1 /* Copyright (c) 2018-2019 The Khronos Group Inc.
2 * Copyright (c) 2018-2019 Valve Corporation
3 * Copyright (c) 2018-2019 LunarG, Inc.
4 * Copyright (C) 2018-2019 Google Inc.
5 *
6 * Licensed under the Apache License, Version 2.0 (the "License");
7 * you may not use this file except in compliance with the License.
8 * You may obtain a copy of the License at
9 *
10 * http://www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an "AS IS" BASIS,
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 *
18 */
19
20 // Allow use of STL min and max functions in Windows
21 #define NOMINMAX
22
23 #include "chassis.h"
24 #include "core_validation.h"
25 #include "gpu_validation.h"
26 #include "shader_validation.h"
27 #include "spirv-tools/libspirv.h"
28 #include "spirv-tools/optimizer.hpp"
29 #include "spirv-tools/instrument.hpp"
30 #include <SPIRV/spirv.hpp>
31 #include <algorithm>
32 #include <regex>
33
34 // This is the number of bindings in the debug descriptor set.
35 static const uint32_t kNumBindingsInSet = 1;
36
37 // Implementation for Device Memory Manager class
GpuDeviceMemoryManager(layer_data * dev_data,uint32_t data_size)38 GpuDeviceMemoryManager::GpuDeviceMemoryManager(layer_data *dev_data, uint32_t data_size) {
39 uint32_t align = static_cast<uint32_t>(dev_data->GetPDProperties()->limits.minStorageBufferOffsetAlignment);
40 if (0 == align) {
41 align = 1;
42 }
43 record_size_ = data_size;
44 // Round the requested size up to the next multiple of the storage buffer offset alignment
45 // so that we can address each block in the storage buffer using the offset.
46 block_size_ = ((record_size_ + align - 1) / align) * align;
47 blocks_per_chunk_ = kItemsPerChunk;
48 chunk_size_ = blocks_per_chunk_ * block_size_;
49 dev_data_ = dev_data;
50 }
51
~GpuDeviceMemoryManager()52 GpuDeviceMemoryManager::~GpuDeviceMemoryManager() {
53 for (auto &chunk : chunk_list_) {
54 FreeMemoryChunk(chunk);
55 }
56 chunk_list_.clear();
57 }
58
GetBlock(GpuDeviceMemoryBlock * block)59 VkResult GpuDeviceMemoryManager::GetBlock(GpuDeviceMemoryBlock *block) {
60 assert(block->buffer == VK_NULL_HANDLE); // avoid possible overwrite/leak of an allocated block
61 VkResult result = VK_SUCCESS;
62 MemoryChunk *pChunk = nullptr;
63 // Look for a chunk with available offsets.
64 for (auto &chunk : chunk_list_) {
65 if (!chunk.available_offsets.empty()) {
66 pChunk = &chunk;
67 break;
68 }
69 }
70 // If no chunks with available offsets, allocate device memory and set up offsets.
71 if (pChunk == nullptr) {
72 MemoryChunk new_chunk;
73 result = AllocMemoryChunk(new_chunk);
74 if (result == VK_SUCCESS) {
75 new_chunk.available_offsets.resize(blocks_per_chunk_);
76 for (uint32_t offset = 0, i = 0; i < blocks_per_chunk_; offset += block_size_, ++i) {
77 new_chunk.available_offsets[i] = offset;
78 }
79 chunk_list_.push_front(std::move(new_chunk));
80 pChunk = &chunk_list_.front();
81 } else {
82 // Indicate failure
83 block->buffer = VK_NULL_HANDLE;
84 block->memory = VK_NULL_HANDLE;
85 return result;
86 }
87 }
88 // Give the requester an available offset
89 block->buffer = pChunk->buffer;
90 block->memory = pChunk->memory;
91 block->offset = pChunk->available_offsets.back();
92 pChunk->available_offsets.pop_back();
93 return result;
94 }
95
PutBackBlock(VkBuffer buffer,VkDeviceMemory memory,uint32_t offset)96 void GpuDeviceMemoryManager::PutBackBlock(VkBuffer buffer, VkDeviceMemory memory, uint32_t offset) {
97 GpuDeviceMemoryBlock block = {buffer, memory, offset};
98 PutBackBlock(block);
99 }
100
PutBackBlock(GpuDeviceMemoryBlock & block)101 void GpuDeviceMemoryManager::PutBackBlock(GpuDeviceMemoryBlock &block) {
102 // Find the chunk belonging to the allocated offset and make the offset available again
103 auto chunk = std::find_if(std::begin(chunk_list_), std::end(chunk_list_),
104 [&block](const MemoryChunk &c) { return c.buffer == block.buffer; });
105 if (chunk_list_.end() == chunk) {
106 assert(false);
107 } else {
108 chunk->available_offsets.push_back(block.offset);
109 if (chunk->available_offsets.size() == blocks_per_chunk_) {
110 // All offsets have been returned
111 FreeMemoryChunk(*chunk);
112 chunk_list_.erase(chunk);
113 }
114 }
115 }
116
ResetBlock(GpuDeviceMemoryBlock & block)117 void ResetBlock(GpuDeviceMemoryBlock &block) {
118 block.buffer = VK_NULL_HANDLE;
119 block.memory = VK_NULL_HANDLE;
120 block.offset = 0;
121 }
122
BlockUsed(GpuDeviceMemoryBlock & block)123 bool BlockUsed(GpuDeviceMemoryBlock &block) { return (block.buffer != VK_NULL_HANDLE) && (block.memory != VK_NULL_HANDLE); }
124
MemoryTypeFromProperties(uint32_t typeBits,VkFlags requirements_mask,uint32_t * typeIndex)125 bool GpuDeviceMemoryManager::MemoryTypeFromProperties(uint32_t typeBits, VkFlags requirements_mask, uint32_t *typeIndex) {
126 // Search memtypes to find first index with those properties
127 const VkPhysicalDeviceMemoryProperties *props = dev_data_->GetPhysicalDeviceMemoryProperties();
128 for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; i++) {
129 if ((typeBits & 1) == 1) {
130 // Type is available, does it match user properties?
