• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_S390
8 
9 #include "src/assembler-inl.h"
10 #include "src/base/bits.h"
11 #include "src/code-stubs.h"
12 #include "src/log.h"
13 #include "src/macro-assembler.h"
14 #include "src/regexp/regexp-macro-assembler.h"
15 #include "src/regexp/regexp-stack.h"
16 #include "src/regexp/s390/regexp-macro-assembler-s390.h"
17 #include "src/unicode.h"
18 
19 namespace v8 {
20 namespace internal {
21 
22 #ifndef V8_INTERPRETED_REGEXP
23 /*
24  * This assembler uses the following register assignment convention
25  * - r6: Temporarily stores the index of capture start after a matching pass
26  *        for a global regexp.
27  * - r7: Pointer to current code object (Code*) including heap object tag.
28  * - r8: Current position in input, as negative offset from end of string.
29  *        Please notice that this is the byte offset, not the character offset!
30  * - r9: Currently loaded character. Must be loaded using
31  *        LoadCurrentCharacter before using any of the dispatch methods.
32  * - r13: Points to tip of backtrack stack
33  * - r10: End of input (points to byte after last character in input).
34  * - r11: Frame pointer. Used to access arguments, local variables and
35  *         RegExp registers.
36  * - r12: IP register, used by assembler. Very volatile.
37  * - r15/sp : Points to tip of C stack.
38  *
39  * The remaining registers are free for computations.
40  * Each call to a public method should retain this convention.
41  *
42  * The stack will have the following structure:
43  *  - fp[108] Isolate* isolate   (address of the current isolate)
44  *  - fp[104] direct_call        (if 1, direct call from JavaScript code,
45  *                                if 0, call through the runtime system).
46  *  - fp[100] stack_area_base    (high end of the memory area to use as
47  *                                backtracking stack).
48  *  - fp[96]  capture array size (may fit multiple sets of matches)
49  *  - fp[0..96] zLinux ABI register saving area
50  *  --- sp when called ---
51  *  --- frame pointer ----
52  *  - fp[-4]  direct_call        (if 1, direct call from JavaScript code,
53  *                                if 0, call through the runtime system).
54  *  - fp[-8]  stack_area_base    (high end of the memory area to use as
55  *                                backtracking stack).
56  *  - fp[-12] capture array size (may fit multiple sets of matches)
57  *  - fp[-16] int* capture_array (int[num_saved_registers_], for output).
58  *  - fp[-20] end of input       (address of end of string).
59  *  - fp[-24] start of input     (address of first character in string).
60  *  - fp[-28] start index        (character index of start).
61  *  - fp[-32] void* input_string (location of a handle containing the string).
62  *  - fp[-36] success counter    (only for global regexps to count matches).
63  *  - fp[-40] Offset of location before start of input (effectively character
64  *            string start - 1). Used to initialize capture registers to a
65  *            non-position.
66  *  - fp[-44] At start (if 1, we are starting at the start of the
67  *    string, otherwise 0)
68  *  - fp[-48] register 0         (Only positions must be stored in the first
69  *  -         register 1          num_saved_registers_ registers)
70  *  -         ...
71  *  -         register num_registers-1
72  *  --- sp ---
73  *
74  * The first num_saved_registers_ registers are initialized to point to
75  * "character -1" in the string (i.e., char_size() bytes before the first
76  * character of the string). The remaining registers start out as garbage.
77  *
78  * The data up to the return address must be placed there by the calling
79  * code and the remaining arguments are passed in registers, e.g. by calling the
80  * code entry as cast to a function with the signature:
81  * int (*match)(String* input_string,
82  *              int start_index,
83  *              Address start,
84  *              Address end,
85  *              int* capture_output_array,
86  *              int num_capture_registers,
87  *              byte* stack_area_base,
88  *              bool direct_call = false,
89  *              Isolate* isolate);
90  * The call is performed by NativeRegExpMacroAssembler::Execute()
91  * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
92  */
93 
94 #define __ ACCESS_MASM(masm_)
95 
RegExpMacroAssemblerS390(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)96 RegExpMacroAssemblerS390::RegExpMacroAssemblerS390(Isolate* isolate, Zone* zone,
97                                                    Mode mode,
98                                                    int registers_to_save)
99     : NativeRegExpMacroAssembler(isolate, zone),
100       masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize,
101                                CodeObjectRequired::kYes)),
102       mode_(mode),
103       num_registers_(registers_to_save),
104       num_saved_registers_(registers_to_save),
105       entry_label_(),
106       start_label_(),
107       success_label_(),
108       backtrack_label_(),
109       exit_label_(),
110       internal_failure_label_() {
111   DCHECK_EQ(0, registers_to_save % 2);
112 
113   __ b(&entry_label_);  // We'll write the entry code later.
114   // If the code gets too big or corrupted, an internal exception will be
115   // raised, and we will exit right away.
116   __ bind(&internal_failure_label_);
117   __ LoadImmP(r2, Operand(FAILURE));
118   __ Ret();
119   __ bind(&start_label_);  // And then continue from here.
120 }
121 
~RegExpMacroAssemblerS390()122 RegExpMacroAssemblerS390::~RegExpMacroAssemblerS390() {
123   delete masm_;
124   // Unuse labels in case we throw away the assembler without calling GetCode.
125   entry_label_.Unuse();
126   start_label_.Unuse();
127   success_label_.Unuse();
128   backtrack_label_.Unuse();
129   exit_label_.Unuse();
130   check_preempt_label_.Unuse();
131   stack_overflow_label_.Unuse();
132   internal_failure_label_.Unuse();
133 }
134 
stack_limit_slack()135 int RegExpMacroAssemblerS390::stack_limit_slack() {
136   return RegExpStack::kStackLimitSlack;
137 }
138 
AdvanceCurrentPosition(int by)139 void RegExpMacroAssemblerS390::AdvanceCurrentPosition(int by) {
140   if (by != 0) {
141     __ AddP(current_input_offset(), Operand(by * char_size()));
142   }
143 }
144 
AdvanceRegister(int reg,int by)145 void RegExpMacroAssemblerS390::AdvanceRegister(int reg, int by) {
146   DCHECK_LE(0, reg);
147   DCHECK_GT(num_registers_, reg);
148   if (by != 0) {
149     if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT) && is_int8(by)) {
150       __ AddMI(register_location(reg), Operand(by));
151     } else {
152       __ LoadP(r2, register_location(reg), r0);
153       __ mov(r0, Operand(by));
154       __ AddRR(r2, r0);
155       __ StoreP(r2, register_location(reg));
156     }
157   }
158 }
159 
Backtrack()160 void RegExpMacroAssemblerS390::Backtrack() {
161   CheckPreemption();
162   // Pop Code* offset from backtrack stack, add Code* and jump to location.
