1 /*
2 * Copyright 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #undef LOG_TAG
19 #define LOG_TAG "RenderEngine"
20 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
21
22 #include "GLESRenderEngine.h"
23
24 #include <math.h>
25 #include <fstream>
26 #include <sstream>
27 #include <unordered_set>
28
29 #include <GLES2/gl2.h>
30 #include <GLES2/gl2ext.h>
31 #include <android-base/stringprintf.h>
32 #include <cutils/compiler.h>
33 #include <cutils/properties.h>
34 #include <renderengine/Mesh.h>
35 #include <renderengine/Texture.h>
36 #include <renderengine/private/Description.h>
37 #include <sync/sync.h>
38 #include <ui/ColorSpace.h>
39 #include <ui/DebugUtils.h>
40 #include <ui/GraphicBuffer.h>
41 #include <ui/Rect.h>
42 #include <ui/Region.h>
43 #include <utils/KeyedVector.h>
44 #include <utils/Trace.h>
45 #include "GLExtensions.h"
46 #include "GLFramebuffer.h"
47 #include "GLImage.h"
48 #include "Program.h"
49 #include "ProgramCache.h"
50
51 extern "C" EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
52
checkGlError(const char * op,int lineNumber)53 bool checkGlError(const char* op, int lineNumber) {
54 bool errorFound = false;
55 GLint error = glGetError();
56 while (error != GL_NO_ERROR) {
57 errorFound = true;
58 error = glGetError();
59 ALOGV("after %s() (line # %d) glError (0x%x)\n", op, lineNumber, error);
60 }
61 return errorFound;
62 }
63
64 static constexpr bool outputDebugPPMs = false;
65
writePPM(const char * basename,GLuint width,GLuint height)66 void writePPM(const char* basename, GLuint width, GLuint height) {
67 ALOGV("writePPM #%s: %d x %d", basename, width, height);
68
69 std::vector<GLubyte> pixels(width * height * 4);
70 std::vector<GLubyte> outBuffer(width * height * 3);
71
72 // TODO(courtneygo): We can now have float formats, need
73 // to remove this code or update to support.
74 // Make returned pixels fit in uint32_t, one byte per component
75 glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data());
76 if (checkGlError(__FUNCTION__, __LINE__)) {
77 return;
78 }
79
80 std::string filename(basename);
81 filename.append(".ppm");
82 std::ofstream file(filename.c_str(), std::ios::binary);
83 if (!file.is_open()) {
84 ALOGE("Unable to open file: %s", filename.c_str());
85 ALOGE("You may need to do: \"adb shell setenforce 0\" to enable "
86 "surfaceflinger to write debug images");
87 return;
88 }
89
90 file << "P6\n";
91 file << width << "\n";
92 file << height << "\n";
93 file << 255 << "\n";
94
95 auto ptr = reinterpret_cast<char*>(pixels.data());
96 auto outPtr = reinterpret_cast<char*>(outBuffer.data());
97 for (int y = height - 1; y >= 0; y--) {
98 char* data = ptr + y * width * sizeof(uint32_t);
99
100 for (GLuint x = 0; x < width; x++) {
101 // Only copy R, G and B components
102 outPtr[0] = data[0];
103 outPtr[1] = data[1];
104 outPtr[2] = data[2];
105 data += sizeof(uint32_t);
106 outPtr += 3;
107 }
108 }
109 file.write(reinterpret_cast<char*>(outBuffer.data()), outBuffer.size());
110 }
111
112 namespace android {
113 namespace renderengine {
114 namespace gl {
115
116 using base::StringAppendF;
117 using ui::Dataspace;
118
selectConfigForAttribute(EGLDisplay dpy,EGLint const * attrs,EGLint attribute,EGLint wanted,EGLConfig * outConfig)119 static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute,
120 EGLint wanted, EGLConfig* outConfig) {
121 EGLint numConfigs = -1, n = 0;
122 eglGetConfigs(dpy, nullptr, 0, &numConfigs);
123 std::vector<EGLConfig> configs(numConfigs, EGL_NO_CONFIG_KHR);
124 eglChooseConfig(dpy, attrs, configs.data(), configs.size(), &n);
125 configs.resize(n);
126
127 if (!configs.empty()) {
128 if (attribute != EGL_NONE) {
129 for (EGLConfig config : configs) {
130 EGLint value = 0;
131 eglGetConfigAttrib(dpy, config, attribute, &value);
132 if (wanted == value) {
133 *outConfig = config;
134 return NO_ERROR;
135 }
136 }
137 } else {
138 // just pick the first one
139 *outConfig = configs[0];
140 return NO_ERROR;
141 }
142 }
143
144 return NAME_NOT_FOUND;
145 }
146
147 class EGLAttributeVector {
148 struct Attribute;
149 class Adder;
150 friend class Adder;
151 KeyedVector<Attribute, EGLint> mList;
152 struct Attribute {
Attributeandroid::renderengine::gl::EGLAttributeVector::Attribute153 Attribute() : v(0){};
Attributeandroid::renderengine::gl::EGLAttributeVector::Attribute154 explicit Attribute(EGLint v) : v(v) {}
155 EGLint v;
operator <android::renderengine::gl::EGLAttributeVector::Attribute156 bool operator<(const Attribute& other) const {
157 // this places EGL_NONE at the end
158 EGLint lhs(v);
159 EGLint rhs(other.v);
160 if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
161 if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
162 return lhs < rhs;
163 }
164 };
165 class Adder {
166 friend class EGLAttributeVector;
167 EGLAttributeVector& v;
168 EGLint attribute;
Adder(EGLAttributeVector & v,EGLint attribute)169 Adder(EGLAttributeVector& v, EGLint attribute) : v(v), attribute(attribute) {}
170
171 public:
operator =(EGLint value)172 void operator=(EGLint value) {
173 if (attribute != EGL_NONE) {
174 v.mList.add(Attribute(attribute), value);
175 }
176 }
operator EGLint() const177 operator EGLint() const { return v.mList[attribute]; }
178 };
179
180 public:
EGLAttributeVector()181 EGLAttributeVector() { mList.add(Attribute(EGL_NONE), EGL_NONE); }
remove(EGLint attribute)182 void remove(EGLint attribute) {
183 if (attribute != EGL_NONE) {
184 mList.removeItem(Attribute(attribute));
185 }
186 }
operator [](EGLint attribute)187 Adder operator[](EGLint attribute) { return Adder(*this, attribute); }
operator [](EGLint attribute) const188 EGLint operator[](EGLint attribute) const { return mList[attribute]; }
189 // cast-operator to (EGLint const*)
operator EGLint const*() const190 operator EGLint const*() const { return &mList.keyAt(0).v; }
191 };
192
selectEGLConfig(EGLDisplay display,EGLint format,EGLint renderableType,EGLConfig * config)193 static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType,
194 EGLConfig* config) {
195 // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
196 // it is to be used with WIFI displays
197 status_t err;
198 EGLint wantedAttribute;
199 EGLint wantedAttributeValue;
200
201 EGLAttributeVector attribs;
202 if (renderableType) {
203 attribs[EGL_RENDERABLE_TYPE] = renderableType;
204 attribs[EGL_RECORDABLE_ANDROID] = EGL_TRUE;
205 attribs[EGL_SURFACE_TYPE] = EGL_WINDOW_BIT | EGL_PBUFFER_BIT;
206 attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
207 attribs[EGL_RED_SIZE] = 8;
208 attribs[EGL_GREEN_SIZE] = 8;
209 attribs[EGL_BLUE_SIZE] = 8;
210 attribs[EGL_ALPHA_SIZE] = 8;
211 wantedAttribute = EGL_NONE;
212 wantedAttributeValue = EGL_NONE;
213 } else {
214 // if no renderable type specified, fallback to a simplified query
215 wantedAttribute = EGL_NATIVE_VISUAL_ID;
216 wantedAttributeValue = format;
217 }
218
219 err = selectConfigForAttribute(display, attribs, wantedAttribute, wantedAttributeValue, config);
220 if (err == NO_ERROR) {
221 EGLint caveat;
222 if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat))
223 ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
224 }
225
226 return err;
227 }
228
create(int hwcFormat,uint32_t featureFlags,uint32_t imageCacheSize)229 std::unique_ptr<GLESRenderEngine> GLESRenderEngine::create(int hwcFormat, uint32_t featureFlags,
230 uint32_t imageCacheSize) {
231 // initialize EGL for the default display
232 EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
233 if (!eglInitialize(display, nullptr, nullptr)) {
234 LOG_ALWAYS_FATAL("failed to initialize EGL");
235 }
236
237 GLExtensions& extensions = GLExtensions::getInstance();
238 extensions.initWithEGLStrings(eglQueryStringImplementationANDROID(display, EGL_VERSION),
239 eglQueryStringImplementationANDROID(display, EGL_EXTENSIONS));
240
241 // The code assumes that ES2 or later is available if this extension is
242 // supported.
