1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11 /*
12 * This file implements functions needed to recover from unclean un-mounts.
13 * When UBIFS is mounted, it checks a flag on the master node to determine if
14 * an un-mount was completed successfully. If not, the process of mounting
15 * incorporates additional checking and fixing of on-flash data structures.
16 * UBIFS always cleans away all remnants of an unclean un-mount, so that
17 * errors do not accumulate. However UBIFS defers recovery if it is mounted
18 * read-only, and the flash is not modified in that case.
19 *
20 * The general UBIFS approach to the recovery is that it recovers from
21 * corruptions which could be caused by power cuts, but it refuses to recover
22 * from corruption caused by other reasons. And UBIFS tries to distinguish
23 * between these 2 reasons of corruptions and silently recover in the former
24 * case and loudly complain in the latter case.
25 *
26 * UBIFS writes only to erased LEBs, so it writes only to the flash space
27 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
28 * of the LEB to the end. And UBIFS assumes that the underlying flash media
29 * writes in @c->max_write_size bytes at a time.
30 *
31 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
32 * I/O unit corresponding to offset X to contain corrupted data, all the
33 * following min. I/O units have to contain empty space (all 0xFFs). If this is
34 * not true, the corruption cannot be the result of a power cut, and UBIFS
35 * refuses to mount.
36 */
37
38 #ifndef __UBOOT__
39 #include <linux/crc32.h>
40 #include <linux/slab.h>
41 #else
42 #include <linux/err.h>
43 #endif
44 #include "ubifs.h"
45
46 /**
47 * is_empty - determine whether a buffer is empty (contains all 0xff).
48 * @buf: buffer to clean
49 * @len: length of buffer
50 *
51 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
52 * %0 is returned.
53 */
is_empty(void * buf,int len)54 static int is_empty(void *buf, int len)
55 {
56 uint8_t *p = buf;
57 int i;
58
59 for (i = 0; i < len; i++)
60 if (*p++ != 0xff)
61 return 0;
62 return 1;
63 }
64
65 /**
66 * first_non_ff - find offset of the first non-0xff byte.
67 * @buf: buffer to search in
68 * @len: length of buffer
69 *
70 * This function returns offset of the first non-0xff byte in @buf or %-1 if
71 * the buffer contains only 0xff bytes.
72 */
first_non_ff(void * buf,int len)73 static int first_non_ff(void *buf, int len)
74 {
75 uint8_t *p = buf;
76 int i;
77
78 for (i = 0; i < len; i++)
79 if (*p++ != 0xff)
80 return i;
81 return -1;
82 }
83
84 /**
85 * get_master_node - get the last valid master node allowing for corruption.
86 * @c: UBIFS file-system description object
87 * @lnum: LEB number
88 * @pbuf: buffer containing the LEB read, is returned here
89 * @mst: master node, if found, is returned here
90 * @cor: corruption, if found, is returned here
91 *
92 * This function allocates a buffer, reads the LEB into it, and finds and
93 * returns the last valid master node allowing for one area of corruption.
94 * The corrupt area, if there is one, must be consistent with the assumption
95 * that it is the result of an unclean unmount while the master node was being
96 * written. Under those circumstances, it is valid to use the previously written
97 * master node.
98 *
99 * This function returns %0 on success and a negative error code on failure.
100 */
get_master_node(const struct ubifs_info * c,int lnum,void ** pbuf,struct ubifs_mst_node ** mst,void ** cor)101 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
102 struct ubifs_mst_node **mst, void **cor)
103 {
104 const int sz = c->mst_node_alsz;
105 int err, offs, len;
106 void *sbuf, *buf;
107
108 sbuf = vmalloc(c->leb_size);
109 if (!sbuf)
110 return -ENOMEM;
111
112 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
113 if (err && err != -EBADMSG)
114 goto out_free;
115
116 /* Find the first position that is definitely not a node */
117 offs = 0;
118 buf = sbuf;
119 len = c->leb_size;
120 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
121 struct ubifs_ch *ch = buf;
122
123 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
124 break;
125 offs += sz;
126 buf += sz;
127 len -= sz;
128 }
129 /* See if there was a valid master node before that */
130 if (offs) {
131 int ret;
132
133 offs -= sz;
134 buf -= sz;
135 len += sz;
136 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
137 if (ret != SCANNED_A_NODE && offs) {
138 /* Could have been corruption so check one place back */
139 offs -= sz;
140 buf -= sz;
141 len += sz;
142 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
143 if (ret != SCANNED_A_NODE)
144 /*
145 * We accept only one area of corruption because
146 * we are assuming that it was caused while
147 * trying to write a master node.
148 */
149 goto out_err;
150 }
151 if (ret == SCANNED_A_NODE) {
152 struct ubifs_ch *ch = buf;
153
154 if (ch->node_type != UBIFS_MST_NODE)
155 goto out_err;
156 dbg_rcvry("found a master node at %d:%d", lnum, offs);
157 *mst = buf;
158 offs += sz;
159 buf += sz;
160 len -= sz;
161 }
162 }
163 /* Check for corruption */
164 if (offs < c->leb_size) {
165 if (!is_empty(buf, min_t(int, len, sz))) {
166 *cor = buf;
167 dbg_rcvry("found corruption at %d:%d", lnum, offs);
168 }
169 offs += sz;
170 buf += sz;
171 len -= sz;
172 }
173 /* Check remaining empty space */
174 if (offs < c->leb_size)
175 if (!is_empty(buf, len))
176 goto out_err;
177 *pbuf = sbuf;
178 return 0;
179
180 out_err:
181 err = -EINVAL;
182 out_free:
183 vfree(sbuf);
184 *mst = NULL;
185 *cor = NULL;
186 return err;
187 }
188
189 /**
190 * write_rcvrd_mst_node - write recovered master node.
191 * @c: UBIFS file-system description object
192 * @mst: master node
193 *
194 * This function returns %0 on success and a negative error code on failure.
