• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2011 Michal Simek <monstr@monstr.eu>
4  * Copyright (C) 2011 PetaLogix
5  * Copyright (C) 2010 Xilinx, Inc. All rights reserved.
6  */
7 
8 #include <config.h>
9 #include <common.h>
10 #include <dm.h>
11 #include <net.h>
12 #include <malloc.h>
13 #include <asm/io.h>
14 #include <phy.h>
15 #include <miiphy.h>
16 #include <wait_bit.h>
17 
18 DECLARE_GLOBAL_DATA_PTR;
19 
20 /* Link setup */
21 #define XAE_EMMC_LINKSPEED_MASK	0xC0000000 /* Link speed */
22 #define XAE_EMMC_LINKSPD_10	0x00000000 /* Link Speed mask for 10 Mbit */
23 #define XAE_EMMC_LINKSPD_100	0x40000000 /* Link Speed mask for 100 Mbit */
24 #define XAE_EMMC_LINKSPD_1000	0x80000000 /* Link Speed mask for 1000 Mbit */
25 
26 /* Interrupt Status/Enable/Mask Registers bit definitions */
27 #define XAE_INT_RXRJECT_MASK	0x00000008 /* Rx frame rejected */
28 #define XAE_INT_MGTRDY_MASK	0x00000080 /* MGT clock Lock */
29 
30 /* Receive Configuration Word 1 (RCW1) Register bit definitions */
31 #define XAE_RCW1_RX_MASK	0x10000000 /* Receiver enable */
32 
33 /* Transmitter Configuration (TC) Register bit definitions */
34 #define XAE_TC_TX_MASK		0x10000000 /* Transmitter enable */
35 
36 #define XAE_UAW1_UNICASTADDR_MASK	0x0000FFFF
37 
38 /* MDIO Management Configuration (MC) Register bit definitions */
39 #define XAE_MDIO_MC_MDIOEN_MASK		0x00000040 /* MII management enable*/
40 
41 /* MDIO Management Control Register (MCR) Register bit definitions */
42 #define XAE_MDIO_MCR_PHYAD_MASK		0x1F000000 /* Phy Address Mask */
43 #define XAE_MDIO_MCR_PHYAD_SHIFT	24	   /* Phy Address Shift */
44 #define XAE_MDIO_MCR_REGAD_MASK		0x001F0000 /* Reg Address Mask */
45 #define XAE_MDIO_MCR_REGAD_SHIFT	16	   /* Reg Address Shift */
46 #define XAE_MDIO_MCR_OP_READ_MASK	0x00008000 /* Op Code Read Mask */
47 #define XAE_MDIO_MCR_OP_WRITE_MASK	0x00004000 /* Op Code Write Mask */
48 #define XAE_MDIO_MCR_INITIATE_MASK	0x00000800 /* Ready Mask */
49 #define XAE_MDIO_MCR_READY_MASK		0x00000080 /* Ready Mask */
50 
51 #define XAE_MDIO_DIV_DFT	29	/* Default MDIO clock divisor */
52 
53 #define XAXIDMA_BD_STS_ACTUAL_LEN_MASK	0x007FFFFF /* Actual len */
54 
55 /* DMA macros */
56 /* Bitmasks of XAXIDMA_CR_OFFSET register */
57 #define XAXIDMA_CR_RUNSTOP_MASK	0x00000001 /* Start/stop DMA channel */
58 #define XAXIDMA_CR_RESET_MASK	0x00000004 /* Reset DMA engine */
59 
60 /* Bitmasks of XAXIDMA_SR_OFFSET register */
61 #define XAXIDMA_HALTED_MASK	0x00000001  /* DMA channel halted */
62 
63 /* Bitmask for interrupts */
64 #define XAXIDMA_IRQ_IOC_MASK	0x00001000 /* Completion intr */
65 #define XAXIDMA_IRQ_DELAY_MASK	0x00002000 /* Delay interrupt */
66 #define XAXIDMA_IRQ_ALL_MASK	0x00007000 /* All interrupts */
67 
68 /* Bitmasks of XAXIDMA_BD_CTRL_OFFSET register */
69 #define XAXIDMA_BD_CTRL_TXSOF_MASK	0x08000000 /* First tx packet */
70 #define XAXIDMA_BD_CTRL_TXEOF_MASK	0x04000000 /* Last tx packet */
71 
72 #define DMAALIGN	128