163   Pop(r2);
164   __ AddP(r2, code_pointer());
165   __ b(r2);
166 }
167 
Bind(Label * label)168 void RegExpMacroAssemblerS390::Bind(Label* label) { __ bind(label); }
169 
CheckCharacter(uint32_t c,Label * on_equal)170 void RegExpMacroAssemblerS390::CheckCharacter(uint32_t c, Label* on_equal) {
171   __ CmpLogicalP(current_character(), Operand(c));
172   BranchOrBacktrack(eq, on_equal);
173 }
174 
CheckCharacterGT(uc16 limit,Label * on_greater)175 void RegExpMacroAssemblerS390::CheckCharacterGT(uc16 limit, Label* on_greater) {
176   __ CmpLogicalP(current_character(), Operand(limit));
177   BranchOrBacktrack(gt, on_greater);
178 }
179 
CheckAtStart(Label * on_at_start)180 void RegExpMacroAssemblerS390::CheckAtStart(Label* on_at_start) {
181   __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
182   __ AddP(r2, current_input_offset(), Operand(-char_size()));
183   __ CmpP(r2, r3);
184   BranchOrBacktrack(eq, on_at_start);
185 }
186 
CheckNotAtStart(int cp_offset,Label * on_not_at_start)187 void RegExpMacroAssemblerS390::CheckNotAtStart(int cp_offset,
188                                                Label* on_not_at_start) {
189   __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
190   __ AddP(r2, current_input_offset(),
191           Operand(-char_size() + cp_offset * char_size()));
192   __ CmpP(r2, r3);
193   BranchOrBacktrack(ne, on_not_at_start);
194 }
195 
CheckCharacterLT(uc16 limit,Label * on_less)196 void RegExpMacroAssemblerS390::CheckCharacterLT(uc16 limit, Label* on_less) {
197   __ CmpLogicalP(current_character(), Operand(limit));
198   BranchOrBacktrack(lt, on_less);
199 }
200 
CheckGreedyLoop(Label * on_equal)201 void RegExpMacroAssemblerS390::CheckGreedyLoop(Label* on_equal) {
202   Label backtrack_non_equal;
203   __ CmpP(current_input_offset(), MemOperand(backtrack_stackpointer(), 0));
204   __ bne(&backtrack_non_equal);
205   __ AddP(backtrack_stackpointer(), Operand(kPointerSize));
206 
207   BranchOrBacktrack(al, on_equal);
208   __ bind(&backtrack_non_equal);
209 }
210 
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,bool unicode,Label * on_no_match)211 void RegExpMacroAssemblerS390::CheckNotBackReferenceIgnoreCase(
212     int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
213   Label fallthrough;
214   __ LoadP(r2, register_location(start_reg));      // Index of start of
215                                                    // capture
216   __ LoadP(r3, register_location(start_reg + 1));  // Index of end
217   __ SubP(r3, r3, r2);
218 
219   // At this point, the capture registers are either both set or both cleared.
220   // If the capture length is zero, then the capture is either empty or cleared.
221   // Fall through in both cases.
222   __ beq(&fallthrough);
223 
224   // Check that there are enough characters left in the input.
225   if (read_backward) {
226     __ LoadP(r5, MemOperand(frame_pointer(), kStringStartMinusOne));
227     __ AddP(r5, r5, r3);
228     __ CmpP(current_input_offset(), r5);
229     BranchOrBacktrack(le, on_no_match);
230   } else {
231     __ AddP(r0, r3, current_input_offset());
232     BranchOrBacktrack(gt, on_no_match);
233   }
234 
235   if (mode_ == LATIN1) {
236     Label success;
237     Label fail;
238     Label loop_check;
239 
240     // r2 - offset of start of capture
241     // r3 - length of capture
242     __ AddP(r2, end_of_input_address());
243     __ AddP(r4, current_input_offset(), end_of_input_address());
244     if (read_backward) {
245       __ SubP(r4, r4, r3);  // Offset by length when matching backwards.
246     }
247     __ mov(r1, Operand::Zero());
248 
249     // r1 - Loop index
250     // r2 - Address of start of capture.
251     // r4 - Address of current input position.
252 
253     Label loop;
254     __ bind(&loop);
255     __ LoadlB(r5, MemOperand(r2, r1));
256     __ LoadlB(r6, MemOperand(r4, r1));
257 
258     __ CmpP(r6, r5);
259     __ beq(&loop_check);
260 
261     // Mismatch, try case-insensitive match (converting letters to lower-case).
262     __ Or(r5, Operand(0x20));  // Convert capture character to lower-case.
263     __ Or(r6, Operand(0x20));  // Also convert input character.
264     __ CmpP(r6, r5);
265     __ bne(&fail);
266     __ SubP(r5, Operand('a'));
267     __ CmpLogicalP(r5, Operand('z' - 'a'));  // Is r5 a lowercase letter?
268     __ ble(&loop_check);                     // In range 'a'-'z'.
269     // Latin-1: Check for values in range [224,254] but not 247.
270     __ SubP(r5, Operand(224 - 'a'));
271     __ CmpLogicalP(r5, Operand(254 - 224));
272     __ bgt(&fail);                           // Weren't Latin-1 letters.
273     __ CmpLogicalP(r5, Operand(247 - 224));  // Check for 247.
274     __ beq(&fail);
275 
276     __ bind(&loop_check);
277     __ la(r1, MemOperand(r1, char_size()));
278     __ CmpP(r1, r3);
279     __ blt(&loop);
280     __ b(&success);
281 
282     __ bind(&fail);
283     BranchOrBacktrack(al, on_no_match);
284 
285     __ bind(&success);
286     // Compute new value of character position after the matched part.
287     __ SubP(current_input_offset(), r4, end_of_input_address());
288     if (read_backward) {
289       __ LoadP(r2, register_location(start_reg));  // Index of start of capture
290       __ LoadP(r3,
291                register_location(start_reg + 1));  // Index of end of capture
292       __ AddP(current_input_offset(), current_input_offset(), r2);
293       __ SubP(current_input_offset(), current_input_offset(), r3);
294     }
295     __ AddP(current_input_offset(), r1);
296   } else {
297     DCHECK(mode_ == UC16);
298     int argument_count = 4;
299     __ PrepareCallCFunction(argument_count, r4);
300 
301     // r2 - offset of start of capture
302     // r3 - length of capture
303 
304     // Put arguments into arguments registers.
305     // Parameters are
306     //   r2: Address byte_offset1 - Address captured substring's start.
307     //   r3: Address byte_offset2 - Address of current character position.
308     //   r4: size_t byte_length - length of capture in bytes(!)
309     //   r5: Isolate* isolate or 0 if unicode flag.
310 
311     // Address of start of capture.
312     __ AddP(r2, end_of_input_address());
313     // Length of capture.
314     __ LoadRR(r4, r3);
315     // Save length in callee-save register for use on return.
316     __ LoadRR(r6, r3);
317     // Address of current input position.