195 */
write_rcvrd_mst_node(struct ubifs_info * c,struct ubifs_mst_node * mst)196 static int write_rcvrd_mst_node(struct ubifs_info *c,
197 struct ubifs_mst_node *mst)
198 {
199 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
200 __le32 save_flags;
201
202 dbg_rcvry("recovery");
203
204 save_flags = mst->flags;
205 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
206
207 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
208 err = ubifs_leb_change(c, lnum, mst, sz);
209 if (err)
210 goto out;
211 err = ubifs_leb_change(c, lnum + 1, mst, sz);
212 if (err)
213 goto out;
214 out:
215 mst->flags = save_flags;
216 return err;
217 }
218
219 /**
220 * ubifs_recover_master_node - recover the master node.
221 * @c: UBIFS file-system description object
222 *
223 * This function recovers the master node from corruption that may occur due to
224 * an unclean unmount.
225 *
226 * This function returns %0 on success and a negative error code on failure.
227 */
ubifs_recover_master_node(struct ubifs_info * c)228 int ubifs_recover_master_node(struct ubifs_info *c)
229 {
230 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
231 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
232 const int sz = c->mst_node_alsz;
233 int err, offs1, offs2;
234
235 dbg_rcvry("recovery");
236
237 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
238 if (err)
239 goto out_free;
240
241 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
242 if (err)
243 goto out_free;
244
245 if (mst1) {
246 offs1 = (void *)mst1 - buf1;
247 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
248 (offs1 == 0 && !cor1)) {
249 /*
250 * mst1 was written by recovery at offset 0 with no
251 * corruption.
252 */
253 dbg_rcvry("recovery recovery");
254 mst = mst1;
255 } else if (mst2) {
256 offs2 = (void *)mst2 - buf2;
257 if (offs1 == offs2) {
258 /* Same offset, so must be the same */
259 if (memcmp((void *)mst1 + UBIFS_CH_SZ,
260 (void *)mst2 + UBIFS_CH_SZ,
261 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
262 goto out_err;
263 mst = mst1;
264 } else if (offs2 + sz == offs1) {
265 /* 1st LEB was written, 2nd was not */
266 if (cor1)
267 goto out_err;
268 mst = mst1;
269 } else if (offs1 == 0 &&
270 c->leb_size - offs2 - sz < sz) {
271 /* 1st LEB was unmapped and written, 2nd not */
272 if (cor1)
273 goto out_err;
274 mst = mst1;
275 } else
276 goto out_err;
277 } else {
278 /*
279 * 2nd LEB was unmapped and about to be written, so
280 * there must be only one master node in the first LEB
281 * and no corruption.
282 */
283 if (offs1 != 0 || cor1)
284 goto out_err;
285 mst = mst1;
286 }
287 } else {
288 if (!mst2)
289 goto out_err;
290 /*
291 * 1st LEB was unmapped and about to be written, so there must
292 * be no room left in 2nd LEB.
293 */
294 offs2 = (void *)mst2 - buf2;
295 if (offs2 + sz + sz <= c->leb_size)
296 goto out_err;
297 mst = mst2;
298 }
299
300 ubifs_msg(c, "recovered master node from LEB %d",
301 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
302
303 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
304
305 if (c->ro_mount) {
306 /* Read-only mode. Keep a copy for switching to rw mode */
307 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
308 if (!c->rcvrd_mst_node) {
309 err = -ENOMEM;
310 goto out_free;
311 }
312 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
313
314 /*
315 * We had to recover the master node, which means there was an
316 * unclean reboot. However, it is possible that the master node
317 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
318 * E.g., consider the following chain of events:
319 *
320 * 1. UBIFS was cleanly unmounted, so the master node is clean
321 * 2. UBIFS is being mounted R/W and starts changing the master
322 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
323 * so this LEB ends up with some amount of garbage at the
324 * end.
325 * 3. UBIFS is being mounted R/O. We reach this place and
326 * recover the master node from the second LEB
327 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
328 * because we are being mounted R/O. We have to defer the
329 * operation.
330 * 4. However, this master node (@c->mst_node) is marked as
331 * clean (since the step 1). And if we just return, the
332 * mount code will be confused and won't recover the master
333 * node when it is re-mounter R/W later.
334 *
335 * Thus, to force the recovery by marking the master node as
336 * dirty.
337 */
338 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
339 #ifndef __UBOOT__
340 } else {
341 /* Write the recovered master node */
342 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
343 err = write_rcvrd_mst_node(c, c->mst_node);
344 if (err)
345 goto out_free;
346 #endif
347 }
348
349 vfree(buf2);
350 vfree(buf1);
351
352 return 0;
353
354 out_err:
355 err = -EINVAL;
356 out_free:
357 ubifs_err(c, "failed to recover master node");
358 if (mst1) {
359 ubifs_err(c, "dumping first master node");
360 ubifs_dump_node(c, mst1);
361 }
362 if (mst2) {
363 ubifs_err(c, "dumping second master node");
364 ubifs_dump_node(c, mst2);
365 }
366 vfree(buf2);
367 vfree(buf1);
368 return err;
369 }
370
371 /**
372 * ubifs_write_rcvrd_mst_node - write the recovered master node.
373 * @c: UBIFS file-system description object
374 *
375 * This function writes the master node that was recovered during mounting in
376 * read-only mode and must now be written because we are remounting rw.
377 *
378 * This function returns %0 on success and a negative error code on failure.
379 */
ubifs_write_rcvrd_mst_node(struct ubifs_info * c)380 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
381 {
382 int err;
383
384 if (!c->rcvrd_mst_node)
385 return 0;
386 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
387 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
388 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
389 if (err)
390 return err;
391 kfree(c->rcvrd_mst_node);
392 c->rcvrd_mst_node = NULL;
393 return 0;
394 }
395
396 /**
397 * is_last_write - determine if an offset was in the last write to a LEB.
398 * @c: UBIFS file-system description object
399 * @buf: buffer to check
400 * @offs: offset to check
401 *
402 * This function returns %1 if @offs was in the last write to the LEB whose data
403 * is in @buf, otherwise %0 is returned. The determination is made by checking
404 * for subsequent empty space starting from the next @c->max_write_size
405 * boundary.
406 */
is_last_write(const struct ubifs_info * c,void * buf,int offs)407 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
408 {
409 int empty_offs, check_len;
410 uint8_t *p;
411
412 /*
413 * Round up to the next @c->max_write_size boundary i.e. @offs is in
414 * the last wbuf written. After that should be empty space.