73 
74 static u8 rxframe[PKTSIZE_ALIGN] __attribute((aligned(DMAALIGN)));
75 
76 /* Reflect dma offsets */
77 struct axidma_reg {
78 	u32 control; /* DMACR */
79 	u32 status; /* DMASR */
80 	u32 current; /* CURDESC low 32 bit */
81 	u32 current_hi; /* CURDESC high 32 bit */
82 	u32 tail; /* TAILDESC low 32 bit */
83 	u32 tail_hi; /* TAILDESC high 32 bit */
84 };
85 
86 /* Private driver structures */
87 struct axidma_priv {
88 	struct axidma_reg *dmatx;
89 	struct axidma_reg *dmarx;
90 	int phyaddr;
91 	struct axi_regs *iobase;
92 	phy_interface_t interface;
93 	struct phy_device *phydev;
94 	struct mii_dev *bus;
95 	u8 eth_hasnobuf;
96 };
97 
98 /* BD descriptors */
99 struct axidma_bd {
100 	u32 next;	/* Next descriptor pointer */
101 	u32 reserved1;
102 	u32 phys;	/* Buffer address */
103 	u32 reserved2;
104 	u32 reserved3;
105 	u32 reserved4;
106 	u32 cntrl;	/* Control */
107 	u32 status;	/* Status */
108 	u32 app0;
109 	u32 app1;	/* TX start << 16 | insert */
110 	u32 app2;	/* TX csum seed */
111 	u32 app3;
112 	u32 app4;
113 	u32 sw_id_offset;
114 	u32 reserved5;
115 	u32 reserved6;
116 };
117 
118 /* Static BDs - driver uses only one BD */
119 static struct axidma_bd tx_bd __attribute((aligned(DMAALIGN)));
120 static struct axidma_bd rx_bd __attribute((aligned(DMAALIGN)));
121 
122 struct axi_regs {
123 	u32 reserved[3];
124 	u32 is; /* 0xC: Interrupt status */
125 	u32 reserved2;
126 	u32 ie; /* 0x14: Interrupt enable */
127 	u32 reserved3[251];
128 	u32 rcw1; /* 0x404: Rx Configuration Word 1 */
129 	u32 tc; /* 0x408: Tx Configuration */
130 	u32 reserved4;
131 	u32 emmc; /* 0x410: EMAC mode configuration */
132 	u32 reserved5[59];
133 	u32 mdio_mc; /* 0x500: MII Management Config */
134 	u32 mdio_mcr; /* 0x504: MII Management Control */
135 	u32 mdio_mwd; /* 0x508: MII Management Write Data */
136 	u32 mdio_mrd; /* 0x50C: MII Management Read Data */
137 	u32 reserved6[124];
138 	u32 uaw0; /* 0x700: Unicast address word 0 */
139 	u32 uaw1; /* 0x704: Unicast address word 1 */
140 };
141 
142 /* Use MII register 1 (MII status register) to detect PHY */
143 #define PHY_DETECT_REG  1
144 
145 /*
146  * Mask used to verify certain PHY features (or register contents)
147  * in the register above:
148  *  0x1000: 10Mbps full duplex support
149  *  0x0800: 10Mbps half duplex support
150  *  0x0008: Auto-negotiation support
151  */
152 #define PHY_DETECT_MASK 0x1808
153 
mdio_wait(struct axi_regs * regs)154 static inline int mdio_wait(struct axi_regs *regs)
155 {
156 	u32 timeout = 200;
157 
158 	/* Wait till MDIO interface is ready to accept a new transaction. */
159 	while (timeout && (!(readl(&regs->mdio_mcr)
160 						& XAE_MDIO_MCR_READY_MASK))) {
161 		timeout--;
162 		udelay(1);
163 	}
164 	if (!timeout) {
165 		printf("%s: Timeout\n", __func__);
166 		return 1;
167 	}
168 	return 0;
169 }
170 
171 /**
172  * axienet_dma_write -	Memory mapped Axi DMA register Buffer Descriptor write.
