bus, int addr, int devad,
349 int reg, u16 value)
350 {
351 struct eth_device *dev;
352
353 dev = verify_phyaddr(bus->name, addr);
354 if (dev == NULL)
355 return -1;
356
357 if (set_phyreg(dev, addr, reg, value) != 0) {
358 printf("%s: mii write timeout!\n", bus->name);
359 return -1;
360 }
361
362 return 0;
363 }
364
365 #endif
366
367 /* Wait for the chip get the command.
368 */
wait_for_eepro100(struct eth_device * dev)369 static int wait_for_eepro100 (struct eth_device *dev)
370 {
371 int i;
372
373 for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
374 if (i >= TOUT_LOOP) {
375 return 0;
376 }
377 }
378
379 return 1;
380 }
381
382 static struct pci_device_id supported[] = {
383 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
384 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
385 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
386 {}
387 };
388
eepro100_initialize(bd_t * bis)389 int eepro100_initialize (bd_t * bis)
390 {
391 pci_dev_t devno;
392 int card_number = 0;
393 struct eth_device *dev;
394 u32 iobase, status;
395 int idx = 0;
396
397 while (1) {
398 /* Find PCI device
399 */
400 if ((devno = pci_find_devices (supported, idx++)) < 0) {
401 break;
402 }
403
404 pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
405 iobase &= ~0xf;
406
407 #ifdef DEBUG
408 printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
409 iobase);
410 #endif
411
412 pci_write_config_dword (devno,
413 PCI_COMMAND,
414 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
415
416 /* Check if I/O accesses and Bus Mastering are enabled.
417 */
418 pci_read_config_dword (devno, PCI_COMMAND, &status);
419 if (!(status & PCI_COMMAND_MEMORY)) {
420 printf ("Error: Can not enable MEM access.\n");
421 continue;
422 }
423
424 if (!(status & PCI_COMMAND_MASTER)) {
425 printf ("Error: Can not enable Bus Mastering.\n");
426 continue;
427 }
428
429 dev = (struct eth_device *) malloc (sizeof *dev);
430 if (!dev) {
431 printf("eepro100: Can not allocate memory\n");
432 break;
433 }
434 memset(dev, 0, sizeof(*dev));
435
436 sprintf (dev->name, "i82559#%d", card_number);
437 dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
438 dev->iobase = bus_to_phys (iobase);
439 dev->init = eepro100_init;
440 dev->halt = eepro100_halt;
441 dev->send = eepro100_send;
442 dev->recv = eepro100_recv;
443
444 eth_register (dev);
445
446 #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
447 /* register mii command access routines */
448 int retval;
449 struct mii_dev *mdiodev = mdio_alloc();
450 if (!mdiodev)
451 return -ENOMEM;
452 strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
453 mdiodev->read = eepro100_miiphy_read;
454 mdiodev->write = eepro100_miiphy_write;
455
456 retval = mdio_register(mdiodev);
457 if (retval < 0)
458 return retval;
459 #endif
460
461 card_number++;
462
463 /* Set the latency timer for value.
464 */
465 pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
466
467 udelay (10 * 1000);
468
469 read_hw_addr (dev, bis);
470 }
471
472 return card_number;
473 }
474
475
eepro100_init(struct eth_device * dev,bd_t * bis)476 static int eepro100_init (struct eth_device *dev, bd_t * bis)
477 {
478 int i, status = -1;
479 int tx_cur;
480 struct descriptor *ias_cmd, *cfg_cmd;
481
482 /* Reset the ethernet controller
483 */
484 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
485 udelay (20);
486
487 OUTL (dev, I82559_RESET, SCBPort);
488 udelay (20);
489
490 if (!wait_for_eepro100 (dev)) {
491 printf ("Error: Can not reset ethernet controller.\n");
492 goto Done;
493 }
494 OUTL (dev, 0, SCBPointer);
495 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
496
497 if (!wait_for_eepro100 (dev)) {
498 printf ("Error: Can not reset ethernet controller.\n");
499 goto Done;
500 }
501 OUTL (dev, 0, SCBPointer);
502 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
503
504 /* Initialize Rx and Tx rings.