243 EGLConfig config = EGL_NO_CONFIG;
244 if (!extensions.hasNoConfigContext()) {
245 config = chooseEglConfig(display, hwcFormat, /*logConfig*/ true);
246 }
247
248 bool useContextPriority = extensions.hasContextPriority() &&
249 (featureFlags & RenderEngine::USE_HIGH_PRIORITY_CONTEXT);
250 EGLContext protectedContext = EGL_NO_CONTEXT;
251 if ((featureFlags & RenderEngine::ENABLE_PROTECTED_CONTEXT) &&
252 extensions.hasProtectedContent()) {
253 protectedContext = createEglContext(display, config, nullptr, useContextPriority,
254 Protection::PROTECTED);
255 ALOGE_IF(protectedContext == EGL_NO_CONTEXT, "Can't create protected context");
256 }
257
258 EGLContext ctxt = createEglContext(display, config, protectedContext, useContextPriority,
259 Protection::UNPROTECTED);
260
261 // if can't create a GL context, we can only abort.
262 LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed");
263
264 EGLSurface dummy = EGL_NO_SURFACE;
265 if (!extensions.hasSurfacelessContext()) {
266 dummy = createDummyEglPbufferSurface(display, config, hwcFormat, Protection::UNPROTECTED);
267 LOG_ALWAYS_FATAL_IF(dummy == EGL_NO_SURFACE, "can't create dummy pbuffer");
268 }
269 EGLBoolean success = eglMakeCurrent(display, dummy, dummy, ctxt);
270 LOG_ALWAYS_FATAL_IF(!success, "can't make dummy pbuffer current");
271 extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER),
272 glGetString(GL_VERSION), glGetString(GL_EXTENSIONS));
273
274 EGLSurface protectedDummy = EGL_NO_SURFACE;
275 if (protectedContext != EGL_NO_CONTEXT && !extensions.hasSurfacelessContext()) {
276 protectedDummy =
277 createDummyEglPbufferSurface(display, config, hwcFormat, Protection::PROTECTED);
278 ALOGE_IF(protectedDummy == EGL_NO_SURFACE, "can't create protected dummy pbuffer");
279 }
280
281 // now figure out what version of GL did we actually get
282 GlesVersion version = parseGlesVersion(extensions.getVersion());
283
284 // initialize the renderer while GL is current
285 std::unique_ptr<GLESRenderEngine> engine;
286 switch (version) {
287 case GLES_VERSION_1_0:
288 case GLES_VERSION_1_1:
289 LOG_ALWAYS_FATAL("SurfaceFlinger requires OpenGL ES 2.0 minimum to run.");
290 break;
291 case GLES_VERSION_2_0:
292 case GLES_VERSION_3_0:
293 engine = std::make_unique<GLESRenderEngine>(featureFlags, display, config, ctxt, dummy,
294 protectedContext, protectedDummy,
295 imageCacheSize);
296 break;
297 }
298
299 ALOGI("OpenGL ES informations:");
300 ALOGI("vendor : %s", extensions.getVendor());
301 ALOGI("renderer : %s", extensions.getRenderer());
302 ALOGI("version : %s", extensions.getVersion());
303 ALOGI("extensions: %s", extensions.getExtensions());
304 ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize());
305 ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims());
306
307 return engine;
308 }
309
chooseEglConfig(EGLDisplay display,int format,bool logConfig)310 EGLConfig GLESRenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) {
311 status_t err;
312 EGLConfig config;
313
314 // First try to get an ES3 config
315 err = selectEGLConfig(display, format, EGL_OPENGL_ES3_BIT, &config);
316 if (err != NO_ERROR) {
317 // If ES3 fails, try to get an ES2 config
318 err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config);
319 if (err != NO_ERROR) {
320 // If ES2 still doesn't work, probably because we're on the emulator.
321 // try a simplified query
322 ALOGW("no suitable EGLConfig found, trying a simpler query");
323 err = selectEGLConfig(display, format, 0, &config);
324 if (err != NO_ERROR) {
325 // this EGL is too lame for android
326 LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up");
327 }
328 }
329 }
330
331 if (logConfig) {
332 // print some debugging info
333 EGLint r, g, b, a;
334 eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r);
335 eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g);
336 eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b);
337 eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a);
338 ALOGI("EGL information:");
339 ALOGI("vendor : %s", eglQueryString(display, EGL_VENDOR));
340 ALOGI("version : %s", eglQueryString(display, EGL_VERSION));
341 ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS));
342 ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported");
343 ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config);
344 }
345
346 return config;
347 }
348
GLESRenderEngine(uint32_t featureFlags,EGLDisplay display,EGLConfig config,EGLContext ctxt,EGLSurface dummy,EGLContext protectedContext,EGLSurface protectedDummy,uint32_t imageCacheSize)349 GLESRenderEngine::GLESRenderEngine(uint32_t featureFlags, EGLDisplay display, EGLConfig config,
350 EGLContext ctxt, EGLSurface dummy, EGLContext protectedContext,
351 EGLSurface protectedDummy, uint32_t imageCacheSize)
352 : renderengine::impl::RenderEngine(featureFlags),
353 mEGLDisplay(display),
354 mEGLConfig(config),
355 mEGLContext(ctxt),
356 mDummySurface(dummy),
357 mProtectedEGLContext(protectedContext),
358 mProtectedDummySurface(protectedDummy),
359 mVpWidth(0),
360 mVpHeight(0),
361 mFramebufferImageCacheSize(imageCacheSize),
362 mUseColorManagement(featureFlags & USE_COLOR_MANAGEMENT) {
363 glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
364 glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
365
366 glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
367 glPixelStorei(GL_PACK_ALIGNMENT, 4);
368
369 // Initialize protected EGL Context.
370 if (mProtectedEGLContext != EGL_NO_CONTEXT) {
371 EGLBoolean success = eglMakeCurrent(display, mProtectedDummySurface, mProtectedDummySurface,
372 mProtectedEGLContext);
373 ALOGE_IF(!success, "can't make protected context current");
374 glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
375 glPixelStorei(GL_PACK_ALIGNMENT, 4);
376 success = eglMakeCurrent(display, mDummySurface, mDummySurface, mEGLContext);
377 LOG_ALWAYS_FATAL_IF(!success, "can't make default context current");
378 }
379
380 const uint16_t protTexData[] = {0};
381 glGenTextures(1, &mProtectedTexName);
382 glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
383 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
384 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
385 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
386 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
387 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
388
389 // mColorBlindnessCorrection = M;
390
391 if (mUseColorManagement) {
392 const ColorSpace srgb(ColorSpace::sRGB());
393 const ColorSpace displayP3(ColorSpace::DisplayP3());
394 const ColorSpace bt2020(ColorSpace::BT2020());
395
396 // no chromatic adaptation needed since all color spaces use D65 for their white points.
397 mSrgbToXyz = mat4(srgb.getRGBtoXYZ());
398 mDisplayP3ToXyz = mat4(displayP3.getRGBtoXYZ());
399 mBt2020ToXyz = mat4(bt2020.getRGBtoXYZ());
400 mXyzToSrgb = mat4(srgb.getXYZtoRGB());
401 mXyzToDisplayP3 = mat4(displayP3.getXYZtoRGB());
402 mXyzToBt2020 = mat4(bt2020.getXYZtoRGB());
403
404 // Compute sRGB to Display P3 and BT2020 transform matrix.
405 // NOTE: For now, we are limiting output wide color space support to
406 // Display-P3 and BT2020 only.
407 mSrgbToDisplayP3 = mXyzToDisplayP3 * mSrgbToXyz;
408 mSrgbToBt2020 = mXyzToBt2020 * mSrgbToXyz;
409
410 // Compute Display P3 to sRGB and BT2020 transform matrix.