173  * @bd:		pointer to BD descriptor structure
174  * @desc:	Address offset of DMA descriptors
175  *
176  * This function writes the value into the corresponding Axi DMA register.
177  */
axienet_dma_write(struct axidma_bd * bd,u32 * desc)178 static inline void axienet_dma_write(struct axidma_bd *bd, u32 *desc)
179 {
180 #if defined(CONFIG_PHYS_64BIT)
181 	writeq(bd, desc);
182 #else
183 	writel((u32)bd, desc);
184 #endif
185 }
186 
phyread(struct axidma_priv * priv,u32 phyaddress,u32 registernum,u16 * val)187 static u32 phyread(struct axidma_priv *priv, u32 phyaddress, u32 registernum,
188 		   u16 *val)
189 {
190 	struct axi_regs *regs = priv->iobase;
191 	u32 mdioctrlreg = 0;
192 
193 	if (mdio_wait(regs))
194 		return 1;
195 
196 	mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) &
197 			XAE_MDIO_MCR_PHYAD_MASK) |
198 			((registernum << XAE_MDIO_MCR_REGAD_SHIFT)
199 			& XAE_MDIO_MCR_REGAD_MASK) |
200 			XAE_MDIO_MCR_INITIATE_MASK |
201 			XAE_MDIO_MCR_OP_READ_MASK;
202 
203 	writel(mdioctrlreg, &regs->mdio_mcr);
204 
205 	if (mdio_wait(regs))
206 		return 1;
207 
208 	/* Read data */
209 	*val = readl(&regs->mdio_mrd);
210 	return 0;
211 }
212 
phywrite(struct axidma_priv * priv,u32 phyaddress,u32 registernum,u32 data)213 static u32 phywrite(struct axidma_priv *priv, u32 phyaddress, u32 registernum,
214 		    u32 data)
215 {
216 	struct axi_regs *regs = priv->iobase;
217 	u32 mdioctrlreg = 0;
218 
219 	if (mdio_wait(regs))
220 		return 1;
221 
222 	mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) &
223 			XAE_MDIO_MCR_PHYAD_MASK) |
224 			((registernum << XAE_MDIO_MCR_REGAD_SHIFT)
225 			& XAE_MDIO_MCR_REGAD_MASK) |
226 			XAE_MDIO_MCR_INITIATE_MASK |
227 			XAE_MDIO_MCR_OP_WRITE_MASK;
228 
229 	/* Write data */
230 	writel(data, &regs->mdio_mwd);
231 
232 	writel(mdioctrlreg, &regs->mdio_mcr);
233 
234 	if (mdio_wait(regs))
235 		return 1;
236 
237 	return 0;
238 }
239 
axiemac_phy_init(struct udevice * dev)240 static int axiemac_phy_init(struct udevice *dev)
241 {
242 	u16 phyreg;
243 	u32 i, ret;
244 	struct axidma_priv *priv = dev_get_priv(dev);
245 	struct axi_regs *regs = priv->iobase;
246 	struct phy_device *phydev;
247 
248 	u32 supported = SUPPORTED_10baseT_Half |
249 			SUPPORTED_10baseT_Full |
250 			SUPPORTED_100baseT_Half |
251 			SUPPORTED_100baseT_Full |
252 			SUPPORTED_1000baseT_Half |
253 			SUPPORTED_1000baseT_Full;
254 
255 	/* Set default MDIO divisor */
256 	writel(XAE_MDIO_DIV_DFT | XAE_MDIO_MC_MDIOEN_MASK, &regs->mdio_mc);
257 
258 	if (priv->phyaddr == -1) {
259 		/* Detect the PHY address */
260 		for (i = 31; i >= 0; i--) {
261 			ret = phyread(priv, i, PHY_DETECT_REG, &phyreg);
262 			if (!ret && (phyreg != 0xFFFF) &&
263 			((phyreg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) {
264 				/* Found a valid PHY address */
265 				priv->phyaddr = i;
266 				debug("axiemac: Found valid phy address, %x\n",
267 				      i);
268 				break;
269 			}
270 		}
271 	}
272 
273 	/* Interface - look at tsec */
274 	phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
275 
276 	phydev->supported &= supported;
277 	phydev->advertising = phydev->supported;
278 	priv->phydev = phydev;
279 	phy_config(phydev);
280 
281 	return 0;
282 }
283 
284 /* Setting axi emac and phy to proper setting */
setup_phy(struct udevice * dev)285 static int setup_phy(struct udevice *dev)
286 {
287 	u16 temp;
288 	u32 speed, emmc_reg, ret;
289 	struct axidma_priv *priv = dev_get_priv(dev);
290 	struct axi_regs *regs = priv->iobase;
291 	struct phy_device *phydev = priv->phydev;
292 
293 	if (priv->interface == PHY_INTERFACE_MODE_SGMII) {
294 		/*
295 		 * In SGMII cases the isolate bit might set
296 		 * after DMA and ethernet resets and hence
297 		 * check and clear if set.
