• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include "examples.h"
28 
29 #define __ masm->
30 
31 // A vector by scalar multiply helper routine to generate code for
32 // the multiplication of each column of the resulting 4x4 matrix.
33 // This function provides a template for the following pattern:
34 //
35 // __ Fmul(v<v_out>.V4S(), v4.V4S(),  v<s_column>.S(), 0);
36 // __ Fmla(v<v_out>.V4S(), v5.V4S(),  v<s_column>.S(), 1);
37 // __ Fmla(v<v_out>.V4S(), v6.V4S(),  v<s_column>.S(), 2);
38 // __ Fmla(v<v_out>.V4S(), v7.V4S(),  v<s_column>.S(), 3);
39 //
40 // v<v_out> corresponds to a column of the output matrix (v0, v1, v2 or v3).
41 // v<s_column> corresponds to a column of the 2nd input (v16, v17, v18 or v19).
42 //
GenerateMultiplyColumn(MacroAssembler * masm,unsigned out_column,unsigned in_column)43 static void GenerateMultiplyColumn(MacroAssembler* masm,
44                                    unsigned out_column,
45                                    unsigned in_column) {
46   // 'v_out' splits a Q register into 4 lanes of 32 bits each.
47   VRegister v_out = VRegister(out_column, kQRegSize, 4);
48   // 'v_in' refers to a single 32 bit 'S' lane.
49   VRegister v_in = VRegister(in_column, kSRegSize);
50 
51   __ Fmul(v_out, v4.V4S(), v_in, 0);  // e.g. (v0.V4S(), v4.V4S(),  v8.S(), 0).
52   __ Fmla(v_out, v5.V4S(), v_in, 1);
53   __ Fmla(v_out, v6.V4S(), v_in, 2);
54   __ Fmla(v_out, v7.V4S(), v_in, 3);
55 }
56 
GenerateNEONMatrixMultiply(MacroAssembler * masm)57 void GenerateNEONMatrixMultiply(MacroAssembler* masm) {
58   // Argument location:
59   //   dst  -> x0
60   //   mat1 -> x1
61   //   mat2 -> x2
62 
63   Label end;
64 
65   __ And(x3, x0, x1);
66   __ And(x3, x3, x2);
67   __ Cbz(x3, &end);  // Nothing to do if an input is null.
68 
69   // Load the first matrix into v4, v5, v6 and v7.
70   __ Ld1(v4.V4S(), v5.V4S(), v6.V4S(), v7.V4S(), MemOperand(x1));
71   // Load the first matrix into v16, v17, v18 and v19.
72   __ Ld1(v16.V4S(), v17.V4S(), v18.V4S(), v19.V4S(), MemOperand(x2));
73 
74   // Initialise vectors of the output matrix with zeros.
75   // This is only for the purposes of showing how this can be achived
76   // but technically this is not required because we overwrite all lanes
77   // of the output vectors.
78   __ Movi(v0.V16B(), 0);
79   __ Movi(v1.V16B(), 0);
80   __ Movi(v2.V16B(), 0);
81   __ Movi(v3.V16B(), 0);
82 
83   GenerateMultiplyColumn(masm, 0, 16);
84   GenerateMultiplyColumn(masm, 1, 17);
85   GenerateMultiplyColumn(masm, 2, 18);
86   GenerateMultiplyColumn(masm, 3, 19);
87 
88   // Store the resulting matrix from v0, v1, v2 and v3.
89   __ St1(v0.V4S(), v1.V4S(), v2.V4S(), v3.V4S(), MemOperand(x0));
90 
91   __ Bind(&end);
92   __ Ret();
93 }
94 
95 
96 #ifndef TEST_EXAMPLES
97 #ifdef VIXL_INCLUDE_SIMULATOR_AARCH64
main(void)98 int main(void) {
99   MacroAssembler masm;
100   Decoder decoder;
101   Simulator simulator(&decoder);
102 
103   // Generate the code for the example function.