505 */
506 init_rx_ring (dev);
507 purge_tx_ring (dev);
508
509 /* Tell the adapter where the RX ring is located.
510 */
511 if (!wait_for_eepro100 (dev)) {
512 printf ("Error: Can not reset ethernet controller.\n");
513 goto Done;
514 }
515
516 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
517 OUTW (dev, SCB_M | RUC_START, SCBCmd);
518
519 /* Send the Configure frame */
520 tx_cur = tx_next;
521 tx_next = ((tx_next + 1) % NUM_TX_DESC);
522
523 cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
524 cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
525 cfg_cmd->status = 0;
526 cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
527
528 memcpy (cfg_cmd->params, i82558_config_cmd,
529 sizeof (i82558_config_cmd));
530
531 if (!wait_for_eepro100 (dev)) {
532 printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
533 goto Done;
534 }
535
536 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
537 OUTW (dev, SCB_M | CU_START, SCBCmd);
538
539 for (i = 0;
540 !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
541 i++) {
542 if (i >= TOUT_LOOP) {
543 printf ("%s: Tx error buffer not ready\n", dev->name);
544 goto Done;
545 }
546 }
547
548 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
549 printf ("TX error status = 0x%08X\n",
550 le16_to_cpu (tx_ring[tx_cur].status));
551 goto Done;
552 }
553
554 /* Send the Individual Address Setup frame
555 */
556 tx_cur = tx_next;
557 tx_next = ((tx_next + 1) % NUM_TX_DESC);
558
559 ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
560 ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
561 ias_cmd->status = 0;
562 ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
563
564 memcpy (ias_cmd->params, dev->enetaddr, 6);
565
566 /* Tell the adapter where the TX ring is located.
567 */
568 if (!wait_for_eepro100 (dev)) {
569 printf ("Error: Can not reset ethernet controller.\n");
570 goto Done;
571 }
572
573 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
574 OUTW (dev, SCB_M | CU_START, SCBCmd);
575
576 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
577 i++) {
578 if (i >= TOUT_LOOP) {
579 printf ("%s: Tx error buffer not ready\n",
580 dev->name);
581 goto Done;
582 }
583 }
584
585 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
586 printf ("TX error status = 0x%08X\n",
587 le16_to_cpu (tx_ring[tx_cur].status));
588 goto Done;
589 }
590
591 status = 0;
592
593 Done:
594 return status;
595 }
596
eepro100_send(struct eth_device * dev,void * packet,int length)597 static int eepro100_send(struct eth_device *dev, void *packet, int length)
598 {
599 int i, status = -1;
600 int tx_cur;
601
602 if (length <= 0) {
603 printf ("%s: bad packet size: %d\n", dev->name, length);
604 goto Done;
605 }
606
607 tx_cur = tx_next;
608 tx_next = (tx_next + 1) % NUM_TX_DESC;
609
610 tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
611 TxCB_CMD_SF |
612 TxCB_CMD_S |
613 TxCB_CMD_EL );
614 tx_ring[tx_cur].status = 0;
615 tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
616 tx_ring[tx_cur].link =
617 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
618 tx_ring[tx_cur].tx_desc_addr =
619 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
620 tx_ring[tx_cur].tx_buf_addr0 =
621 cpu_to_le32 (phys_to_bus ((u_long) packet));
622 tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
623
624 if (!wait_for_eepro100 (dev)) {
625 printf ("%s: Tx error ethernet controller not ready.\n",
626 dev->name);
627 goto Done;
628 }
629
630 /* Send the packet.