298 		 */
299 		ret = phyread(priv, priv->phyaddr, MII_BMCR, &temp);
300 		if (ret)
301 			return 0;
302 		if (temp & BMCR_ISOLATE) {
303 			temp &= ~BMCR_ISOLATE;
304 			ret = phywrite(priv, priv->phyaddr, MII_BMCR, temp);
305 			if (ret)
306 				return 0;
307 		}
308 	}
309 
310 	if (phy_startup(phydev)) {
311 		printf("axiemac: could not initialize PHY %s\n",
312 		       phydev->dev->name);
313 		return 0;
314 	}
315 	if (!phydev->link) {
316 		printf("%s: No link.\n", phydev->dev->name);
317 		return 0;
318 	}
319 
320 	switch (phydev->speed) {
321 	case 1000:
322 		speed = XAE_EMMC_LINKSPD_1000;
323 		break;
324 	case 100:
325 		speed = XAE_EMMC_LINKSPD_100;
326 		break;
327 	case 10:
328 		speed = XAE_EMMC_LINKSPD_10;
329 		break;
330 	default:
331 		return 0;
332 	}
333 
334 	/* Setup the emac for the phy speed */
335 	emmc_reg = readl(&regs->emmc);
336 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
337 	emmc_reg |= speed;
338 
339 	/* Write new speed setting out to Axi Ethernet */
340 	writel(emmc_reg, &regs->emmc);
341 
342 	/*
343 	* Setting the operating speed of the MAC needs a delay. There
344 	* doesn't seem to be register to poll, so please consider this
345 	* during your application design.
346 	*/
347 	udelay(1);
348 
349 	return 1;
350 }
351 
352 /* STOP DMA transfers */
axiemac_stop(struct udevice * dev)353 static void axiemac_stop(struct udevice *dev)
354 {
355 	struct axidma_priv *priv = dev_get_priv(dev);
356 	u32 temp;
357 
358 	/* Stop the hardware */
359 	temp = readl(&priv->dmatx->control);
360 	temp &= ~XAXIDMA_CR_RUNSTOP_MASK;
361 	writel(temp, &priv->dmatx->control);
362 
363 	temp = readl(&priv->dmarx->control);
364 	temp &= ~XAXIDMA_CR_RUNSTOP_MASK;
365 	writel(temp, &priv->dmarx->control);
366 
367 	debug("axiemac: Halted\n");
368 }
369 
axi_ethernet_init(struct axidma_priv * priv)370 static int axi_ethernet_init(struct axidma_priv *priv)
371 {
372 	struct axi_regs *regs = priv->iobase;
373 	int err;
374 
375 	/*
376 	 * Check the status of the MgtRdy bit in the interrupt status
377 	 * registers. This must be done to allow the MGT clock to become stable
378 	 * for the Sgmii and 1000BaseX PHY interfaces. No other register reads
379 	 * will be valid until this bit is valid.