411 mDisplayP3ToSrgb = mXyzToSrgb * mDisplayP3ToXyz;
412 mDisplayP3ToBt2020 = mXyzToBt2020 * mDisplayP3ToXyz;
413
414 // Compute BT2020 to sRGB and Display P3 transform matrix
415 mBt2020ToSrgb = mXyzToSrgb * mBt2020ToXyz;
416 mBt2020ToDisplayP3 = mXyzToDisplayP3 * mBt2020ToXyz;
417 }
418
419 char value[PROPERTY_VALUE_MAX];
420 property_get("debug.egl.traceGpuCompletion", value, "0");
421 if (atoi(value)) {
422 mTraceGpuCompletion = true;
423 mFlushTracer = std::make_unique<FlushTracer>(this);
424 }
425 mDrawingBuffer = createFramebuffer();
426 }
427
~GLESRenderEngine()428 GLESRenderEngine::~GLESRenderEngine() {
429 std::lock_guard<std::mutex> lock(mRenderingMutex);
430 unbindFrameBuffer(mDrawingBuffer.get());
431 mDrawingBuffer = nullptr;
432 while (!mFramebufferImageCache.empty()) {
433 EGLImageKHR expired = mFramebufferImageCache.front().second;
434 mFramebufferImageCache.pop_front();
435 eglDestroyImageKHR(mEGLDisplay, expired);
436 }
437 mImageCache.clear();
438 eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
439 eglTerminate(mEGLDisplay);
440 }
441
createFramebuffer()442 std::unique_ptr<Framebuffer> GLESRenderEngine::createFramebuffer() {
443 return std::make_unique<GLFramebuffer>(*this);
444 }
445
createImage()446 std::unique_ptr<Image> GLESRenderEngine::createImage() {
447 return std::make_unique<GLImage>(*this);
448 }
449
getFramebufferForDrawing()450 Framebuffer* GLESRenderEngine::getFramebufferForDrawing() {
451 return mDrawingBuffer.get();
452 }
453
primeCache() const454 void GLESRenderEngine::primeCache() const {
455 ProgramCache::getInstance().primeCache(mInProtectedContext ? mProtectedEGLContext : mEGLContext,
456 mFeatureFlags & USE_COLOR_MANAGEMENT);
457 }
458
isCurrent() const459 bool GLESRenderEngine::isCurrent() const {
460 return mEGLDisplay == eglGetCurrentDisplay() && mEGLContext == eglGetCurrentContext();
461 }
462
flush()463 base::unique_fd GLESRenderEngine::flush() {
464 ATRACE_CALL();
465 if (!GLExtensions::getInstance().hasNativeFenceSync()) {
466 return base::unique_fd();
467 }
468
469 EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr);
470 if (sync == EGL_NO_SYNC_KHR) {
471 ALOGW("failed to create EGL native fence sync: %#x", eglGetError());
472 return base::unique_fd();
473 }
474
475 // native fence fd will not be populated until flush() is done.
476 glFlush();
477
478 // get the fence fd
479 base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync));
480 eglDestroySyncKHR(mEGLDisplay, sync);
481 if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
482 ALOGW("failed to dup EGL native fence sync: %#x", eglGetError());
483 }
484
485 // Only trace if we have a valid fence, as current usage falls back to
486 // calling finish() if the fence fd is invalid.
487 if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer) && fenceFd.get() >= 0) {
488 mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr));
489 }
490
491 return fenceFd;
492 }
493
finish()494 bool GLESRenderEngine::finish() {
495 ATRACE_CALL();
496 if (!GLExtensions::getInstance().hasFenceSync()) {
497 ALOGW("no synchronization support");
498 return false;
499 }
500
501 EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr);
502 if (sync == EGL_NO_SYNC_KHR) {
503 ALOGW("failed to create EGL fence sync: %#x", eglGetError());
504 return false;
505 }
506
507 if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer)) {
508 mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr));
509 }
510
511 return waitSync(sync, EGL_SYNC_FLUSH_COMMANDS_BIT_KHR);
512 }
513
waitSync(EGLSyncKHR sync,EGLint flags)514 bool GLESRenderEngine::waitSync(EGLSyncKHR sync, EGLint flags) {
515 EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync, flags, 2000000000 /*2 sec*/);
516 EGLint error = eglGetError();
517 eglDestroySyncKHR(mEGLDisplay, sync);
518 if (result != EGL_CONDITION_SATISFIED_KHR) {
519 if (result == EGL_TIMEOUT_EXPIRED_KHR) {
520 ALOGW("fence wait timed out");
521 } else {
522 ALOGW("error waiting on EGL fence: %#x", error);
523 }
524 return false;
525 }
526
527 return true;
528 }
529
waitFence(base::unique_fd fenceFd)530 bool GLESRenderEngine::waitFence(base::unique_fd fenceFd) {
531 if (!GLExtensions::getInstance().hasNativeFenceSync() ||
532 !GLExtensions::getInstance().hasWaitSync()) {
533 return false;
534 }
535
536 // release the fd and transfer the ownership to EGLSync
537 EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd.release(), EGL_NONE};
538 EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs);
539 if (sync == EGL_NO_SYNC_KHR) {
540 ALOGE("failed to create EGL native fence sync: %#x", eglGetError());
541 return false;
542 }
543
544 // XXX: The spec draft is inconsistent as to whether this should return an
545 // EGLint or void. Ignore the return value for now, as it's not strictly
546 // needed.
547 eglWaitSyncKHR(mEGLDisplay, sync, 0);
548 EGLint error = eglGetError();
549 eglDestroySyncKHR(mEGLDisplay, sync);
550 if (error != EGL_SUCCESS) {
551 ALOGE("failed to wait for EGL native fence sync: %#x", error);
552 return false;
553 }
554
555 return true;
556 }
557
clearWithColor(float red,float green,float blue,float alpha)558 void GLESRenderEngine::clearWithColor(float red, float green, float blue, float alpha) {
559 ATRACE_CALL();
560 glDisable(GL_BLEND);
561 glClearColor(red, green, blue, alpha);
562 glClear(GL_COLOR_BUFFER_BIT);
563 }
564
fillRegionWithColor(const Region & region,float red,float green,float blue,float alpha)565 void GLESRenderEngine::fillRegionWithColor(const Region& region, float red, float green, float blue,
566 float alpha) {
567 size_t c;
568 Rect const* r = region.getArray(&c);
569 Mesh mesh(Mesh::TRIANGLES, c * 6, 2);
570 Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
571 for (size_t i = 0; i < c; i++, r++) {
572 position[i * 6 + 0].x = r->left;
573 position[i * 6 + 0].y = r->top;
574 position[i * 6 + 1].x = r->left;
575 position[i * 6 + 1].y = r->bottom;
576 position[i * 6 + 2].x = r->right;
577 position[i * 6 + 2].y = r->bottom;
578 position[i * 6 + 3].x = r->left;
579 position[i * 6 + 3].y = r->top;
580 position[i * 6 + 4].x = r->right;
581 position[i * 6 + 4].y = r->bottom;
582 position[i * 6 + 5].x = r->right;
583 position[i * 6 + 5].y = r->top;
584 }
585 setupFillWithColor(red, green, blue, alpha);
586 drawMesh(mesh);
587 }
588
setScissor(const Rect & region)589 void GLESRenderEngine::setScissor(const Rect& region) {
590 glScissor(region.left, region.top, region.getWidth(), region.getHeight());
591 glEnable(GL_SCISSOR_TEST);
592 }
593
disableScissor()594 void GLESRenderEngine::disableScissor() {
595 glDisable(GL_SCISSOR_TEST);
596 }
597
genTextures(size_t count,uint32_t * names)598 void GLESRenderEngine::genTextures(size_t count, uint32_t* names) {
599 glGenTextures(count, names);
600 }
601
deleteTextures(size_t count,uint32_t const * names)602 void GLESRenderEngine::deleteTextures(size_t count, uint32_t const* names) {
603 glDeleteTextures(count, names);
604 }
605
bindExternalTextureImage(uint32_t texName,const Image & image)606 void GLESRenderEngine::bindExternalTextureImage(uint32_t texName, const Image& image) {