631 */
632 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
633 OUTW (dev, SCB_M | CU_START, SCBCmd);
634
635 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
636 i++) {
637 if (i >= TOUT_LOOP) {
638 printf ("%s: Tx error buffer not ready\n", dev->name);
639 goto Done;
640 }
641 }
642
643 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
644 printf ("TX error status = 0x%08X\n",
645 le16_to_cpu (tx_ring[tx_cur].status));
646 goto Done;
647 }
648
649 status = length;
650
651 Done:
652 return status;
653 }
654
eepro100_recv(struct eth_device * dev)655 static int eepro100_recv (struct eth_device *dev)
656 {
657 u16 status, stat;
658 int rx_prev, length = 0;
659
660 stat = INW (dev, SCBStatus);
661 OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
662
663 for (;;) {
664 status = le16_to_cpu (rx_ring[rx_next].status);
665
666 if (!(status & RFD_STATUS_C)) {
667 break;
668 }
669
670 /* Valid frame status.
671 */
672 if ((status & RFD_STATUS_OK)) {
673 /* A valid frame received.
674 */
675 length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
676
677 /* Pass the packet up to the protocol
678 * layers.
679 */
680 net_process_received_packet((u8 *)rx_ring[rx_next].data,
681 length);
682 } else {
683 /* There was an error.
684 */
685 printf ("RX error status = 0x%08X\n", status);
686 }
687
688 rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
689 rx_ring[rx_next].status = 0;
690 rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
691
692 rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
693 rx_ring[rx_prev].control = 0;
694
695 /* Update entry information.
696 */
697 rx_next = (rx_next + 1) % NUM_RX_DESC;
698 }
699
700 if (stat & SCB_STATUS_RNR) {
701
702 printf ("%s: Receiver is not ready, restart it !\n", dev->name);
703
704 /* Reinitialize Rx ring.
705 */
706 init_rx_ring (dev);
707
708 if (!wait_for_eepro100 (dev)) {
709 printf ("Error: Can not restart ethernet controller.\n");
710 goto Done;
711 }
712
713 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
714 OUTW (dev, SCB_M | RUC_START, SCBCmd);
715 }
716
717 Done:
718 return length;
719 }
720
eepro100_halt(struct eth_device * dev)721 static void eepro100_halt (struct eth_device *dev)
722 {
723 /* Reset the ethernet controller
724 */
725 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
726 udelay (20);
727
728 OUTL (dev, I82559_RESET, SCBPort);
729 udelay (20);
730
731 if (!wait_for_eepro100 (dev)) {
732 printf ("Error: Can not reset ethernet controller.\n");
733 goto Done;
734 }
735 OUTL (dev, 0, SCBPointer);
736 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
737
738 if (!wait_for_eepro100 (dev)) {
739 printf ("Error: Can not reset ethernet controller.\n");
740 goto Done;
741 }
742 OUTL (dev, 0, SCBPointer);
743 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
744
745 Done:
746 return;
747 }
748
749 /* SROM Read.
750 */
read_eeprom(struct eth_device * dev,int location,int addr_len)751 static int read_eeprom (struct eth_device *dev, int location, int addr_len)
752 {
753 unsigned short retval = 0;
754 int read_cmd = location | EE_READ_CMD;
755 int i;
756
757 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
758 OUTW (dev, EE_ENB, SCBeeprom);
759
760 /* Shift the read command bits out. */
761 for (i = 12; i >= 0; i--) {
762 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
763
764 OUTW (dev, EE_ENB | dataval, SCBeeprom);
765 udelay (1);
766 OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
767 udelay (1);
768 }
769 OUTW (dev, EE_ENB, SCBeeprom);
770
771 for (i = 15; i >= 0; i--) {
772 OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
773 udelay (1);
774 retval = (retval << 1) |
775 ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
776 OUTW (dev, EE_ENB, SCBeeprom);
777 udelay (1);
778 }
779
780 /* Terminate the EEPROM access. */
781 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
782 return retval;
783 }
784
785 #ifdef CONFIG_EEPRO100_SROM_WRITE