318     __ AddP(r3, current_input_offset(), end_of_input_address());
319     if (read_backward) {
320       __ SubP(r3, r3, r6);
321     }
322 // Isolate.
323 #ifdef V8_INTL_SUPPORT
324     if (unicode) {
325       __ LoadImmP(r5, Operand::Zero());
326     } else  // NOLINT
327 #endif      // V8_INTL_SUPPORT
328     {
329       __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
330     }
331 
332     {
333       AllowExternalCallThatCantCauseGC scope(masm_);
334       ExternalReference function =
335           ExternalReference::re_case_insensitive_compare_uc16(isolate());
336       __ CallCFunction(function, argument_count);
337     }
338 
339     // Check if function returned non-zero for success or zero for failure.
340     __ CmpP(r2, Operand::Zero());
341     BranchOrBacktrack(eq, on_no_match);
342 
343     // On success, advance position by length of capture.
344     if (read_backward) {
345       __ SubP(current_input_offset(), current_input_offset(), r6);
346     } else {
347       __ AddP(current_input_offset(), current_input_offset(), r6);
348     }
349   }
350 
351   __ bind(&fallthrough);
352 }
353 
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)354 void RegExpMacroAssemblerS390::CheckNotBackReference(int start_reg,
355                                                      bool read_backward,
356                                                      Label* on_no_match) {
357   Label fallthrough;
358   Label success;
359 
360   // Find length of back-referenced capture.
361   __ LoadP(r2, register_location(start_reg));
362   __ LoadP(r3, register_location(start_reg + 1));
363   __ SubP(r3, r3, r2);  // Length to check.
364 
365   // At this point, the capture registers are either both set or both cleared.
366   // If the capture length is zero, then the capture is either empty or cleared.
367   // Fall through in both cases.
368   __ beq(&fallthrough);
369 
370   // Check that there are enough characters left in the input.
371   if (read_backward) {
372     __ LoadP(r5, MemOperand(frame_pointer(), kStringStartMinusOne));
373     __ AddP(r5, r5, r3);
374     __ CmpP(current_input_offset(), r5);
375     BranchOrBacktrack(le, on_no_match);
376   } else {
377     __ AddP(r0, r3, current_input_offset());
378     BranchOrBacktrack(gt, on_no_match, cr0);
379   }
380 
381   // r2 - offset of start of capture
382   // r3 - length of capture
383   __ la(r2, MemOperand(r2, end_of_input_address()));
384   __ la(r4, MemOperand(current_input_offset(), end_of_input_address()));
385   if (read_backward) {
386     __ SubP(r4, r4, r3);  // Offset by length when matching backwards.
387   }
388   __ mov(r1, Operand::Zero());
389 
390   Label loop;
391   __ bind(&loop);
392   if (mode_ == LATIN1) {
393     __ LoadlB(r5, MemOperand(r2, r1));
394     __ LoadlB(r6, MemOperand(r4, r1));
395   } else {
396     DCHECK(mode_ == UC16);
397     __ LoadLogicalHalfWordP(r5, MemOperand(r2, r1));
398     __ LoadLogicalHalfWordP(r6, MemOperand(r4, r1));
399   }
400   __ la(r1, MemOperand(r1, char_size()));
401   __ CmpP(r5, r6);
402   BranchOrBacktrack(ne, on_no_match);
403   __ CmpP(r1, r3);
404   __ blt(&loop);
405 
406   // Move current character position to position after match.
407   __ SubP(current_input_offset(), r4, end_of_input_address());
408   if (read_backward) {
409     __ LoadP(r2, register_location(start_reg));  // Index of start of capture
410     __ LoadP(r3, register_location(start_reg + 1));  // Index of end of capture
411     __ AddP(current_input_offset(), current_input_offset(), r2);
412     __ SubP(current_input_offset(), current_input_offset(), r3);
413   }
414   __ AddP(current_input_offset(), r1);
415 
416   __ bind(&fallthrough);
417 }
418 
CheckNotCharacter(unsigned c,Label * on_not_equal)419 void RegExpMacroAssemblerS390::CheckNotCharacter(unsigned c,
420                                                  Label* on_not_equal) {
421   __ CmpLogicalP(current_character(), Operand(c));
422   BranchOrBacktrack(ne, on_not_equal);
423 }
424 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)425 void RegExpMacroAssemblerS390::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
426                                                       Label* on_equal) {
427   __ AndP(r2, current_character(), Operand(mask));
428   if (c != 0) {
429     __ CmpLogicalP(r2, Operand(c));
430   }
431   BranchOrBacktrack(eq, on_equal);
432 }
433 
CheckNotCharacterAfterAnd(unsigned c,unsigned mask,Label * on_not_equal)434 void RegExpMacroAssemblerS390::CheckNotCharacterAfterAnd(unsigned c,
435                                                          unsigned mask,
436                                                          Label* on_not_equal) {
437   __ AndP(r2, current_character(), Operand(mask));
438   if (c != 0) {
439     __ CmpLogicalP(r2, Operand(c));
440   }
441   BranchOrBacktrack(ne, on_not_equal);
442 }
443 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)444 void RegExpMacroAssemblerS390::CheckNotCharacterAfterMinusAnd(
445     uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
446   DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
447   __ lay(r2, MemOperand(current_character(), -minus));
448   __ And(r2, Operand(mask));
449   if (c != 0) {
450     __ CmpLogicalP(r2, Operand(c));
451   }
452   BranchOrBacktrack(ne, on_not_equal);
453 }
454 
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)455 void RegExpMacroAssemblerS390::CheckCharacterInRange(uc16 from, uc16 to,
456                                                      Label* on_in_range) {
457   __ lay(r2, MemOperand(current_character(), -from));
458   __ CmpLogicalP(r2, Operand(to - from));
459   BranchOrBacktrack(le, on_in_range);  // Unsigned lower-or-same condition.
460 }
461 
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)462 void RegExpMacroAssemblerS390::CheckCharacterNotInRange(
463     uc16 from, uc16 to, Label* on_not_in_range) {
464   __ lay(r2, MemOperand(current_character(), -from));
465   __ CmpLogicalP(r2, Operand(to - from));
466   BranchOrBacktrack(gt, on_not_in_range);  // Unsigned higher condition.
467 }
468 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)469 void RegExpMacroAssemblerS390::CheckBitInTable(Handle<ByteArray> table,
470                                                Label* on_bit_set) {
471   __ mov(r2, Operand(table));
472   Register index = current_character();
473   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
474     __ AndP(r3, current_character(), Operand(kTableSize - 1));
475     index = r3;
476   }
477   __ LoadlB(r2,
478             MemOperand(r2, index, (ByteArray::kHeaderSize - kHeapObjectTag)));
479   __ CmpP(r2, Operand::Zero());
480   BranchOrBacktrack(ne, on_bit_set);
481 }
482 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)483 bool RegExpMacroAssemblerS390::CheckSpecialCharacterClass(uc16 type,
484                                                           Label* on_no_match) {
485   // Range checks (c in min..max) are generally implemented by an unsigned
486   // (c - min) <= (max - min) check
487   switch (type) {
488     case 's':
489       // Match space-characters
490       if (mode_ == LATIN1) {
491         // One byte space characters are '\t'..'\r', ' ' and \u00a0.