131 if ((props->memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) {
132 *typeIndex = i;
133 return true;
134 }
135 }
136 typeBits >>= 1;
137 }
138 // No memory types matched, return failure
139 return false;
140 }
141
AllocMemoryChunk(MemoryChunk & chunk)142 VkResult GpuDeviceMemoryManager::AllocMemoryChunk(MemoryChunk &chunk) {
143 VkBuffer buffer;
144 VkDeviceMemory memory;
145 VkBufferCreateInfo buffer_create_info = {};
146 VkMemoryRequirements mem_reqs = {};
147 VkMemoryAllocateInfo mem_alloc = {};
148 VkResult result = VK_SUCCESS;
149 bool pass;
150 void *pData;
151 const auto *dispatch_table = dev_data_->GetDispatchTable();
152
153 buffer_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
154 buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
155 buffer_create_info.size = chunk_size_;
156 result = dispatch_table->CreateBuffer(dev_data_->GetDevice(), &buffer_create_info, NULL, &buffer);
157 if (result != VK_SUCCESS) {
158 return result;
159 }
160
161 dispatch_table->GetBufferMemoryRequirements(dev_data_->GetDevice(), buffer, &mem_reqs);
162
163 mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
164 mem_alloc.pNext = NULL;
165 mem_alloc.allocationSize = mem_reqs.size;
166 pass = MemoryTypeFromProperties(mem_reqs.memoryTypeBits,
167 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
168 &mem_alloc.memoryTypeIndex);
169 if (!pass) {
170 dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
171 return result;
172 }
173 result = dispatch_table->AllocateMemory(dev_data_->GetDevice(), &mem_alloc, NULL, &memory);
174 if (result != VK_SUCCESS) {
175 dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
176 return result;
177 }
178
179 result = dispatch_table->BindBufferMemory(dev_data_->GetDevice(), buffer, memory, 0);
180 if (result != VK_SUCCESS) {
181 dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
182 dispatch_table->FreeMemory(dev_data_->GetDevice(), memory, NULL);
183 return result;
184 }
185
186 result = dispatch_table->MapMemory(dev_data_->GetDevice(), memory, 0, mem_alloc.allocationSize, 0, &pData);
187 if (result == VK_SUCCESS) {
188 memset(pData, 0, chunk_size_);
189 dispatch_table->UnmapMemory(dev_data_->GetDevice(), memory);
190 } else {
191 dispatch_table->DestroyBuffer(dev_data_->GetDevice(), buffer, NULL);
192 dispatch_table->FreeMemory(dev_data_->GetDevice(), memory, NULL);
193 return result;
194 }
195 chunk.buffer = buffer;
196 chunk.memory = memory;
197 return result;
198 }
199
FreeMemoryChunk(MemoryChunk & chunk)200 void GpuDeviceMemoryManager::FreeMemoryChunk(MemoryChunk &chunk) {
201 dev_data_->GetDispatchTable()->DestroyBuffer(dev_data_->GetDevice(), chunk.buffer, NULL);
202 dev_data_->GetDispatchTable()->FreeMemory(dev_data_->GetDevice(), chunk.memory, NULL);
203 }
204
FreeAllBlocks()205 void GpuDeviceMemoryManager::FreeAllBlocks() {
206 for (auto &chunk : chunk_list_) {
207 FreeMemoryChunk(chunk);
208 }
209 chunk_list_.clear();
210 }
211
212 // Implementation for Descriptor Set Manager class
GpuDescriptorSetManager(layer_data * dev_data)213 GpuDescriptorSetManager::GpuDescriptorSetManager(layer_data *dev_data) { dev_data_ = dev_data; }
214
~GpuDescriptorSetManager()215 GpuDescriptorSetManager::~GpuDescriptorSetManager() {
216 for (auto &pool : desc_pool_map_) {
217 dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), pool.first, NULL);
218 }
219 desc_pool_map_.clear();
220 }
221
GetDescriptorSets(uint32_t count,VkDescriptorPool * pool,std::vector<VkDescriptorSet> * desc_sets)222 VkResult GpuDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool,
223 std::vector<VkDescriptorSet> *desc_sets) {
224 auto gpu_state = dev_data_->GetGpuValidationState();
225 const uint32_t default_pool_size = kItemsPerChunk;
226 VkResult result = VK_SUCCESS;
227 VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
228
229 if (0 == count) {
230 return result;
231 }
232 desc_sets->clear();
233 desc_sets->resize(count);
234
235 for (auto &pool : desc_pool_map_) {
236 if (pool.second.used + count < pool.second.size) {
237 pool_to_use = pool.first;
238 break;
239 }
240 }
241 if (VK_NULL_HANDLE == pool_to_use) {
242 uint32_t pool_count = default_pool_size;
243 if (count > default_pool_size) {
244 pool_count = count;
245 }
246 const VkDescriptorPoolSize size_counts = {
247 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
248 pool_count * kNumBindingsInSet,
249 };
250 VkDescriptorPoolCreateInfo desc_pool_info = {};
251 desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
252 desc_pool_info.pNext = NULL;
253 desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
254 desc_pool_info.maxSets = pool_count;
255 desc_pool_info.poolSizeCount = 1;
256 desc_pool_info.pPoolSizes = &size_counts;
257 result = dev_data_->GetDispatchTable()->CreateDescriptorPool(dev_data_->GetDevice(), &desc_pool_info, NULL, &pool_to_use);
258 assert(result == VK_SUCCESS);
259 if (result != VK_SUCCESS) {
260 return result;
261 }
262 desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
263 desc_pool_map_[pool_to_use].used = 0;
264 }
265 std::vector<VkDescriptorSetLayout> desc_layouts(count, gpu_state->debug_desc_layout);
266
267 VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
268 desc_layouts.data()};
269
270 result = dev_data_->GetDispatchTable()->AllocateDescriptorSets(dev_data_->GetDevice(), &alloc_info, desc_sets->data());
271 assert(result == VK_SUCCESS);
272 if (result != VK_SUCCESS) {
273 return result;
274 }
275 *pool = pool_to_use;
276 desc_pool_map_[pool_to_use].used += count;
277 return result;
278 }
279
PutBackDescriptorSet(VkDescriptorPool desc_pool,VkDescriptorSet desc_set)280 void GpuDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
281 auto iter = desc_pool_map_.find(desc_pool);
282 if (iter != desc_pool_map_.end()) {
283 VkResult result = dev_data_->GetDispatchTable()->FreeDescriptorSets(dev_data_->GetDevice(), desc_pool, 1, &desc_set);
284 assert(result == VK_SUCCESS);
285 if (result != VK_SUCCESS) {
286 return;
287 }
288 desc_pool_map_[desc_pool].used--;
289 if (0 == desc_pool_map_[desc_pool].used) {
290 dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), desc_pool, NULL);
291 desc_pool_map_.erase(desc_pool);
292 }
293 }
294 return;
295 }
296
DestroyDescriptorPools()297 void GpuDescriptorSetManager::DestroyDescriptorPools() {
298 for (auto &pool : desc_pool_map_) {
299 dev_data_->GetDispatchTable()->DestroyDescriptorPool(dev_data_->GetDevice(), pool.first, NULL);
300 }
301 desc_pool_map_.clear();
302 }
303
304 // Convenience function for reporting problems with setting up GPU Validation.
ReportSetupProblem(const layer_data * dev_data,VkDebugReportObjectTypeEXT object_type,uint64_t object_handle,const char * const specific_message)305 void CoreChecks::ReportSetupProblem(const layer_data *dev_data, VkDebugReportObjectTypeEXT object_type, uint64_t object_handle,
306 const char *const specific_message) {
307 log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, object_type, object_handle, "UNASSIGNED-GPU-Assisted Validation Error. ",
308 "Detail: (%s)", specific_message);
309 }
310
311 // Turn on necessary device features.
GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu,std::unique_ptr<safe_VkDeviceCreateInfo> & create_info,VkPhysicalDeviceFeatures * supported_features)312 void CoreChecks::GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu, std::unique_ptr<safe_VkDeviceCreateInfo> &create_info,
313 VkPhysicalDeviceFeatures *supported_features) {
314 if (supported_features->fragmentStoresAndAtomics || supported_features->vertexPipelineStoresAndAtomics) {
315 VkPhysicalDeviceFeatures new_features = {};
316 if (create_info->pEnabledFeatures) {
317 new_features = *create_info->pEnabledFeatures;
318 }
319 new_features.fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics;
320 new_features.vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics;
321 delete create_info->pEnabledFeatures;
322 create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
323 }
324 }
325
326 // Perform initializations that can be done at Create Device time.