eepro100_write_eeprom(struct eth_device * dev,int location,int addr_len,unsigned short data)786 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
787 {
788 unsigned short dataval;
789 int enable_cmd = 0x3f | EE_EWENB_CMD;
790 int write_cmd = location | EE_WRITE_CMD;
791 int i;
792 unsigned long datalong, tmplong;
793
794 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
795 udelay(1);
796 OUTW(dev, EE_ENB, SCBeeprom);
797
798 /* Shift the enable command bits out. */
799 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
800 {
801 dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
802 OUTW(dev, EE_ENB | dataval, SCBeeprom);
803 udelay(1);
804 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
805 udelay(1);
806 }
807
808 OUTW(dev, EE_ENB, SCBeeprom);
809 udelay(1);
810 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
811 udelay(1);
812 OUTW(dev, EE_ENB, SCBeeprom);
813
814
815 /* Shift the write command bits out. */
816 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
817 {
818 dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
819 OUTW(dev, EE_ENB | dataval, SCBeeprom);
820 udelay(1);
821 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
822 udelay(1);
823 }
824
825 /* Write the data */
826 datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
827
828 for (i = 0; i< EE_DATA_BITS; i++)
829 {
830 /* Extract and move data bit to bit DI */
831 dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
832
833 OUTW(dev, EE_ENB | dataval, SCBeeprom);
834 udelay(1);
835 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
836 udelay(1);
837 OUTW(dev, EE_ENB | dataval, SCBeeprom);
838 udelay(1);
839
840 datalong = datalong << 1; /* Adjust significant data bit*/
841 }
842
843 /* Finish up command (toggle CS) */
844 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
845 udelay(1); /* delay for more than 250 ns */
846 OUTW(dev, EE_ENB, SCBeeprom);
847
848 /* Wait for programming ready (D0 = 1) */
849 tmplong = 10;
850 do
851 {
852 dataval = INW(dev, SCBeeprom);
853 if (dataval & EE_DATA_READ)
854 break;
855 udelay(10000);
856 }
857 while (-- tmplong);
858
859 if (tmplong == 0)
860 {
861 printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
862 return -1;
863 }
864
865 /* Terminate the EEPROM access. */
866 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
867
868 return 0;
869 }
870 #endif
871
init_rx_ring(struct eth_device * dev)872 static void init_rx_ring (struct eth_device *dev)
873 {
874 int i;
875
876 for (i = 0; i < NUM_RX_DESC; i++) {
877 rx_ring[i].status = 0;
878 rx_ring[i].control =
879 (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
880 rx_ring[i].link =
881 cpu_to_le32 (phys_to_bus
882 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
883 rx_ring[i].rx_buf_addr = 0xffffffff;
884 rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
885 }
886
887 rx_next = 0;
888 }
889
purge_tx_ring(struct eth_device * dev)890 static void purge_tx_ring (struct eth_device *dev)
891 {
892 int i;
893
894 tx_next = 0;
895 tx_threshold = 0x01208000;
896
897 for (i = 0; i < NUM_TX_DESC; i++) {
898 tx_ring[i].status = 0;
899 tx_ring[i].command = 0;
900 tx_ring[i].link = 0;
901 tx_ring[i].tx_desc_addr = 0;
902 tx_ring[i].count = 0;
903
904 tx_ring[i].tx_buf_addr0 = 0;
905 tx_ring[i].tx_buf_size0 = 0;
906 tx_ring[i].tx_buf_addr1 = 0;
907 tx_ring[i].tx_buf_size1 = 0;
908 }
909 }
910
read_hw_addr(struct eth_device * dev,bd_t * bis)911 static void read_hw_addr (struct eth_device *dev, bd_t * bis)
912 {
913 u16 sum = 0;
914 int i, j;
915 int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
916
917 for (j = 0, i = 0; i < 0x40; i++) {
918 u16 value = read_eeprom (dev, i, addr_len);
919
920 sum += value;
921 if (i < 3) {
922 dev->enetaddr[j++] = value;
923 dev->enetaddr[j++] = value >> 8;
924 }
925 }
926
927 if (sum != 0xBABA) {
928 memset (dev->enetaddr, 0, ETH_ALEN);
929 #ifdef DEBUG
930 printf ("%s: Invalid EEPROM checksum %#4.4x, "
931 "check settings before activating this device!\n",
932 dev->name, sum);
933 #endif
934 }
935 }
936