492         Label success;
493         __ CmpP(current_character(), Operand(' '));
494         __ beq(&success);
495         // Check range 0x09..0x0D
496         __ SubP(r2, current_character(), Operand('\t'));
497         __ CmpLogicalP(r2, Operand('\r' - '\t'));
498         __ ble(&success);
499         // \u00a0 (NBSP).
500         __ CmpLogicalP(r2, Operand(0x00A0 - '\t'));
501         BranchOrBacktrack(ne, on_no_match);
502         __ bind(&success);
503         return true;
504       }
505       return false;
506     case 'S':
507       // The emitted code for generic character classes is good enough.
508       return false;
509     case 'd':
510       // Match ASCII digits ('0'..'9')
511       __ SubP(r2, current_character(), Operand('0'));
512       __ CmpLogicalP(r2, Operand('9' - '0'));
513       BranchOrBacktrack(gt, on_no_match);
514       return true;
515     case 'D':
516       // Match non ASCII-digits
517       __ SubP(r2, current_character(), Operand('0'));
518       __ CmpLogicalP(r2, Operand('9' - '0'));
519       BranchOrBacktrack(le, on_no_match);
520       return true;
521     case '.': {
522       // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
523       __ XorP(r2, current_character(), Operand(0x01));
524       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
525       __ SubP(r2, Operand(0x0B));
526       __ CmpLogicalP(r2, Operand(0x0C - 0x0B));
527       BranchOrBacktrack(le, on_no_match);
528       if (mode_ == UC16) {
529         // Compare original value to 0x2028 and 0x2029, using the already
530         // computed (current_char ^ 0x01 - 0x0B). I.e., check for
531         // 0x201D (0x2028 - 0x0B) or 0x201E.
532         __ SubP(r2, Operand(0x2028 - 0x0B));
533         __ CmpLogicalP(r2, Operand(1));
534         BranchOrBacktrack(le, on_no_match);
535       }
536       return true;
537     }
538     case 'n': {
539       // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
540       __ XorP(r2, current_character(), Operand(0x01));
541       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
542       __ SubP(r2, Operand(0x0B));
543       __ CmpLogicalP(r2, Operand(0x0C - 0x0B));
544       if (mode_ == LATIN1) {
545         BranchOrBacktrack(gt, on_no_match);
546       } else {
547         Label done;
548         __ ble(&done);
549         // Compare original value to 0x2028 and 0x2029, using the already
550         // computed (current_char ^ 0x01 - 0x0B). I.e., check for
551         // 0x201D (0x2028 - 0x0B) or 0x201E.
552         __ SubP(r2, Operand(0x2028 - 0x0B));
553         __ CmpLogicalP(r2, Operand(1));
554         BranchOrBacktrack(gt, on_no_match);
555         __ bind(&done);
556       }
557       return true;
558     }
559     case 'w': {
560       if (mode_ != LATIN1) {
561         // Table is 1256 entries, so all LATIN1 characters can be tested.
562         __ CmpP(current_character(), Operand('z'));
563         BranchOrBacktrack(gt, on_no_match);
564       }
565       ExternalReference map =
566           ExternalReference::re_word_character_map(isolate());
567       __ mov(r2, Operand(map));
568       __ LoadlB(r2, MemOperand(r2, current_character()));
569       __ CmpLogicalP(r2, Operand::Zero());
570       BranchOrBacktrack(eq, on_no_match);
571       return true;
572     }
573     case 'W': {
574       Label done;
575       if (mode_ != LATIN1) {
576         // Table is 256 entries, so all LATIN characters can be tested.
577         __ CmpLogicalP(current_character(), Operand('z'));
578         __ bgt(&done);
579       }
580       ExternalReference map =
581           ExternalReference::re_word_character_map(isolate());
582       __ mov(r2, Operand(map));
583       __ LoadlB(r2, MemOperand(r2, current_character()));
584       __ CmpLogicalP(r2, Operand::Zero());
585       BranchOrBacktrack(ne, on_no_match);
586       if (mode_ != LATIN1) {
587         __ bind(&done);
588       }
589       return true;
590     }
591     case '*':
592       // Match any character.
593       return true;
594     // No custom implementation (yet): s(UC16), S(UC16).
595     default:
596       return false;
597   }
598 }
599 
Fail()600 void RegExpMacroAssemblerS390::Fail() {
601   __ LoadImmP(r2, Operand(FAILURE));
602   __ b(&exit_label_);
603 }
604 
GetCode(Handle<String> source)605 Handle<HeapObject> RegExpMacroAssemblerS390::GetCode(Handle<String> source) {
606   Label return_r2;
607 
608   // Finalize code - write the entry point code now we know how many
609   // registers we need.
610 
611   // Entry code:
612   __ bind(&entry_label_);
613 
614   // Tell the system that we have a stack frame.  Because the type
615   // is MANUAL, no is generated.
616   FrameScope scope(masm_, StackFrame::MANUAL);
617 
618   // Ensure register assigments are consistent with callee save mask
619   DCHECK(r6.bit() & kRegExpCalleeSaved);
620   DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
621   DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
622   DCHECK(current_character().bit() & kRegExpCalleeSaved);
623   DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
624   DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
625   DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
626 
627   // zLinux ABI
628   //    Incoming parameters:
629   //          r2: input_string
630   //          r3: start_index
631   //          r4: start addr
632   //          r5: end addr
633   //          r6: capture output arrray
634   //    Requires us to save the callee-preserved registers r6-r13
635   //    General convention is to also save r14 (return addr) and
636   //    sp/r15 as well in a single STM/STMG
637   __ StoreMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize));
638 
639   // Load stack parameters from caller stack frame
640   __ LoadMultipleP(r7, r9,
641                    MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
642   // r7 = capture array size
643   // r8 = stack area base
644   // r9 = direct call
645 
646   // Actually emit code to start a new stack frame.
647   // Push arguments
648   // Save callee-save registers.
649   // Start new stack frame.
650   // Store link register in existing stack-cell.
651   // Order here should correspond to order of offset constants in header file.
652   //
653   // Set frame pointer in space for it if this is not a direct call
654   // from generated code.
655   __ LoadRR(frame_pointer(), sp);
656   __ lay(sp, MemOperand(sp, -10 * kPointerSize));
657   __ mov(r1, Operand::Zero());  // success counter
658   __ LoadRR(r0, r1);            // offset of location
659   __ StoreMultipleP(r0, r9, MemOperand(sp, 0));
660 
661   // Check if we have space on the stack for registers.