415 */
416 empty_offs = ALIGN(offs + 1, c->max_write_size);
417 check_len = c->leb_size - empty_offs;
418 p = buf + empty_offs - offs;
419 return is_empty(p, check_len);
420 }
421
422 /**
423 * clean_buf - clean the data from an LEB sitting in a buffer.
424 * @c: UBIFS file-system description object
425 * @buf: buffer to clean
426 * @lnum: LEB number to clean
427 * @offs: offset from which to clean
428 * @len: length of buffer
429 *
430 * This function pads up to the next min_io_size boundary (if there is one) and
431 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
432 * @c->min_io_size boundary.
433 */
clean_buf(const struct ubifs_info * c,void ** buf,int lnum,int * offs,int * len)434 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
435 int *offs, int *len)
436 {
437 int empty_offs, pad_len;
438
439 lnum = lnum;
440 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
441
442 ubifs_assert(!(*offs & 7));
443 empty_offs = ALIGN(*offs, c->min_io_size);
444 pad_len = empty_offs - *offs;
445 ubifs_pad(c, *buf, pad_len);
446 *offs += pad_len;
447 *buf += pad_len;
448 *len -= pad_len;
449 memset(*buf, 0xff, c->leb_size - empty_offs);
450 }
451
452 /**
453 * no_more_nodes - determine if there are no more nodes in a buffer.
454 * @c: UBIFS file-system description object
455 * @buf: buffer to check
456 * @len: length of buffer
457 * @lnum: LEB number of the LEB from which @buf was read
458 * @offs: offset from which @buf was read
459 *
460 * This function ensures that the corrupted node at @offs is the last thing
461 * written to a LEB. This function returns %1 if more data is not found and
462 * %0 if more data is found.
463 */
no_more_nodes(const struct ubifs_info * c,void * buf,int len,int lnum,int offs)464 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
465 int lnum, int offs)
466 {
467 struct ubifs_ch *ch = buf;
468 int skip, dlen = le32_to_cpu(ch->len);
469
470 /* Check for empty space after the corrupt node's common header */
471 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
472 if (is_empty(buf + skip, len - skip))
473 return 1;
474 /*
475 * The area after the common header size is not empty, so the common
476 * header must be intact. Check it.
477 */
478 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
479 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
480 return 0;
481 }
482 /* Now we know the corrupt node's length we can skip over it */
483 skip = ALIGN(offs + dlen, c->max_write_size) - offs;
484 /* After which there should be empty space */
485 if (is_empty(buf + skip, len - skip))
486 return 1;
487 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
488 return 0;
489 }
490
491 /**
492 * fix_unclean_leb - fix an unclean LEB.
493 * @c: UBIFS file-system description object
494 * @sleb: scanned LEB information
495 * @start: offset where scan started
496 */
fix_unclean_leb(struct ubifs_info * c,struct ubifs_scan_leb * sleb,int start)497 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
498 int start)
499 {
500 int lnum = sleb->lnum, endpt = start;
501
502 /* Get the end offset of the last node we are keeping */
503 if (!list_empty(&sleb->nodes)) {
504 struct ubifs_scan_node *snod;
505
506 snod = list_entry(sleb->nodes.prev,
507 struct ubifs_scan_node, list);
508 endpt = snod->offs + snod->len;
509 }
510
511 if (c->ro_mount && !c->remounting_rw) {
512 /* Add to recovery list */
513 struct ubifs_unclean_leb *ucleb;
514
515 dbg_rcvry("need to fix LEB %d start %d endpt %d",
516 lnum, start, sleb->endpt);
517 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
518 if (!ucleb)
519 return -ENOMEM;
520 ucleb->lnum = lnum;
521 ucleb->endpt = endpt;
522 list_add_tail(&ucleb->list, &c->unclean_leb_list);
523 #ifndef __UBOOT__
524 } else {
525 /* Write the fixed LEB back to flash */
526 int err;
527
528 dbg_rcvry("fixing LEB %d start %d endpt %d",
529 lnum, start, sleb->endpt);
530 if (endpt == 0) {
531 err = ubifs_leb_unmap(c, lnum);
532 if (err)
533 return err;
534 } else {
535 int len = ALIGN(endpt, c->min_io_size);
536
537 if (start) {
538 err = ubifs_leb_read(c, lnum, sleb->buf, 0,
539 start, 1);
540 if (err)
541 return err;
542 }
543 /* Pad to min_io_size */
544 if (len > endpt) {
545 int pad_len = len - ALIGN(endpt, 8);
546
547 if (pad_len > 0) {
548 void *buf = sleb->buf + len - pad_len;
549
550 ubifs_pad(c, buf, pad_len);
551 }
552 }
553 err = ubifs_leb_change(c, lnum, sleb->buf, len);
554 if (err)
555 return err;
556 }
557 #endif
558 }
559 return 0;
560 }
561
562 /**
563 * drop_last_group - drop the last group of nodes.
564 * @sleb: scanned LEB information
565 * @offs: offset of dropped nodes is returned here
566 *
567 * This is a helper function for 'ubifs_recover_leb()' which drops the last
568 * group of nodes of the scanned LEB.
569 */
drop_last_group(struct ubifs_scan_leb * sleb,int * offs)570 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
571 {
572 while (!list_empty(&sleb->nodes)) {
573 struct ubifs_scan_node *snod;
574 struct ubifs_ch *ch;
575
576 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
577 list);
578 ch = snod->node;
579 if (ch->group_type != UBIFS_IN_NODE_GROUP)
580 break;
581
582 dbg_rcvry("dropping grouped node at %d:%d",
583 sleb->lnum, snod->offs);
584 *offs = snod->offs;
585 list_del(&snod->list);
586 kfree(snod);
587 sleb->nodes_cnt -= 1;
588 }
589 }
590
591 /**
592 * drop_last_node - drop the last node.
593 * @sleb: scanned LEB information
594 * @offs: offset of dropped nodes is returned here
595 *
596 * This is a helper function for 'ubifs_recover_leb()' which drops the last
597 * node of the scanned LEB.