607 ATRACE_CALL();
608 const GLImage& glImage = static_cast<const GLImage&>(image);
609 const GLenum target = GL_TEXTURE_EXTERNAL_OES;
610
611 glBindTexture(target, texName);
612 if (glImage.getEGLImage() != EGL_NO_IMAGE_KHR) {
613 glEGLImageTargetTexture2DOES(target, static_cast<GLeglImageOES>(glImage.getEGLImage()));
614 }
615 }
616
cacheExternalTextureBuffer(const sp<GraphicBuffer> & buffer)617 status_t GLESRenderEngine::cacheExternalTextureBuffer(const sp<GraphicBuffer>& buffer) {
618 std::lock_guard<std::mutex> lock(mRenderingMutex);
619 return cacheExternalTextureBufferLocked(buffer);
620 }
621
bindExternalTextureBuffer(uint32_t texName,const sp<GraphicBuffer> & buffer,const sp<Fence> & bufferFence)622 status_t GLESRenderEngine::bindExternalTextureBuffer(uint32_t texName,
623 const sp<GraphicBuffer>& buffer,
624 const sp<Fence>& bufferFence) {
625 std::lock_guard<std::mutex> lock(mRenderingMutex);
626 return bindExternalTextureBufferLocked(texName, buffer, bufferFence);
627 }
628
cacheExternalTextureBufferLocked(const sp<GraphicBuffer> & buffer)629 status_t GLESRenderEngine::cacheExternalTextureBufferLocked(const sp<GraphicBuffer>& buffer) {
630 if (buffer == nullptr) {
631 return BAD_VALUE;
632 }
633
634 ATRACE_CALL();
635
636 if (mImageCache.count(buffer->getId()) > 0) {
637 return NO_ERROR;
638 }
639
640 std::unique_ptr<Image> newImage = createImage();
641
642 bool created = newImage->setNativeWindowBuffer(buffer->getNativeBuffer(),
643 buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
644 if (!created) {
645 ALOGE("Failed to create image. size=%ux%u st=%u usage=%#" PRIx64 " fmt=%d",
646 buffer->getWidth(), buffer->getHeight(), buffer->getStride(), buffer->getUsage(),
647 buffer->getPixelFormat());
648 return NO_INIT;
649 }
650 mImageCache.insert(std::make_pair(buffer->getId(), std::move(newImage)));
651
652 return NO_ERROR;
653 }
654
bindExternalTextureBufferLocked(uint32_t texName,const sp<GraphicBuffer> & buffer,const sp<Fence> & bufferFence)655 status_t GLESRenderEngine::bindExternalTextureBufferLocked(uint32_t texName,
656 const sp<GraphicBuffer>& buffer,
657 const sp<Fence>& bufferFence) {
658 ATRACE_CALL();
659 status_t cacheResult = cacheExternalTextureBufferLocked(buffer);
660
661 if (cacheResult != NO_ERROR) {
662 return cacheResult;
663 }
664
665 auto cachedImage = mImageCache.find(buffer->getId());
666
667 if (cachedImage == mImageCache.end()) {
668 // We failed creating the image if we got here, so bail out.
669 bindExternalTextureImage(texName, *createImage());
670 return NO_INIT;
671 }
672
673 bindExternalTextureImage(texName, *cachedImage->second);
674
675 // Wait for the new buffer to be ready.
676 if (bufferFence != nullptr && bufferFence->isValid()) {
677 if (GLExtensions::getInstance().hasWaitSync()) {
678 base::unique_fd fenceFd(bufferFence->dup());
679 if (fenceFd == -1) {
680 ALOGE("error dup'ing fence fd: %d", errno);
681 return -errno;
682 }
683 if (!waitFence(std::move(fenceFd))) {
684 ALOGE("failed to wait on fence fd");
685 return UNKNOWN_ERROR;
686 }
687 } else {
688 status_t err = bufferFence->waitForever("RenderEngine::bindExternalTextureBuffer");
689 if (err != NO_ERROR) {
690 ALOGE("error waiting for fence: %d", err);
691 return err;
692 }
693 }
694 }
695
696 return NO_ERROR;
697 }
698
unbindExternalTextureBuffer(uint64_t bufferId)699 void GLESRenderEngine::unbindExternalTextureBuffer(uint64_t bufferId) {
700 std::lock_guard<std::mutex> lock(mRenderingMutex);
701 const auto& cachedImage = mImageCache.find(bufferId);
702 if (cachedImage != mImageCache.end()) {
703 ALOGV("Destroying image for buffer: %" PRIu64, bufferId);
704 mImageCache.erase(bufferId);
705 return;
706 }
707 ALOGV("Failed to find image for buffer: %" PRIu64, bufferId);
708 }
709
setupLayerCropping(const LayerSettings & layer,Mesh & mesh)710 FloatRect GLESRenderEngine::setupLayerCropping(const LayerSettings& layer, Mesh& mesh) {
711 // Translate win by the rounded corners rect coordinates, to have all values in
712 // layer coordinate space.
713 FloatRect cropWin = layer.geometry.boundaries;
714 const FloatRect& roundedCornersCrop = layer.geometry.roundedCornersCrop;
715 cropWin.left -= roundedCornersCrop.left;
716 cropWin.right -= roundedCornersCrop.left;
717 cropWin.top -= roundedCornersCrop.top;
718 cropWin.bottom -= roundedCornersCrop.top;
719 Mesh::VertexArray<vec2> cropCoords(mesh.getCropCoordArray<vec2>());
720 cropCoords[0] = vec2(cropWin.left, cropWin.top);
721 cropCoords[1] = vec2(cropWin.left, cropWin.top + cropWin.getHeight());
722 cropCoords[2] = vec2(cropWin.right, cropWin.top + cropWin.getHeight());
723 cropCoords[3] = vec2(cropWin.right, cropWin.top);
724
725 setupCornerRadiusCropSize(roundedCornersCrop.getWidth(), roundedCornersCrop.getHeight());
726 return cropWin;
727 }
728
handleRoundedCorners(const DisplaySettings & display,const LayerSettings & layer,const Mesh & mesh)729 void GLESRenderEngine::handleRoundedCorners(const DisplaySettings& display,
730 const LayerSettings& layer, const Mesh& mesh) {
731 // We separate the layer into 3 parts essentially, such that we only turn on blending for the
732 // top rectangle and the bottom rectangle, and turn off blending for the middle rectangle.
733 FloatRect bounds = layer.geometry.roundedCornersCrop;
734
735 // Firstly, we need to convert the coordination from layer native coordination space to
736 // device coordination space.
737 const auto transformMatrix = display.globalTransform * layer.geometry.positionTransform;
738 const vec4 leftTopCoordinate(bounds.left, bounds.top, 1.0, 1.0);
739 const vec4 rightBottomCoordinate(bounds.right, bounds.bottom, 1.0, 1.0);
740 const vec4 leftTopCoordinateInBuffer = transformMatrix * leftTopCoordinate;
741 const vec4 rightBottomCoordinateInBuffer = transformMatrix * rightBottomCoordinate;
742 bounds = FloatRect(leftTopCoordinateInBuffer[0], leftTopCoordinateInBuffer[1],
743 rightBottomCoordinateInBuffer[0], rightBottomCoordinateInBuffer[1]);
744
745 // Secondly, if the display is rotated, we need to undo the rotation on coordination and
746 // align the (left, top) and (right, bottom) coordination with the device coordination
747 // space.
748 switch (display.orientation) {
749 case ui::Transform::ROT_90:
750 std::swap(bounds.left, bounds.right);
751 break;
752 case ui::Transform::ROT_180:
753 std::swap(bounds.left, bounds.right);
754 std::swap(bounds.top, bounds.bottom);
755 break;
756 case ui::Transform::ROT_270:
757 std::swap(bounds.top, bounds.bottom);
758 break;
759 default:
760 break;
761 }
762
763 // Finally, we cut the layer into 3 parts, with top and bottom parts having rounded corners
764 // and the middle part without rounded corners.
765 const int32_t radius = ceil(layer.geometry.roundedCornersRadius);
766 const Rect topRect(bounds.left, bounds.top, bounds.right, bounds.top + radius);
767 setScissor(topRect);
768 drawMesh(mesh);
769 const Rect bottomRect(bounds.left, bounds.bottom - radius, bounds.right, bounds.bottom);
770 setScissor(bottomRect);
771 drawMesh(mesh);
772
773 // The middle part of the layer can turn off blending.
