• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_S390_MACRO_ASSEMBLER_S390_H_
6 #define V8_S390_MACRO_ASSEMBLER_S390_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/globals.h"
11 #include "src/s390/assembler-s390.h"
12 #include "src/turbo-assembler.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 // Give alias names to registers for calling conventions.
18 constexpr Register kReturnRegister0 = r2;
19 constexpr Register kReturnRegister1 = r3;
20 constexpr Register kReturnRegister2 = r4;
21 constexpr Register kJSFunctionRegister = r3;
22 constexpr Register kContextRegister = r13;
23 constexpr Register kAllocateSizeRegister = r3;
24 constexpr Register kSpeculationPoisonRegister = r9;
25 constexpr Register kInterpreterAccumulatorRegister = r2;
26 constexpr Register kInterpreterBytecodeOffsetRegister = r6;
27 constexpr Register kInterpreterBytecodeArrayRegister = r7;
28 constexpr Register kInterpreterDispatchTableRegister = r8;
29 
30 constexpr Register kJavaScriptCallArgCountRegister = r2;
31 constexpr Register kJavaScriptCallCodeStartRegister = r4;
32 constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
33 constexpr Register kJavaScriptCallNewTargetRegister = r5;
34 constexpr Register kJavaScriptCallExtraArg1Register = r4;
35 
36 constexpr Register kOffHeapTrampolineRegister = ip;
37 constexpr Register kRuntimeCallFunctionRegister = r3;
38 constexpr Register kRuntimeCallArgCountRegister = r2;
39 constexpr Register kRuntimeCallArgvRegister = r4;
40 constexpr Register kWasmInstanceRegister = r6;
41 
42 // ----------------------------------------------------------------------------
43 // Static helper functions
44 
45 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)46 inline MemOperand FieldMemOperand(Register object, int offset) {
47   return MemOperand(object, offset - kHeapObjectTag);
48 }
49 
50 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,Register index,int offset)51 inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
52   return MemOperand(object, index, offset - kHeapObjectTag);
53 }
54 
55 // Generate a MemOperand for loading a field from Root register
RootMemOperand(Heap::RootListIndex index)56 inline MemOperand RootMemOperand(Heap::RootListIndex index) {
57   return MemOperand(kRootRegister, index << kPointerSizeLog2);
58 }
59 
60 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
61 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
62 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
63 
64 Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
65                                    Register reg3 = no_reg,
66                                    Register reg4 = no_reg,
67                                    Register reg5 = no_reg,
68                                    Register reg6 = no_reg);
69 
70 // These exist to provide portability between 32 and 64bit
71 #if V8_TARGET_ARCH_S390X
72 
73 // The length of the arithmetic operation is the length
74 // of the register.
75 
76 // Length:
77 // H = halfword
78 // W = word
79 
80 // arithmetics and bitwise
81 #define AddMI agsi
82 #define AddRR agr
83 #define SubRR sgr
84 #define AndRR ngr
85 #define OrRR ogr
86 #define XorRR xgr
87 #define LoadComplementRR lcgr
88 #define LoadNegativeRR lngr
89 
90 // Distinct Operands
91 #define AddP_RRR agrk
92 #define AddPImm_RRI aghik
93 #define AddLogicalP_RRR algrk
94 #define SubP_RRR sgrk
95 #define SubLogicalP_RRR slgrk
96 #define AndP_RRR ngrk
97 #define OrP_RRR ogrk
98 #define XorP_RRR xgrk
99 
100 // Load / Store
101 #define LoadRR lgr
102 #define LoadAndTestRR ltgr
103 #define LoadImmP lghi
104 
105 // Compare
106 #define CmpPH cghi
107 #define CmpLogicalPW clgfi
108 
109 // Shifts
110 #define ShiftLeftP sllg
111 #define ShiftRightP srlg
112 #define ShiftLeftArithP slag
113 #define ShiftRightArithP srag
114 #else
115 
116 // arithmetics and bitwise
117 // Reg2Reg
118 #define AddMI asi
119 #define AddRR ar
120 #define SubRR sr
121 #define AndRR nr
122 #define OrRR or_z
123 #define XorRR xr
124 #define LoadComplementRR lcr
125 #define LoadNegativeRR lnr
126 
127 // Distinct Operands
128 #define AddP_RRR ark
129 #define AddPImm_RRI ahik
130 #define AddLogicalP_RRR alrk
131 #define SubP_RRR srk
132 #define SubLogicalP_RRR slrk
133 #define AndP_RRR nrk
134 #define OrP_RRR ork
135 #define XorP_RRR xrk
136 
137 // Load / Store
138 #define LoadRR lr
139 #define LoadAndTestRR ltr
140 #define LoadImmP lhi
141 
142 // Compare
143 #define CmpPH chi
144 #define CmpLogicalPW clfi
145 
146 // Shifts
147 #define ShiftLeftP ShiftLeft
148 #define ShiftRightP ShiftRight
149 #define ShiftLeftArithP ShiftLeftArith
150 #define ShiftRightArithP ShiftRightArith
151 
152 #endif
153 
154 class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
155  public:
TurboAssembler(Isolate * isolate,const AssemblerOptions & options,void * buffer,int buffer_size,CodeObjectRequired create_code_object)156   TurboAssembler(Isolate* isolate, const AssemblerOptions& options,
157                  void* buffer, int buffer_size,
158                  CodeObjectRequired create_code_object)
159       : TurboAssemblerBase(isolate, options, buffer, buffer_size,
160                            create_code_object) {}
161 
162   void LoadFromConstantsTable(Register destination,
163                               int constant_index) override;
164   void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
165   void LoadRootRelative(Register destination, int32_t offset) override;
166 
167   // Jump, Call, and Ret pseudo instructions implementing inter-working.
168   void Jump(Register target, Condition cond = al);
169   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
170   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
171   // Jump the register contains a smi.
JumpIfSmi(Register value,Label * smi_label)172   inline void JumpIfSmi(Register value, Label* smi_label) {
173     TestIfSmi(value);
174     beq(smi_label /*, cr0*/);  // branch if SMI
175   }
176   void JumpIfEqual(Register x, int32_t y, Label* dest);
177   void JumpIfLessThan(Register x, int32_t y, Label* dest);
178 
179   void Call(Register target);
180   void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
181   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
182             Condition cond = al);
Ret()183   void Ret() { b(r14); }
Ret(Condition cond)184   void Ret(Condition cond) { b(cond, r14); }
185 
CallForDeoptimization(Address target,int deopt_id,RelocInfo::Mode rmode)186   void CallForDeoptimization(Address target, int deopt_id,
187                              RelocInfo::Mode rmode) {
188     USE(deopt_id);
189     Call(target, rmode);
190   }
191 
192   // Emit code to discard a non-negative number of pointer-sized elements
193   // from the stack, clobbering only the sp register.