598 */
drop_last_node(struct ubifs_scan_leb * sleb,int * offs)599 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
600 {
601 struct ubifs_scan_node *snod;
602
603 if (!list_empty(&sleb->nodes)) {
604 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
605 list);
606
607 dbg_rcvry("dropping last node at %d:%d",
608 sleb->lnum, snod->offs);
609 *offs = snod->offs;
610 list_del(&snod->list);
611 kfree(snod);
612 sleb->nodes_cnt -= 1;
613 }
614 }
615
616 /**
617 * ubifs_recover_leb - scan and recover a LEB.
618 * @c: UBIFS file-system description object
619 * @lnum: LEB number
620 * @offs: offset
621 * @sbuf: LEB-sized buffer to use
622 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
623 * belong to any journal head)
624 *
625 * This function does a scan of a LEB, but caters for errors that might have
626 * been caused by the unclean unmount from which we are attempting to recover.
627 * Returns the scanned information on success and a negative error code on
628 * failure.
629 */
ubifs_recover_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf,int jhead)630 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
631 int offs, void *sbuf, int jhead)
632 {
633 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
634 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
635 struct ubifs_scan_leb *sleb;
636 void *buf = sbuf + offs;
637
638 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
639
640 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
641 if (IS_ERR(sleb))
642 return sleb;
643
644 ubifs_assert(len >= 8);
645 while (len >= 8) {
646 dbg_scan("look at LEB %d:%d (%d bytes left)",
647 lnum, offs, len);
648
649 cond_resched();
650
651 /*
652 * Scan quietly until there is an error from which we cannot
653 * recover
654 */
655 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
656 if (ret == SCANNED_A_NODE) {
657 /* A valid node, and not a padding node */
658 struct ubifs_ch *ch = buf;
659 int node_len;
660
661 err = ubifs_add_snod(c, sleb, buf, offs);
662 if (err)
663 goto error;
664 node_len = ALIGN(le32_to_cpu(ch->len), 8);
665 offs += node_len;
666 buf += node_len;
667 len -= node_len;
668 } else if (ret > 0) {
669 /* Padding bytes or a valid padding node */
670 offs += ret;
671 buf += ret;
672 len -= ret;
673 } else if (ret == SCANNED_EMPTY_SPACE ||
674 ret == SCANNED_GARBAGE ||
675 ret == SCANNED_A_BAD_PAD_NODE ||
676 ret == SCANNED_A_CORRUPT_NODE) {
677 dbg_rcvry("found corruption (%d) at %d:%d",
678 ret, lnum, offs);
679 break;
680 } else {
681 ubifs_err(c, "unexpected return value %d", ret);
682 err = -EINVAL;
683 goto error;
684 }
685 }
686
687 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
688 if (!is_last_write(c, buf, offs))
689 goto corrupted_rescan;
690 } else if (ret == SCANNED_A_CORRUPT_NODE) {
691 if (!no_more_nodes(c, buf, len, lnum, offs))
692 goto corrupted_rescan;
693 } else if (!is_empty(buf, len)) {
694 if (!is_last_write(c, buf, offs)) {
695 int corruption = first_non_ff(buf, len);
696
697 /*
698 * See header comment for this file for more
699 * explanations about the reasons we have this check.
700 */
701 ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
702 lnum, offs, corruption);
703 /* Make sure we dump interesting non-0xFF data */
704 offs += corruption;
705 buf += corruption;
706 goto corrupted;
707 }
708 }
709
710 min_io_unit = round_down(offs, c->min_io_size);
711 if (grouped)
712 /*
713 * If nodes are grouped, always drop the incomplete group at
714 * the end.
715 */
716 drop_last_group(sleb, &offs);
717
718 if (jhead == GCHD) {
719 /*
720 * If this LEB belongs to the GC head then while we are in the
721 * middle of the same min. I/O unit keep dropping nodes. So
722 * basically, what we want is to make sure that the last min.
723 * I/O unit where we saw the corruption is dropped completely
724 * with all the uncorrupted nodes which may possibly sit there.
725 *
726 * In other words, let's name the min. I/O unit where the
727 * corruption starts B, and the previous min. I/O unit A. The
728 * below code tries to deal with a situation when half of B
729 * contains valid nodes or the end of a valid node, and the
730 * second half of B contains corrupted data or garbage. This
731 * means that UBIFS had been writing to B just before the power
732 * cut happened. I do not know how realistic is this scenario
733 * that half of the min. I/O unit had been written successfully
734 * and the other half not, but this is possible in our 'failure
735 * mode emulation' infrastructure at least.
736 *
737 * So what is the problem, why we need to drop those nodes? Why
738 * can't we just clean-up the second half of B by putting a
739 * padding node there? We can, and this works fine with one
740 * exception which was reproduced with power cut emulation
741 * testing and happens extremely rarely.
742 *
743 * Imagine the file-system is full, we run GC which starts
744 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
745 * the current GC head LEB). The @c->gc_lnum is -1, which means
746 * that GC will retain LEB X and will try to continue. Imagine
747 * that LEB X is currently the dirtiest LEB, and the amount of
748 * used space in LEB Y is exactly the same as amount of free
749 * space in LEB X.
750 *
751 * And a power cut happens when nodes are moved from LEB X to
752 * LEB Y. We are here trying to recover LEB Y which is the GC
753 * head LEB. We find the min. I/O unit B as described above.
754 * Then we clean-up LEB Y by padding min. I/O unit. And later
755 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
756 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
757 * does not match because the amount of valid nodes there does
758 * not fit the free space in LEB Y any more! And this is
759 * because of the padding node which we added to LEB Y. The
760 * user-visible effect of this which I once observed and
761 * analysed is that we cannot mount the file-system with
762 * -ENOSPC error.
763 *
764 * So obviously, to make sure that situation does not happen we
765 * should free min. I/O unit B in LEB Y completely and the last
766 * used min. I/O unit in LEB Y should be A. This is basically
767 * what the below code tries to do.