GpuPostCallRecordCreateDevice(layer_data * dev_data)327 void CoreChecks::GpuPostCallRecordCreateDevice(layer_data *dev_data) {
328 auto gpu_state = GetGpuValidationState();
329 const auto *dispatch_table = GetDispatchTable();
330
331 gpu_state->aborted = false;
332 gpu_state->reserve_binding_slot = false;
333 gpu_state->barrier_command_pool = VK_NULL_HANDLE;
334 gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
335
336 if (GetPDProperties()->apiVersion < VK_API_VERSION_1_1) {
337 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
338 "GPU-Assisted validation requires Vulkan 1.1 or later. GPU-Assisted Validation disabled.");
339 gpu_state->aborted = true;
340 return;
341 }
342 // Some devices have extremely high limits here, so set a reasonable max because we have to pad
343 // the pipeline layout with dummy descriptor set layouts.
344 gpu_state->adjusted_max_desc_sets = GetPDProperties()->limits.maxBoundDescriptorSets;
345 gpu_state->adjusted_max_desc_sets = std::min(33U, gpu_state->adjusted_max_desc_sets);
346
347 // We can't do anything if there is only one.
348 // Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
349 if (gpu_state->adjusted_max_desc_sets == 1) {
350 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
351 "Device can bind only a single descriptor set. GPU-Assisted Validation disabled.");
352 gpu_state->aborted = true;
353 return;
354 }
355 gpu_state->desc_set_bind_index = gpu_state->adjusted_max_desc_sets - 1;
356 log_msg(GetReportData(), VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
357 HandleToUint64(GetDevice()), "UNASSIGNED-GPU-Assisted Validation. ", "Shaders using descriptor set at index %d. ",
358 gpu_state->desc_set_bind_index);
359
360 std::unique_ptr<GpuDeviceMemoryManager> memory_manager(
361 new GpuDeviceMemoryManager(dev_data, sizeof(uint32_t) * (spvtools::kInstMaxOutCnt + 1)));
362 std::unique_ptr<GpuDescriptorSetManager> desc_set_manager(new GpuDescriptorSetManager(dev_data));
363
364 // The descriptor indexing checks require only the first "output" binding.
365 const VkDescriptorSetLayoutBinding debug_desc_layout_bindings[kNumBindingsInSet] = {
366 {
367 0, // output
368 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
369 1,
370 VK_SHADER_STAGE_ALL_GRAPHICS,
371 NULL,
372 },
373 };
374
375 const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
376 kNumBindingsInSet, debug_desc_layout_bindings};
377
378 const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
379 NULL};
380
381 VkResult result =
382 dispatch_table->CreateDescriptorSetLayout(GetDevice(), &debug_desc_layout_info, NULL, &gpu_state->debug_desc_layout);
383
384 // This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
385 VkResult result2 =
386 dispatch_table->CreateDescriptorSetLayout(GetDevice(), &dummy_desc_layout_info, NULL, &gpu_state->dummy_desc_layout);
387 assert((result == VK_SUCCESS) && (result2 == VK_SUCCESS));
388 if ((result != VK_SUCCESS) || (result2 != VK_SUCCESS)) {
389 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
390 "Unable to create descriptor set layout. GPU-Assisted Validation disabled.");
391 if (result == VK_SUCCESS) {
392 dispatch_table->DestroyDescriptorSetLayout(GetDevice(), gpu_state->debug_desc_layout, NULL);
393 }
394 if (result2 == VK_SUCCESS) {
395 dispatch_table->DestroyDescriptorSetLayout(GetDevice(), gpu_state->dummy_desc_layout, NULL);
396 }
397 gpu_state->debug_desc_layout = VK_NULL_HANDLE;
398 gpu_state->dummy_desc_layout = VK_NULL_HANDLE;
399 gpu_state->aborted = true;
400 return;
401 }
402 gpu_state->memory_manager = std::move(memory_manager);
403 gpu_state->desc_set_manager = std::move(desc_set_manager);
404 }
405
406 // Clean up device-related resources
GpuPreCallRecordDestroyDevice(layer_data * dev_data)407 void CoreChecks::GpuPreCallRecordDestroyDevice(layer_data *dev_data) {
408 auto gpu_state = GetGpuValidationState();
409
410 if (gpu_state->barrier_command_buffer) {
411 GetDispatchTable()->FreeCommandBuffers(GetDevice(), gpu_state->barrier_command_pool, 1, &gpu_state->barrier_command_buffer);
412 gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
413 }
414 if (gpu_state->barrier_command_pool) {
415 GetDispatchTable()->DestroyCommandPool(GetDevice(), gpu_state->barrier_command_pool, NULL);
416 gpu_state->barrier_command_pool = VK_NULL_HANDLE;
417 }
418 if (gpu_state->debug_desc_layout) {
419 GetDispatchTable()->DestroyDescriptorSetLayout(GetDevice(), gpu_state->debug_desc_layout, NULL);
420 gpu_state->debug_desc_layout = VK_NULL_HANDLE;
421 }
422 if (gpu_state->dummy_desc_layout) {
423 GetDispatchTable()->DestroyDescriptorSetLayout(GetDevice(), gpu_state->dummy_desc_layout, NULL);
424 gpu_state->dummy_desc_layout = VK_NULL_HANDLE;
425 }
426 gpu_state->memory_manager->FreeAllBlocks();
427 gpu_state->desc_set_manager->DestroyDescriptorPools();
428 }
429
430 // Modify the pipeline layout to include our debug descriptor set and any needed padding with the dummy descriptor set.
GpuPreCallCreatePipelineLayout(layer_data * device_data,const VkPipelineLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineLayout * pPipelineLayout,std::vector<VkDescriptorSetLayout> * new_layouts,VkPipelineLayoutCreateInfo * modified_create_info)431 bool CoreChecks::GpuPreCallCreatePipelineLayout(layer_data *device_data, const VkPipelineLayoutCreateInfo *pCreateInfo,
432 const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
433 std::vector<VkDescriptorSetLayout> *new_layouts,
434 VkPipelineLayoutCreateInfo *modified_create_info) {
435 auto gpu_state = GetGpuValidationState();
436 if (gpu_state->aborted) {
437 return false;
438 }
439
440 if (modified_create_info->setLayoutCount >= gpu_state->adjusted_max_desc_sets) {
441 std::ostringstream strm;
442 strm << "Pipeline Layout conflict with validation's descriptor set at slot " << gpu_state->desc_set_bind_index << ". "
443 << "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
444 << "Validation is not modifying the pipeline layout. "
445 << "Instrumented shaders are replaced with non-instrumented shaders.";
446 ReportSetupProblem(device_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()), strm.str().c_str());
447 } else {
448 // Modify the pipeline layout by:
449 // 1. Copying the caller's descriptor set desc_layouts
450 // 2. Fill in dummy descriptor layouts up to the max binding
451 // 3. Fill in with the debug descriptor layout at the max binding slot
452 new_layouts->reserve(gpu_state->adjusted_max_desc_sets);
453 new_layouts->insert(new_layouts->end(), &pCreateInfo->pSetLayouts[0],
454 &pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
455 for (uint32_t i = pCreateInfo->setLayoutCount; i < gpu_state->adjusted_max_desc_sets - 1; ++i) {
456 new_layouts->push_back(gpu_state->dummy_desc_layout);
457 }
458 new_layouts->push_back(gpu_state->debug_desc_layout);
459 modified_create_info->pSetLayouts = new_layouts->data();
460 modified_create_info->setLayoutCount = gpu_state->adjusted_max_desc_sets;
461 }
462 return true;
463 }
464
465 // Clean up GPU validation after the CreatePipelineLayout call is made
GpuPostCallCreatePipelineLayout(layer_data * device_data,VkResult result)466 void CoreChecks::GpuPostCallCreatePipelineLayout(layer_data *device_data, VkResult result) {
467 auto gpu_state = GetGpuValidationState();
468 // Clean up GPU validation
469 if (result != VK_SUCCESS) {
470 ReportSetupProblem(device_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
471 "Unable to create pipeline layout. Device could become unstable.");
472 gpu_state->aborted = true;
473 }
474 }
475
476 // Free the device memory and descriptor set associated with a command buffer.