662   Label stack_limit_hit;
663   Label stack_ok;
664 
665   ExternalReference stack_limit =
666       ExternalReference::address_of_stack_limit(isolate());
667   __ mov(r2, Operand(stack_limit));
668   __ LoadP(r2, MemOperand(r2));
669   __ SubP(r2, sp, r2);
670   // Handle it if the stack pointer is already below the stack limit.
671   __ ble(&stack_limit_hit);
672   // Check if there is room for the variable number of registers above
673   // the stack limit.
674   __ CmpLogicalP(r2, Operand(num_registers_ * kPointerSize));
675   __ bge(&stack_ok);
676   // Exit with OutOfMemory exception. There is not enough space on the stack
677   // for our working registers.
678   __ mov(r2, Operand(EXCEPTION));
679   __ b(&return_r2);
680 
681   __ bind(&stack_limit_hit);
682   CallCheckStackGuardState(r2);
683   __ CmpP(r2, Operand::Zero());
684   // If returned value is non-zero, we exit with the returned value as result.
685   __ bne(&return_r2);
686 
687   __ bind(&stack_ok);
688 
689   // Allocate space on stack for registers.
690   __ lay(sp, MemOperand(sp, (-num_registers_ * kPointerSize)));
691   // Load string end.
692   __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
693   // Load input start.
694   __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
695   // Find negative length (offset of start relative to end).
696   __ SubP(current_input_offset(), r4, end_of_input_address());
697   __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
698   // Set r1 to address of char before start of the input string
699   // (effectively string position -1).
700   __ LoadRR(r1, r4);
701   __ SubP(r1, current_input_offset(), Operand(char_size()));
702   if (mode_ == UC16) {
703     __ ShiftLeftP(r0, r3, Operand(1));
704     __ SubP(r1, r1, r0);
705   } else {
706     __ SubP(r1, r1, r3);
707   }
708   // Store this value in a local variable, for use when clearing
709   // position registers.
710   __ StoreP(r1, MemOperand(frame_pointer(), kStringStartMinusOne));
711 
712   // Initialize code pointer register
713   __ mov(code_pointer(), Operand(masm_->CodeObject()));
714 
715   Label load_char_start_regexp, start_regexp;
716   // Load newline if index is at start, previous character otherwise.
717   __ CmpP(r3, Operand::Zero());
718   __ bne(&load_char_start_regexp);
719   __ mov(current_character(), Operand('\n'));
720   __ b(&start_regexp);
721 
722   // Global regexp restarts matching here.
723   __ bind(&load_char_start_regexp);
724   // Load previous char as initial value of current character register.
725   LoadCurrentCharacterUnchecked(-1, 1);
726   __ bind(&start_regexp);
727 
728   // Initialize on-stack registers.
729   if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
730     // Fill saved registers with initial value = start offset - 1
731     if (num_saved_registers_ > 8) {
732       // One slot beyond address of register 0.
733       __ lay(r3, MemOperand(frame_pointer(), kRegisterZero + kPointerSize));
734       __ LoadImmP(r4, Operand(num_saved_registers_));
735       Label init_loop;
736       __ bind(&init_loop);
737       __ StoreP(r1, MemOperand(r3, -kPointerSize));
738       __ lay(r3, MemOperand(r3, -kPointerSize));
739       __ BranchOnCount(r4, &init_loop);
740     } else {
741       for (int i = 0; i < num_saved_registers_; i++) {
742         __ StoreP(r1, register_location(i));
743       }
744     }
745   }
746 
747   // Initialize backtrack stack pointer.
748   __ LoadP(backtrack_stackpointer(),
749            MemOperand(frame_pointer(), kStackHighEnd));
750 
751   __ b(&start_label_);
752 
753   // Exit code:
754   if (success_label_.is_linked()) {
755     // Save captures when successful.
756     __ bind(&success_label_);
757     if (num_saved_registers_ > 0) {
758       // copy captures to output
759       __ LoadP(r0, MemOperand(frame_pointer(), kInputStart));
760       __ LoadP(r2, MemOperand(frame_pointer(), kRegisterOutput));
761       __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
762       __ SubP(r0, end_of_input_address(), r0);
763       // r0 is length of input in bytes.
764       if (mode_ == UC16) {
765         __ ShiftRightP(r0, r0, Operand(1));
766       }
767       // r0 is length of input in characters.
768       __ AddP(r0, r4);
769       // r0 is length of string in characters.
770 
771       DCHECK_EQ(0, num_saved_registers_ % 2);
772       // Always an even number of capture registers. This allows us to
773       // unroll the loop once to add an operation between a load of a register
774       // and the following use of that register.
775       __ lay(r2, MemOperand(r2, num_saved_registers_ * kIntSize));
776       for (int i = 0; i < num_saved_registers_;) {
777         if ((false) && i < num_saved_registers_ - 4) {
778           // TODO(john.yan): Can be optimized by SIMD instructions
779           __ LoadMultipleP(r3, r6, register_location(i + 3));
780           if (mode_ == UC16) {
781             __ ShiftRightArithP(r3, r3, Operand(1));
782             __ ShiftRightArithP(r4, r4, Operand(1));
783             __ ShiftRightArithP(r5, r5, Operand(1));
784             __ ShiftRightArithP(r6, r6, Operand(1));
785           }
786           __ AddP(r3, r0);
787           __ AddP(r4, r0);
788           __ AddP(r5, r0);
789           __ AddP(r6, r0);
790           __ StoreW(r3,
791                     MemOperand(r2, -(num_saved_registers_ - i - 3) * kIntSize));
792           __ StoreW(r4,
793                     MemOperand(r2, -(num_saved_registers_ - i - 2) * kIntSize));
794           __ StoreW(r5,
795                     MemOperand(r2, -(num_saved_registers_ - i - 1) * kIntSize));
796           __ StoreW(r6, MemOperand(r2, -(num_saved_registers_ - i) * kIntSize));
797           i += 4;
798         } else {
799           __ LoadMultipleP(r3, r4, register_location(i + 1));
800           if (mode_ == UC16) {
801             __ ShiftRightArithP(r3, r3, Operand(1));
802             __ ShiftRightArithP(r4, r4, Operand(1));
803           }
804           __ AddP(r3, r0);
805           __ AddP(r4, r0);
806           __ StoreW(r3,
807                     MemOperand(r2, -(num_saved_registers_ - i - 1) * kIntSize));
808           __ StoreW(r4, MemOperand(r2, -(num_saved_registers_ - i) * kIntSize));
809           i += 2;
810         }
811       }
812       if (global_with_zero_length_check()) {
813         // Keep capture start in r6 for the zero-length check later.
814         __ LoadP(r6, register_location(0));
815       }
816     }
817 
818     if (global()) {
819       // Restart matching if the regular expression is flagged as global.