380 	 * The bit is always a 1 for all other PHY interfaces.
381 	 * Interrupt status and enable registers are not available in non
382 	 * processor mode and hence bypass in this mode
383 	 */
384 	if (!priv->eth_hasnobuf) {
385 		err = wait_for_bit_le32(&regs->is, XAE_INT_MGTRDY_MASK,
386 					true, 200, false);
387 		if (err) {
388 			printf("%s: Timeout\n", __func__);
389 			return 1;
390 		}
391 
392 		/*
393 		 * Stop the device and reset HW
394 		 * Disable interrupts
395 		 */
396 		writel(0, &regs->ie);
397 	}
398 
399 	/* Disable the receiver */
400 	writel(readl(&regs->rcw1) & ~XAE_RCW1_RX_MASK, &regs->rcw1);
401 
402 	/*
403 	 * Stopping the receiver in mid-packet causes a dropped packet
404 	 * indication from HW. Clear it.
405 	 */
406 	if (!priv->eth_hasnobuf) {
407 		/* Set the interrupt status register to clear the interrupt */
408 		writel(XAE_INT_RXRJECT_MASK, &regs->is);
409 	}
410 
411 	/* Setup HW */
412 	/* Set default MDIO divisor */
413 	writel(XAE_MDIO_DIV_DFT | XAE_MDIO_MC_MDIOEN_MASK, &regs->mdio_mc);
414 
415 	debug("axiemac: InitHw done\n");
416 	return 0;
417 }
418 
axiemac_write_hwaddr(struct udevice * dev)419 static int axiemac_write_hwaddr(struct udevice *dev)
420 {
421 	struct eth_pdata *pdata = dev_get_platdata(dev);
422 	struct axidma_priv *priv = dev_get_priv(dev);
423 	struct axi_regs *regs = priv->iobase;
424 
425 	/* Set the MAC address */
426 	int val = ((pdata->enetaddr[3] << 24) | (pdata->enetaddr[2] << 16) |
427 		(pdata->enetaddr[1] << 8) | (pdata->enetaddr[0]));
428 	writel(val, &regs->uaw0);
429 
430 	val = (pdata->enetaddr[5] << 8) | pdata->enetaddr[4];
431 	val |= readl(&regs->uaw1) & ~XAE_UAW1_UNICASTADDR_MASK;
432 	writel(val, &regs->uaw1);
433 	return 0;
434 }
435 
436 /* Reset DMA engine */
axi_dma_init(struct axidma_priv * priv)437 static void axi_dma_init(struct axidma_priv *priv)
438 {
439 	u32 timeout = 500;
440 
441 	/* Reset the engine so the hardware starts from a known state */
442 	writel(XAXIDMA_CR_RESET_MASK, &priv->dmatx->control);
443 	writel(XAXIDMA_CR_RESET_MASK, &priv->dmarx->control);
444 
445 	/* At the initialization time, hardware should finish reset quickly */
446 	while (timeout--) {
447 		/* Check transmit/receive channel */
448 		/* Reset is done when the reset bit is low */
449 		if (!((readl(&priv->dmatx->control) |
450 				readl(&priv->dmarx->control))
451 						& XAXIDMA_CR_RESET_MASK)) {
452 			break;
453 		}
454 	}
455 	if (!timeout)
456 		printf("%s: Timeout\n", __func__);
457 }
458 
axiemac_start(struct udevice * dev)459 static int axiemac_start(struct udevice *dev)
460 {
461 	struct axidma_priv *priv = dev_get_priv(dev);
462 	struct axi_regs *regs = priv->iobase;
463 	u32 temp;
464 
465 	debug("axiemac: Init started\n");
466 	/*
467 	 * Initialize AXIDMA engine. AXIDMA engine must be initialized before
468 	 * AxiEthernet. During AXIDMA engine initialization, AXIDMA hardware is
469 	 * reset, and since AXIDMA reset line is connected to AxiEthernet, this
470 	 * would ensure a reset of AxiEthernet.
