• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "fuzzing/operation_signatures/OperationSignatureUtils.h"
18 
19 namespace android {
20 namespace nn {
21 namespace fuzzing_test {
22 
broadcastOpConstructor(Type dataType,uint32_t rank,RandomOperation * op)23 static void broadcastOpConstructor(Type dataType, uint32_t rank, RandomOperation* op) {
24     // TODO: All inputs of the broadcast op have the same rank 4 for now.
25     op->inputs[0]->dimensions.resize(rank);
26     op->inputs[1]->dimensions.resize(rank);
27     op->outputs[0]->dimensions.resize(rank);
28     for (uint32_t i = 0; i < rank; i++) {
29         if (getBernoulli(0.9f)) {
30             op->inputs[0]->dimensions[i] = RandomVariableType::FREE;
31         } else {
32             op->inputs[0]->dimensions[i] = 1;
33         }
34         if (getBernoulli(0.9f)) {
35             op->inputs[1]->dimensions[i] = op->inputs[0]->dimensions[i];
36         } else {
37             op->inputs[1]->dimensions[i] = 1;
38         }
39         op->outputs[0]->dimensions[i] =
40                 max(op->inputs[0]->dimensions[i], op->inputs[1]->dimensions[i]);
41     }
42 
43     // MUL requires output.scale > input0.scale * input1.scale.
44     if (dataType == Type::TENSOR_QUANT8_ASYMM && op->opType == ANEURALNETWORKS_MUL) {
45         float minScale = op->inputs[0]->scale * op->inputs[1]->scale;
46         op->outputs[0]->scale = getUniform(minScale, minScale * 5);
47     }
48 
49     // DIV and POW may produce Inf output values. We should not connect this output tensor to the
50     // input of another operation.
51     if (op->opType == ANEURALNETWORKS_DIV || op->opType == ANEURALNETWORKS_POW) {
52         op->outputs[0]->doNotConnect = true;
53     }
54 }
55 
56 // For broadcast operations with fused activation.
57 #define DEFINE_BROADCAST_WITH_ACT_SIGNATURE(op, ver, ...)                                        \
58     DEFINE_OPERATION_SIGNATURE(op##_##ver){                                                      \
59             .opType = ANEURALNETWORKS_##op,                                                      \
60             .supportedDataTypes = {__VA_ARGS__},                                                 \
61             .supportedRanks = {1, 2, 3, 4},                                                      \
62             .version = HalVersion::ver,                                                          \
63             .inputs = {INPUT_DEFAULT, INPUT_DEFAULT, PARAMETER_CHOICE(Type::INT32, 0, 1, 2, 3)}, \
64             .outputs = {OUTPUT_DEFAULT},                                                         \
65             .constructor = broadcastOpConstructor};
66 
67 // Arithmetic with activation.
68 DEFINE_BROADCAST_WITH_ACT_SIGNATURE(ADD, V1_0, Type::TENSOR_FLOAT32, Type::TENSOR_QUANT8_ASYMM);
69 DEFINE_BROADCAST_WITH_ACT_SIGNATURE(MUL, V1_0, Type::TENSOR_FLOAT32, Type::TENSOR_QUANT8_ASYMM);
70 DEFINE_BROADCAST_WITH_ACT_SIGNATURE(SUB, V1_1, Type::TENSOR_FLOAT32);
71 DEFINE_BROADCAST_WITH_ACT_SIGNATURE(DIV, V1_1, Type::TENSOR_FLOAT32);
72 DEFINE_BROADCAST_WITH_ACT_SIGNATURE(ADD, V1_2, Type::TENSOR_FLOAT16);
73 DEFINE_BROADCAST_WITH_ACT_SIGNATURE(MUL, V1_2, Type::TENSOR_FLOAT16);
74 DEFINE_BROADCAST_WITH_ACT_SIGNATURE(SUB, V1_2, Type::TENSOR_FLOAT16, Type::TENSOR_QUANT8_ASYMM);
75 DEFINE_BROADCAST_WITH_ACT_SIGNATURE(DIV, V1_2, Type::TENSOR_FLOAT16);
76 
77 // For broadcast ops with output of the same data type as inputs.
78 #define DEFINE_BROADCAST_SIGNATURE(op, ver, ...)                                     \
79     DEFINE_OPERATION_SIGNATURE(op##_##ver){.opType = ANEURALNETWORKS_##op,           \
80                                            .supportedDataTypes = {__VA_ARGS__},      \
81                                            .supportedRanks = {1, 2, 3, 4, 5},        \
82                                            .version = HalVersion::ver,               \
83                                            .inputs = {INPUT_DEFAULT, INPUT_DEFAULT}, \
84                                            .outputs = {OUTPUT_DEFAULT},              \
85                                            .constructor = broadcastOpConstructor};
86 
87 // Arithmetic without activation.
88 DEFINE_BROADCAST_SIGNATURE(POW, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16);
89 DEFINE_BROADCAST_SIGNATURE(PRELU, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16,
90                            Type::TENSOR_QUANT8_ASYMM);
91 DEFINE_BROADCAST_SIGNATURE(MAXIMUM, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16,
92                            Type::TENSOR_QUANT8_ASYMM, Type::TENSOR_INT32);
93 DEFINE_BROADCAST_SIGNATURE(MINIMUM, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16,
94                            Type::TENSOR_QUANT8_ASYMM, Type::TENSOR_INT32);
95 
96 // Logical
97 DEFINE_BROADCAST_SIGNATURE(LOGICAL_AND, V1_2, Type::TENSOR_BOOL8);
98 DEFINE_BROADCAST_SIGNATURE(LOGICAL_OR, V1_2, Type::TENSOR_BOOL8);
99 
100 // Comparisons
101 #define DEFINE_COMPARISON_SIGNATURE(op, ver, ...)                                         \
102     DEFINE_OPERATION_SIGNATURE(op##_##ver){.opType = ANEURALNETWORKS_##op,                \
103                                            .supportedDataTypes = {__VA_ARGS__},           \
104                                            .supportedRanks = {1, 2, 3, 4},                \
105                                            .version = HalVersion::ver,                    \
106                                            .inputs = {INPUT_DEFAULT, INPUT_DEFAULT},      \
107                                            .outputs = {OUTPUT_TYPED(Type::TENSOR_BOOL8)}, \
108                                            .constructor = broadcastOpConstructor};
109 
110 DEFINE_COMPARISON_SIGNATURE(EQUAL, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16,
111                             Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM, Type::TENSOR_BOOL8);
112 DEFINE_COMPARISON_SIGNATURE(GREATER, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16,
113                             Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM);
114 DEFINE_COMPARISON_SIGNATURE(GREATER_EQUAL, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16,
115                             Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM);
116 DEFINE_COMPARISON_SIGNATURE(LESS, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16,
117                             Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM);
118 DEFINE_COMPARISON_SIGNATURE(LESS_EQUAL, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16,
119                             Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM);
120 DEFINE_COMPARISON_SIGNATURE(NOT_EQUAL, V1_2, Type::TENSOR_FLOAT32, Type::TENSOR_FLOAT16,
121                             Type::TENSOR_INT32, Type::TENSOR_QUANT8_ASYMM, Type::TENSOR_BOOL8);
122 
123 }  // namespace fuzzing_test
124 }  // namespace nn
125 }  // namespace android
126