820       __ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
821       __ LoadP(r3, MemOperand(frame_pointer(), kNumOutputRegisters));
822       __ LoadP(r4, MemOperand(frame_pointer(), kRegisterOutput));
823       // Increment success counter.
824       __ AddP(r2, Operand(1));
825       __ StoreP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
826       // Capture results have been stored, so the number of remaining global
827       // output registers is reduced by the number of stored captures.
828       __ SubP(r3, Operand(num_saved_registers_));
829       // Check whether we have enough room for another set of capture results.
830       __ CmpP(r3, Operand(num_saved_registers_));
831       __ blt(&return_r2);
832 
833       __ StoreP(r3, MemOperand(frame_pointer(), kNumOutputRegisters));
834       // Advance the location for output.
835       __ AddP(r4, Operand(num_saved_registers_ * kIntSize));
836       __ StoreP(r4, MemOperand(frame_pointer(), kRegisterOutput));
837 
838       // Prepare r2 to initialize registers with its value in the next run.
839       __ LoadP(r2, MemOperand(frame_pointer(), kStringStartMinusOne));
840 
841       if (global_with_zero_length_check()) {
842         // Special case for zero-length matches.
843         // r6: capture start index
844         __ CmpP(current_input_offset(), r6);
845         // Not a zero-length match, restart.
846         __ bne(&load_char_start_regexp);
847         // Offset from the end is zero if we already reached the end.
848         __ CmpP(current_input_offset(), Operand::Zero());
849         __ beq(&exit_label_);
850         // Advance current position after a zero-length match.
851         Label advance;
852         __ bind(&advance);
853         __ AddP(current_input_offset(), Operand((mode_ == UC16) ? 2 : 1));
854         if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
855       }
856 
857       __ b(&load_char_start_regexp);
858     } else {
859       __ LoadImmP(r2, Operand(SUCCESS));
860     }
861   }
862 
863   // Exit and return r2
864   __ bind(&exit_label_);
865   if (global()) {
866     __ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
867   }
868 
869   __ bind(&return_r2);
870   // Skip sp past regexp registers and local variables..
871   __ LoadRR(sp, frame_pointer());
872   // Restore registers r6..r15.
873   __ LoadMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize));
874 
875   __ b(r14);
876 
877   // Backtrack code (branch target for conditional backtracks).
878   if (backtrack_label_.is_linked()) {
879     __ bind(&backtrack_label_);
880     Backtrack();
881   }
882 
883   Label exit_with_exception;
884 
885   // Preempt-code
886   if (check_preempt_label_.is_linked()) {
887     SafeCallTarget(&check_preempt_label_);
888 
889     CallCheckStackGuardState(r2);
890     __ CmpP(r2, Operand::Zero());
891     // If returning non-zero, we should end execution with the given
892     // result as return value.
893     __ bne(&return_r2);
894 
895     // String might have moved: Reload end of string from frame.
896     __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
897     SafeReturn();
898   }
899 
900   // Backtrack stack overflow code.
901   if (stack_overflow_label_.is_linked()) {
902     SafeCallTarget(&stack_overflow_label_);
903     // Reached if the backtrack-stack limit has been hit.
904     Label grow_failed;
905 
906     // Call GrowStack(backtrack_stackpointer(), &stack_base)
907     static const int num_arguments = 3;
908     __ PrepareCallCFunction(num_arguments, r2);
909     __ LoadRR(r2, backtrack_stackpointer());
910     __ AddP(r3, frame_pointer(), Operand(kStackHighEnd));
911     __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
912     ExternalReference grow_stack = ExternalReference::re_grow_stack(isolate());
913     __ CallCFunction(grow_stack, num_arguments);
914     // If return nullptr, we have failed to grow the stack, and
915     // must exit with a stack-overflow exception.
916     __ CmpP(r2, Operand::Zero());
917     __ beq(&exit_with_exception);
918     // Otherwise use return value as new stack pointer.
919     __ LoadRR(backtrack_stackpointer(), r2);
920     // Restore saved registers and continue.
921     SafeReturn();
922   }
923 
924   if (exit_with_exception.is_linked()) {
925     // If any of the code above needed to exit with an exception.
926     __ bind(&exit_with_exception);
927     // Exit with Result EXCEPTION(-1) to signal thrown exception.
928     __ LoadImmP(r2, Operand(EXCEPTION));
929     __ b(&return_r2);
930   }
931 
932   CodeDesc code_desc;
933   masm_->GetCode(isolate(), &code_desc);
934   Handle<Code> code = isolate()->factory()->NewCode(code_desc, Code::REGEXP,
935                                                     masm_->CodeObject());
936   PROFILE(masm_->isolate(),
937           RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
938   return Handle<HeapObject>::cast(code);
939 }
940 
GoTo(Label * to)941 void RegExpMacroAssemblerS390::GoTo(Label* to) { BranchOrBacktrack(al, to); }
942 
IfRegisterGE(int reg,int comparand,Label * if_ge)943 void RegExpMacroAssemblerS390::IfRegisterGE(int reg, int comparand,
944                                             Label* if_ge) {
945   __ LoadP(r2, register_location(reg), r0);
946   __ CmpP(r2, Operand(comparand));
947   BranchOrBacktrack(ge, if_ge);
948 }
949 
IfRegisterLT(int reg,int comparand,Label * if_lt)950 void RegExpMacroAssemblerS390::IfRegisterLT(int reg, int comparand,
951                                             Label* if_lt) {
952   __ LoadP(r2, register_location(reg), r0);
953   __ CmpP(r2, Operand(comparand));
954   BranchOrBacktrack(lt, if_lt);
955 }
956 
IfRegisterEqPos(int reg,Label * if_eq)957 void RegExpMacroAssemblerS390::IfRegisterEqPos(int reg, Label* if_eq) {
958   __ LoadP(r2, register_location(reg), r0);
959   __ CmpP(r2, current_input_offset());
960   BranchOrBacktrack(eq, if_eq);
961 }
962 
963 RegExpMacroAssembler::IrregexpImplementation
Implementation()964 RegExpMacroAssemblerS390::Implementation() {
965   return kS390Implementation;
966 }
967 
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)968 void RegExpMacroAssemblerS390::LoadCurrentCharacter(int cp_offset,
969                                                     Label* on_end_of_input,
970                                                     bool check_bounds,
971                                                     int characters) {
972   DCHECK(cp_offset < (1 << 30));  // Be sane! (And ensure negation works)
973   if (check_bounds) {
974     if (cp_offset >= 0) {
975       CheckPosition(cp_offset + characters - 1, on_end_of_input);
976     } else {
977       CheckPosition(cp_offset, on_end_of_input);
978     }
979   }
980   LoadCurrentCharacterUnchecked(cp_offset, characters);
981 }
982 
PopCurrentPosition()983 void RegExpMacroAssemblerS390::PopCurrentPosition() {
984   Pop(current_input_offset());
985 }
986 
PopRegister(int register_index)987 void RegExpMacroAssemblerS390::PopRegister(int register_index) {