471 	 */
472 	axi_dma_init(priv);
473 
474 	/* Initialize AxiEthernet hardware. */
475 	if (axi_ethernet_init(priv))
476 		return -1;
477 
478 	/* Disable all RX interrupts before RxBD space setup */
479 	temp = readl(&priv->dmarx->control);
480 	temp &= ~XAXIDMA_IRQ_ALL_MASK;
481 	writel(temp, &priv->dmarx->control);
482 
483 	/* Start DMA RX channel. Now it's ready to receive data.*/
484 	axienet_dma_write(&rx_bd, &priv->dmarx->current);
485 
486 	/* Setup the BD. */
487 	memset(&rx_bd, 0, sizeof(rx_bd));
488 	rx_bd.next = (u32)&rx_bd;
489 	rx_bd.phys = (u32)&rxframe;
490 	rx_bd.cntrl = sizeof(rxframe);
491 	/* Flush the last BD so DMA core could see the updates */
492 	flush_cache((u32)&rx_bd, sizeof(rx_bd));
493 
494 	/* It is necessary to flush rxframe because if you don't do it
495 	 * then cache can contain uninitialized data */
496 	flush_cache((u32)&rxframe, sizeof(rxframe));
497 
498 	/* Start the hardware */
499 	temp = readl(&priv->dmarx->control);
500 	temp |= XAXIDMA_CR_RUNSTOP_MASK;
501 	writel(temp, &priv->dmarx->control);
502 
503 	/* Rx BD is ready - start */
504 	axienet_dma_write(&rx_bd, &priv->dmarx->tail);
505 
506 	/* Enable TX */
507 	writel(XAE_TC_TX_MASK, &regs->tc);
508 	/* Enable RX */
509 	writel(XAE_RCW1_RX_MASK, &regs->rcw1);
510 
511 	/* PHY setup */
512 	if (!setup_phy(dev)) {
513 		axiemac_stop(dev);
514 		return -1;
515 	}
516 
517 	debug("axiemac: Init complete\n");
518 	return 0;
519 }
520 
axiemac_send(struct udevice * dev,void * ptr,int len)521 static int axiemac_send(struct udevice *dev, void *ptr, int len)
522 {
523 	struct axidma_priv *priv = dev_get_priv(dev);
524 	u32 timeout;
525 
526 	if (len > PKTSIZE_ALIGN)
527 		len = PKTSIZE_ALIGN;
528 
529 	/* Flush packet to main memory to be trasfered by DMA */
530 	flush_cache((u32)ptr, len);
531 
532 	/* Setup Tx BD */
533 	memset(&tx_bd, 0, sizeof(tx_bd));
534 	/* At the end of the ring, link the last BD back to the top */
535 	tx_bd.next = (u32)&tx_bd;
536 	tx_bd.phys = (u32)ptr;
537 	/* Save len */
538 	tx_bd.cntrl = len | XAXIDMA_BD_CTRL_TXSOF_MASK |
539 						XAXIDMA_BD_CTRL_TXEOF_MASK;
540 
541 	/* Flush the last BD so DMA core could see the updates */
542 	flush_cache((u32)&tx_bd, sizeof(tx_bd));
543 
544 	if (readl(&priv->dmatx->status) & XAXIDMA_HALTED_MASK) {
545 		u32 temp;
546 		axienet_dma_write(&tx_bd, &priv->dmatx->current);
547 		/* Start the hardware */
548 		temp = readl(&priv->dmatx->control);
549 		temp |= XAXIDMA_CR_RUNSTOP_MASK;
550 		writel(temp, &priv->dmatx->control);
551 	}
552 
553 	/* Start transfer */
554 	axienet_dma_write(&tx_bd, &priv->dmatx->tail);
555 
556 	/* Wait for transmission to complete */
557 	debug("axiemac: Waiting for tx to be done\n");
558 	timeout = 200;
559 	while (timeout && (!(readl(&priv->dmatx->status) &
560 			(XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK)))) {
561 		timeout--;
562 		udelay(1);
563 	}
564 	if (!timeout) {
565 		printf("%s: Timeout\n", __func__);
566 		return 1;
567 	}
568 
569 	debug("axiemac: Sending complete\n");
570 	return 0;
571 }
572 
isrxready(struct axidma_priv * priv)573 static int isrxready(struct axidma_priv *priv)
574 {
575 	u32 status;
576 
577 	/* Read pending interrupts */
578 	status = readl(&priv->dmarx->status);
579 
580 	/* Acknowledge pending interrupts */
581 	writel(status & XAXIDMA_IRQ_ALL_MASK, &priv->dmarx->status);
582 
583 	/*
584 	 * If Reception done interrupt is asserted, call RX call back function
585 	 * to handle the processed BDs and then raise the according flag.