768 */
769 while (offs > min_io_unit)
770 drop_last_node(sleb, &offs);
771 }
772
773 buf = sbuf + offs;
774 len = c->leb_size - offs;
775
776 clean_buf(c, &buf, lnum, &offs, &len);
777 ubifs_end_scan(c, sleb, lnum, offs);
778
779 err = fix_unclean_leb(c, sleb, start);
780 if (err)
781 goto error;
782
783 return sleb;
784
785 corrupted_rescan:
786 /* Re-scan the corrupted data with verbose messages */
787 ubifs_err(c, "corruption %d", ret);
788 ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
789 corrupted:
790 ubifs_scanned_corruption(c, lnum, offs, buf);
791 err = -EUCLEAN;
792 error:
793 ubifs_err(c, "LEB %d scanning failed", lnum);
794 ubifs_scan_destroy(sleb);
795 return ERR_PTR(err);
796 }
797
798 /**
799 * get_cs_sqnum - get commit start sequence number.
800 * @c: UBIFS file-system description object
801 * @lnum: LEB number of commit start node
802 * @offs: offset of commit start node
803 * @cs_sqnum: commit start sequence number is returned here
804 *
805 * This function returns %0 on success and a negative error code on failure.
806 */
get_cs_sqnum(struct ubifs_info * c,int lnum,int offs,unsigned long long * cs_sqnum)807 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
808 unsigned long long *cs_sqnum)
809 {
810 struct ubifs_cs_node *cs_node = NULL;
811 int err, ret;
812
813 dbg_rcvry("at %d:%d", lnum, offs);
814 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
815 if (!cs_node)
816 return -ENOMEM;
817 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
818 goto out_err;
819 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
820 UBIFS_CS_NODE_SZ, 0);
821 if (err && err != -EBADMSG)
822 goto out_free;
823 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
824 if (ret != SCANNED_A_NODE) {
825 ubifs_err(c, "Not a valid node");
826 goto out_err;
827 }
828 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
829 ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type);
830 goto out_err;
831 }
832 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
833 ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
834 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
835 c->cmt_no);
836 goto out_err;
837 }
838 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
839 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
840 kfree(cs_node);
841 return 0;
842
843 out_err:
844 err = -EINVAL;
845 out_free:
846 ubifs_err(c, "failed to get CS sqnum");
847 kfree(cs_node);
848 return err;
849 }
850
851 /**
852 * ubifs_recover_log_leb - scan and recover a log LEB.
853 * @c: UBIFS file-system description object
854 * @lnum: LEB number
855 * @offs: offset
856 * @sbuf: LEB-sized buffer to use
857 *
858 * This function does a scan of a LEB, but caters for errors that might have
859 * been caused by unclean reboots from which we are attempting to recover
860 * (assume that only the last log LEB can be corrupted by an unclean reboot).
861 *
862 * This function returns %0 on success and a negative error code on failure.
863 */
ubifs_recover_log_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf)864 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
865 int offs, void *sbuf)
866 {
867 struct ubifs_scan_leb *sleb;
868 int next_lnum;
869
870 dbg_rcvry("LEB %d", lnum);
871 next_lnum = lnum + 1;
872 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
873 next_lnum = UBIFS_LOG_LNUM;
874 if (next_lnum != c->ltail_lnum) {
875 /*
876 * We can only recover at the end of the log, so check that the
877 * next log LEB is empty or out of date.
878 */
879 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
880 if (IS_ERR(sleb))
881 return sleb;
882 if (sleb->nodes_cnt) {
883 struct ubifs_scan_node *snod;
884 unsigned long long cs_sqnum = c->cs_sqnum;
885
886 snod = list_entry(sleb->nodes.next,
887 struct ubifs_scan_node, list);
888 if (cs_sqnum == 0) {
889 int err;
890
891 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
892 if (err) {
893 ubifs_scan_destroy(sleb);
894 return ERR_PTR(err);
895 }
896 }
897 if (snod->sqnum > cs_sqnum) {
898 ubifs_err(c, "unrecoverable log corruption in LEB %d",
899 lnum);
900 ubifs_scan_destroy(sleb);
901 return ERR_PTR(-EUCLEAN);
902 }
903 }
904 ubifs_scan_destroy(sleb);
905 }
906 return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
907 }
908
909 /**
910 * recover_head - recover a head.
911 * @c: UBIFS file-system description object
912 * @lnum: LEB number of head to recover
913 * @offs: offset of head to recover
914 * @sbuf: LEB-sized buffer to use
915 *
916 * This function ensures that there is no data on the flash at a head location.
917 *
918 * This function returns %0 on success and a negative error code on failure.
919 */
recover_head(struct ubifs_info * c,int lnum,int offs,void * sbuf)920 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
921 {
922 int len = c->max_write_size, err;
923
924 if (offs + len > c->leb_size)
925 len = c->leb_size - offs;
926
927 if (!len)
928 return 0;
929
930 /* Read at the head location and check it is empty flash */
931 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
932 if (err || !is_empty(sbuf, len)) {
933 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
934 if (offs == 0)
935 return ubifs_leb_unmap(c, lnum);
936 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
937 if (err)
938 return err;
939 return ubifs_leb_change(c, lnum, sbuf, offs);
940 }
941
942 return 0;
943 }
944
945 /**
946 * ubifs_recover_inl_heads - recover index and LPT heads.
947 * @c: UBIFS file-system description object
948 * @sbuf: LEB-sized buffer to use
949 *
950 * This function ensures that there is no data on the flash at the index and
951 * LPT head locations.
952 *
953 * This deals with the recovery of a half-completed journal commit. UBIFS is
954 * careful never to overwrite the last version of the index or the LPT. Because
955 * the index and LPT are wandering trees, data from a half-completed commit will
956 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
957 * assumed to be empty and will be unmapped anyway before use, or in the index
958 * and LPT heads.
959 *
960 * This function returns %0 on success and a negative error code on failure.
961 */
ubifs_recover_inl_heads(struct ubifs_info * c,void * sbuf)962 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
963 {
964 int err;
965
966 ubifs_assert(!c->ro_mount || c->remounting_rw);
967
968 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
969 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
970 if (err)
971 return err;
972
973 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
974
975 return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
976 }
977
978 /**
979 * clean_an_unclean_leb - read and write a LEB to remove corruption.
980 * @c: UBIFS file-system description object
981 * @ucleb: unclean LEB information
982 * @sbuf: LEB-sized buffer to use
983 *
984 * This function reads a LEB up to a point pre-determined by the mount recovery,
985 * checks the nodes, and writes the result back to the flash, thereby cleaning
986 * off any following corruption, or non-fatal ECC errors.