194   void Drop(int count);
195   void Drop(Register count, Register scratch = r0);
196 
Ret(int drop)197   void Ret(int drop) {
198     Drop(drop);
199     Ret();
200   }
201 
202   void Call(Label* target);
203 
204   // Register move. May do nothing if the registers are identical.
Move(Register dst,Smi * smi)205   void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
206   void Move(Register dst, Handle<HeapObject> value);
207   void Move(Register dst, ExternalReference reference);
208   void Move(Register dst, Register src, Condition cond = al);
209   void Move(DoubleRegister dst, DoubleRegister src);
210 
211   void MoveChar(const MemOperand& opnd1, const MemOperand& opnd2,
212                    const Operand& length);
213 
214   void CompareLogicalChar(const MemOperand& opnd1, const MemOperand& opnd2,
215                    const Operand& length);
216 
217   void ExclusiveOrChar(const MemOperand& opnd1, const MemOperand& opnd2,
218                    const Operand& length);
219 
220   void RotateInsertSelectBits(Register dst, Register src,
221                      const Operand& startBit, const Operand& endBit,
222                      const Operand& shiftAmt, bool zeroBits);
223 
224   void BranchRelativeOnIdxHighP(Register dst, Register inc, Label* L);
225 
226   void SaveRegisters(RegList registers);
227   void RestoreRegisters(RegList registers);
228 
229   void CallRecordWriteStub(Register object, Register address,
230                            RememberedSetAction remembered_set_action,
231                            SaveFPRegsMode fp_mode);
232 
233   void MultiPush(RegList regs, Register location = sp);
234   void MultiPop(RegList regs, Register location = sp);
235 
236   void MultiPushDoubles(RegList dregs, Register location = sp);
237   void MultiPopDoubles(RegList dregs, Register location = sp);
238 
239   // Calculate how much stack space (in bytes) are required to store caller
240   // registers excluding those specified in the arguments.
241   int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
242                                       Register exclusion1 = no_reg,
243                                       Register exclusion2 = no_reg,
244                                       Register exclusion3 = no_reg) const;
245 
246   // Push caller saved registers on the stack, and return the number of bytes
247   // stack pointer is adjusted.
248   int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
249                       Register exclusion2 = no_reg,
250                       Register exclusion3 = no_reg);
251   // Restore caller saved registers from the stack, and return the number of
252   // bytes stack pointer is adjusted.
253   int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
254                      Register exclusion2 = no_reg,
255                      Register exclusion3 = no_reg);
256 
257   // Load an object from the root table.
LoadRoot(Register destination,Heap::RootListIndex index)258   void LoadRoot(Register destination, Heap::RootListIndex index) override {
259     LoadRoot(destination, index, al);
260   }
261   void LoadRoot(Register destination, Heap::RootListIndex index,
262                 Condition cond);
263   //--------------------------------------------------------------------------
264   // S390 Macro Assemblers for Instructions
265   //--------------------------------------------------------------------------
266 
267   // Arithmetic Operations
268 
269   // Add (Register - Immediate)
270   void Add32(Register dst, const Operand& imm);
271   void Add32_RI(Register dst, const Operand& imm);
272   void AddP(Register dst, const Operand& imm);
273   void Add32(Register dst, Register src, const Operand& imm);
274   void Add32_RRI(Register dst, Register src, const Operand& imm);
275   void AddP(Register dst, Register src, const Operand& imm);
276 
277   // Add (Register - Register)
278   void Add32(Register dst, Register src);
279   void AddP(Register dst, Register src);
280   void AddP_ExtendSrc(Register dst, Register src);
281   void Add32(Register dst, Register src1, Register src2);
282   void AddP(Register dst, Register src1, Register src2);
283   void AddP_ExtendSrc(Register dst, Register src1, Register src2);
284 
285   // Add (Register - Mem)
286   void Add32(Register dst, const MemOperand& opnd);
287   void AddP(Register dst, const MemOperand& opnd);
288   void AddP_ExtendSrc(Register dst, const MemOperand& opnd);
289 
290   // Add (Mem - Immediate)
291   void Add32(const MemOperand& opnd, const Operand& imm);
292   void AddP(const MemOperand& opnd, const Operand& imm);
293 
294   // Add Logical (Register - Register)
295   void AddLogical32(Register dst, Register src1, Register src2);
296 
297   // Add Logical With Carry (Register - Register)
298   void AddLogicalWithCarry32(Register dst, Register src1, Register src2);
299 
300   // Add Logical (Register - Immediate)
301   void AddLogical(Register dst, const Operand& imm);
302   void AddLogicalP(Register dst, const Operand& imm);
303 
304   // Add Logical (Register - Mem)
305   void AddLogical(Register dst, const MemOperand& opnd);
306   void AddLogicalP(Register dst, const MemOperand& opnd);
307 
308   // Subtract (Register - Immediate)
309   void Sub32(Register dst, const Operand& imm);
Sub32_RI(Register dst,const Operand & imm)310   void Sub32_RI(Register dst, const Operand& imm) { Sub32(dst, imm); }
311   void SubP(Register dst, const Operand& imm);
312   void Sub32(Register dst, Register src, const Operand& imm);
Sub32_RRI(Register dst,Register src,const Operand & imm)313   void Sub32_RRI(Register dst, Register src, const Operand& imm) {
314     Sub32(dst, src, imm);
315   }
316   void SubP(Register dst, Register src, const Operand& imm);
317 
318   // Subtract (Register - Register)
319   void Sub32(Register dst, Register src);
320   void SubP(Register dst, Register src);
321   void SubP_ExtendSrc(Register dst, Register src);
322   void Sub32(Register dst, Register src1, Register src2);
323   void SubP(Register dst, Register src1, Register src2);
324   void SubP_ExtendSrc(Register dst, Register src1, Register src2);
325 
326   // Subtract (Register - Mem)
327   void Sub32(Register dst, const MemOperand& opnd);
328   void SubP(Register dst, const MemOperand& opnd);
329   void SubP_ExtendSrc(Register dst, const MemOperand& opnd);
330   void LoadAndSub32(Register dst, Register src, const MemOperand& opnd);
331 
332   // Subtract Logical (Register - Mem)
333   void SubLogical(Register dst, const MemOperand& opnd);
334   void SubLogicalP(Register dst, const MemOperand& opnd);
335   void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd);
336   // Subtract Logical 32-bit
337   void SubLogical32(Register dst, Register src1, Register src2);
338   // Subtract Logical With Borrow 32-bit