GpuPreCallRecordFreeCommandBuffers(layer_data * dev_data,uint32_t commandBufferCount,const VkCommandBuffer * pCommandBuffers)477 void CoreChecks::GpuPreCallRecordFreeCommandBuffers(layer_data *dev_data, uint32_t commandBufferCount,
478 const VkCommandBuffer *pCommandBuffers) {
479 auto gpu_state = GetGpuValidationState();
480 if (gpu_state->aborted) {
481 return;
482 }
483 for (uint32_t i = 0; i < commandBufferCount; ++i) {
484 auto cb_node = GetCBNode(pCommandBuffers[i]);
485 if (cb_node) {
486 for (auto &buffer_info : cb_node->gpu_buffer_list) {
487 if (BlockUsed(buffer_info.mem_block)) {
488 gpu_state->memory_manager->PutBackBlock(buffer_info.mem_block);
489 ResetBlock(buffer_info.mem_block);
490 }
491 if (buffer_info.desc_set != VK_NULL_HANDLE) {
492 gpu_state->desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
493 }
494 }
495 cb_node->gpu_buffer_list.clear();
496 }
497 }
498 }
499
500 // Just gives a warning about a possible deadlock.
GpuPreCallValidateCmdWaitEvents(layer_data * dev_data,VkPipelineStageFlags sourceStageMask)501 void CoreChecks::GpuPreCallValidateCmdWaitEvents(layer_data *dev_data, VkPipelineStageFlags sourceStageMask) {
502 if (sourceStageMask & VK_PIPELINE_STAGE_HOST_BIT) {
503 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
504 "CmdWaitEvents recorded with VK_PIPELINE_STAGE_HOST_BIT set. "
505 "GPU_Assisted validation waits on queue completion. "
506 "This wait could block the host's signaling of this event, resulting in deadlock.");
507 }
508 }
509
510 // Examine the pipelines to see if they use the debug descriptor set binding index.
511 // If any do, create new non-instrumented shader modules and use them to replace the instrumented
512 // shaders in the pipeline. Return the (possibly) modified create infos to the caller.
GpuPreCallRecordCreateGraphicsPipelines(layer_data * dev_data,VkPipelineCache pipelineCache,uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,std::vector<std::unique_ptr<PIPELINE_STATE>> & pipe_state)513 std::vector<safe_VkGraphicsPipelineCreateInfo> CoreChecks::GpuPreCallRecordCreateGraphicsPipelines(
514 layer_data *dev_data, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos,
515 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
516 auto gpu_state = GetGpuValidationState();
517
518 std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
519 std::vector<unsigned int> pipeline_uses_debug_index(count);
520
521 // Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
522 // descriptor set index.
523 for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
524 new_pipeline_create_infos.push_back(pipe_state[pipeline]->graphicsPipelineCI);
525 if (pipe_state[pipeline]->active_slots.find(gpu_state->desc_set_bind_index) != pipe_state[pipeline]->active_slots.end()) {
526 pipeline_uses_debug_index[pipeline] = 1;
527 }
528 }
529
530 // See if any pipeline has shaders using the debug descriptor set index
531 if (std::all_of(pipeline_uses_debug_index.begin(), pipeline_uses_debug_index.end(), [](unsigned int i) { return i == 0; })) {
532 // None of the shaders in all the pipelines use the debug descriptor set index, so use the pipelines
533 // as they stand with the instrumented shaders.
534 return new_pipeline_create_infos;
535 }
536
537 // At least one pipeline has a shader that uses the debug descriptor set index.
538 for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
539 if (pipeline_uses_debug_index[pipeline]) {
540 for (uint32_t stage = 0; stage < pCreateInfos[pipeline].stageCount; ++stage) {
541 const shader_module *shader = GetShaderModuleState(pCreateInfos[pipeline].pStages[stage].module);
542 VkShaderModuleCreateInfo create_info = {};
543 VkShaderModule shader_module;
544 create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
545 create_info.pCode = shader->words.data();
546 create_info.codeSize = shader->words.size() * sizeof(uint32_t);
547 VkResult result = GetDispatchTable()->CreateShaderModule(GetDevice(), &create_info, pAllocator, &shader_module);
548 if (result == VK_SUCCESS) {
549 new_pipeline_create_infos[pipeline].pStages[stage].module = shader_module;
550 } else {
551 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
552 HandleToUint64(pCreateInfos[pipeline].pStages[stage].module),
553 "Unable to replace instrumented shader with non-instrumented one. "
554 "Device could become unstable.");
555 }
556 }
557 }
558 }
559 return new_pipeline_create_infos;
560 }
561
562 // For every pipeline:
563 // - For every shader in a pipeline:
564 // - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
565 // - Destroy it since it has been bound into the pipeline by now. This is our only chance to delete it.
566 // - Track the shader in the shader_map
567 // - Save the shader binary if it contains debug code
GpuPostCallRecordCreateGraphicsPipelines(layer_data * dev_data,const uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)568 void CoreChecks::GpuPostCallRecordCreateGraphicsPipelines(layer_data *dev_data, const uint32_t count,
569 const VkGraphicsPipelineCreateInfo *pCreateInfos,
570 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
571 auto gpu_state = GetGpuValidationState();
572 for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
573 auto pipeline_state = GetPipelineState(pPipelines[pipeline]);
574 if (nullptr == pipeline_state) continue;
575 for (uint32_t stage = 0; stage < pipeline_state->graphicsPipelineCI.stageCount; ++stage) {
576 if (pipeline_state->active_slots.find(gpu_state->desc_set_bind_index) != pipeline_state->active_slots.end()) {
577 GetDispatchTable()->DestroyShaderModule(GetDevice(), pCreateInfos->pStages[stage].module, pAllocator);
578 }
579 auto shader_state = GetShaderModuleState(pipeline_state->graphicsPipelineCI.pStages[stage].module);
580 std::vector<unsigned int> code;
581 // Save the shader binary if debug info is present.
582 // The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
583 // is destroyed. Applications may destroy ShaderModules after they are placed in a pipeline and before
584 // the pipeline is used, so we have to keep another copy.
585 if (shader_state && shader_state->has_valid_spirv) { // really checking for presense of SPIR-V code.