987 *
988 * This function returns %0 on success and a negative error code on failure.
989 */
clean_an_unclean_leb(struct ubifs_info * c,struct ubifs_unclean_leb * ucleb,void * sbuf)990 static int clean_an_unclean_leb(struct ubifs_info *c,
991 struct ubifs_unclean_leb *ucleb, void *sbuf)
992 {
993 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
994 void *buf = sbuf;
995
996 dbg_rcvry("LEB %d len %d", lnum, len);
997
998 if (len == 0) {
999 /* Nothing to read, just unmap it */
1000 return ubifs_leb_unmap(c, lnum);
1001 }
1002
1003 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1004 if (err && err != -EBADMSG)
1005 return err;
1006
1007 while (len >= 8) {
1008 int ret;
1009
1010 cond_resched();
1011
1012 /* Scan quietly until there is an error */
1013 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1014
1015 if (ret == SCANNED_A_NODE) {
1016 /* A valid node, and not a padding node */
1017 struct ubifs_ch *ch = buf;
1018 int node_len;
1019
1020 node_len = ALIGN(le32_to_cpu(ch->len), 8);
1021 offs += node_len;
1022 buf += node_len;
1023 len -= node_len;
1024 continue;
1025 }
1026
1027 if (ret > 0) {
1028 /* Padding bytes or a valid padding node */
1029 offs += ret;
1030 buf += ret;
1031 len -= ret;
1032 continue;
1033 }
1034
1035 if (ret == SCANNED_EMPTY_SPACE) {
1036 ubifs_err(c, "unexpected empty space at %d:%d",
1037 lnum, offs);
1038 return -EUCLEAN;
1039 }
1040
1041 if (quiet) {
1042 /* Redo the last scan but noisily */
1043 quiet = 0;
1044 continue;
1045 }
1046
1047 ubifs_scanned_corruption(c, lnum, offs, buf);
1048 return -EUCLEAN;
1049 }
1050
1051 /* Pad to min_io_size */
1052 len = ALIGN(ucleb->endpt, c->min_io_size);
1053 if (len > ucleb->endpt) {
1054 int pad_len = len - ALIGN(ucleb->endpt, 8);
1055
1056 if (pad_len > 0) {
1057 buf = c->sbuf + len - pad_len;
1058 ubifs_pad(c, buf, pad_len);
1059 }
1060 }
1061
1062 /* Write back the LEB atomically */
1063 err = ubifs_leb_change(c, lnum, sbuf, len);
1064 if (err)
1065 return err;
1066
1067 dbg_rcvry("cleaned LEB %d", lnum);
1068
1069 return 0;
1070 }
1071
1072 /**
1073 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1074 * @c: UBIFS file-system description object
1075 * @sbuf: LEB-sized buffer to use
1076 *
1077 * This function cleans a LEB identified during recovery that needs to be
1078 * written but was not because UBIFS was mounted read-only. This happens when
1079 * remounting to read-write mode.
1080 *
1081 * This function returns %0 on success and a negative error code on failure.
1082 */
ubifs_clean_lebs(struct ubifs_info * c,void * sbuf)1083 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1084 {
1085 dbg_rcvry("recovery");
1086 while (!list_empty(&c->unclean_leb_list)) {
1087 struct ubifs_unclean_leb *ucleb;
1088 int err;
1089
1090 ucleb = list_entry(c->unclean_leb_list.next,
1091 struct ubifs_unclean_leb, list);
1092 err = clean_an_unclean_leb(c, ucleb, sbuf);
1093 if (err)
1094 return err;
1095 list_del(&ucleb->list);
1096 kfree(ucleb);
1097 }
1098 return 0;
1099 }
1100
1101 #ifndef __UBOOT__
1102 /**
1103 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1104 * @c: UBIFS file-system description object
1105 *
1106 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1107 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1108 * zero in case of success and a negative error code in case of failure.
1109 */
grab_empty_leb(struct ubifs_info * c)1110 static int grab_empty_leb(struct ubifs_info *c)
1111 {
1112 int lnum, err;
1113
1114 /*
1115 * Note, it is very important to first search for an empty LEB and then
1116 * run the commit, not vice-versa. The reason is that there might be
1117 * only one empty LEB at the moment, the one which has been the
1118 * @c->gc_lnum just before the power cut happened. During the regular
1119 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1120 * one but GC can grab it. But at this moment this single empty LEB is
1121 * not marked as taken, so if we run commit - what happens? Right, the
1122 * commit will grab it and write the index there. Remember that the
1123 * index always expands as long as there is free space, and it only
1124 * starts consolidating when we run out of space.
1125 *
1126 * IOW, if we run commit now, we might not be able to find a free LEB
1127 * after this.
1128 */
1129 lnum = ubifs_find_free_leb_for_idx(c);
1130 if (lnum < 0) {
1131 ubifs_err(c, "could not find an empty LEB");
1132 ubifs_dump_lprops(c);
1133 ubifs_dump_budg(c, &c->bi);
1134 return lnum;
1135 }
1136
1137 /* Reset the index flag */
1138 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1139 LPROPS_INDEX, 0);
1140 if (err)
1141 return err;
1142
1143 c->gc_lnum = lnum;
1144 dbg_rcvry("found empty LEB %d, run commit", lnum);
1145
1146 return ubifs_run_commit(c);
1147 }
1148
1149 /**
1150 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1151 * @c: UBIFS file-system description object
1152 *
1153 * Out-of-place garbage collection requires always one empty LEB with which to
1154 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1155 * written to the master node on unmounting. In the case of an unclean unmount
1156 * the value of gc_lnum recorded in the master node is out of date and cannot
1157 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1158 * However, there may not be enough empty space, in which case it must be
1159 * possible to GC the dirtiest LEB into the GC head LEB.
1160 *
1161 * This function also runs the commit which causes the TNC updates from
1162 * size-recovery and orphans to be written to the flash. That is important to
1163 * ensure correct replay order for subsequent mounts.
1164 *
1165 * This function returns %0 on success and a negative error code on failure.