104   Label neon_matrix_multiply;
105   masm.Bind(&neon_matrix_multiply);
106   GenerateNEONMatrixMultiply(&masm);
107   masm.FinalizeCode();
108 
109   // Define the required variables and run the example function.
110   const int kRowSize = 4;
111   const int kColSize = 4;
112   const int kLength = kRowSize * kColSize;
113 
114   float mat1[kLength], mat2[kLength], output[kLength];
115 
116   // Initialise the output matrix to the zero matrix.
117   memset(output, 0, sizeof(output[0]) * kLength);
118 
119   // Fill the two input matrices with some 32 bit floating point values.
120   // Array initialisation using curly brackets is also possible like so:
121   //   float mat1[kLength] = { 1.0f, 52.03f, 4.43f, ... };
122   // However, the following way better shows the "column-major" arrangement.
123 
124   mat1[0] = 1.0f;
125   mat1[4] = 2.0f;
126   mat1[8] = 3.0f;
127   mat1[12] = 4.0f;
128   mat1[1] = 52.03f;
129   mat1[5] = 12.24f;
130   mat1[9] = 53.56f;
131   mat1[13] = 22.22f;
132   mat1[2] = 4.43f;
133   mat1[6] = 5.00f;
134   mat1[10] = 7.00f;
135   mat1[14] = 3.11f;
136   mat1[3] = 43.47f;
137   mat1[7] = 10.97f;
138   mat1[11] = 37.78f;
139   mat1[15] = 90.91f;
140 
141   mat2[0] = 1.0f;
142   mat2[4] = 11.24f;
143   mat2[8] = 21.00f;
144   mat2[12] = 21.31f;
145   mat2[1] = 2.0f;
146   mat2[5] = 2.24f;
147   mat2[9] = 8.56f;
148   mat2[13] = 52.03f;
149   mat2[2] = 3.0f;
150   mat2[6] = 51.00f;
151   mat2[10] = 21.00f;
152   mat2[14] = 33.11f;
153   mat2[3] = 4.0f;
154   mat2[7] = 0.00f;
155   mat2[11] = 84.00f;
156   mat2[15] = 1.97f;
157 
158   simulator.ResetState();
159   simulator.WriteXRegister(0, reinterpret_cast<uintptr_t>(output));
160   simulator.WriteXRegister(1, reinterpret_cast<uintptr_t>(mat1));
161   simulator.WriteXRegister(2, reinterpret_cast<uintptr_t>(mat2));
162   simulator.RunFrom(masm.GetLabelAddress<Instruction*>(&neon_matrix_multiply));
163 
164   // Print the 4x4 output matrix along with both 4x4 input matrices.
165   for (int i = 0; i < kRowSize; i++) {
166     printf(
167         "| %8.2f %8.2f %8.2f %8.2f |   "
168         "| %8.2f %8.2f %8.2f %8.2f |       "
169         "| %8.2f %8.2f %8.2f %8.2f |\n",
170         mat1[i],
171         mat1[4 + i],
172         mat1[8 + i],
173         mat1[12 + i],
174         mat2[i],
175         mat2[4 + i],
176         mat2[8 + i],
177         mat2[12 + i],
178         output[i],
179         output[4 + i],
180         output[8 + i],
181         output[12 + i]);
182     if (i == 0 || i == 2) {
183       printf(
184           "|                                     |   "
185           "|                                     |       "
186           "|                                     |\n");
187     } else if (i == 1) {
188       printf(
189           "|                                     | x "
190           "|                                     |   =   "
191           "|                                     |\n");
192     }
193   }
194 
195   return 0;
196 }
197 #else
198 // Without the simulator there is nothing to test.
main(void)199 int main(void) { return 0; }
200 #endif  // VIXL_INCLUDE_SIMULATOR_AARCH64
201 #endif  // TEST_EXAMPLES
202