586 for (auto insn : *shader_state) {
587 if (insn.opcode() == spv::OpLine) {
588 code = shader_state->words;
589 break;
590 }
591 }
592 }
593 gpu_state->shader_map[shader_state->gpu_validation_shader_id].pipeline = pipeline_state->pipeline;
594 // Be careful to use the originally bound (instrumented) shader here, even if PreCallRecord had to back it
595 // out with a non-instrumented shader. The non-instrumented shader (found in pCreateInfo) was destroyed above.
596 gpu_state->shader_map[shader_state->gpu_validation_shader_id].shader_module =
597 pipeline_state->graphicsPipelineCI.pStages[stage].module;
598 gpu_state->shader_map[shader_state->gpu_validation_shader_id].pgm = std::move(code);
599 }
600 }
601 }
602
603 // Remove all the shader trackers associated with this destroyed pipeline.
GpuPreCallRecordDestroyPipeline(layer_data * dev_data,const VkPipeline pipeline)604 void CoreChecks::GpuPreCallRecordDestroyPipeline(layer_data *dev_data, const VkPipeline pipeline) {
605 auto gpu_state = GetGpuValidationState();
606 for (auto it = gpu_state->shader_map.begin(); it != gpu_state->shader_map.end();) {
607 if (it->second.pipeline == pipeline) {
608 it = gpu_state->shader_map.erase(it);
609 } else {
610 ++it;
611 }
612 }
613 }
614
615 // Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
GpuInstrumentShader(layer_data * dev_data,const VkShaderModuleCreateInfo * pCreateInfo,std::vector<unsigned int> & new_pgm,uint32_t * unique_shader_id)616 bool CoreChecks::GpuInstrumentShader(layer_data *dev_data, const VkShaderModuleCreateInfo *pCreateInfo,
617 std::vector<unsigned int> &new_pgm, uint32_t *unique_shader_id) {
618 auto gpu_state = GetGpuValidationState();
619 if (gpu_state->aborted) return false;
620 if (pCreateInfo->pCode[0] != spv::MagicNumber) return false;
621
622 // Load original shader SPIR-V
623 uint32_t num_words = static_cast<uint32_t>(pCreateInfo->codeSize / 4);
624 new_pgm.clear();
625 new_pgm.reserve(num_words);
626 new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]);
627
628 // Call the optimizer to instrument the shader.
629 // Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
630 using namespace spvtools;
631 spv_target_env target_env = SPV_ENV_VULKAN_1_1;
632 Optimizer optimizer(target_env);
633 optimizer.RegisterPass(CreateInstBindlessCheckPass(gpu_state->desc_set_bind_index, gpu_state->unique_shader_module_id));
634 optimizer.RegisterPass(CreateAggressiveDCEPass());
635 bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm);
636 if (!pass) {
637 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, VK_NULL_HANDLE,
638 "Failure to instrument shader. Proceeding with non-instrumented shader.");
639 }
640 *unique_shader_id = gpu_state->unique_shader_module_id++;
641 return pass;
642 }
643
644 // Create the instrumented shader data to provide to the driver.
GpuPreCallCreateShaderModule(layer_data * dev_data,const VkShaderModuleCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkShaderModule * pShaderModule,uint32_t * unique_shader_id,VkShaderModuleCreateInfo * instrumented_create_info,std::vector<unsigned int> * instrumented_pgm)645 bool CoreChecks::GpuPreCallCreateShaderModule(layer_data *dev_data, const VkShaderModuleCreateInfo *pCreateInfo,
646 const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
647 uint32_t *unique_shader_id, VkShaderModuleCreateInfo *instrumented_create_info,
648 std::vector<unsigned int> *instrumented_pgm) {
649 bool pass = GpuInstrumentShader(dev_data, pCreateInfo, *instrumented_pgm, unique_shader_id);
650 if (pass) {
651 instrumented_create_info->pCode = instrumented_pgm->data();
652 instrumented_create_info->codeSize = instrumented_pgm->size() * sizeof(unsigned int);
653 }
654 return pass;
655 }
656
657 // Generate the stage-specific part of the message.
GenerateStageMessage(const uint32_t * debug_record,std::string & msg)658 static void GenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
659 using namespace spvtools;
660 std::ostringstream strm;
661 switch (debug_record[kInstCommonOutStageIdx]) {
662 case 0: {
663 strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex]
664 << " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". ";
665 } break;
666 case 1: {
667 strm << "Stage = Tessellation Control. Invocation ID = " << debug_record[kInstTessOutInvocationId] << ". ";
668 } break;
669 case 2: {
670 strm << "Stage = Tessellation Eval. Invocation ID = " << debug_record[kInstTessOutInvocationId] << ". ";
671 } break;
672 case 3: {
673 strm << "Stage = Geometry. Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
674 << " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
675 } break;
676 case 4: {
677 strm << "Stage = Fragment. Fragment coord (x,y) = ("
678 << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
679 << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
680 } break;
681 case 5: {
682 strm << "Stage = Compute. Global invocation ID = " << debug_record[kInstCompOutGlobalInvocationId] << ". ";
683 } break;
684 default: {
685 strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
686 assert(false);
687 } break;
688 }
689 msg = strm.str();
690 }
691
692 // Generate the part of the message describing the violation.
GenerateValidationMessage(const uint32_t * debug_record,std::string & msg,std::string & vuid_msg)693 static void GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg) {
694 using namespace spvtools;
695 std::ostringstream strm;
696 switch (debug_record[kInstValidationOutError]) {
697 case 0: {
698 strm << "Index of " << debug_record[kInstBindlessOutDescIndex] << " used to index descriptor array of length "
699 << debug_record[kInstBindlessOutDescBound] << ". ";
700 vuid_msg = "UNASSIGNED-Descriptor index out of bounds";
701 } break;
702 case 1: {
703 strm << "Descriptor index " << debug_record[kInstBindlessOutDescIndex] << " is uninitialized. ";
704 vuid_msg = "UNASSIGNED-Descriptor uninitialized";
705 } break;
706 default: {
707 strm << "Internal Error (unexpected error type = " << debug_record[kInstValidationOutError] << "). ";
708 vuid_msg = "UNASSIGNED-Internal Error";
709 assert(false);
710 } break;
711 }
712 msg = strm.str();
713 }
714
LookupDebugUtilsName(const debug_report_data * report_data,const uint64_t object)715 static std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) {
716 auto object_label = report_data->DebugReportGetUtilsObjectName(object);
717 if (object_label != "") {
718 object_label = "(" + object_label + ")";
719 }
720 return object_label;
721 }
722
723 // Generate message from the common portion of the debug report record.
GenerateCommonMessage(const debug_report_data * report_data,const GLOBAL_CB_NODE * cb_node,const uint32_t * debug_record,const VkShaderModule shader_module_handle,const VkPipeline pipeline_handle,const uint32_t draw_index,std::string & msg)724 static void GenerateCommonMessage(const debug_report_data *report_data, const GLOBAL_CB_NODE *cb_node, const uint32_t *debug_record,
725 const VkShaderModule shader_module_handle, const VkPipeline pipeline_handle,
726 const uint32_t draw_index, std::string &msg) {
727 using namespace spvtools;
728 std::ostringstream strm;
729 if (shader_module_handle == VK_NULL_HANDLE) {
730 strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
731 << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
732 << HandleToUint64(cb_node->commandBuffer) << "). ";
733 assert(true);
734 } else {
735 strm << std::hex << std::showbase << "Command buffer "
736 << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
737 << HandleToUint64(cb_node->commandBuffer) << "). "
738 << "Draw Index " << draw_index << ". "
739 << "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "("
740 << HandleToUint64(pipeline_handle) << "). "
741 << "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "("
742 << HandleToUint64(shader_module_handle) << "). ";
743 }
744 strm << std::dec << std::noshowbase;
745 strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
746 msg = strm.str();
747 }
748
749 // Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
750 // Split the single string into a vector of strings, one for each line, for easier processing.