774 const Rect middleRect(bounds.left, bounds.top + radius, bounds.right, bounds.bottom - radius);
775 setScissor(middleRect);
776 mState.cornerRadius = 0.0;
777 disableBlending();
778 drawMesh(mesh);
779 disableScissor();
780 }
781
bindFrameBuffer(Framebuffer * framebuffer)782 status_t GLESRenderEngine::bindFrameBuffer(Framebuffer* framebuffer) {
783 ATRACE_CALL();
784 GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(framebuffer);
785 EGLImageKHR eglImage = glFramebuffer->getEGLImage();
786 uint32_t textureName = glFramebuffer->getTextureName();
787 uint32_t framebufferName = glFramebuffer->getFramebufferName();
788
789 // Bind the texture and turn our EGLImage into a texture
790 glBindTexture(GL_TEXTURE_2D, textureName);
791 glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)eglImage);
792
793 // Bind the Framebuffer to render into
794 glBindFramebuffer(GL_FRAMEBUFFER, framebufferName);
795 glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textureName, 0);
796
797 uint32_t glStatus = glCheckFramebufferStatus(GL_FRAMEBUFFER);
798
799 ALOGE_IF(glStatus != GL_FRAMEBUFFER_COMPLETE_OES, "glCheckFramebufferStatusOES error %d",
800 glStatus);
801
802 return glStatus == GL_FRAMEBUFFER_COMPLETE_OES ? NO_ERROR : BAD_VALUE;
803 }
804
unbindFrameBuffer(Framebuffer *)805 void GLESRenderEngine::unbindFrameBuffer(Framebuffer* /* framebuffer */) {
806 ATRACE_CALL();
807
808 // back to main framebuffer
809 glBindFramebuffer(GL_FRAMEBUFFER, 0);
810 }
811
checkErrors() const812 void GLESRenderEngine::checkErrors() const {
813 do {
814 // there could be more than one error flag
815 GLenum error = glGetError();
816 if (error == GL_NO_ERROR) break;
817 ALOGE("GL error 0x%04x", int(error));
818 } while (true);
819 }
820
supportsProtectedContent() const821 bool GLESRenderEngine::supportsProtectedContent() const {
822 return mProtectedEGLContext != EGL_NO_CONTEXT;
823 }
824
useProtectedContext(bool useProtectedContext)825 bool GLESRenderEngine::useProtectedContext(bool useProtectedContext) {
826 if (useProtectedContext == mInProtectedContext) {
827 return true;
828 }
829 if (useProtectedContext && mProtectedEGLContext == EGL_NO_CONTEXT) {
830 return false;
831 }
832 const EGLSurface surface = useProtectedContext ? mProtectedDummySurface : mDummySurface;
833 const EGLContext context = useProtectedContext ? mProtectedEGLContext : mEGLContext;
834 const bool success = eglMakeCurrent(mEGLDisplay, surface, surface, context) == EGL_TRUE;
835 if (success) {
836 mInProtectedContext = useProtectedContext;
837 }
838 return success;
839 }
createFramebufferImageIfNeeded(ANativeWindowBuffer * nativeBuffer,bool isProtected,bool useFramebufferCache)840 EGLImageKHR GLESRenderEngine::createFramebufferImageIfNeeded(ANativeWindowBuffer* nativeBuffer,
841 bool isProtected,
842 bool useFramebufferCache) {
843 sp<GraphicBuffer> graphicBuffer = GraphicBuffer::from(nativeBuffer);
844 if (useFramebufferCache) {
845 for (const auto& image : mFramebufferImageCache) {
846 if (image.first == graphicBuffer->getId()) {
847 return image.second;
848 }
849 }
850 }
851 EGLint attributes[] = {
852 isProtected ? EGL_PROTECTED_CONTENT_EXT : EGL_NONE,
853 isProtected ? EGL_TRUE : EGL_NONE,
854 EGL_NONE,
855 };
856 EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID,
857 nativeBuffer, attributes);
858 if (useFramebufferCache) {
859 if (image != EGL_NO_IMAGE_KHR) {
860 if (mFramebufferImageCache.size() >= mFramebufferImageCacheSize) {
861 EGLImageKHR expired = mFramebufferImageCache.front().second;
862 mFramebufferImageCache.pop_front();
863 eglDestroyImageKHR(mEGLDisplay, expired);
864 }
865 mFramebufferImageCache.push_back({graphicBuffer->getId(), image});
866 }
867 }
868 return image;
869 }
870
drawLayers(const DisplaySettings & display,const std::vector<LayerSettings> & layers,ANativeWindowBuffer * const buffer,const bool useFramebufferCache,base::unique_fd && bufferFence,base::unique_fd * drawFence)871 status_t GLESRenderEngine::drawLayers(const DisplaySettings& display,
872 const std::vector<LayerSettings>& layers,
873 ANativeWindowBuffer* const buffer,
874 const bool useFramebufferCache, base::unique_fd&& bufferFence,
875 base::unique_fd* drawFence) {
876 ATRACE_CALL();
877 if (layers.empty()) {
878 ALOGV("Drawing empty layer stack");
879 return NO_ERROR;
880 }
881
882 if (bufferFence.get() >= 0 && !waitFence(std::move(bufferFence))) {
883 ATRACE_NAME("Waiting before draw");
884 sync_wait(bufferFence.get(), -1);
885 }
886
887 if (buffer == nullptr) {
888 ALOGE("No output buffer provided. Aborting GPU composition.");
889 return BAD_VALUE;
890 }
891
892 {
893 std::lock_guard<std::mutex> lock(mRenderingMutex);
894
895 BindNativeBufferAsFramebuffer fbo(*this, buffer, useFramebufferCache);
896
897 if (fbo.getStatus() != NO_ERROR) {
898 ALOGE("Failed to bind framebuffer! Aborting GPU composition for buffer (%p).",
899 buffer->handle);
900 checkErrors();
901 return fbo.getStatus();
902 }
903
904 // clear the entire buffer, sometimes when we reuse buffers we'd persist
905 // ghost images otherwise.
906 // we also require a full transparent framebuffer for overlays. This is
907 // probably not quite efficient on all GPUs, since we could filter out
908 // opaque layers.
909 clearWithColor(0.0, 0.0, 0.0, 0.0);
910
911 setViewportAndProjection(display.physicalDisplay, display.clip);
912
913 setOutputDataSpace(display.outputDataspace);
914 setDisplayMaxLuminance(display.maxLuminance);
915
916 mat4 projectionMatrix = mState.projectionMatrix * display.globalTransform;
917 mState.projectionMatrix = projectionMatrix;
918 if (!display.clearRegion.isEmpty()) {
919 glDisable(GL_BLEND);
920 fillRegionWithColor(display.clearRegion, 0.0, 0.0, 0.0, 1.0);
921 }
922
923 Mesh mesh(Mesh::TRIANGLE_FAN, 4, 2, 2);
924 for (auto layer : layers) {
925 mState.projectionMatrix = projectionMatrix * layer.geometry.positionTransform;
926
927 const FloatRect bounds = layer.geometry.boundaries;
928 Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
929 position[0] = vec2(bounds.left, bounds.top);
930 position[1] = vec2(bounds.left, bounds.bottom);
931 position[2] = vec2(bounds.right, bounds.bottom);
932 position[3] = vec2(bounds.right, bounds.top);
933
934 setupLayerCropping(layer, mesh);
935 setColorTransform(display.colorTransform * layer.colorTransform);
936
937 bool usePremultipliedAlpha = true;
938 bool disableTexture = true;
939 bool isOpaque = false;
940
941 if (layer.source.buffer.buffer != nullptr) {
942 disableTexture = false;
943 isOpaque = layer.source.buffer.isOpaque;
944
945 sp<GraphicBuffer> gBuf = layer.source.buffer.buffer;
946 bindExternalTextureBufferLocked(layer.source.buffer.textureName, gBuf,
947 layer.source.buffer.fence);
948
949 usePremultipliedAlpha = layer.source.buffer.usePremultipliedAlpha;
950 Texture texture(Texture::TEXTURE_EXTERNAL, layer.source.buffer.textureName);
951 mat4 texMatrix = layer.source.buffer.textureTransform;
952
953 texture.setMatrix(texMatrix.asArray());
954 texture.setFiltering(layer.source.buffer.useTextureFiltering);
955
956 texture.setDimensions(gBuf->getWidth(), gBuf->getHeight());
957 setSourceY410BT2020(layer.source.buffer.isY410BT2020);
958
959 renderengine::Mesh::VertexArray<vec2> texCoords(mesh.getTexCoordArray<vec2>());
960 texCoords[0] = vec2(0.0, 0.0);
961 texCoords[1] = vec2(0.0, 1.0);
962 texCoords[2] = vec2(1.0, 1.0);
963 texCoords[3] = vec2(1.0, 0.0);
964 setupLayerTexturing(texture);
965 }
966
967 const half3 solidColor = layer.source.solidColor;
968 const half4 color = half4(solidColor.r, solidColor.g, solidColor.b, layer.alpha);
969 // Buffer sources will have a black solid color ignored in the shader,
970 // so in that scenario the solid color passed here is arbitrary.