1166 */
ubifs_rcvry_gc_commit(struct ubifs_info * c)1167 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1168 {
1169 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1170 struct ubifs_lprops lp;
1171 int err;
1172
1173 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1174
1175 c->gc_lnum = -1;
1176 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1177 return grab_empty_leb(c);
1178
1179 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1180 if (err) {
1181 if (err != -ENOSPC)
1182 return err;
1183
1184 dbg_rcvry("could not find a dirty LEB");
1185 return grab_empty_leb(c);
1186 }
1187
1188 ubifs_assert(!(lp.flags & LPROPS_INDEX));
1189 ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1190
1191 /*
1192 * We run the commit before garbage collection otherwise subsequent
1193 * mounts will see the GC and orphan deletion in a different order.
1194 */
1195 dbg_rcvry("committing");
1196 err = ubifs_run_commit(c);
1197 if (err)
1198 return err;
1199
1200 dbg_rcvry("GC'ing LEB %d", lp.lnum);
1201 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1202 err = ubifs_garbage_collect_leb(c, &lp);
1203 if (err >= 0) {
1204 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1205
1206 if (err2)
1207 err = err2;
1208 }
1209 mutex_unlock(&wbuf->io_mutex);
1210 if (err < 0) {
1211 ubifs_err(c, "GC failed, error %d", err);
1212 if (err == -EAGAIN)
1213 err = -EINVAL;
1214 return err;
1215 }
1216
1217 ubifs_assert(err == LEB_RETAINED);
1218 if (err != LEB_RETAINED)
1219 return -EINVAL;
1220
1221 err = ubifs_leb_unmap(c, c->gc_lnum);
1222 if (err)
1223 return err;
1224
1225 dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1226 return 0;
1227 }
1228 #else
ubifs_rcvry_gc_commit(struct ubifs_info * c)1229 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1230 {
1231 return 0;
1232 }
1233 #endif
1234
1235 /**
1236 * struct size_entry - inode size information for recovery.
1237 * @rb: link in the RB-tree of sizes
1238 * @inum: inode number
1239 * @i_size: size on inode
1240 * @d_size: maximum size based on data nodes
1241 * @exists: indicates whether the inode exists
1242 * @inode: inode if pinned in memory awaiting rw mode to fix it
1243 */
1244 struct size_entry {
1245 struct rb_node rb;
1246 ino_t inum;
1247 loff_t i_size;
1248 loff_t d_size;
1249 int exists;
1250 struct inode *inode;
1251 };
1252
1253 /**
1254 * add_ino - add an entry to the size tree.
1255 * @c: UBIFS file-system description object
1256 * @inum: inode number
1257 * @i_size: size on inode
1258 * @d_size: maximum size based on data nodes
1259 * @exists: indicates whether the inode exists
1260 */
add_ino(struct ubifs_info * c,ino_t inum,loff_t i_size,loff_t d_size,int exists)1261 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1262 loff_t d_size, int exists)
1263 {
1264 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1265 struct size_entry *e;
1266
1267 while (*p) {
1268 parent = *p;
1269 e = rb_entry(parent, struct size_entry, rb);
1270 if (inum < e->inum)
1271 p = &(*p)->rb_left;
1272 else
1273 p = &(*p)->rb_right;
1274 }
1275
1276 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1277 if (!e)
1278 return -ENOMEM;
1279
1280 e->inum = inum;
1281 e->i_size = i_size;
1282 e->d_size = d_size;
1283 e->exists = exists;
1284
1285 rb_link_node(&e->rb, parent, p);
1286 rb_insert_color(&e->rb, &c->size_tree);
1287
1288 return 0;
1289 }
1290
1291 /**
1292 * find_ino - find an entry on the size tree.
1293 * @c: UBIFS file-system description object
1294 * @inum: inode number
1295 */
find_ino(struct ubifs_info * c,ino_t inum)1296 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1297 {
1298 struct rb_node *p = c->size_tree.rb_node;
1299 struct size_entry *e;
1300
1301 while (p) {
1302 e = rb_entry(p, struct size_entry, rb);
1303 if (inum < e->inum)
1304 p = p->rb_left;
1305 else if (inum > e->inum)
1306 p = p->rb_right;
1307 else
1308 return e;
1309 }
1310 return NULL;
1311 }
1312
1313 /**
1314 * remove_ino - remove an entry from the size tree.
1315 * @c: UBIFS file-system description object
1316 * @inum: inode number
1317 */
remove_ino(struct ubifs_info * c,ino_t inum)1318 static void remove_ino(struct ubifs_info *c, ino_t inum)
1319 {
1320 struct size_entry *e = find_ino(c, inum);
1321
1322 if (!e)
1323 return;
1324 rb_erase(&e->rb, &c->size_tree);
1325 kfree(e);
1326 }
1327
1328 /**
1329 * ubifs_destroy_size_tree - free resources related to the size tree.
1330 * @c: UBIFS file-system description object
1331 */
ubifs_destroy_size_tree(struct ubifs_info * c)1332 void ubifs_destroy_size_tree(struct ubifs_info *c)
1333 {
1334 struct size_entry *e, *n;
1335
1336 rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1337 if (e->inode)
1338 iput(e->inode);
1339 kfree(e);
1340 }
1341
1342 c->size_tree = RB_ROOT;
1343 }
1344
1345 /**
1346 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1347 * @c: UBIFS file-system description object
1348 * @key: node key
1349 * @deletion: node is for a deletion
1350 * @new_size: inode size
1351 *
1352 * This function has two purposes:
1353 * 1) to ensure there are no data nodes that fall outside the inode size
1354 * 2) to ensure there are no data nodes for inodes that do not exist
1355 * To accomplish those purposes, a rb-tree is constructed containing an entry
1356 * for each inode number in the journal that has not been deleted, and recording
1357 * the size from the inode node, the maximum size of any data node (also altered
1358 * by truncations) and a flag indicating a inode number for which no inode node
1359 * was present in the journal.
1360 *
1361 * Note that there is still the possibility that there are data nodes that have
1362 * been committed that are beyond the inode size, however the only way to find
1363 * them would be to scan the entire index. Alternatively, some provision could
1364 * be made to record the size of inodes at the start of commit, which would seem
1365 * very cumbersome for a scenario that is quite unlikely and the only negative
1366 * consequence of which is wasted space.