ReadOpSource(const shader_module & shader,const uint32_t reported_file_id,std::vector<std::string> & opsource_lines)751 static void ReadOpSource(const shader_module &shader, const uint32_t reported_file_id, std::vector<std::string> &opsource_lines) {
752 for (auto insn : shader) {
753 if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) {
754 std::istringstream in_stream;
755 std::string cur_line;
756 in_stream.str((char *)&insn.word(4));
757 while (std::getline(in_stream, cur_line)) {
758 opsource_lines.push_back(cur_line);
759 }
760 while ((++insn).opcode() == spv::OpSourceContinued) {
761 in_stream.str((char *)&insn.word(1));
762 while (std::getline(in_stream, cur_line)) {
763 opsource_lines.push_back(cur_line);
764 }
765 }
766 break;
767 }
768 }
769 }
770
771 // The task here is to search the OpSource content to find the #line directive with the
772 // line number that is closest to, but still prior to the reported error line number and
773 // still within the reported filename.
774 // From this known position in the OpSource content we can add the difference between
775 // the #line line number and the reported error line number to determine the location
776 // in the OpSource content of the reported error line.
777 //
778 // Considerations:
779 // - Look only at #line directives that specify the reported_filename since
780 // the reported error line number refers to its location in the reported filename.
781 // - If a #line directive does not have a filename, the file is the reported filename, or
782 // the filename found in a prior #line directive. (This is C-preprocessor behavior)
783 // - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
784 // original order and the #line directives are used to keep the numbering correct. This
785 // is why we need to examine the entire contents of the source, instead of leaving early
786 // when finding a #line line number larger than the reported error line number.
787 //
788
789 // GCC 4.8 has a problem with std::regex that is fixed in GCC 4.9. Provide fallback code for 4.8
790 #define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
791
792 #if defined(__GNUC__) && GCC_VERSION < 40900
GetLineAndFilename(const std::string string,uint32_t * linenumber,std::string & filename)793 static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
794 // # line <linenumber> "<filename>" or
795 // #line <linenumber> "<filename>"
796 std::vector<std::string> tokens;
797 std::stringstream stream(string);
798 std::string temp;
799 uint32_t line_index = 0;
800
801 while (stream >> temp) tokens.push_back(temp);
802 auto size = tokens.size();
803 if (size > 1) {
804 if (tokens[0] == "#" && tokens[1] == "line") {
805 line_index = 2;
806 } else if (tokens[0] == "#line") {
807 line_index = 1;
808 }
809 }
810 if (0 == line_index) return false;
811 *linenumber = std::stoul(tokens[line_index]);
812 uint32_t filename_index = line_index + 1;
813 // Remove enclosing double quotes around filename
814 if (size > filename_index) filename = tokens[filename_index].substr(1, tokens[filename_index].size() - 2);
815 return true;
816 }
817 #else
GetLineAndFilename(const std::string string,uint32_t * linenumber,std::string & filename)818 static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
819 static const std::regex line_regex( // matches #line directives
820 "^" // beginning of line
821 "\\s*" // optional whitespace
822 "#" // required text
823 "\\s*" // optional whitespace
824 "line" // required text
825 "\\s+" // required whitespace
826 "([0-9]+)" // required first capture - line number
827 "(\\s+)?" // optional second capture - whitespace
828 "(\".+\")?" // optional third capture - quoted filename with at least one char inside
829 ".*"); // rest of line (needed when using std::regex_match since the entire line is tested)
830
831 std::smatch captures;
832
833 bool found_line = std::regex_match(string, captures, line_regex);
834 if (!found_line) return false;
835
836 // filename is optional and considered found only if the whitespace and the filename are captured
837 if (captures[2].matched && captures[3].matched) {
838 // Remove enclosing double quotes. The regex guarantees the quotes and at least one char.
839 filename = captures[3].str().substr(1, captures[3].str().size() - 2);
840 }
841 *linenumber = std::stoul(captures[1]);
842 return true;
843 }
844 #endif // GCC_VERSION
845
846 // Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
847 // Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
GenerateSourceMessages(const std::vector<unsigned int> & pgm,const uint32_t * debug_record,std::string & filename_msg,std::string & source_msg)848 static void GenerateSourceMessages(const std::vector<unsigned int> &pgm, const uint32_t *debug_record, std::string &filename_msg,
849 std::string &source_msg) {
850 using namespace spvtools;
851 std::ostringstream filename_stream;
852 std::ostringstream source_stream;
853 shader_module shader;
854 shader.words = pgm;
855 // Find the OpLine just before the failing instruction indicated by the debug info.
856 // SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
857 uint32_t instruction_index = 0;
858 uint32_t reported_file_id = 0;
859 uint32_t reported_line_number = 0;
860 uint32_t reported_column_number = 0;
861 if (shader.words.size() > 0) {
862 for (auto insn : shader) {
863 if (insn.opcode() == spv::OpLine) {
864 reported_file_id = insn.word(1);
865 reported_line_number = insn.word(2);
866 reported_column_number = insn.word(3);
867 }
868 if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
869 break;
870 }
871 instruction_index++;
872 }
873 }
874 // Create message with file information obtained from the OpString pointed to by the discovered OpLine.
875 std::string reported_filename;
876 if (reported_file_id == 0) {
877 filename_stream
878 << "Unable to find SPIR-V OpLine for source information. Build shader with debug info to get source information.";
879 } else {
880 bool found_opstring = false;
881 for (auto insn : shader) {
882 if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) {
883 found_opstring = true;
884 reported_filename = (char *)&insn.word(2);
885 if (reported_filename.empty()) {
886 filename_stream << "Shader validation error occurred at line " << reported_line_number;
887 } else {
888 filename_stream << "Shader validation error occurred in file: " << reported_filename << " at line "
889 << reported_line_number;
890 }
891 if (reported_column_number > 0) {
892 filename_stream << ", column " << reported_column_number;
893 }
894 filename_stream << ".";
895 break;
896 }
897 }
898 if (!found_opstring) {
899 filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction.";
900 }
901 }
902 filename_msg = filename_stream.str();
903
904 // Create message to display source code line containing error.
905 if ((reported_file_id != 0)) {
906 // Read the source code and split it up into separate lines.
907 std::vector<std::string> opsource_lines;
908 ReadOpSource(shader, reported_file_id, opsource_lines);
909 // Find the line in the OpSource content that corresponds to the reported error file and line.
910 if (!opsource_lines.empty()) {
911 uint32_t saved_line_number = 0;
912 std::string current_filename = reported_filename; // current "preprocessor" filename state.