339   void SubLogicalWithBorrow32(Register dst, Register src1, Register src2);
340 
341   // Multiply
342   void MulP(Register dst, const Operand& opnd);
343   void MulP(Register dst, Register src);
344   void MulP(Register dst, const MemOperand& opnd);
345   void Mul(Register dst, Register src1, Register src2);
346   void Mul32(Register dst, const MemOperand& src1);
347   void Mul32(Register dst, Register src1);
348   void Mul32(Register dst, const Operand& src1);
349   void MulHigh32(Register dst, Register src1, const MemOperand& src2);
350   void MulHigh32(Register dst, Register src1, Register src2);
351   void MulHigh32(Register dst, Register src1, const Operand& src2);
352   void MulHighU32(Register dst, Register src1, const MemOperand& src2);
353   void MulHighU32(Register dst, Register src1, Register src2);
354   void MulHighU32(Register dst, Register src1, const Operand& src2);
355   void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
356                                     const MemOperand& src2);
357   void Mul32WithOverflowIfCCUnequal(Register dst, Register src1, Register src2);
358   void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
359                                     const Operand& src2);
360   void Mul64(Register dst, const MemOperand& src1);
361   void Mul64(Register dst, Register src1);
362   void Mul64(Register dst, const Operand& src1);
363   void MulPWithCondition(Register dst, Register src1, Register src2);
364 
365   // Divide
366   void DivP(Register dividend, Register divider);
367   void Div32(Register dst, Register src1, const MemOperand& src2);
368   void Div32(Register dst, Register src1, Register src2);
369   void DivU32(Register dst, Register src1, const MemOperand& src2);
370   void DivU32(Register dst, Register src1, Register src2);
371   void Div64(Register dst, Register src1, const MemOperand& src2);
372   void Div64(Register dst, Register src1, Register src2);
373   void DivU64(Register dst, Register src1, const MemOperand& src2);
374   void DivU64(Register dst, Register src1, Register src2);
375 
376   // Mod
377   void Mod32(Register dst, Register src1, const MemOperand& src2);
378   void Mod32(Register dst, Register src1, Register src2);
379   void ModU32(Register dst, Register src1, const MemOperand& src2);
380   void ModU32(Register dst, Register src1, Register src2);
381   void Mod64(Register dst, Register src1, const MemOperand& src2);
382   void Mod64(Register dst, Register src1, Register src2);
383   void ModU64(Register dst, Register src1, const MemOperand& src2);
384   void ModU64(Register dst, Register src1, Register src2);
385 
386   // Square root
387   void Sqrt(DoubleRegister result, DoubleRegister input);
388   void Sqrt(DoubleRegister result, const MemOperand& input);
389 
390   // Compare
391   void Cmp32(Register src1, Register src2);
392   void CmpP(Register src1, Register src2);
393   void Cmp32(Register dst, const Operand& opnd);
394   void CmpP(Register dst, const Operand& opnd);
395   void Cmp32(Register dst, const MemOperand& opnd);
396   void CmpP(Register dst, const MemOperand& opnd);
397   void CmpAndSwap(Register old_val, Register new_val, const MemOperand& opnd);
398 
399   // Compare Logical
400   void CmpLogical32(Register src1, Register src2);
401   void CmpLogicalP(Register src1, Register src2);
402   void CmpLogical32(Register src1, const Operand& opnd);
403   void CmpLogicalP(Register src1, const Operand& opnd);
404   void CmpLogical32(Register dst, const MemOperand& opnd);
405   void CmpLogicalP(Register dst, const MemOperand& opnd);
406 
407   // Compare Logical Byte (CLI/CLIY)
408   void CmpLogicalByte(const MemOperand& mem, const Operand& imm);
409 
410   // Load 32bit
411   void Load(Register dst, const MemOperand& opnd);
412   void Load(Register dst, const Operand& opnd);
413   void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
414   void LoadW(Register dst, Register src);
415   void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
416   void LoadlW(Register dst, Register src);
417   void LoadLogicalHalfWordP(Register dst, const MemOperand& opnd);
418   void LoadLogicalHalfWordP(Register dst, Register src);
419   void LoadB(Register dst, const MemOperand& opnd);
420   void LoadB(Register dst, Register src);
421   void LoadlB(Register dst, const MemOperand& opnd);
422   void LoadlB(Register dst, Register src);
423 
424   void LoadLogicalReversedWordP(Register dst, const MemOperand& opnd);
425   void LoadLogicalReversedHalfWordP(Register dst, const MemOperand& opnd);
426 
427   // Load And Test
428   void LoadAndTest32(Register dst, Register src);
429   void LoadAndTestP_ExtendSrc(Register dst, Register src);
430   void LoadAndTestP(Register dst, Register src);
431 
432   void LoadAndTest32(Register dst, const MemOperand& opnd);
433   void LoadAndTestP(Register dst, const MemOperand& opnd);
434 
435   // Load Floating Point
436   void LoadDouble(DoubleRegister dst, const MemOperand& opnd);
437   void LoadFloat32(DoubleRegister dst, const MemOperand& opnd);
438   void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem);
439 
440   void AddFloat32(DoubleRegister dst, const MemOperand& opnd,
441                   DoubleRegister scratch);
442   void AddFloat64(DoubleRegister dst, const MemOperand& opnd,
443                   DoubleRegister scratch);
444   void SubFloat32(DoubleRegister dst, const MemOperand& opnd,
445                   DoubleRegister scratch);
446   void SubFloat64(DoubleRegister dst, const MemOperand& opnd,
447                   DoubleRegister scratch);
448   void MulFloat32(DoubleRegister dst, const MemOperand& opnd,
449                   DoubleRegister scratch);
450   void MulFloat64(DoubleRegister dst, const MemOperand& opnd,
451                   DoubleRegister scratch);
452   void DivFloat32(DoubleRegister dst, const MemOperand& opnd,
453                   DoubleRegister scratch);
454   void DivFloat64(DoubleRegister dst, const MemOperand& opnd,
455                   DoubleRegister scratch);
456   void LoadFloat32ToDouble(DoubleRegister dst, const MemOperand& opnd,
457                            DoubleRegister scratch);
458 
459   // Load On Condition
460   void LoadOnConditionP(Condition cond, Register dst, Register src);
461 
462   void LoadPositiveP(Register result, Register input);
463   void LoadPositive32(Register result, Register input);
464 
465   // Store Floating Point
466   void StoreDouble(DoubleRegister dst, const MemOperand& opnd);
467   void StoreFloat32(DoubleRegister dst, const MemOperand& opnd);
468   void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem,
469                             DoubleRegister scratch);
470 
471   void Branch(Condition c, const Operand& opnd);
472   void BranchOnCount(Register r1, Label* l);
473 
474   // Shifts
475   void ShiftLeft(Register dst, Register src, Register val);