988   Pop(r2);
989   __ StoreP(r2, register_location(register_index));
990 }
991 
PushBacktrack(Label * label)992 void RegExpMacroAssemblerS390::PushBacktrack(Label* label) {
993   if (label->is_bound()) {
994     int target = label->pos();
995     __ mov(r2, Operand(target + Code::kHeaderSize - kHeapObjectTag));
996   } else {
997     masm_->load_label_offset(r2, label);
998   }
999   Push(r2);
1000   CheckStackLimit();
1001 }
1002 
PushCurrentPosition()1003 void RegExpMacroAssemblerS390::PushCurrentPosition() {
1004   Push(current_input_offset());
1005 }
1006 
PushRegister(int register_index,StackCheckFlag check_stack_limit)1007 void RegExpMacroAssemblerS390::PushRegister(int register_index,
1008                                             StackCheckFlag check_stack_limit) {
1009   __ LoadP(r2, register_location(register_index), r0);
1010   Push(r2);
1011   if (check_stack_limit) CheckStackLimit();
1012 }
1013 
ReadCurrentPositionFromRegister(int reg)1014 void RegExpMacroAssemblerS390::ReadCurrentPositionFromRegister(int reg) {
1015   __ LoadP(current_input_offset(), register_location(reg), r0);
1016 }
1017 
ReadStackPointerFromRegister(int reg)1018 void RegExpMacroAssemblerS390::ReadStackPointerFromRegister(int reg) {
1019   __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
1020   __ LoadP(r2, MemOperand(frame_pointer(), kStackHighEnd));
1021   __ AddP(backtrack_stackpointer(), r2);
1022 }
1023 
SetCurrentPositionFromEnd(int by)1024 void RegExpMacroAssemblerS390::SetCurrentPositionFromEnd(int by) {
1025   Label after_position;
1026   __ CmpP(current_input_offset(), Operand(-by * char_size()));
1027   __ bge(&after_position);
1028   __ mov(current_input_offset(), Operand(-by * char_size()));
1029   // On RegExp code entry (where this operation is used), the character before
1030   // the current position is expected to be already loaded.
1031   // We have advanced the position, so it's safe to read backwards.
1032   LoadCurrentCharacterUnchecked(-1, 1);
1033   __ bind(&after_position);
1034 }
1035 
SetRegister(int register_index,int to)1036 void RegExpMacroAssemblerS390::SetRegister(int register_index, int to) {
1037   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1038   __ mov(r2, Operand(to));
1039   __ StoreP(r2, register_location(register_index));
1040 }
1041 
Succeed()1042 bool RegExpMacroAssemblerS390::Succeed() {
1043   __ b(&success_label_);
1044   return global();
1045 }
1046 
WriteCurrentPositionToRegister(int reg,int cp_offset)1047 void RegExpMacroAssemblerS390::WriteCurrentPositionToRegister(int reg,
1048                                                               int cp_offset) {
1049   if (cp_offset == 0) {
1050     __ StoreP(current_input_offset(), register_location(reg));
1051   } else {
1052     __ AddP(r2, current_input_offset(), Operand(cp_offset * char_size()));
1053     __ StoreP(r2, register_location(reg));
1054   }
1055 }
1056 
ClearRegisters(int reg_from,int reg_to)1057 void RegExpMacroAssemblerS390::ClearRegisters(int reg_from, int reg_to) {
1058   DCHECK(reg_from <= reg_to);
1059   __ LoadP(r2, MemOperand(frame_pointer(), kStringStartMinusOne));
1060   for (int reg = reg_from; reg <= reg_to; reg++) {
1061     __ StoreP(r2, register_location(reg));
1062   }
1063 }
1064 
WriteStackPointerToRegister(int reg)1065 void RegExpMacroAssemblerS390::WriteStackPointerToRegister(int reg) {
1066   __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
1067   __ SubP(r2, backtrack_stackpointer(), r3);
1068   __ StoreP(r2, register_location(reg));
1069 }
1070 
1071 // Private methods:
1072 
CallCheckStackGuardState(Register scratch)1073 void RegExpMacroAssemblerS390::CallCheckStackGuardState(Register scratch) {
1074   static const int num_arguments = 3;
1075   __ PrepareCallCFunction(num_arguments, scratch);
1076   // RegExp code frame pointer.
1077   __ LoadRR(r4, frame_pointer());
1078   // Code* of self.
1079   __ mov(r3, Operand(masm_->CodeObject()));
1080   // r2 becomes return address pointer.
1081   __ lay(r2, MemOperand(sp, kStackFrameRASlot * kPointerSize));
1082   ExternalReference stack_guard_check =
1083       ExternalReference::re_check_stack_guard_state(isolate());
1084   CallCFunctionUsingStub(stack_guard_check, num_arguments);
1085 }
1086 
1087 // Helper function for reading a value out of a stack frame.
1088 template <typename T>
frame_entry(Address re_frame,int frame_offset)1089 static T& frame_entry(Address re_frame, int frame_offset) {
1090   DCHECK_EQ(kPointerSize, sizeof(T));
1091 #ifdef V8_TARGET_ARCH_S390X
1092   return reinterpret_cast<T&>(Memory<uint64_t>(re_frame + frame_offset));
1093 #else
1094   return reinterpret_cast<T&>(Memory<uint32_t>(re_frame + frame_offset));
1095 #endif
1096 }
1097 
1098 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1099 static T* frame_entry_address(Address re_frame, int frame_offset) {
1100   return reinterpret_cast<T*>(re_frame + frame_offset);
1101 }
1102 
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1103 int RegExpMacroAssemblerS390::CheckStackGuardState(Address* return_address,
1104                                                    Code* re_code,
1105                                                    Address re_frame) {
1106   return NativeRegExpMacroAssembler::CheckStackGuardState(
1107       frame_entry<Isolate*>(re_frame, kIsolate),
1108       frame_entry<intptr_t>(re_frame, kStartIndex),
1109       frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
1110       re_code, frame_entry_address<String*>(re_frame, kInputString),
1111       frame_entry_address<const byte*>(re_frame, kInputStart),
1112       frame_entry_address<const byte*>(re_frame, kInputEnd));
1113 }
1114 
register_location(int register_index)1115 MemOperand RegExpMacroAssemblerS390::register_location(int register_index) {
1116   DCHECK(register_index < (1 << 30));
1117   if (num_registers_ <= register_index) {
1118     num_registers_ = register_index + 1;
1119   }
1120   return MemOperand(frame_pointer(),
1121                     kRegisterZero - register_index * kPointerSize);
1122 }
1123 
CheckPosition(int cp_offset,Label * on_outside_input)1124 void RegExpMacroAssemblerS390::CheckPosition(int cp_offset,
1125                                              Label* on_outside_input) {
1126   if (cp_offset >= 0) {
1127     __ CmpP(current_input_offset(), Operand(-cp_offset * char_size()));
1128     BranchOrBacktrack(ge, on_outside_input);
1129   } else {
1130     __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
1131     __ AddP(r2, current_input_offset(), Operand(cp_offset * char_size()));
1132     __ CmpP(r2, r3);
1133     BranchOrBacktrack(le, on_outside_input);
1134   }
1135 }
1136 
BranchOrBacktrack(Condition condition,Label * to,CRegister cr)1137 void RegExpMacroAssemblerS390::BranchOrBacktrack(Condition condition, Label* to,
1138                                                  CRegister cr) {
1139   if (condition == al) {  // Unconditional.
