• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include "HalInterfaces.h"
20 #include "OperationResolver.h"
21 #include "OperationsUtils.h"
22 #include "Tracing.h"
23 
24 namespace android {
25 namespace nn {
26 namespace gather {
27 
28 constexpr char kOperationName[] = "GATHER";
29 
30 constexpr uint32_t kNumInputs = 3;
31 constexpr uint32_t kInputTensor = 0;
32 constexpr uint32_t kInputAxis = 1;
33 constexpr uint32_t kInputIndices = 2;
34 
35 constexpr uint32_t kNumOutputs = 1;
36 constexpr uint32_t kOutputTensor = 0;
37 
38 namespace {
39 
40 template <typename T>
eval(const T * inputData,const Shape & inputShape,int32_t axis,const int32_t * indicesData,const Shape & indicesShape,T * outputData)41 inline bool eval(const T* inputData, const Shape& inputShape, int32_t axis,
42                  const int32_t* indicesData, const Shape& indicesShape, T* outputData) {
43     const auto outerSize = getNumberOfElements(inputShape, 0, axis);
44     const auto axisSize = getSizeOfDimension(inputShape, axis);
45     const auto innerSize =
46             getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
47     const auto indicesCount = getNumberOfElements(indicesShape);
48     for (uint32_t outer = 0; outer < outerSize; ++outer) {
49         for (uint32_t outputIndex = 0; outputIndex < indicesCount; ++outputIndex) {
50             const auto inputIndex = static_cast<uint32_t>(indicesData[outputIndex]);
51             NN_RET_CHECK_LE(0u, inputIndex);
52             NN_RET_CHECK_LT(inputIndex, axisSize);
53             std::memcpy(outputData + (outer * indicesCount + outputIndex) * innerSize,
54                         inputData + (outer * axisSize + inputIndex) * innerSize,
55                         sizeof(T) * innerSize);
56         }
57     }
58     return true;
59 }
60 
61 }  // namespace
62 
validate(const IOperationValidationContext * context)63 bool validate(const IOperationValidationContext* context) {
64     NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
65     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
66     OperandType inputType = context->getInputType(kInputTensor);
67     NN_RET_CHECK(
68             inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 ||
69             inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM)
70             << "Unsupported tensor type for operation " << kOperationName;
71     NN_RET_CHECK(validateInputTypes(context,
72                                     {inputType, OperandType::INT32, OperandType::TENSOR_INT32}));
73     NN_RET_CHECK(validateOutputTypes(context, {inputType}));
74     return validateHalVersion(context, HalVersion::V1_2);
75 }
76 
prepare(IOperationExecutionContext * context)77 bool prepare(IOperationExecutionContext* context) {
78     Shape input = context->getInputShape(kInputTensor);
79     int32_t axis = context->getInputValue<int32_t>(kInputAxis);
80     NN_RET_CHECK(handleNegativeAxis(input, &axis));
81     Shape indices = context->getInputShape(kInputIndices);
82     Shape output = context->getOutputShape(kOutputTensor);
83 
84     output.dimensions.clear();
85     output.dimensions.reserve(getNumberOfDimensions(input) + getNumberOfDimensions(indices) - 1);
86     output.dimensions.insert(output.dimensions.end(), input.dimensions.begin(),
87                              input.dimensions.begin() + axis);
88     output.dimensions.insert(output.dimensions.end(), indices.dimensions.begin(),
89                              indices.dimensions.end());
90     output.dimensions.insert(output.dimensions.end(), input.dimensions.begin() + axis + 1,
91                              input.dimensions.end());
92 
93     return context->setOutputShape(kOutputTensor, output);
94 }
95 
execute(IOperationExecutionContext * context)96 bool execute(IOperationExecutionContext* context) {
97     int32_t axis = context->getInputValue<int32_t>(kInputAxis);
98     NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
99     switch (context->getInputType(kInputTensor)) {
100         case OperandType::TENSOR_FLOAT16:
101             return eval(context->getInputBuffer<_Float16>(kInputTensor),
102                         context->getInputShape(kInputTensor), axis,
103                         context->getInputBuffer<int32_t>(kInputIndices),
104                         context->getInputShape(kInputIndices),
105                         context->getOutputBuffer<_Float16>(kOutputTensor));
106         case OperandType::TENSOR_FLOAT32:
107             return eval(context->getInputBuffer<float>(kInputTensor),
108                         context->getInputShape(kInputTensor), axis,
109                         context->getInputBuffer<int32_t>(kInputIndices),
110                         context->getInputShape(kInputIndices),
111                         context->getOutputBuffer<float>(kOutputTensor));
112         case OperandType::TENSOR_INT32:
113             return eval(context->getInputBuffer<int32_t>(kInputTensor),
114                         context->getInputShape(kInputTensor), axis,
115                         context->getInputBuffer<int32_t>(kInputIndices),
116                         context->getInputShape(kInputIndices),
117                         context->getOutputBuffer<int32_t>(kOutputTensor));
118         case OperandType::TENSOR_QUANT8_ASYMM:
119             return eval(context->getInputBuffer<uint8_t>(kInputTensor),
120                         context->getInputShape(kInputTensor), axis,
121                         context->getInputBuffer<int32_t>(kInputIndices),
122                         context->getInputShape(kInputIndices),
123                         context->getOutputBuffer<uint8_t>(kOutputTensor));
124         default:
125             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
126     }
127 }
128 
129 }  // namespace gather
130 
131 NN_REGISTER_OPERATION(GATHER, gather::kOperationName, gather::validate, gather::prepare,
132                       gather::execute);
133 
134 }  // namespace nn
135 }  // namespace android
136