476   void ShiftLeft(Register dst, Register src, const Operand& val);
477   void ShiftRight(Register dst, Register src, Register val);
478   void ShiftRight(Register dst, Register src, const Operand& val);
479   void ShiftLeftArith(Register dst, Register src, Register shift);
480   void ShiftLeftArith(Register dst, Register src, const Operand& val);
481   void ShiftRightArith(Register dst, Register src, Register shift);
482   void ShiftRightArith(Register dst, Register src, const Operand& val);
483 
484   void ClearRightImm(Register dst, Register src, const Operand& val);
485 
486   // Bitwise operations
487   void And(Register dst, Register src);
488   void AndP(Register dst, Register src);
489   void And(Register dst, Register src1, Register src2);
490   void AndP(Register dst, Register src1, Register src2);
491   void And(Register dst, const MemOperand& opnd);
492   void AndP(Register dst, const MemOperand& opnd);
493   void And(Register dst, const Operand& opnd);
494   void AndP(Register dst, const Operand& opnd);
495   void And(Register dst, Register src, const Operand& opnd);
496   void AndP(Register dst, Register src, const Operand& opnd);
497   void Or(Register dst, Register src);
498   void OrP(Register dst, Register src);
499   void Or(Register dst, Register src1, Register src2);
500   void OrP(Register dst, Register src1, Register src2);
501   void Or(Register dst, const MemOperand& opnd);
502   void OrP(Register dst, const MemOperand& opnd);
503   void Or(Register dst, const Operand& opnd);
504   void OrP(Register dst, const Operand& opnd);
505   void Or(Register dst, Register src, const Operand& opnd);
506   void OrP(Register dst, Register src, const Operand& opnd);
507   void Xor(Register dst, Register src);
508   void XorP(Register dst, Register src);
509   void Xor(Register dst, Register src1, Register src2);
510   void XorP(Register dst, Register src1, Register src2);
511   void Xor(Register dst, const MemOperand& opnd);
512   void XorP(Register dst, const MemOperand& opnd);
513   void Xor(Register dst, const Operand& opnd);
514   void XorP(Register dst, const Operand& opnd);
515   void Xor(Register dst, Register src, const Operand& opnd);
516   void XorP(Register dst, Register src, const Operand& opnd);
517   void Popcnt32(Register dst, Register src);
518   void Not32(Register dst, Register src = no_reg);
519   void Not64(Register dst, Register src = no_reg);
520   void NotP(Register dst, Register src = no_reg);
521 
522 #ifdef V8_TARGET_ARCH_S390X
523   void Popcnt64(Register dst, Register src);
524 #endif
525 
526   void mov(Register dst, const Operand& src);
527 
CleanUInt32(Register x)528   void CleanUInt32(Register x) {
529 #ifdef V8_TARGET_ARCH_S390X
530     llgfr(x, x);
531 #endif
532   }
533 
534 
push(Register src)535   void push(Register src) {
536     lay(sp, MemOperand(sp, -kPointerSize));
537     StoreP(src, MemOperand(sp));
538   }
539 
pop(Register dst)540   void pop(Register dst) {
541     LoadP(dst, MemOperand(sp));
542     la(sp, MemOperand(sp, kPointerSize));
543   }
544 
pop()545   void pop() { la(sp, MemOperand(sp, kPointerSize)); }
546 
Push(Register src)547   void Push(Register src) { push(src); }
548 
549   // Push a handle.
550   void Push(Handle<HeapObject> handle);
551   void Push(Smi* smi);
552 
553   // Push two registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)554   void Push(Register src1, Register src2) {
555     lay(sp, MemOperand(sp, -kPointerSize * 2));
556     StoreP(src1, MemOperand(sp, kPointerSize));
557     StoreP(src2, MemOperand(sp, 0));
558   }
559 
560   // Push three registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)561   void Push(Register src1, Register src2, Register src3) {
562     lay(sp, MemOperand(sp, -kPointerSize * 3));
563     StoreP(src1, MemOperand(sp, kPointerSize * 2));
564     StoreP(src2, MemOperand(sp, kPointerSize));
565     StoreP(src3, MemOperand(sp, 0));
566   }
567 
568   // Push four registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)569   void Push(Register src1, Register src2, Register src3, Register src4) {
570     lay(sp, MemOperand(sp, -kPointerSize * 4));
571     StoreP(src1, MemOperand(sp, kPointerSize * 3));
572     StoreP(src2, MemOperand(sp, kPointerSize * 2));
573     StoreP(src3, MemOperand(sp, kPointerSize));
574     StoreP(src4, MemOperand(sp, 0));
575   }
576 
577   // Push five registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)578   void Push(Register src1, Register src2, Register src3, Register src4,
579             Register src5) {
580     DCHECK(src1 != src2);
581     DCHECK(src1 != src3);
582     DCHECK(src2 != src3);
583     DCHECK(src1 != src4);
584     DCHECK(src2 != src4);
585     DCHECK(src3 != src4);
586     DCHECK(src1 != src5);
587     DCHECK(src2 != src5);
588     DCHECK(src3 != src5);
589     DCHECK(src4 != src5);
590 
591     lay(sp, MemOperand(sp, -kPointerSize * 5));
592     StoreP(src1, MemOperand(sp, kPointerSize * 4));
593     StoreP(src2, MemOperand(sp, kPointerSize * 3));
594     StoreP(src3, MemOperand(sp, kPointerSize * 2));
595     StoreP(src4, MemOperand(sp, kPointerSize));
596     StoreP(src5, MemOperand(sp, 0));
597   }
598 
Pop(Register dst)599   void Pop(Register dst) { pop(dst); }
600 
601   // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)602   void Pop(Register src1, Register src2) {
603     LoadP(src2, MemOperand(sp, 0));
604     LoadP(src1, MemOperand(sp, kPointerSize));
605     la(sp, MemOperand(sp, 2 * kPointerSize));
606   }
607 
608   // Pop three registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)609   void Pop(Register src1, Register src2, Register src3) {
610     LoadP(src3, MemOperand(sp, 0));
611     LoadP(src2, MemOperand(sp, kPointerSize));
612     LoadP(src1, MemOperand(sp, 2 * kPointerSize));
613     la(sp, MemOperand(sp, 3 * kPointerSize));
614   }
615 
616   // Pop four registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3,Register src4)617   void Pop(Register src1, Register src2, Register src3, Register src4) {
618     LoadP(src4, MemOperand(sp, 0));
619     LoadP(src3, MemOperand(sp, kPointerSize));
620     LoadP(src2, MemOperand(sp, 2 * kPointerSize));
621     LoadP(src1, MemOperand(sp, 3 * kPointerSize));
622     la(sp, MemOperand(sp, 4 * kPointerSize));
623   }
624 
625   // Pop five registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3,Register src4,Register src5)626   void Pop(Register src1, Register src2, Register src3, Register src4,
627            Register src5) {
628     LoadP(src5, MemOperand(sp, 0));
629     LoadP(src4, MemOperand(sp, kPointerSize));
630     LoadP(src3, MemOperand(sp, 2 * kPointerSize));
631     LoadP(src2, MemOperand(sp, 3 * kPointerSize));
632     LoadP(src1, MemOperand(sp, 4 * kPointerSize));
633     la(sp, MemOperand(sp, 5 * kPointerSize));
634   }
635 
636   // Push a fixed frame, consisting of lr, fp, constant pool.