586 	 */
587 	if ((status & (XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK)))
588 		return 1;
589 
590 	return 0;
591 }
592 
axiemac_recv(struct udevice * dev,int flags,uchar ** packetp)593 static int axiemac_recv(struct udevice *dev, int flags, uchar **packetp)
594 {
595 	u32 length;
596 	struct axidma_priv *priv = dev_get_priv(dev);
597 	u32 temp;
598 
599 	/* Wait for an incoming packet */
600 	if (!isrxready(priv))
601 		return -1;
602 
603 	debug("axiemac: RX data ready\n");
604 
605 	/* Disable IRQ for a moment till packet is handled */
606 	temp = readl(&priv->dmarx->control);
607 	temp &= ~XAXIDMA_IRQ_ALL_MASK;
608 	writel(temp, &priv->dmarx->control);
609 	if (!priv->eth_hasnobuf)
610 		length = rx_bd.app4 & 0xFFFF; /* max length mask */
611 	else
612 		length = rx_bd.status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
613 
614 #ifdef DEBUG
615 	print_buffer(&rxframe, &rxframe[0], 1, length, 16);
616 #endif
617 
618 	*packetp = rxframe;
619 	return length;
620 }
621 
axiemac_free_pkt(struct udevice * dev,uchar * packet,int length)622 static int axiemac_free_pkt(struct udevice *dev, uchar *packet, int length)
623 {
624 	struct axidma_priv *priv = dev_get_priv(dev);
625 
626 #ifdef DEBUG
627 	/* It is useful to clear buffer to be sure that it is consistent */
628 	memset(rxframe, 0, sizeof(rxframe));
629 #endif
630 	/* Setup RxBD */
631 	/* Clear the whole buffer and setup it again - all flags are cleared */
632 	memset(&rx_bd, 0, sizeof(rx_bd));
633 	rx_bd.next = (u32)&rx_bd;
634 	rx_bd.phys = (u32)&rxframe;
635 	rx_bd.cntrl = sizeof(rxframe);
636 
637 	/* Write bd to HW */
638 	flush_cache((u32)&rx_bd, sizeof(rx_bd));
639 
640 	/* It is necessary to flush rxframe because if you don't do it
641 	 * then cache will contain previous packet */
642 	flush_cache((u32)&rxframe, sizeof(rxframe));
643 
644 	/* Rx BD is ready - start again */
645 	axienet_dma_write(&rx_bd, &priv->dmarx->tail);
646 
647 	debug("axiemac: RX completed, framelength = %d\n", length);
648 
649 	return 0;
650 }
651 
axiemac_miiphy_read(struct mii_dev * bus,int addr,int devad,int reg)652 static int axiemac_miiphy_read(struct mii_dev *bus, int addr,
653 			       int devad, int reg)
654 {
655 	int ret;
656 	u16 value;
657 
658 	ret = phyread(bus->priv, addr, reg, &value);
659 	debug("axiemac: Read MII 0x%x, 0x%x, 0x%x, %d\n", addr, reg,
660 	      value, ret);
661 	return value;
662 }
663 
axiemac_miiphy_write(struct mii_dev * bus,int addr,int devad,int reg,u16 value)664 static int axiemac_miiphy_write(struct mii_dev *bus, int addr, int devad,
665 				int reg, u16 value)
666 {
667 	debug("axiemac: Write MII 0x%x, 0x%x, 0x%x\n", addr, reg, value);
668 	return phywrite(bus->priv, addr, reg, value);
669 }
670 
axi_emac_probe(struct udevice * dev)671 static int axi_emac_probe(struct udevice *dev)
672 {
673 	struct axidma_priv *priv = dev_get_priv(dev);
674 	int ret;
675 
676 	priv->bus = mdio_alloc();
677 	priv->bus->read = axiemac_miiphy_read;
678 	priv->bus->write = axiemac_miiphy_write;