971 setupLayerBlending(usePremultipliedAlpha, isOpaque, disableTexture, color,
972 layer.geometry.roundedCornersRadius);
973 if (layer.disableBlending) {
974 glDisable(GL_BLEND);
975 }
976 setSourceDataSpace(layer.sourceDataspace);
977
978 // We only want to do a special handling for rounded corners when having rounded corners
979 // is the only reason it needs to turn on blending, otherwise, we handle it like the
980 // usual way since it needs to turn on blending anyway.
981 if (layer.geometry.roundedCornersRadius > 0.0 && color.a >= 1.0f && isOpaque) {
982 handleRoundedCorners(display, layer, mesh);
983 } else {
984 drawMesh(mesh);
985 }
986
987 // Cleanup if there's a buffer source
988 if (layer.source.buffer.buffer != nullptr) {
989 disableBlending();
990 setSourceY410BT2020(false);
991 disableTexturing();
992 }
993 }
994
995 if (drawFence != nullptr) {
996 *drawFence = flush();
997 }
998 // If flush failed or we don't support native fences, we need to force the
999 // gl command stream to be executed.
1000 if (drawFence == nullptr || drawFence->get() < 0) {
1001 bool success = finish();
1002 if (!success) {
1003 ALOGE("Failed to flush RenderEngine commands");
1004 checkErrors();
1005 // Chances are, something illegal happened (either the caller passed
1006 // us bad parameters, or we messed up our shader generation).
1007 return INVALID_OPERATION;
1008 }
1009 }
1010
1011 checkErrors();
1012 }
1013 return NO_ERROR;
1014 }
1015
setViewportAndProjection(size_t vpw,size_t vph,Rect sourceCrop,ui::Transform::orientation_flags rotation)1016 void GLESRenderEngine::setViewportAndProjection(size_t vpw, size_t vph, Rect sourceCrop,
1017 ui::Transform::orientation_flags rotation) {
1018 setViewportAndProjection(Rect(vpw, vph), sourceCrop);
1019
1020 if (rotation == ui::Transform::ROT_0) {
1021 return;
1022 }
1023
1024 // Apply custom rotation to the projection.
1025 float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f;
1026 mat4 m = mState.projectionMatrix;
1027 switch (rotation) {
1028 case ui::Transform::ROT_90:
1029 m = mat4::rotate(rot90InRadians, vec3(0, 0, 1)) * m;
1030 break;
1031 case ui::Transform::ROT_180:
1032 m = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1)) * m;
1033 break;
1034 case ui::Transform::ROT_270:
1035 m = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1)) * m;
1036 break;
1037 default:
1038 break;
1039 }
1040 mState.projectionMatrix = m;
1041 }
1042
setViewportAndProjection(Rect viewport,Rect clip)1043 void GLESRenderEngine::setViewportAndProjection(Rect viewport, Rect clip) {
1044 ATRACE_CALL();
1045 mVpWidth = viewport.getWidth();
1046 mVpHeight = viewport.getHeight();
1047
1048 // We pass the the top left corner instead of the bottom left corner,
1049 // because since we're rendering off-screen first.
1050 glViewport(viewport.left, viewport.top, mVpWidth, mVpHeight);
1051
1052 mState.projectionMatrix = mat4::ortho(clip.left, clip.right, clip.top, clip.bottom, 0, 1);
1053 }
1054
setupLayerBlending(bool premultipliedAlpha,bool opaque,bool disableTexture,const half4 & color,float cornerRadius)1055 void GLESRenderEngine::setupLayerBlending(bool premultipliedAlpha, bool opaque, bool disableTexture,
1056 const half4& color, float cornerRadius) {
1057 mState.isPremultipliedAlpha = premultipliedAlpha;
1058 mState.isOpaque = opaque;
1059 mState.color = color;
1060 mState.cornerRadius = cornerRadius;
1061
1062 if (disableTexture) {
1063 mState.textureEnabled = false;
1064 }
1065
1066 if (color.a < 1.0f || !opaque || cornerRadius > 0.0f) {
1067 glEnable(GL_BLEND);
1068 glBlendFunc(premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1069 } else {
1070 glDisable(GL_BLEND);
1071 }
1072 }
1073
setSourceY410BT2020(bool enable)1074 void GLESRenderEngine::setSourceY410BT2020(bool enable) {
1075 mState.isY410BT2020 = enable;
1076 }
1077
setSourceDataSpace(Dataspace source)1078 void GLESRenderEngine::setSourceDataSpace(Dataspace source) {
1079 mDataSpace = source;
1080 }
1081
setOutputDataSpace(Dataspace dataspace)1082 void GLESRenderEngine::setOutputDataSpace(Dataspace dataspace) {
1083 mOutputDataSpace = dataspace;
1084 }
1085
setDisplayMaxLuminance(const float maxLuminance)1086 void GLESRenderEngine::setDisplayMaxLuminance(const float maxLuminance) {
1087 mState.displayMaxLuminance = maxLuminance;
1088 }
1089
setupLayerTexturing(const Texture & texture)1090 void GLESRenderEngine::setupLayerTexturing(const Texture& texture) {
1091 GLuint target = texture.getTextureTarget();
1092 glBindTexture(target, texture.getTextureName());
1093 GLenum filter = GL_NEAREST;
1094 if (texture.getFiltering()) {
1095 filter = GL_LINEAR;
1096 }
1097 glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1098 glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1099 glTexParameteri(target, GL_TEXTURE_MAG_FILTER, filter);
1100 glTexParameteri(target, GL_TEXTURE_MIN_FILTER, filter);
1101
1102 mState.texture = texture;
1103 mState.textureEnabled = true;
1104 }
1105
setupLayerBlackedOut()1106 void GLESRenderEngine::setupLayerBlackedOut() {
1107 glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
1108 Texture texture(Texture::TEXTURE_2D, mProtectedTexName);
1109 texture.setDimensions(1, 1); // FIXME: we should get that from somewhere
1110 mState.texture = texture;
1111 mState.textureEnabled = true;
1112 }
1113
setColorTransform(const mat4 & colorTransform)1114 void GLESRenderEngine::setColorTransform(const mat4& colorTransform) {
1115 mState.colorMatrix = colorTransform;
1116 }
1117
disableTexturing()1118 void GLESRenderEngine::disableTexturing() {
1119 mState.textureEnabled = false;
1120 }
1121
disableBlending()1122 void GLESRenderEngine::disableBlending() {
1123 glDisable(GL_BLEND);
1124 }
1125
setupFillWithColor(float r,float g,float b,float a)1126 void GLESRenderEngine::setupFillWithColor(float r, float g, float b, float a) {
1127 mState.isPremultipliedAlpha = true;
1128 mState.isOpaque = false;
1129 mState.color = half4(r, g, b, a);
1130 mState.textureEnabled = false;
1131 glDisable(GL_BLEND);
1132 }
1133
setupCornerRadiusCropSize(float width,float height)1134 void GLESRenderEngine::setupCornerRadiusCropSize(float width, float height) {
1135 mState.cropSize = half2(width, height);
1136 }
1137
drawMesh(const Mesh & mesh)1138 void GLESRenderEngine::drawMesh(const Mesh& mesh) {
1139 ATRACE_CALL();
1140 if (mesh.getTexCoordsSize()) {
1141 glEnableVertexAttribArray(Program::texCoords);
1142 glVertexAttribPointer(Program::texCoords, mesh.getTexCoordsSize(), GL_FLOAT, GL_FALSE,
1143 mesh.getByteStride(), mesh.getTexCoords());
1144 }
1145
1146 glVertexAttribPointer(Program::position, mesh.getVertexSize(), GL_FLOAT, GL_FALSE,
1147 mesh.getByteStride(), mesh.getPositions());
1148
1149 if (mState.cornerRadius > 0.0f) {
1150 glEnableVertexAttribArray(Program::cropCoords);
1151 glVertexAttribPointer(Program::cropCoords, mesh.getVertexSize(), GL_FLOAT, GL_FALSE,
1152 mesh.getByteStride(), mesh.getCropCoords());
1153 }
1154
1155 // By default, DISPLAY_P3 is the only supported wide color output. However,
1156 // when HDR content is present, hardware composer may be able to handle
1157 // BT2020 data space, in that case, the output data space is set to be
1158 // BT2020_HLG or BT2020_PQ respectively. In GPU fall back we need
1159 // to respect this and convert non-HDR content to HDR format.