1367 *
1368 * This functions returns %0 on success and a negative error code on failure.
1369 */
ubifs_recover_size_accum(struct ubifs_info * c,union ubifs_key * key,int deletion,loff_t new_size)1370 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1371 int deletion, loff_t new_size)
1372 {
1373 ino_t inum = key_inum(c, key);
1374 struct size_entry *e;
1375 int err;
1376
1377 switch (key_type(c, key)) {
1378 case UBIFS_INO_KEY:
1379 if (deletion)
1380 remove_ino(c, inum);
1381 else {
1382 e = find_ino(c, inum);
1383 if (e) {
1384 e->i_size = new_size;
1385 e->exists = 1;
1386 } else {
1387 err = add_ino(c, inum, new_size, 0, 1);
1388 if (err)
1389 return err;
1390 }
1391 }
1392 break;
1393 case UBIFS_DATA_KEY:
1394 e = find_ino(c, inum);
1395 if (e) {
1396 if (new_size > e->d_size)
1397 e->d_size = new_size;
1398 } else {
1399 err = add_ino(c, inum, 0, new_size, 0);
1400 if (err)
1401 return err;
1402 }
1403 break;
1404 case UBIFS_TRUN_KEY:
1405 e = find_ino(c, inum);
1406 if (e)
1407 e->d_size = new_size;
1408 break;
1409 }
1410 return 0;
1411 }
1412
1413 #ifndef __UBOOT__
1414 /**
1415 * fix_size_in_place - fix inode size in place on flash.
1416 * @c: UBIFS file-system description object
1417 * @e: inode size information for recovery
1418 */
fix_size_in_place(struct ubifs_info * c,struct size_entry * e)1419 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1420 {
1421 struct ubifs_ino_node *ino = c->sbuf;
1422 unsigned char *p;
1423 union ubifs_key key;
1424 int err, lnum, offs, len;
1425 loff_t i_size;
1426 uint32_t crc;
1427
1428 /* Locate the inode node LEB number and offset */
1429 ino_key_init(c, &key, e->inum);
1430 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1431 if (err)
1432 goto out;
1433 /*
1434 * If the size recorded on the inode node is greater than the size that
1435 * was calculated from nodes in the journal then don't change the inode.
1436 */
1437 i_size = le64_to_cpu(ino->size);
1438 if (i_size >= e->d_size)
1439 return 0;
1440 /* Read the LEB */
1441 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1442 if (err)
1443 goto out;
1444 /* Change the size field and recalculate the CRC */
1445 ino = c->sbuf + offs;
1446 ino->size = cpu_to_le64(e->d_size);
1447 len = le32_to_cpu(ino->ch.len);
1448 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1449 ino->ch.crc = cpu_to_le32(crc);
1450 /* Work out where data in the LEB ends and free space begins */
1451 p = c->sbuf;
1452 len = c->leb_size - 1;
1453 while (p[len] == 0xff)
1454 len -= 1;
1455 len = ALIGN(len + 1, c->min_io_size);
1456 /* Atomically write the fixed LEB back again */
1457 err = ubifs_leb_change(c, lnum, c->sbuf, len);
1458 if (err)
1459 goto out;
1460 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1461 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1462 return 0;
1463
1464 out:
1465 ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
1466 (unsigned long)e->inum, e->i_size, e->d_size, err);
1467 return err;
1468 }
1469 #endif
1470
1471 /**
1472 * ubifs_recover_size - recover inode size.
1473 * @c: UBIFS file-system description object
1474 *
1475 * This function attempts to fix inode size discrepancies identified by the
1476 * 'ubifs_recover_size_accum()' function.
1477 *
1478 * This functions returns %0 on success and a negative error code on failure.
1479 */
ubifs_recover_size(struct ubifs_info * c)1480 int ubifs_recover_size(struct ubifs_info *c)
1481 {
1482 struct rb_node *this = rb_first(&c->size_tree);
1483
1484 while (this) {
1485 struct size_entry *e;
1486 int err;
1487
1488 e = rb_entry(this, struct size_entry, rb);
1489 if (!e->exists) {
1490 union ubifs_key key;
1491
1492 ino_key_init(c, &key, e->inum);
1493 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1494 if (err && err != -ENOENT)
1495 return err;
1496 if (err == -ENOENT) {
1497 /* Remove data nodes that have no inode */
1498 dbg_rcvry("removing ino %lu",
1499 (unsigned long)e->inum);
1500 err = ubifs_tnc_remove_ino(c, e->inum);
1501 if (err)
1502 return err;
1503 } else {
1504 struct ubifs_ino_node *ino = c->sbuf;
1505
1506 e->exists = 1;
1507 e->i_size = le64_to_cpu(ino->size);
1508 }
1509 }
1510
1511 if (e->exists && e->i_size < e->d_size) {
1512 if (c->ro_mount) {
1513 /* Fix the inode size and pin it in memory */
1514 struct inode *inode;
1515 struct ubifs_inode *ui;
1516
1517 ubifs_assert(!e->inode);
1518
1519 inode = ubifs_iget(c->vfs_sb, e->inum);
1520 if (IS_ERR(inode))
1521 return PTR_ERR(inode);
1522
1523 ui = ubifs_inode(inode);
1524 if (inode->i_size < e->d_size) {
1525 dbg_rcvry("ino %lu size %lld -> %lld",
1526 (unsigned long)e->inum,
1527 inode->i_size, e->d_size);
1528 inode->i_size = e->d_size;
1529 ui->ui_size = e->d_size;
1530 ui->synced_i_size = e->d_size;
1531 e->inode = inode;
1532 this = rb_next(this);
1533 continue;
1534 }
1535 iput(inode);
1536 #ifndef __UBOOT__
1537 } else {
1538 /* Fix the size in place */
1539 err = fix_size_in_place(c, e);
1540 if (err)
1541 return err;
1542 if (e->inode)
1543 iput(e->inode);
1544 #endif
1545 }
1546 }
1547
1548 this = rb_next(this);
1549 rb_erase(&e->rb, &c->size_tree);
1550 kfree(e);
1551 }
1552
1553 return 0;
1554 }
1555