637   void PushCommonFrame(Register marker_reg = no_reg);
638 
639   // Push a standard frame, consisting of lr, fp, constant pool,
640   // context and JS function
641   void PushStandardFrame(Register function_reg);
642 
643   void PopCommonFrame(Register marker_reg = no_reg);
644 
645   // Restore caller's frame pointer and return address prior to being
646   // overwritten by tail call stack preparation.
647   void RestoreFrameStateForTailCall();
648 
InitializeRootRegister()649   void InitializeRootRegister() {
650     ExternalReference roots_array_start =
651         ExternalReference::roots_array_start(isolate());
652     mov(kRootRegister, Operand(roots_array_start));
653     AddP(kRootRegister, kRootRegister, Operand(kRootRegisterBias));
654   }
655 
656   // If the value is a NaN, canonicalize the value else, do nothing.
657   void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
CanonicalizeNaN(const DoubleRegister value)658   void CanonicalizeNaN(const DoubleRegister value) {
659     CanonicalizeNaN(value, value);
660   }
661 
662   // Converts the integer (untagged smi) in |src| to a double, storing
663   // the result to |dst|
664   void ConvertIntToDouble(DoubleRegister dst, Register src);
665 
666   // Converts the unsigned integer (untagged smi) in |src| to
667   // a double, storing the result to |dst|
668   void ConvertUnsignedIntToDouble(DoubleRegister dst, Register src);
669 
670   // Converts the integer (untagged smi) in |src| to
671   // a float, storing the result in |dst|
672   void ConvertIntToFloat(DoubleRegister dst, Register src);
673 
674   // Converts the unsigned integer (untagged smi) in |src| to
675   // a float, storing the result in |dst|
676   void ConvertUnsignedIntToFloat(DoubleRegister dst, Register src);
677 
678   void ConvertInt64ToFloat(DoubleRegister double_dst, Register src);
679   void ConvertInt64ToDouble(DoubleRegister double_dst, Register src);
680   void ConvertUnsignedInt64ToFloat(DoubleRegister double_dst, Register src);
681   void ConvertUnsignedInt64ToDouble(DoubleRegister double_dst, Register src);
682 
683   void MovIntToFloat(DoubleRegister dst, Register src);
684   void MovFloatToInt(Register dst, DoubleRegister src);
685   void MovDoubleToInt64(Register dst, DoubleRegister src);
686   void MovInt64ToDouble(DoubleRegister dst, Register src);
687   // Converts the double_input to an integer.  Note that, upon return,
688   // the contents of double_dst will also hold the fixed point representation.
689   void ConvertFloat32ToInt64(const Register dst,
690                              const DoubleRegister double_input,
691                              FPRoundingMode rounding_mode = kRoundToZero);
692 
693   // Converts the double_input to an integer.  Note that, upon return,
694   // the contents of double_dst will also hold the fixed point representation.
695   void ConvertDoubleToInt64(const Register dst,
696                             const DoubleRegister double_input,
697                             FPRoundingMode rounding_mode = kRoundToZero);
698   void ConvertDoubleToInt32(const Register dst,
699                             const DoubleRegister double_input,
700                             FPRoundingMode rounding_mode = kRoundToZero);
701 
702   void ConvertFloat32ToInt32(const Register result,
703                              const DoubleRegister double_input,
704                              FPRoundingMode rounding_mode);
705   void ConvertFloat32ToUnsignedInt32(
706       const Register result, const DoubleRegister double_input,
707       FPRoundingMode rounding_mode = kRoundToZero);
708   // Converts the double_input to an unsigned integer.  Note that, upon return,
709   // the contents of double_dst will also hold the fixed point representation.
710   void ConvertDoubleToUnsignedInt64(
711       const Register dst, const DoubleRegister double_input,
712       FPRoundingMode rounding_mode = kRoundToZero);
713   void ConvertDoubleToUnsignedInt32(
714       const Register dst, const DoubleRegister double_input,
715       FPRoundingMode rounding_mode = kRoundToZero);
716   void ConvertFloat32ToUnsignedInt64(
717       const Register result, const DoubleRegister double_input,
718       FPRoundingMode rounding_mode = kRoundToZero);
719 
720 #if !V8_TARGET_ARCH_S390X
721   void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
722                      Register src_high, Register scratch, Register shift);
723   void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
724                      Register src_high, uint32_t shift);
725   void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
726                       Register src_high, Register scratch, Register shift);
727   void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
728                       Register src_high, uint32_t shift);
729   void ShiftRightArithPair(Register dst_low, Register dst_high,
730                            Register src_low, Register src_high,
731                            Register scratch, Register shift);
732   void ShiftRightArithPair(Register dst_low, Register dst_high,
733                            Register src_low, Register src_high, uint32_t shift);
734 #endif
735 
736   // Generates function and stub prologue code.
737   void StubPrologue(StackFrame::Type type, Register base = no_reg,
738                     int prologue_offset = 0);
739   void Prologue(Register base, int prologue_offset = 0);
740 
741   // Get the actual activation frame alignment for target environment.
742   static int ActivationFrameAlignment();
743   // ----------------------------------------------------------------
744   // new S390 macro-assembler interfaces that are slightly higher level
745   // than assembler-s390 and may generate variable length sequences
746 
747   // load a literal signed int value <value> to GPR <dst>
748   void LoadIntLiteral(Register dst, int value);
749 
750   // load an SMI value <value> to GPR <dst>
751   void LoadSmiLiteral(Register dst, Smi* smi);
752 
753   // load a literal double value <value> to FPR <result>
754   void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
755   void LoadDoubleLiteral(DoubleRegister result, uint64_t value,
756                          Register scratch);
757 
758   void LoadFloat32Literal(DoubleRegister result, float value, Register scratch);
759 
760   void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg);
761 
762   void LoadHalfWordP(Register dst, Register src);
763 
764   void LoadHalfWordP(Register dst, const MemOperand& mem,
765                      Register scratch = no_reg);
766 
767   void StoreHalfWord(Register src, const MemOperand& mem,
768                      Register scratch = r0);
769   void StoreByte(Register src, const MemOperand& mem, Register scratch = r0);
770 
771   void AddSmiLiteral(Register dst, Register src, Smi* smi,
772                      Register scratch = r0);
773   void SubSmiLiteral(Register dst, Register src, Smi* smi,
774                      Register scratch = r0);
775   void CmpSmiLiteral(Register src1, Smi* smi, Register scratch);
776   void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch);
777   void AndSmiLiteral(Register dst, Register src, Smi* smi);
778 
779   // Set new rounding mode RN to FPSCR
780   void SetRoundingMode(FPRoundingMode RN);
781 
782   // reset rounding mode to default (kRoundToNearest)
783   void ResetRoundingMode();
784 
785   // These exist to provide portability between 32 and 64bit
786   void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
787   void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
788   void StoreP(const MemOperand& mem, const Operand& opnd,
789               Register scratch = no_reg);
790   void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
791   void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
792   void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
793   void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);
794 
795   void SwapP(Register src, Register dst, Register scratch);
796   void SwapP(Register src, MemOperand dst, Register scratch);
797   void SwapP(MemOperand src, MemOperand dst, Register scratch_0,
798              Register scratch_1);
799   void SwapFloat32(DoubleRegister src, DoubleRegister dst,
800                    DoubleRegister scratch);
801   void SwapFloat32(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
802   void SwapFloat32(MemOperand src, MemOperand dst, DoubleRegister scratch_0,
803                    DoubleRegister scratch_1);
804   void SwapDouble(DoubleRegister src, DoubleRegister dst,
805                   DoubleRegister scratch);
806   void SwapDouble(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
807   void SwapDouble(MemOperand src, MemOperand dst, DoubleRegister scratch_0,
808                   DoubleRegister scratch_1);
809 
810   // Cleanse pointer address on 31bit by zero out top  bit.