913 std::vector<std::string>::size_type saved_opsource_offset = 0;
914 bool found_best_line = false;
915 for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
916 uint32_t parsed_line_number;
917 std::string parsed_filename;
918 bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename);
919 if (!found_line) continue;
920
921 bool found_filename = parsed_filename.size() > 0;
922 if (found_filename) {
923 current_filename = parsed_filename;
924 }
925 if ((!found_filename) || (current_filename == reported_filename)) {
926 // Update the candidate best line directive, if the current one is prior and closer to the reported line
927 if (reported_line_number >= parsed_line_number) {
928 if (!found_best_line ||
929 (reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
930 saved_line_number = parsed_line_number;
931 saved_opsource_offset = std::distance(opsource_lines.begin(), it);
932 found_best_line = true;
933 }
934 }
935 }
936 }
937 if (found_best_line) {
938 assert(reported_line_number >= saved_line_number);
939 std::vector<std::string>::size_type opsource_index =
940 (reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
941 if (opsource_index < opsource_lines.size()) {
942 source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
943 } else {
944 source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
945 << opsource_lines.size() << " lines.";
946 }
947 } else {
948 source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
949 }
950 } else {
951 source_stream << "Unable to find SPIR-V OpSource.";
952 }
953 }
954 source_msg = source_stream.str();
955 }
956
957 // Pull together all the information from the debug record to build the error message strings,
958 // and then assemble them into a single message string.
959 // Retrieve the shader program referenced by the unique shader ID provided in the debug record.
960 // We had to keep a copy of the shader program with the same lifecycle as the pipeline to make
961 // sure it is available when the pipeline is submitted. (The ShaderModule tracking object also
962 // keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.)
963 //
AnalyzeAndReportError(const layer_data * dev_data,GLOBAL_CB_NODE * cb_node,VkQueue queue,uint32_t draw_index,uint32_t * const debug_output_buffer)964 void CoreChecks::AnalyzeAndReportError(const layer_data *dev_data, GLOBAL_CB_NODE *cb_node, VkQueue queue, uint32_t draw_index,
965 uint32_t *const debug_output_buffer) {
966 using namespace spvtools;
967 const uint32_t total_words = debug_output_buffer[0];
968 // A zero here means that the shader instrumentation didn't write anything.
969 // If you have nothing to say, don't say it here.
970 if (0 == total_words) {
971 return;
972 }
973 // The first word in the debug output buffer is the number of words that would have
974 // been written by the shader instrumentation, if there was enough room in the buffer we provided.
975 // The number of words actually written by the shaders is determined by the size of the buffer
976 // we provide via the descriptor. So, we process only the number of words that can fit in the
977 // buffer.
978 // Each "report" written by the shader instrumentation is considered a "record". This function
979 // is hard-coded to process only one record because it expects the buffer to be large enough to
980 // hold only one record. If there is a desire to process more than one record, this function needs
981 // to be modified to loop over records and the buffer size increased.
982 auto gpu_state = GetGpuValidationState();
983 std::string validation_message;
984 std::string stage_message;
985 std::string common_message;
986 std::string filename_message;
987 std::string source_message;
988 std::string vuid_msg;
989 VkShaderModule shader_module_handle = VK_NULL_HANDLE;
990 VkPipeline pipeline_handle = VK_NULL_HANDLE;
991 std::vector<unsigned int> pgm;
992 // The first record starts at this offset after the total_words.
993 const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset];
994 // Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
995 // by the instrumented shader.
996 auto it = gpu_state->shader_map.find(debug_record[kInstCommonOutShaderId]);
997 if (it != gpu_state->shader_map.end()) {
998 shader_module_handle = it->second.shader_module;
999 pipeline_handle = it->second.pipeline;
1000 pgm = it->second.pgm;
1001 }
1002 GenerateValidationMessage(debug_record, validation_message, vuid_msg);
1003 GenerateStageMessage(debug_record, stage_message);
1004 GenerateCommonMessage(report_data, cb_node, debug_record, shader_module_handle, pipeline_handle, draw_index, common_message);
1005 GenerateSourceMessages(pgm, debug_record, filename_message, source_message);
1006 log_msg(GetReportData(), VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, HandleToUint64(queue),
1007 vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(), stage_message.c_str(),
1008 filename_message.c_str(), source_message.c_str());
1009 // The debug record at word kInstCommonOutSize is the number of words in the record
1010 // written by the shader. Clear the entire record plus the total_words word at the start.
1011 const uint32_t words_to_clear = 1 + std::min(debug_record[kInstCommonOutSize], (uint32_t)kInstMaxOutCnt);
1012 memset(debug_output_buffer, 0, sizeof(uint32_t) * words_to_clear);
1013 }
1014
1015 // For the given command buffer, map its debug data buffers and read their contents for analysis.
ProcessInstrumentationBuffer(const layer_data * dev_data,VkQueue queue,GLOBAL_CB_NODE * cb_node)1016 void CoreChecks::ProcessInstrumentationBuffer(const layer_data *dev_data, VkQueue queue, GLOBAL_CB_NODE *cb_node) {
1017 auto gpu_state = GetGpuValidationState();
1018 if (cb_node && cb_node->hasDrawCmd && cb_node->gpu_buffer_list.size() > 0) {
1019 VkResult result;
1020 char *pData;
1021 uint32_t draw_index = 0;
1022 for (auto &buffer_info : cb_node->gpu_buffer_list) {
1023 uint32_t block_offset = buffer_info.mem_block.offset;
1024 uint32_t block_size = gpu_state->memory_manager->GetBlockSize();
1025 uint32_t offset_to_data = 0;
1026 const uint32_t map_align = std::max(1U, static_cast<uint32_t>(GetPDProperties()->limits.minMemoryMapAlignment));
1027
1028 // Adjust the offset to the alignment required for mapping.
1029 block_offset = (block_offset / map_align) * map_align;
1030 offset_to_data = buffer_info.mem_block.offset - block_offset;
1031 block_size += offset_to_data;
1032 result = GetDispatchTable()->MapMemory(cb_node->device, buffer_info.mem_block.memory, block_offset, block_size, 0,
1033 (void **)&pData);
1034 // Analyze debug output buffer
1035 if (result == VK_SUCCESS) {
1036 AnalyzeAndReportError(dev_data, cb_node, queue, draw_index, (uint32_t *)(pData + offset_to_data));
1037 GetDispatchTable()->UnmapMemory(cb_node->device, buffer_info.mem_block.memory);
1038 }
1039 draw_index++;
1040 }
1041 }
1042 }
1043
1044 // Submit a memory barrier on graphics queues.
1045 // Lazy-create and record the needed command buffer.
SubmitBarrier(layer_data * dev_data,VkQueue queue)1046 void CoreChecks::SubmitBarrier(layer_data *dev_data, VkQueue queue) {
1047 auto gpu_state = GetGpuValidationState();
1048 const auto *dispatch_table = GetDispatchTable();
1049 uint32_t queue_family_index = 0;
1050
1051 auto it = dev_data->queueMap.find(queue);
1052 if (it != dev_data->queueMap.end()) {
1053 queue_family_index = it->second.queueFamilyIndex;
1054 }
1055
1056 // Pay attention only to queues that support graphics.
1057 // This ensures that the command buffer pool is created so that it can be used on a graphics queue.
1058 VkQueueFlags queue_flags = GetPhysicalDeviceState()->queue_family_properties[queue_family_index].queueFlags;
1059 if (!(queue_flags & VK_QUEUE_GRAPHICS_BIT)) {
1060 return;
1061 }
1062
1063 // Lazy-allocate and record the command buffer.