679 	priv->bus->priv = priv;
680 
681 	ret = mdio_register_seq(priv->bus, dev->seq);
682 	if (ret)
683 		return ret;
684 
685 	axiemac_phy_init(dev);
686 
687 	return 0;
688 }
689 
axi_emac_remove(struct udevice * dev)690 static int axi_emac_remove(struct udevice *dev)
691 {
692 	struct axidma_priv *priv = dev_get_priv(dev);
693 
694 	free(priv->phydev);
695 	mdio_unregister(priv->bus);
696 	mdio_free(priv->bus);
697 
698 	return 0;
699 }
700 
701 static const struct eth_ops axi_emac_ops = {
702 	.start			= axiemac_start,
703 	.send			= axiemac_send,
704 	.recv			= axiemac_recv,
705 	.free_pkt		= axiemac_free_pkt,
706 	.stop			= axiemac_stop,
707 	.write_hwaddr		= axiemac_write_hwaddr,
708 };
709 
axi_emac_ofdata_to_platdata(struct udevice * dev)710 static int axi_emac_ofdata_to_platdata(struct udevice *dev)
711 {
712 	struct eth_pdata *pdata = dev_get_platdata(dev);
713 	struct axidma_priv *priv = dev_get_priv(dev);
714 	int node = dev_of_offset(dev);
715 	int offset = 0;
716 	const char *phy_mode;
717 
718 	pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
719 	priv->iobase = (struct axi_regs *)pdata->iobase;
720 
721 	offset = fdtdec_lookup_phandle(gd->fdt_blob, node,
722 				       "axistream-connected");
723 	if (offset <= 0) {
724 		printf("%s: axistream is not found\n", __func__);
725 		return -EINVAL;
726 	}
727 	priv->dmatx = (struct axidma_reg *)fdtdec_get_addr(gd->fdt_blob,
728 							  offset, "reg");
729 	if (!priv->dmatx) {
730 		printf("%s: axi_dma register space not found\n", __func__);
731 		return -EINVAL;
732 	}
733 	/* RX channel offset is 0x30 */
734 	priv->dmarx = (struct axidma_reg *)((u32)priv->dmatx + 0x30);
735 
736 	priv->phyaddr = -1;
737 
738 	offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "phy-handle");
739 	if (offset > 0)
740 		priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg", -1);
741 
742 	phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
743 	if (phy_mode)
744 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
745 	if (pdata->phy_interface == -1) {
746 		printf("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
747 		return -EINVAL;
748 	}
749 	priv->interface = pdata->phy_interface;
750 
751 	priv->eth_hasnobuf = fdtdec_get_bool(gd->fdt_blob, node,
752 					     "xlnx,eth-hasnobuf");
753 
754 	printf("AXI EMAC: %lx, phyaddr %d, interface %s\n", (ulong)priv->iobase,
755 	       priv->phyaddr, phy_string_for_interface(priv->interface));
756 
757 	return 0;
758 }
759 
760 static const struct udevice_id axi_emac_ids[] = {
761 	{ .compatible = "xlnx,axi-ethernet-1.00.a" },
762 	{ }
763 };
764 
765 U_BOOT_DRIVER(axi_emac) = {
766 	.name	= "axi_emac",
767 	.id	= UCLASS_ETH,
768 	.of_match = axi_emac_ids,
769 	.ofdata_to_platdata = axi_emac_ofdata_to_platdata,
770 	.probe	= axi_emac_probe,
771 	.remove	= axi_emac_remove,
772 	.ops	= &axi_emac_ops,
773 	.priv_auto_alloc_size = sizeof(struct axidma_priv),
774 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
775 };
776