811   // This is a NOP on 64-bit.
CleanseP(Register src)812   void CleanseP(Register src) {
813 #if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
814     nilh(src, Operand(0x7FFF));
815 #endif
816   }
817 
818   void PrepareForTailCall(const ParameterCount& callee_args_count,
819                           Register caller_args_count_reg, Register scratch0,
820                           Register scratch1);
821 
822   // ---------------------------------------------------------------------------
823   // Runtime calls
824 
825   // Call a code stub.
826   void CallStubDelayed(CodeStub* stub);
827 
828   // Call a runtime routine. This expects {centry} to contain a fitting CEntry
829   // builtin for the target runtime function and uses an indirect call.
830   void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry);
831 
832   // Before calling a C-function from generated code, align arguments on stack.
833   // After aligning the frame, non-register arguments must be stored in
834   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
835   // are word sized. If double arguments are used, this function assumes that
836   // all double arguments are stored before core registers; otherwise the
837   // correct alignment of the double values is not guaranteed.
838   // Some compilers/platforms require the stack to be aligned when calling
839   // C++ code.
840   // Needs a scratch register to do some arithmetic. This register will be
841   // trashed.
842   void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
843                             Register scratch);
844   void PrepareCallCFunction(int num_reg_arguments, Register scratch);
845 
846   // There are two ways of passing double arguments on ARM, depending on
847   // whether soft or hard floating point ABI is used. These functions
848   // abstract parameter passing for the three different ways we call
849   // C functions from generated code.
850   void MovToFloatParameter(DoubleRegister src);
851   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
852   void MovToFloatResult(DoubleRegister src);
853 
854   // Calls a C function and cleans up the space for arguments allocated
855   // by PrepareCallCFunction. The called function is not allowed to trigger a
856   // garbage collection, since that might move the code and invalidate the
857   // return address (unless this is somehow accounted for by the called
858   // function).
859   void CallCFunction(ExternalReference function, int num_arguments);
860   void CallCFunction(Register function, int num_arguments);
861   void CallCFunction(ExternalReference function, int num_reg_arguments,
862                      int num_double_arguments);
863   void CallCFunction(Register function, int num_reg_arguments,
864                      int num_double_arguments);
865 
866   void MovFromFloatParameter(DoubleRegister dst);
867   void MovFromFloatResult(DoubleRegister dst);
868 
869   // Emit code for a truncating division by a constant. The dividend register is
870   // unchanged and ip gets clobbered. Dividend and result must be different.
871   void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
872                          DoubleRegister double_input, StubCallMode stub_mode);
873   void TryInlineTruncateDoubleToI(Register result, DoubleRegister double_input,
874                                   Label* done);
875 
876   // ---------------------------------------------------------------------------
877   // Debugging
878 
879   // Calls Abort(msg) if the condition cond is not satisfied.
880   // Use --debug_code to enable.
881   void Assert(Condition cond, AbortReason reason, CRegister cr = cr7);
882 
883   // Like Assert(), but always enabled.
884   void Check(Condition cond, AbortReason reason, CRegister cr = cr7);
885 
886   // Print a message to stdout and abort execution.
887   void Abort(AbortReason reason);
888 
889   inline bool AllowThisStubCall(CodeStub* stub);
890 
891   // ---------------------------------------------------------------------------
892   // Bit testing/extraction
893   //
894   // Bit numbering is such that the least significant bit is bit 0
895   // (for consistency between 32/64-bit).
896 
897   // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
898   // and place them into the least significant bits of dst.
ExtractBitRange(Register dst,Register src,int rangeStart,int rangeEnd)899   inline void ExtractBitRange(Register dst, Register src, int rangeStart,
900                               int rangeEnd) {
901     DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
902 
903     // Try to use RISBG if possible.
904     if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
905       int shiftAmount = (64 - rangeEnd) % 64;  // Convert to shift left.
906       int endBit = 63;  // End is always LSB after shifting.
907       int startBit = 63 - rangeStart + rangeEnd;
908       RotateInsertSelectBits(dst, src, Operand(startBit), Operand(endBit),
909             Operand(shiftAmount), true);
910     } else {
911       if (rangeEnd > 0)  // Don't need to shift if rangeEnd is zero.
912         ShiftRightP(dst, src, Operand(rangeEnd));
913       else if (dst != src)  // If we didn't shift, we might need to copy
914         LoadRR(dst, src);
915       int width = rangeStart - rangeEnd + 1;
916 #if V8_TARGET_ARCH_S390X
917       uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
918       nihf(dst, Operand(mask >> 32));
919       nilf(dst, Operand(mask & 0xFFFFFFFF));
920       ltgr(dst, dst);
921 #else
922       uint32_t mask = (1 << width) - 1;
923       AndP(dst, Operand(mask));
924 #endif
925     }
926   }
927 
ExtractBit(Register dst,Register src,uint32_t bitNumber)928   inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
929     ExtractBitRange(dst, src, bitNumber, bitNumber);
930   }
931 
932   // Extract consecutive bits (defined by mask) from src and place them
933   // into the least significant bits of dst.
934   inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
935                              RCBit rc = LeaveRC) {
936     int start = kBitsPerPointer - 1;
937     int end;
938     uintptr_t bit = (1L << start);
939 
940     while (bit && (mask & bit) == 0) {
941       start--;
942       bit >>= 1;
943     }
944     end = start;
945     bit >>= 1;
946 
947     while (bit && (mask & bit)) {
948       end--;
949       bit >>= 1;
950     }
951 
952     // 1-bits in mask must be contiguous
953     DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
954 
955     ExtractBitRange(dst, src, start, end);
956   }
957 
958   // Test single bit in value.
959   inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
960     ExtractBitRange(scratch, value, bitNumber, bitNumber);
961   }
962 
963   // Test consecutive bit range in value.  Range is defined by
964   // rangeStart - rangeEnd.
965   inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
966                            Register scratch = r0) {
967     ExtractBitRange(scratch, value, rangeStart, rangeEnd);
968   }
969 
970   // Test consecutive bit range in value.  Range is defined by mask.