1064 if (gpu_state->barrier_command_buffer == VK_NULL_HANDLE) {
1065 VkResult result;
1066 VkCommandPoolCreateInfo pool_create_info = {};
1067 pool_create_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
1068 pool_create_info.queueFamilyIndex = queue_family_index;
1069 result = dispatch_table->CreateCommandPool(GetDevice(), &pool_create_info, nullptr, &gpu_state->barrier_command_pool);
1070 if (result != VK_SUCCESS) {
1071 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1072 "Unable to create command pool for barrier CB.");
1073 gpu_state->barrier_command_pool = VK_NULL_HANDLE;
1074 return;
1075 }
1076
1077 VkCommandBufferAllocateInfo command_buffer_alloc_info = {};
1078 command_buffer_alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
1079 command_buffer_alloc_info.commandPool = gpu_state->barrier_command_pool;
1080 command_buffer_alloc_info.commandBufferCount = 1;
1081 command_buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
1082 result =
1083 dispatch_table->AllocateCommandBuffers(GetDevice(), &command_buffer_alloc_info, &gpu_state->barrier_command_buffer);
1084 if (result != VK_SUCCESS) {
1085 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1086 "Unable to create barrier command buffer.");
1087 dispatch_table->DestroyCommandPool(GetDevice(), gpu_state->barrier_command_pool, nullptr);
1088 gpu_state->barrier_command_pool = VK_NULL_HANDLE;
1089 gpu_state->barrier_command_buffer = VK_NULL_HANDLE;
1090 return;
1091 }
1092
1093 // Hook up command buffer dispatch
1094 *((const void **)gpu_state->barrier_command_buffer) = *(void **)(GetDevice());
1095
1096 // Record a global memory barrier to force availability of device memory operations to the host domain.
1097 VkCommandBufferBeginInfo command_buffer_begin_info = {};
1098 command_buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
1099 result = dispatch_table->BeginCommandBuffer(gpu_state->barrier_command_buffer, &command_buffer_begin_info);
1100
1101 if (result == VK_SUCCESS) {
1102 VkMemoryBarrier memory_barrier = {};
1103 memory_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
1104 memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
1105 memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT;
1106
1107 dispatch_table->CmdPipelineBarrier(gpu_state->barrier_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
1108 VK_PIPELINE_STAGE_HOST_BIT, 0, 1, &memory_barrier, 0, nullptr, 0, nullptr);
1109 dispatch_table->EndCommandBuffer(gpu_state->barrier_command_buffer);
1110 }
1111 }
1112
1113 if (gpu_state->barrier_command_buffer) {
1114 VkSubmitInfo submit_info = {};
1115 submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
1116 submit_info.commandBufferCount = 1;
1117 submit_info.pCommandBuffers = &gpu_state->barrier_command_buffer;
1118 dispatch_table->QueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
1119 }
1120 }
1121
1122 // Issue a memory barrier to make GPU-written data available to host.
1123 // Wait for the queue to complete execution.
1124 // Check the debug buffers for all the command buffers that were submitted.
GpuPostCallQueueSubmit(layer_data * dev_data,VkQueue queue,uint32_t submitCount,const VkSubmitInfo * pSubmits,VkFence fence)1125 void CoreChecks::GpuPostCallQueueSubmit(layer_data *dev_data, VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits,
1126 VkFence fence) {
1127 auto gpu_state = GetGpuValidationState();
1128 if (gpu_state->aborted) return;
1129
1130 SubmitBarrier(dev_data, queue);
1131
1132 dev_data->device_dispatch_table.QueueWaitIdle(queue);
1133
1134 for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
1135 const VkSubmitInfo *submit = &pSubmits[submit_idx];
1136 for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
1137 auto cb_node = GetCBNode(submit->pCommandBuffers[i]);
1138 ProcessInstrumentationBuffer(dev_data, queue, cb_node);
1139 for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
1140 ProcessInstrumentationBuffer(dev_data, queue, secondaryCmdBuffer);
1141 }
1142 }
1143 }
1144 }
1145
GpuAllocateValidationResources(layer_data * dev_data,const VkCommandBuffer cmd_buffer,const VkPipelineBindPoint bind_point)1146 void CoreChecks::GpuAllocateValidationResources(layer_data *dev_data, const VkCommandBuffer cmd_buffer,
1147 const VkPipelineBindPoint bind_point) {
1148 VkResult result;
1149
1150 if (!(GetEnables()->gpu_validation)) return;
1151
1152 auto gpu_state = GetGpuValidationState();
1153 if (gpu_state->aborted) return;
1154
1155 std::vector<VkDescriptorSet> desc_sets;
1156 VkDescriptorPool desc_pool = VK_NULL_HANDLE;
1157 result = gpu_state->desc_set_manager->GetDescriptorSets(1, &desc_pool, &desc_sets);
1158 assert(result == VK_SUCCESS);
1159 if (result != VK_SUCCESS) {
1160 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1161 "Unable to allocate descriptor sets. Device could become unstable.");
1162 gpu_state->aborted = true;
1163 return;
1164 }
1165
1166 VkDescriptorBufferInfo desc_buffer_info = {};
1167 desc_buffer_info.range = gpu_state->memory_manager->GetBlockSize();
1168
1169 auto cb_node = GetCBNode(cmd_buffer);
1170 if (!cb_node) {
1171 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1172 "Unrecognized command buffer");
1173 gpu_state->aborted = true;
1174 return;
1175 }
1176
1177 GpuDeviceMemoryBlock block = {};
1178 result = gpu_state->memory_manager->GetBlock(&block);
1179 if (result != VK_SUCCESS) {
1180 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1181 "Unable to allocate device memory. Device could become unstable.");
1182 gpu_state->aborted = true;
1183 return;
1184 }
1185
1186 // Record buffer and memory info in CB state tracking
1187 cb_node->gpu_buffer_list.emplace_back(block, desc_sets[0], desc_pool);
1188
1189 // Write the descriptor
1190 desc_buffer_info.buffer = block.buffer;
1191 desc_buffer_info.offset = block.offset;
1192
1193 VkWriteDescriptorSet desc_write = {};
1194 desc_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
1195 desc_write.descriptorCount = 1;
1196 desc_write.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
1197 desc_write.pBufferInfo = &desc_buffer_info;
1198 desc_write.dstSet = desc_sets[0];
1199 GetDispatchTable()->UpdateDescriptorSets(GetDevice(), 1, &desc_write, 0, NULL);
1200
1201 auto iter = cb_node->lastBound.find(VK_PIPELINE_BIND_POINT_GRAPHICS); // find() allows read-only access to cb_state
1202 if (iter != cb_node->lastBound.end()) {
1203 auto pipeline_state = iter->second.pipeline_state;
1204 if (pipeline_state && (pipeline_state->pipeline_layout.set_layouts.size() <= gpu_state->desc_set_bind_index)) {
1205 GetDispatchTable()->CmdBindDescriptorSets(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
1206 pipeline_state->pipeline_layout.layout, gpu_state->desc_set_bind_index, 1,
1207 desc_sets.data(), 0, nullptr);
1208 }
1209 } else {
1210 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice()),
1211 "Unable to find pipeline state");
1212 gpu_state->aborted = true;
1213 return;
1214 }
1215 }
1216