1140     if (to == nullptr) {
1141       Backtrack();
1142       return;
1143     }
1144     __ b(to);
1145     return;
1146   }
1147   if (to == nullptr) {
1148     __ b(condition, &backtrack_label_);
1149     return;
1150   }
1151   __ b(condition, to);
1152 }
1153 
SafeCall(Label * to,Condition cond,CRegister cr)1154 void RegExpMacroAssemblerS390::SafeCall(Label* to, Condition cond,
1155                                         CRegister cr) {
1156   Label skip;
1157   __ b(NegateCondition(cond), &skip);
1158   __ b(r14, to);
1159   __ bind(&skip);
1160 }
1161 
SafeReturn()1162 void RegExpMacroAssemblerS390::SafeReturn() {
1163   __ pop(r14);
1164   __ mov(ip, Operand(masm_->CodeObject()));
1165   __ AddP(r14, ip);
1166   __ Ret();
1167 }
1168 
SafeCallTarget(Label * name)1169 void RegExpMacroAssemblerS390::SafeCallTarget(Label* name) {
1170   __ bind(name);
1171   __ CleanseP(r14);
1172   __ LoadRR(r0, r14);
1173   __ mov(ip, Operand(masm_->CodeObject()));
1174   __ SubP(r0, r0, ip);
1175   __ push(r0);
1176 }
1177 
Push(Register source)1178 void RegExpMacroAssemblerS390::Push(Register source) {
1179   DCHECK(source != backtrack_stackpointer());
1180   __ lay(backtrack_stackpointer(),
1181          MemOperand(backtrack_stackpointer(), -kPointerSize));
1182   __ StoreP(source, MemOperand(backtrack_stackpointer()));
1183 }
1184 
Pop(Register target)1185 void RegExpMacroAssemblerS390::Pop(Register target) {
1186   DCHECK(target != backtrack_stackpointer());
1187   __ LoadP(target, MemOperand(backtrack_stackpointer()));
1188   __ la(backtrack_stackpointer(),
1189         MemOperand(backtrack_stackpointer(), kPointerSize));
1190 }
1191 
CheckPreemption()1192 void RegExpMacroAssemblerS390::CheckPreemption() {
1193   // Check for preemption.
1194   ExternalReference stack_limit =
1195       ExternalReference::address_of_stack_limit(isolate());
1196   __ mov(r2, Operand(stack_limit));
1197   __ CmpLogicalP(sp, MemOperand(r2));
1198   SafeCall(&check_preempt_label_, le);
1199 }
1200 
CheckStackLimit()1201 void RegExpMacroAssemblerS390::CheckStackLimit() {
1202   ExternalReference stack_limit =
1203       ExternalReference::address_of_regexp_stack_limit(isolate());
1204   __ mov(r2, Operand(stack_limit));
1205   __ CmpLogicalP(backtrack_stackpointer(), MemOperand(r2));
1206   SafeCall(&stack_overflow_label_, le);
1207 }
1208 
CallCFunctionUsingStub(ExternalReference function,int num_arguments)1209 void RegExpMacroAssemblerS390::CallCFunctionUsingStub(
1210     ExternalReference function, int num_arguments) {
1211   // Must pass all arguments in registers. The stub pushes on the stack.
1212   DCHECK_GE(8, num_arguments);
1213   __ mov(code_pointer(), Operand(function));
1214   Label ret;
1215   __ larl(r14, &ret);
1216   __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));
1217   __ b(code_pointer());
1218   __ bind(&ret);
1219   if (base::OS::ActivationFrameAlignment() > kPointerSize) {
1220     __ LoadP(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize)));
1221   } else {
1222     __ la(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize)));
1223   }
1224   __ mov(code_pointer(), Operand(masm_->CodeObject()));
1225 }
1226 
1227 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1228 void RegExpMacroAssemblerS390::LoadCurrentCharacterUnchecked(int cp_offset,
1229                                                              int characters) {
1230   if (mode_ == LATIN1) {
1231     // using load reverse for big-endian platforms
1232     if (characters == 4) {
1233 #if V8_TARGET_LITTLE_ENDIAN
1234       __ LoadlW(current_character(),
1235                 MemOperand(current_input_offset(), end_of_input_address(),
1236                            cp_offset * char_size()));
1237 #else
1238       __ LoadLogicalReversedWordP(current_character(),
1239                 MemOperand(current_input_offset(), end_of_input_address(),
1240                            cp_offset * char_size()));
1241 #endif
1242     } else if (characters == 2) {
1243 #if V8_TARGET_LITTLE_ENDIAN
1244       __ LoadLogicalHalfWordP(current_character(),
1245                 MemOperand(current_input_offset(), end_of_input_address(),
1246                            cp_offset * char_size()));
1247 #else
1248       __ LoadLogicalReversedHalfWordP(current_character(),
1249                 MemOperand(current_input_offset(), end_of_input_address(),
1250                            cp_offset * char_size()));
1251 #endif
1252     } else {
1253       DCHECK_EQ(1, characters);
1254       __ LoadlB(current_character(),
1255                 MemOperand(current_input_offset(), end_of_input_address(),
1256                            cp_offset * char_size()));
1257     }
1258   } else {
1259     DCHECK(mode_ == UC16);
1260     if (characters == 2) {
1261       __ LoadlW(current_character(),
1262                 MemOperand(current_input_offset(), end_of_input_address(),
1263                            cp_offset * char_size()));
1264 #if !V8_TARGET_LITTLE_ENDIAN
1265       // need to swap the order of the characters for big-endian platforms
1266       __ rll(current_character(), current_character(), Operand(16));
1267 #endif
1268     } else {
1269       DCHECK_EQ(1, characters);
1270       __ LoadLogicalHalfWordP(
1271           current_character(),
1272                 MemOperand(current_input_offset(), end_of_input_address(),
1273                            cp_offset * char_size()));
1274     }
1275   }
1276 }
1277 
1278 #undef __
1279 
1280 #endif  // V8_INTERPRETED_REGEXP
1281 }  // namespace internal
1282 }  // namespace v8
1283 
1284 #endif  // V8_TARGET_ARCH_S390
1285