971   inline void TestBitMask(Register value, uintptr_t mask,
972                           Register scratch = r0) {
973     ExtractBitMask(scratch, value, mask, SetRC);
974   }
TestIfSmi(Register value)975   inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }
976 
TestIfSmi(MemOperand value)977   inline void TestIfSmi(MemOperand value) {
978     if (is_uint12(value.offset())) {
979       tm(value, Operand(1));
980     } else if (is_int20(value.offset())) {
981       tmy(value, Operand(1));
982     } else {
983       LoadB(r0, value);
984       tmll(r0, Operand(1));
985     }
986   }
987 
TestIfInt32(Register value)988   inline void TestIfInt32(Register value) {
989     // High bits must be identical to fit into an 32-bit integer
990     cgfr(value, value);
991   }
992   void SmiUntag(Register reg, int scale = 0) { SmiUntag(reg, reg, scale); }
993 
994   void SmiUntag(Register dst, Register src, int scale = 0) {
995     if (scale > kSmiShift) {
996       ShiftLeftP(dst, src, Operand(scale - kSmiShift));
997     } else if (scale < kSmiShift) {
998       ShiftRightArithP(dst, src, Operand(kSmiShift - scale));
999     } else {
1000       // do nothing
1001     }
1002   }
1003 
1004   // Activation support.
1005   void EnterFrame(StackFrame::Type type,
1006                   bool load_constant_pool_pointer_reg = false);
1007   // Returns the pc offset at which the frame ends.
1008   int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
1009 
1010   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
1011                      Label* condition_met);
1012 
1013   void ResetSpeculationPoisonRegister();
1014   void ComputeCodeStartAddress(Register dst);
1015 
1016  private:
1017   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1018 
1019   void CallCFunctionHelper(Register function, int num_reg_arguments,
1020                            int num_double_arguments);
1021 
1022   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
1023   int CalculateStackPassedWords(int num_reg_arguments,
1024                                 int num_double_arguments);
1025 };
1026 
1027 // MacroAssembler implements a collection of frequently used macros.
1028 class MacroAssembler : public TurboAssembler {
1029  public:
MacroAssembler(Isolate * isolate,void * buffer,int size,CodeObjectRequired create_code_object)1030   MacroAssembler(Isolate* isolate, void* buffer, int size,
1031                  CodeObjectRequired create_code_object)
1032       : MacroAssembler(isolate, AssemblerOptions::Default(isolate), buffer,
1033                        size, create_code_object) {}
1034   MacroAssembler(Isolate* isolate, const AssemblerOptions& options,
1035                  void* buffer, int size, CodeObjectRequired create_code_object);
1036 
1037   // Call a code stub.
1038   void TailCallStub(CodeStub* stub, Condition cond = al);
1039 
1040   void CallStub(CodeStub* stub, Condition cond = al);
1041   void CallRuntime(const Runtime::Function* f, int num_arguments,
1042                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1043   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1044     const Runtime::Function* function = Runtime::FunctionForId(fid);
1045     CallRuntime(function, function->nargs, kSaveFPRegs);
1046   }
1047 
1048   // Convenience function: Same as above, but takes the fid instead.
1049   void CallRuntime(Runtime::FunctionId fid,
1050                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1051     const Runtime::Function* function = Runtime::FunctionForId(fid);
1052     CallRuntime(function, function->nargs, save_doubles);
1053   }
1054 
1055   // Convenience function: Same as above, but takes the fid instead.
1056   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1057                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1058     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1059   }
1060 
1061   // Convenience function: tail call a runtime routine (jump).
1062   void TailCallRuntime(Runtime::FunctionId fid);
1063 
1064   // ---------------------------------------------------------------------------
1065   // Support functions.
1066 
1067   // Compare object type for heap object.  heap_object contains a non-Smi
1068   // whose object type should be compared with the given type.  This both
1069   // sets the flags and leaves the object type in the type_reg register.
1070   // It leaves the map in the map register (unless the type_reg and map register
1071   // are the same register).  It leaves the heap object in the heap_object
1072   // register unless the heap_object register is the same register as one of the
1073   // other registers.
1074   // Type_reg can be no_reg. In that case ip is used.
1075   void CompareObjectType(Register heap_object, Register map, Register type_reg,
1076                          InstanceType type);
1077 
1078   // Compare instance type in a map.  map contains a valid map object whose
1079   // object type should be compared with the given type.  This both
1080   // sets the flags and leaves the object type in the type_reg register.
1081   void CompareInstanceType(Register map, Register type_reg, InstanceType type);
1082 
1083   // Compare the object in a register to a value from the root list.
1084   // Uses the ip register as scratch.
1085   void CompareRoot(Register obj, Heap::RootListIndex index);
PushRoot(Heap::RootListIndex index)1086   void PushRoot(Heap::RootListIndex index) {
1087     LoadRoot(r0, index);
1088     Push(r0);
1089   }
1090 
1091   // Jump to a runtime routine.
1092   void JumpToExternalReference(const ExternalReference& builtin,
1093                                bool builtin_exit_frame = false);
1094 
1095   // Generates a trampoline to jump to the off-heap instruction stream.
1096   void JumpToInstructionStream(Address entry);
1097 
1098   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)1099   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
1100     CompareRoot(with, index);
1101     beq(if_equal);
1102   }
1103 
1104   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)1105   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
1106                      Label* if_not_equal) {
1107     CompareRoot(with, index);
1108     bne(if_not_equal);
1109   }
1110 
1111   // Try to convert a double to a signed 32-bit integer.
1112   // CR_EQ in cr7 is set and result assigned if the conversion is exact.
1113   void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
1114                              Register scratch, DoubleRegister double_scratch);
1115 
1116   // ---------------------------------------------------------------------------
1117   // In-place weak references.
1118   void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
1119 
1120   // ---------------------------------------------------------------------------
1121   // StatsCounter support
1122 
1123   void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1124                         Register scratch2);
1125   void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1126                         Register scratch2);
1127   // ---------------------------------------------------------------------------
1128   // JavaScript invokes
1129 
1130   // Set up call kind marking in ecx. The method takes ecx as an
1131   // explicit first parameter to make the code more readable at the
1132   // call sites.
1133   // void SetCallKind(Register dst, CallKind kind);
1134 
1135   // Removes current frame and its arguments from the stack preserving
1136   // the arguments and a return address pushed to the stack for the next call.
1137   // Both |callee_args_count| and |caller_args_count_reg| do not include
1138   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1139   // is trashed.
1140 
1141   // Invoke the JavaScript function code by either calling or jumping.
1142   void InvokeFunctionCode(Register function, Register new_target,
1143                           const ParameterCount& expected,
1144                           const ParameterCount& actual, InvokeFlag flag);
1145 
1146   // On function call, call into the debugger if necessary.
1147   void CheckDebugHook(Register fun, Register new_target,
1148                       const ParameterCount& expected,
1149                       const ParameterCount& actual);
1150 
1151   // Invoke the JavaScript function in the given register. Changes the
1152   // current context to the context in the function before invoking.