1160 if (mUseColorManagement) {
1161 Description managedState = mState;
1162 Dataspace inputStandard = static_cast<Dataspace>(mDataSpace & Dataspace::STANDARD_MASK);
1163 Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK);
1164 Dataspace outputStandard =
1165 static_cast<Dataspace>(mOutputDataSpace & Dataspace::STANDARD_MASK);
1166 Dataspace outputTransfer =
1167 static_cast<Dataspace>(mOutputDataSpace & Dataspace::TRANSFER_MASK);
1168 bool needsXYZConversion = needsXYZTransformMatrix();
1169
1170 // NOTE: if the input standard of the input dataspace is not STANDARD_DCI_P3 or
1171 // STANDARD_BT2020, it will be treated as STANDARD_BT709
1172 if (inputStandard != Dataspace::STANDARD_DCI_P3 &&
1173 inputStandard != Dataspace::STANDARD_BT2020) {
1174 inputStandard = Dataspace::STANDARD_BT709;
1175 }
1176
1177 if (needsXYZConversion) {
1178 // The supported input color spaces are standard RGB, Display P3 and BT2020.
1179 switch (inputStandard) {
1180 case Dataspace::STANDARD_DCI_P3:
1181 managedState.inputTransformMatrix = mDisplayP3ToXyz;
1182 break;
1183 case Dataspace::STANDARD_BT2020:
1184 managedState.inputTransformMatrix = mBt2020ToXyz;
1185 break;
1186 default:
1187 managedState.inputTransformMatrix = mSrgbToXyz;
1188 break;
1189 }
1190
1191 // The supported output color spaces are BT2020, Display P3 and standard RGB.
1192 switch (outputStandard) {
1193 case Dataspace::STANDARD_BT2020:
1194 managedState.outputTransformMatrix = mXyzToBt2020;
1195 break;
1196 case Dataspace::STANDARD_DCI_P3:
1197 managedState.outputTransformMatrix = mXyzToDisplayP3;
1198 break;
1199 default:
1200 managedState.outputTransformMatrix = mXyzToSrgb;
1201 break;
1202 }
1203 } else if (inputStandard != outputStandard) {
1204 // At this point, the input data space and output data space could be both
1205 // HDR data spaces, but they match each other, we do nothing in this case.
1206 // In addition to the case above, the input data space could be
1207 // - scRGB linear
1208 // - scRGB non-linear
1209 // - sRGB
1210 // - Display P3
1211 // - BT2020
1212 // The output data spaces could be
1213 // - sRGB
1214 // - Display P3
1215 // - BT2020
1216 switch (outputStandard) {
1217 case Dataspace::STANDARD_BT2020:
1218 if (inputStandard == Dataspace::STANDARD_BT709) {
1219 managedState.outputTransformMatrix = mSrgbToBt2020;
1220 } else if (inputStandard == Dataspace::STANDARD_DCI_P3) {
1221 managedState.outputTransformMatrix = mDisplayP3ToBt2020;
1222 }
1223 break;
1224 case Dataspace::STANDARD_DCI_P3:
1225 if (inputStandard == Dataspace::STANDARD_BT709) {
1226 managedState.outputTransformMatrix = mSrgbToDisplayP3;
1227 } else if (inputStandard == Dataspace::STANDARD_BT2020) {
1228 managedState.outputTransformMatrix = mBt2020ToDisplayP3;
1229 }
1230 break;
1231 default:
1232 if (inputStandard == Dataspace::STANDARD_DCI_P3) {
1233 managedState.outputTransformMatrix = mDisplayP3ToSrgb;
1234 } else if (inputStandard == Dataspace::STANDARD_BT2020) {
1235 managedState.outputTransformMatrix = mBt2020ToSrgb;
1236 }
1237 break;
1238 }
1239 }
1240
1241 // we need to convert the RGB value to linear space and convert it back when:
1242 // - there is a color matrix that is not an identity matrix, or
1243 // - there is an output transform matrix that is not an identity matrix, or
1244 // - the input transfer function doesn't match the output transfer function.
1245 if (managedState.hasColorMatrix() || managedState.hasOutputTransformMatrix() ||
1246 inputTransfer != outputTransfer) {
1247 managedState.inputTransferFunction =
1248 Description::dataSpaceToTransferFunction(inputTransfer);
1249 managedState.outputTransferFunction =
1250 Description::dataSpaceToTransferFunction(outputTransfer);
1251 }
1252
1253 ProgramCache::getInstance().useProgram(mInProtectedContext ? mProtectedEGLContext
1254 : mEGLContext,
1255 managedState);
1256
1257 glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount());
1258
1259 if (outputDebugPPMs) {
1260 static uint64_t managedColorFrameCount = 0;
1261 std::ostringstream out;
1262 out << "/data/texture_out" << managedColorFrameCount++;
1263 writePPM(out.str().c_str(), mVpWidth, mVpHeight);
1264 }
1265 } else {
1266 ProgramCache::getInstance().useProgram(mInProtectedContext ? mProtectedEGLContext
1267 : mEGLContext,
1268 mState);
1269
1270 glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount());
1271 }
1272
1273 if (mesh.getTexCoordsSize()) {
1274 glDisableVertexAttribArray(Program::texCoords);
1275 }
1276
1277 if (mState.cornerRadius > 0.0f) {
1278 glDisableVertexAttribArray(Program::cropCoords);
1279 }
1280 }
1281
getMaxTextureSize() const1282 size_t GLESRenderEngine::getMaxTextureSize() const {
1283 return mMaxTextureSize;
1284 }
1285
getMaxViewportDims() const1286 size_t GLESRenderEngine::getMaxViewportDims() const {
1287 return mMaxViewportDims[0] < mMaxViewportDims[1] ? mMaxViewportDims[0] : mMaxViewportDims[1];
1288 }
1289
dump(std::string & result)1290 void GLESRenderEngine::dump(std::string& result) {
1291 const GLExtensions& extensions = GLExtensions::getInstance();
1292 ProgramCache& cache = ProgramCache::getInstance();
1293
1294 StringAppendF(&result, "EGL implementation : %s\n", extensions.getEGLVersion());
1295 StringAppendF(&result, "%s\n", extensions.getEGLExtensions());
1296 StringAppendF(&result, "GLES: %s, %s, %s\n", extensions.getVendor(), extensions.getRenderer(),
1297 extensions.getVersion());
1298 StringAppendF(&result, "%s\n", extensions.getExtensions());
1299 StringAppendF(&result, "RenderEngine supports protected context: %d\n",
1300 supportsProtectedContent());
1301 StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext);
1302 StringAppendF(&result, "RenderEngine program cache size for unprotected context: %zu\n",
1303 cache.getSize(mEGLContext));
1304 StringAppendF(&result, "RenderEngine program cache size for protected context: %zu\n",
1305 cache.getSize(mProtectedEGLContext));
1306 StringAppendF(&result, "RenderEngine last dataspace conversion: (%s) to (%s)\n",
1307 dataspaceDetails(static_cast<android_dataspace>(mDataSpace)).c_str(),
1308 dataspaceDetails(static_cast<android_dataspace>(mOutputDataSpace)).c_str());
1309 }
1310
parseGlesVersion(const char * str)1311 GLESRenderEngine::GlesVersion GLESRenderEngine::parseGlesVersion(const char* str) {
1312 int major, minor;
1313 if (sscanf(str, "OpenGL ES-CM %d.%d", &major, &minor) != 2) {
1314 if (sscanf(str, "OpenGL ES %d.%d", &major, &minor) != 2) {
1315 ALOGW("Unable to parse GL_VERSION string: \"%s\"", str);
1316 return GLES_VERSION_1_0;
1317 }
1318 }
1319
1320 if (major == 1 && minor == 0) return GLES_VERSION_1_0;
1321 if (major == 1 && minor >= 1) return GLES_VERSION_1_1;
1322 if (major == 2 && minor >= 0) return GLES_VERSION_2_0;
1323 if (major == 3 && minor >= 0) return GLES_VERSION_3_0;
1324
1325 ALOGW("Unrecognized OpenGL ES version: %d.%d", major, minor);
1326 return GLES_VERSION_1_0;
1327 }
1328
createEglContext(EGLDisplay display,EGLConfig config,EGLContext shareContext,bool useContextPriority,Protection protection)1329 EGLContext GLESRenderEngine::createEglContext(EGLDisplay display, EGLConfig config,
1330 EGLContext shareContext, bool useContextPriority,
1331 Protection protection) {
1332 EGLint renderableType = 0;
1333 if (config == EGL_NO_CONFIG) {
1334 renderableType = EGL_OPENGL_ES3_BIT;
1335 } else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) {
1336 LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE");
1337 }
1338 EGLint contextClientVersion = 0;
1339 if (renderableType & EGL_OPENGL_ES3_BIT) {
1340 contextClientVersion = 3;
1341 } else if (renderableType & EGL_OPENGL_ES2_BIT) {
1342 contextClientVersion = 2;
1343 } else if (renderableType & EGL_OPENGL_ES_BIT) {
1344 contextClientVersion = 1;
1345 } else {
1346 LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs");
1347 }
1348
1349 std::vector<EGLint> contextAttributes;
1350 contextAttributes.reserve(7);
1351 contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION);
1352 contextAttributes.push_back(contextClientVersion);
1353 if (useContextPriority) {
1354 contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG);
1355 contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG);
1356 }
1357 if (protection == Protection::PROTECTED) {
1358 contextAttributes.push_back(EGL_PROTECTED_CONTENT_EXT);
1359 contextAttributes.push_back(EGL_TRUE);
1360 }
1361 contextAttributes.push_back(EGL_NONE);
1362
1363 EGLContext context = eglCreateContext(display, config, shareContext, contextAttributes.data());
1364
1365 if (contextClientVersion == 3 && context == EGL_NO_CONTEXT) {
1366 // eglGetConfigAttrib indicated we can create GLES 3 context, but we failed, thus
1367 // EGL_NO_CONTEXT so that we can abort.