1153   void InvokeFunction(Register function, Register new_target,
1154                       const ParameterCount& actual, InvokeFlag flag);
1155 
1156   void InvokeFunction(Register function, const ParameterCount& expected,
1157                       const ParameterCount& actual, InvokeFlag flag);
1158 
1159   // Frame restart support
1160   void MaybeDropFrames();
1161 
1162   // Exception handling
1163 
1164   // Push a new stack handler and link into stack handler chain.
1165   void PushStackHandler();
1166 
1167   // Unlink the stack handler on top of the stack from the stack handler chain.
1168   // Must preserve the result register.
1169   void PopStackHandler();
1170 
1171   // Enter exit frame.
1172   // stack_space - extra stack space, used for parameters before call to C.
1173   // At least one slot (for the return address) should be provided.
1174   void EnterExitFrame(bool save_doubles, int stack_space = 1,
1175                       StackFrame::Type frame_type = StackFrame::EXIT);
1176 
1177   // Leave the current exit frame. Expects the return value in r0.
1178   // Expect the number of values, pushed prior to the exit frame, to
1179   // remove in a register (or no_reg, if there is nothing to remove).
1180   void LeaveExitFrame(bool save_doubles, Register argument_count,
1181                       bool argument_count_is_length = false);
1182 
1183   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1184   void LoadGlobalProxy(Register dst) {
1185     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1186   }
1187 
1188   void LoadNativeContextSlot(int index, Register dst);
1189 
1190   // ---------------------------------------------------------------------------
1191   // Smi utilities
1192 
1193   // Shift left by kSmiShift
SmiTag(Register reg)1194   void SmiTag(Register reg) { SmiTag(reg, reg); }
SmiTag(Register dst,Register src)1195   void SmiTag(Register dst, Register src) {
1196     ShiftLeftP(dst, src, Operand(kSmiShift));
1197   }
1198 
SmiToPtrArrayOffset(Register dst,Register src)1199   void SmiToPtrArrayOffset(Register dst, Register src) {
1200 #if V8_TARGET_ARCH_S390X
1201     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
1202     ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2));
1203 #else
1204     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
1205     ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
1206 #endif
1207   }
1208 
1209   // Untag the source value into destination and jump if source is a smi.
1210   // Souce and destination can be the same register.
1211   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1212 
1213   // Jump if either of the registers contain a non-smi.
JumpIfNotSmi(Register value,Label * not_smi_label)1214   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1215     TestIfSmi(value);
1216     bne(not_smi_label /*, cr0*/);
1217   }
1218   // Jump if either of the registers contain a smi.
1219   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1220 
1221   // Abort execution if argument is a smi, enabled via --debug-code.
1222   void AssertNotSmi(Register object);
1223   void AssertSmi(Register object);
1224 
1225 #if V8_TARGET_ARCH_S390X
1226   // Ensure it is permissible to read/write int value directly from
1227   // upper half of the smi.
1228   STATIC_ASSERT(kSmiTag == 0);
1229   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
1230 #endif
1231 #if V8_TARGET_LITTLE_ENDIAN
1232 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
1233 #else
1234 #define SmiWordOffset(offset) offset
1235 #endif
1236 
1237   // Abort execution if argument is not a Constructor, enabled via --debug-code.
1238   void AssertConstructor(Register object, Register scratch);
1239 
1240   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1241   void AssertFunction(Register object);
1242 
1243   // Abort execution if argument is not a JSBoundFunction,
1244   // enabled via --debug-code.
1245   void AssertBoundFunction(Register object);
1246 
1247   // Abort execution if argument is not a JSGeneratorObject (or subclass),
1248   // enabled via --debug-code.
1249   void AssertGeneratorObject(Register object);
1250 
1251   // Abort execution if argument is not undefined or an AllocationSite, enabled
1252   // via --debug-code.
1253   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1254 
1255   template <typename Field>
DecodeField(Register dst,Register src)1256   void DecodeField(Register dst, Register src) {
1257     ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
1258   }
1259 
1260   template <typename Field>
DecodeField(Register reg)1261   void DecodeField(Register reg) {
1262     DecodeField<Field>(reg, reg);
1263   }
1264 
1265   // ---------------------------------------------------------------------------
1266   // GC Support
1267 
1268   void IncrementalMarkingRecordWriteHelper(Register object, Register value,
1269                                            Register address);
1270 
1271   void CallJSEntry(Register target);
1272   static int CallSizeNotPredictableCodeSize(Address target,
1273                                             RelocInfo::Mode rmode,
1274                                             Condition cond = al);
1275   void JumpToJSEntry(Register target);
1276 
1277   // Notify the garbage collector that we wrote a pointer into an object.
1278   // |object| is the object being stored into, |value| is the object being
1279   // stored.  value and scratch registers are clobbered by the operation.
1280   // The offset is the offset from the start of the object, not the offset from
1281   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
1282   void RecordWriteField(
1283       Register object, int offset, Register value, Register scratch,
1284       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
1285       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1286       SmiCheck smi_check = INLINE_SMI_CHECK);
1287 
1288   // For a given |object| notify the garbage collector that the slot |address|
1289   // has been written.  |value| is the object being stored. The value and
1290   // address registers are clobbered by the operation.
1291   void RecordWrite(
1292       Register object, Register address, Register value,
1293       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
1294       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1295       SmiCheck smi_check = INLINE_SMI_CHECK);
1296 
1297   // Push and pop the registers that can hold pointers, as defined by the
1298   // RegList constant kSafepointSavedRegisters.
1299   void PushSafepointRegisters();
1300   void PopSafepointRegisters();
1301 
1302   void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
1303                           Register scratch = no_reg);
1304   void StoreRepresentation(Register src, const MemOperand& mem,
1305                            Representation r, Register scratch = no_reg);
1306 
1307  private:
1308   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1309   // Helper functions for generating invokes.
1310   void InvokePrologue(const ParameterCount& expected,
1311                       const ParameterCount& actual, Label* done,
1312                       bool* definitely_mismatches, InvokeFlag flag);
1313 
1314   // Compute memory operands for safepoint stack slots.
1315   static int SafepointRegisterStackIndex(int reg_code);
1316 
1317   // Needs access to SafepointRegisterStackIndex for compiled frame
1318   // traversal.
1319   friend class StandardFrame;
1320 };
1321 
1322 // -----------------------------------------------------------------------------
1323 // Static helper functions.
1324 
1325 inline MemOperand ContextMemOperand(Register context, int index = 0) {
1326   return MemOperand(context, Context::SlotOffset(index));
1327 }
1328 
NativeContextMemOperand()1329 inline MemOperand NativeContextMemOperand() {
1330   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
1331 }
1332 
1333 #define ACCESS_MASM(masm) masm->
1334 
1335 }  // namespace internal
1336 }  // namespace v8
1337 
1338 #endif  // V8_S390_MACRO_ASSEMBLER_S390_H_
1339