1368 if (config != EGL_NO_CONFIG) {
1369 return context;
1370 }
1371 // If |config| is EGL_NO_CONFIG, we speculatively try to create GLES 3 context, so we should
1372 // try to fall back to GLES 2.
1373 contextAttributes[1] = 2;
1374 context = eglCreateContext(display, config, shareContext, contextAttributes.data());
1375 }
1376
1377 return context;
1378 }
1379
createDummyEglPbufferSurface(EGLDisplay display,EGLConfig config,int hwcFormat,Protection protection)1380 EGLSurface GLESRenderEngine::createDummyEglPbufferSurface(EGLDisplay display, EGLConfig config,
1381 int hwcFormat, Protection protection) {
1382 EGLConfig dummyConfig = config;
1383 if (dummyConfig == EGL_NO_CONFIG) {
1384 dummyConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true);
1385 }
1386 std::vector<EGLint> attributes;
1387 attributes.reserve(7);
1388 attributes.push_back(EGL_WIDTH);
1389 attributes.push_back(1);
1390 attributes.push_back(EGL_HEIGHT);
1391 attributes.push_back(1);
1392 if (protection == Protection::PROTECTED) {
1393 attributes.push_back(EGL_PROTECTED_CONTENT_EXT);
1394 attributes.push_back(EGL_TRUE);
1395 }
1396 attributes.push_back(EGL_NONE);
1397
1398 return eglCreatePbufferSurface(display, dummyConfig, attributes.data());
1399 }
1400
isHdrDataSpace(const Dataspace dataSpace) const1401 bool GLESRenderEngine::isHdrDataSpace(const Dataspace dataSpace) const {
1402 const Dataspace standard = static_cast<Dataspace>(dataSpace & Dataspace::STANDARD_MASK);
1403 const Dataspace transfer = static_cast<Dataspace>(dataSpace & Dataspace::TRANSFER_MASK);
1404 return standard == Dataspace::STANDARD_BT2020 &&
1405 (transfer == Dataspace::TRANSFER_ST2084 || transfer == Dataspace::TRANSFER_HLG);
1406 }
1407
1408 // For convenience, we want to convert the input color space to XYZ color space first,
1409 // and then convert from XYZ color space to output color space when
1410 // - SDR and HDR contents are mixed, either SDR content will be converted to HDR or
1411 // HDR content will be tone-mapped to SDR; Or,
1412 // - there are HDR PQ and HLG contents presented at the same time, where we want to convert
1413 // HLG content to PQ content.
1414 // In either case above, we need to operate the Y value in XYZ color space. Thus, when either
1415 // input data space or output data space is HDR data space, and the input transfer function
1416 // doesn't match the output transfer function, we would enable an intermediate transfrom to
1417 // XYZ color space.
needsXYZTransformMatrix() const1418 bool GLESRenderEngine::needsXYZTransformMatrix() const {
1419 const bool isInputHdrDataSpace = isHdrDataSpace(mDataSpace);
1420 const bool isOutputHdrDataSpace = isHdrDataSpace(mOutputDataSpace);
1421 const Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK);
1422 const Dataspace outputTransfer =
1423 static_cast<Dataspace>(mOutputDataSpace & Dataspace::TRANSFER_MASK);
1424
1425 return (isInputHdrDataSpace || isOutputHdrDataSpace) && inputTransfer != outputTransfer;
1426 }
1427
isImageCachedForTesting(uint64_t bufferId)1428 bool GLESRenderEngine::isImageCachedForTesting(uint64_t bufferId) {
1429 std::lock_guard<std::mutex> lock(mRenderingMutex);
1430 const auto& cachedImage = mImageCache.find(bufferId);
1431 return cachedImage != mImageCache.end();
1432 }
1433
isFramebufferImageCachedForTesting(uint64_t bufferId)1434 bool GLESRenderEngine::isFramebufferImageCachedForTesting(uint64_t bufferId) {
1435 std::lock_guard<std::mutex> lock(mRenderingMutex);
1436 return std::any_of(mFramebufferImageCache.cbegin(), mFramebufferImageCache.cend(),
1437 [=](std::pair<uint64_t, EGLImageKHR> image) {
1438 return image.first == bufferId;
1439 });
1440 }
1441
1442 // FlushTracer implementation
FlushTracer(GLESRenderEngine * engine)1443 GLESRenderEngine::FlushTracer::FlushTracer(GLESRenderEngine* engine) : mEngine(engine) {
1444 mThread = std::thread(&GLESRenderEngine::FlushTracer::loop, this);
1445 }
1446
~FlushTracer()1447 GLESRenderEngine::FlushTracer::~FlushTracer() {
1448 {
1449 std::lock_guard<std::mutex> lock(mMutex);
1450 mRunning = false;
1451 }
1452 mCondition.notify_all();
1453 if (mThread.joinable()) {
1454 mThread.join();
1455 }
1456 }
1457
queueSync(EGLSyncKHR sync)1458 void GLESRenderEngine::FlushTracer::queueSync(EGLSyncKHR sync) {
1459 std::lock_guard<std::mutex> lock(mMutex);
1460 char name[64];
1461 const uint64_t frameNum = mFramesQueued++;
1462 snprintf(name, sizeof(name), "Queueing sync for frame: %lu",
1463 static_cast<unsigned long>(frameNum));
1464 ATRACE_NAME(name);
1465 mQueue.push({sync, frameNum});
1466 ATRACE_INT("GPU Frames Outstanding", mQueue.size());
1467 mCondition.notify_one();
1468 }
1469
loop()1470 void GLESRenderEngine::FlushTracer::loop() {
1471 while (mRunning) {
1472 QueueEntry entry;
1473 {
1474 std::lock_guard<std::mutex> lock(mMutex);
1475
1476 mCondition.wait(mMutex,
1477 [&]() REQUIRES(mMutex) { return !mQueue.empty() || !mRunning; });
1478
1479 if (!mRunning) {
1480 // if mRunning is false, then FlushTracer is being destroyed, so
1481 // bail out now.
1482 break;
1483 }
1484 entry = mQueue.front();
1485 mQueue.pop();
1486 }
1487 {
1488 char name[64];
1489 snprintf(name, sizeof(name), "waiting for frame %lu",
1490 static_cast<unsigned long>(entry.mFrameNum));
1491 ATRACE_NAME(name);
1492 mEngine->waitSync(entry.mSync, 0);
1493 }
1494 }
1495 }
1496
1497 } // namespace gl
1498 } // namespace renderengine
1499 } // namespace android
1500